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LARGE DEVIATIONS FROM THE CIRCULAR LAW
GERARD BEN AROUS AND OFER ZEITOUNI

ABsTRACT. We prove a full large deviations principle, in the scale N2,
for the empirical measure of the eigenvalues of an N x N (non self-
adjoint) matrix composed of i.i.d. zero mean random variables with
variance N™'. The (good) rate function which governs this rate func-
tion possesses as unique minimizer the circular law, providing an alter-
native proof of convergence to the latter. The techniques are related
to recent work by Ben Arous and Guionnet, who treat the self-adjoint
case. A crucial role is played by precise determinant computations due
to Edelman and to LLehmann and Sommers.

1. INTRODUCTION

Let XV = {Xf;f} be an N x N matrix whose entries are independent cen-

tered normal random variables of variance N~!. We denote the (complex)
eigenvalues of X~ by Z;,i =1,---, N, and form the empirical measure

N
A= Z5Zi'
=1

The law of iV is denoted by @N.

The celebrated circular law (c.f., e.g., Edelman A. (1997),Girko V.L.
(1984),Mehta M.L. (1991)) states that 4" converges in distribution to the
uniform law U on the disc D ={7: |Z] < 1}. Our goal in this paper is to
study the corresponding large deviations. We follow a similar study which
was carried out in Ben Arous G., Guionnet A. (1997) for the case of self-
adjoint matrices. In that case, the large deviations fluctuation have speed
N~2 and a rate function related to Voiculescu’s non commutative entropy.
More precisely, if YV = {Yzé\f} is an N x N self-adjoint matrix with inde-
pendent (for j > i) centered normal random variables of variance N~!/2
(variance N~1if ¢ = j), and eigenvalues AY, and if iV = % Zfil 5A?’ then
iV satisfies the large deviation principle with speed N2 and rate function

1

. 3 1
Ir(p) = 5 /Rl‘zﬂ(dl‘) — Zr(p) = g — log2

where

Sal) = [ [ tog e = ylutdotay).
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124 GERARD BEN AROUS AND OFER ZEITOUNI

Our main result is an analogous theorem in the non self-adjoint case. Let
Mls((C) denote the space of symmetric probability measures on C (symmetric
with respect to complex conjugation, that is u(A) = u(A*) for A* denoting
the complex conjugate of A), equipped with the weak topology. We denote
the Lévy metric on M;(C) by p(-,-), and recall that it is compatible with the

weak topology. For u € M7 (C), and Borel-measurable function f: C? — R,
define

(i) = /@ /@ F () pu(dy).
Define next
S = [ [ togle = (o) = log o = sl ),
and let

1) = 5 ([ JePutaa) - 20 - &

K ;:% </(C|x|2U(d;v) _ E(U)).

(Lemma 2.1 below shows that actually K = 3/8). The LDP for gV is
characterized in the following theorem:

THEOREM 1.1.

where

1. I is a good convex rate function on M; (C).
2. I(p) is infinite as soon as p satisfies one of the following conditions:
a) [ |al?u(dr) = oo
b) There exists an A C C of positive p-mass but null logarithmic
capacity, i.e.

1
A) =exps — inf lo v(da)v(d =0
T P{ DEMF(C%SUPPUCA// g|x_y| (dz)v( y)}

I(p) achieves its (unique) minimum value in M (C) at U.
4. N satisfies the large deviation principle (LDP) with speed N=% and
rate function I, that is

w

1 _
— il 1) <liminf 5 10g@" (2V € 4)

< lim sup L_log@N(ﬂN € A) < —inf I(p).
N—co N2 HeEA

(Compare with Theorem 1.1 in Ben Arous G., Guionnet A. (1997)).

Technically, the main difference between Theorem 1.1 and Ben Arous G.,
Guionnet A. (1997) is the lack of ordering in C, which prevents us from using,
in the proof of the lower bound, the approximation procedure presented in
Ben Arous G., Guionnet A. (1997). Instead, we present an appropriate
smoothing procedure (c.f., Lemma 2.2).

Our results extend naturally to allow for perturbations of the spectral
measure iV, c.f. the remark at the end of Section 2. However, unlike in the
self-adjoint or unitary cases, there does not appear to be a “natural” class
of Gaussian ensembles fitting these extensions. As in the self-adjoint case,
the non-Gaussian situation remains largely open.
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LARGE DEVIATIONS FROM THE CIRCULAR LAW 125

After this work was completed, we learnt of recent work of Hiai F., Petz D.
(1998), where similar questions for matrices with Gaussian complex entries
are treated.

2. PROOF OF THEOREM 1.1

We prove the theorem in a sequence of Lemmas.

LEMMA 2.1. K =3/8 and I is a good convez rate function.

Proof. Note first that, by a direct computation,

e(U) = //log|x—y|d;vdy:/ log |2 — y|dzdy
cJc |z[>]yl

1 r 2 )
= 471'/ rdr/ pdp/ dflog |r — pel®|. (2.1)
0 p=0 =0

Because log |z| is harmonic, for p < r,

2
/ dflog|r — pe’?| = 2nlog r,
=0

hence, substituting back in (2.1),

) = 8n? / rlogr/ pdpdr_—— (2.2)

The conclusion K = 3/8 follows from (2.2) and the fact that [ |2|*U(dz) =
1/2.

The proof that the level sets of I(-) are compact follows the proof of 3)
in property 2.1 of Ben Arous G., Guionnet A. (1997). Indeed, the closeness
of the level sets and the boundedness below of I(-) follow by truncating the
integrands in the definition of ¥(u) and using monotone convergence. The
compactness of the level set then follows by noting that, for any r > rq with
ro large enough (such that o — log(a) > 2r% — log(2r?) for any a > 2r?),
and with B, denoting the centered disc of radius r in the complex plane,

(u(B;))?
= p@p(XP* 2> [V > )
= p @ P XI*+ Y] = log(|X* + [V]?) > 2% —log(2r?))

< grmiog ) (2 + 10 = og (el + luP) (e} ()
1 2 2 2 |2~y
< g 1+ —bosts P e o
20(p) +1
— log(2r2)/2°

This immediately implies the compactness of the level set, for

2L+ 1
I (p) < LY C 0y popin s p(By) < \/n2 _ log—l_an)/Q}'

That I(-) is convex is proved exactly as the proof of 4) in property 2.1
of Ben Arous G., Guionnet A. (1997). Since we do not need this property,
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126 GERARD BEN AROUS AND OFER ZEITOUNI

we do not reproduce the proof. Thus one needs only show that I > 0. This
follows from the lower bound below (Lemma 2.5), since K = 3/8 = K,
where K is defined in (2.7). O

LEMMA 2.2. Assume that p € M{(C) does not possess atoms, and that
I(p) < 0o. Let p. = p * 7., where . is the standard centered Gaussian law
on C? of eI covariance (* denotes the convolution). Then p. — .o p and

I{pe) — (). (2.3)

e—0

Proof. The first assertion is obvious, for if (7, n.) denote independent ran-
dom variables distributed according to px~., then 7, = Z+n. is distributed
according to p..

Turning to the proof of (2.3), note that by the lower semicontinuity of
I(-) and the convergence of the second moment of n., it suffices to prove
that

limsup —S(s12) < ~S(1). (2.4)

e—0

Toward this end, note that

—X(ue) = / / log ue(dév)ue(dy)

= Flog

|Z—Z’—|—n6—n’6|

1
— Flog ———— + Elog ,
771

= —Y(u)+ Flog (2.5)

‘1 + ZEEZ/

where (7, Z') are independent copies of 7, (n., n.) are independent copies of
ne., and n. = V2n.. (Note that we have used here the fact that p possesses
no atoms). Thus, the lemma follows from (2.5) as soon as we show that

1
limsup £ | 1 - log — | <0. 2.6
e—>0p {|1+ 77 |<1} 8 |1 + Z?EEZ/ ( )
Define now, for a € C,
1
J,=F log ——
1+
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LARGE DEVIATIONS FROM THE CIRCULAR LAW 127

Fix @ > 0 (eventually, we take v — 00). Then, for some universal constant
'y independent of £, «, a, and all « large enough,

1 21 /e 1
_ —ly*1/2 -
Ja — Py /1{|1+y/a|§1}e log |1 y/aldy

5 1 21,21/
= 025/1{|1+Z|31}e—a2|22|/210g dz

11+ 2|

IN

Laspaly  lal® og
for>lal} |z+1]<1 |z +1]

+ lac<pay ol [ gaj<r log
|2[<[a|—2/4

Y T 1
—I_]'{O‘Slal} |a|26 \/ﬁ/4 |Z+1|<1 log mdz

|2|>a|=2/4

SCHG@M}J+H%W<HM+W2VWﬁ)

where we have used that | log |1+ z| | < 2|z| for |z| small enough in bounding
the second term. Hence,

|+1|

1

log -
|1+

limsup F/ 5
e—0 {|1+ Z—77

<i}

= limsup F/ <Jz_z/)
B

e—0

IN

1y hmsup(a ux p({2, 72" |Z = Z'| < a/e})+a~Yipsup 62e \/_/4>

0>a
= (4 <a_1/4 + sup 026_\/?/4)
0>a

where we used in the last equality the fact that p possesses no atoms and
therefore u x p({7, 7' :+ 7 = 7'}) = 0. Taking now o — oo completes the
proof of the lemma. O

The key to the asymptotics of @N lies in an exact Jacobian computation.
For € M7 (C), let k(u) = N,u({z :Im(z) = 0}) Clearly, 0 < k(aN) < N
is an integer. Define ((y) = N_Tk(“), then 0 < ((aV) < |&] is again an
integer.

For any sequence A = {\; }] X =4X; }] LY = {Yj}gzl, define
pAEY(dz) in M () by

k ¢
1
AXY . .
e =~ 25/\] + Z(fSXJ-I—zY] + 5X]—2Y]>
=1 =1
Fix
o= N(N+1)/4 yN(N-1)/4

5T (5)

where the equality Ky = 3/8 is obtained by directly evaluating the limit.

. . 1
Cy = , Ky = A}l_r}rloomlogCN:3/8, (2.7)
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128 GERARD BEN AROUS AND OFER ZEITOUNI

LEMMA 2.3. For any measurable A C M?(C),

Q (AN e )=
%J
/ /Hd/\ HdX Hle{y/\XYeAZ(MAXY) -0
exp( /|x|2/\XY )H(\/_Yerfc Y, v2 )2YN>
. exp ( // £ log o — y|p& % Y(dx)ui’i’z(dyg :
Here,

erfe (5) = = /

Proof. see Edelman A. (1997) or Lehmann N, Sommers H.J. (1991).

We next turn to the proof of a preliminary upper bound. Define f(z,y) =

2 2
|| ;lyl —log |z — y|.

LEMMA 2.4. Let v € M; (C) be given, and denote by B(v,§) the (Lévy) ball
in M7 (C) of radius § centered at v. Then,

1
2 < - = - K.
(lsl\r‘% h]rvnj;lopN log Q ( (145)) < <.2<fw/> Kl)

Proof. The proof mimics the argument in Section 3.1 of Ben Arous G.,
Guionnet A. (1997). Note that

< ~N <
[ s ¥y = S < 2

T r=yx*

For M € RT, define fy(z,y) = min(M, f(x,y)). Using the bound
x erfe (\/51‘)621’2 < (' for some universal constant C'1, one concludes from
Lemma 2.3 that

@N<B(1/7 5)) < Cn(VN)N ByeMN

(5] k ¢ ¢ LB .
S [ [T T TTavies (—1 00 - 1 0 +32)
(=0 7=1 7=1 7=1 7=1 7=1

N? 2 .
1{M/\ XY e B(u,8)nb(pd X Y )= Z}exp< B3 <1__><f Iu/\ XYy N/\,£7X>)62MN
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LARGE DEVIATIONS FROM THE CIRCULAR LAW 129
where log By = O(N). Hence, with log B;é) = o(N?),
Q" (Bw9)
l

I k ¢ ¢
< CyBY Z//H dx; [T dx; ] dv;exp _}1 > A‘f—}l D (XY
=0 j=1 =1 =1 =1 =1

N? 2
T x vepaneur xx)=n P (5 (1- 5 | lél(f 5)<fMH7H>

kol

implying that

. 1 —N . 1 1
h]rvnj:op ~zlogl (B(% 5)) < Jim Smlog Oy — 5, lél(f 5)<fM,U7H>

Since p +— {farp, pt) is continuous in the weak topology, we obtain that

B} 1
h\r‘n lim sup N—logQ ( (v, 5)) <Ky — 3 (fmv,v)

0 Noco

and the lemma follows by monotone convergence, taking M — oc. O
The complementary lower bound is given by:

LEMMA 2.5. Let v € MP(C) be given, and denote by B(v, ) the (Lévy) ball
of radius & centered at v. Then
. — 1
lim T inf N"210g @ (B(v,8)) > - ( 5 — Ky ).
Lim i int 0gQ (B@d)) 2~ {5 {fry)— K
Proof. By considering v. = v * 7. and using Lemma 2.2, it is clear that we
may consider only v € Mls which possesses no atoms and whose density ¢,

with respect to Lebesgue’s measure is continuous and positive everywhere.
Let

X_ = max{;v : I/([:L‘,oo) X (—O0,00)> >1- g}

{x ( ]X(—oo,oo)) 21—%}
Y = mln{y 1/( o0) x [0, y]} 21—%}.
V], D

Let D =[X_, X4]x[0, = [X_, X;]x[-Y,Y], and note that v(D) >
1 _ 1

3 — 3- Let €' be such that, on D, the density g, of v with respect to
Lebesgue’s measure satisfies C >¢g,>1/C.

For simplicity, we assume in the sequel that N is even, the case of N
odd requiring only obvious modifications. Fix 6" > 0. Modifying slightly
X_, X, and Y if necessary, partition D into disjoint squares {Bg}é , of
length /C'/N§" and centers Z,. Note that C?/N§ > v(B,;) > 1/N§’ and
hence N§/2 > L > N§&'/2C?. Fix oy = |Nv(By)|, then [C?/5'] > oy >
[1/8'], and 1/2 -8 —n < 1/Nz§ Lar < 1/2.

Next, for each ¢ € {1,---, L}, define a sequence {Z,;}%*
satisfying the following properties:

a) (Zf]78BZ) \/ ]\%/

b) |Z&j - Z&il Z 4m7 @ #]

X4y = min

2Ly Zuj € By,
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130 GERARD BEN AROUS AND OFER ZEITOUNI

(such a sequence always exists due to our construction of ay).
Finally, for k < 25:1 ay, define 15, = max{ﬂ' : Zﬁl:l ay < k} and 7, =
72.k_|_1 oS o Let K := {25:1 a4+ 1,...,N/2}, and let {Z;}rex be
? =1
K= % - 25:1 ay < (n+4&")N points equidistributed along the curve

L iz ) = 1}. (2.8)

EB:{ZGDCZ Im(z)>_2

Let 7 = % i\;/f((szk + 522), then p(v,7) < 2(8’ + 7). We remark that
with this construction, for some C'(n, '),
- - C(n,d o,
|Z; = Zi| = %7 i # J. (2.9)

Fix now £ > 0 small enough. Returning to the proof of the lower bound,
we have, by Lemma 2.3 (recall that N is assumed even, and reduce &', 7 if

needed).
N/2 N/2

—N . .
Q" (Bwd) 2 O [+ [ Tldnsdyyexn [ -N3 4 42)
D3 i=1 7=1
N/2
9,,2
: H VNy; erfe (y;vV2N)e 24N exp Zlog |2 — 2;| |2 — 2§
7=1 i#]

where Df = { (2, ;) ¢ |(2,5) = 7| < % } and 2 = (2;,,).
Due to property a) and (2.8) we have that in Dj, for ¢ < % ,

2 C
\/Nyj erfe (yj\/'ZN)e_zyﬂzN > Fl

for some universal constant ;. Furthermore, in D7

N/2 NV
NY Jl < (N+ —) Sz 1.
=1 VNS

Therefore, denoting by By a quantity (which may change from line to line)
which satisfies ﬁ log By — 0, one finds

N/2
Q" (B(,8)) > CnByexp (~(N+2)) 172
7=1
N/2 o
// exp | Y log|zi — ] [z — 23| | [[ e 07 dady;. (2.10)
Di i#] =1

Next, note that due to (2.9), property a) and the definition of Zj, we have

2e ~ ~ . .
|2 — 2| > (1—W) |Z: = Z;|, i#7]

* 2e ~ L]
|2 — 25| > (1— W) |Z; — 77|
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LARGE DEVIATIONS FROM THE CIRCULAR LAW 131

Therefore,
@N<B(1/7 5)) > ByCnexp | — <N—|— L ) E |Z]‘|"2
N VN

- exp Zlog | Z: — Z:| | Z: — Z;|
i
N/2

er(wo- ), He e

I 5=1

. 1 -
> B](V)CN exp | — <N—|— \/—ﬁ> Z |Z]‘|2
exp | Y log|Zi — Z;| | Z: — Z;| (2.11)

where

lim lim N—log B(E) =0.

e—=0 N—oo

Next, for each /£, let

GE={/(: max|z—y| > (14+¢) min |Zp — Zy|
z€EB, Z,L€B,
yEBZ/ Zk/EBZ/

9 2
<t —=) .
6l < (2)

Then, using the fact that for N large enough and for 2 € By,y € By with
(" € G, one has that log|z — y| |2 — y*| <0,

5 [ vaswtanogle o1 = [ wdzywtdnogle = ylle -

Z //B v(dy) log|z — | |z — y7|

Note that

yEBZ/
z'gGv
3 [frep. vidowtdn ol = oz -

yEB
Z’GG”

v(Be)v(By) S A s

< 7. .7 ¢ .
< 3 e (log12:= 7,1 12— 771 ) +2 log(1++)

{i,j: Z;€By, Z‘]guz,eGile}
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132 GERARD BEN AROUS AND OFER ZEITOUNI

Hence, for some constant Cy = C (2,4, ),

// v(de)v(dy) log|e — y| = // (da)w(dy) log|z — y| |z — v

<Y Nlog|Zi - Z;| | Zi - Z3|

i#]
‘ v(B) v(Bpy ~ ~ ~ ~
n T ‘N”—QM g 12— 2112 - 7
- ~ (87 Qg
{i,j: Z;€By, Z] gUUeGiBZ’}
C 2
+== N( ) log N
N NTlog|Zi — Zi| | Zi = 75| + 2log(1+ ). (2.12)

i€k, j#i
Note however that by construction,

Y NTlog|Zi - Zi| | Zi - 7

1,5EX, j#i
<(n+dN 1zzllog N/jIXy = X
7=1
< (49 (|log | X4 = X_| | +1). (2.13)

On the other hand,

- > NTlog|Zi— Zi||Zi - Z;1 < (n+ §)N 1Zlog2. (2.14)
€K, jgK

Substituting (2.12), (2.13) and (2.14) in (2.11), we obtain

N =N
l}\rfn_}l;lofmlogQ (B(I/,(S))
N/2
> lim —log(CNB() - hm Z|Z |2

N—oco N

N % //DF v(dz)v(dy) log|z — |

. 1 7 7 5 7 o
— lim WZ“—‘” log | Zi—Z;| | Zi— 77|
i#]
Taking first € — 0, then &’ — 0 and finally n — 0, we obtain

lim inf L_log @N (B(I/7 5))
> lim N—logCN— - /|z|2 (dz) + %//log|x—y|y(d;ﬁ)l/(dy).

N—oo

—n—5&" —2log(1+e).

Proof of Theorem 1.1: The weak large deviations principle and the fact that
K = K, (and thus that U minimizes I(-)) follows from Lemmas 2.1, 2.4 and

2.5. The exponential tightness of @N can be proved exactly as property 4.1
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LARGE DEVIATIONS FROM THE CIRCULAR LAW 133

in Ben Arous G., Guionnet A. (1997), and implies the full LDP for @N. An
alternative proof of the exponential tightness is obtained by observing that,
due to lemma 2.3, with Ag, := {p&XY: 2XY(B) > K,

—N .
Q (,uN S AI(J’)

k l4 4
<gy  max / / [T ax [Tax [Tdvitgosreapaxri=g
1=0,...,[N/2] i=1 j=1 j=1
N? : :
-exp <__/(|~”U|2+ Iylz)ua’&’z(dx’dyﬂ

4
KNZ%p?
4 9

where N™?log gy = O(1), B, denotes the centered disc of radius r in the
complex plane, and we have used the inequality log |z—y| < (|z|*+]|y|?)/4+2.
The exponential tightness follows at once.

Point 2 in the statement of Theorem 1.1 is proved exactly as properties
b.1, b.2 in Theorem 1.1 of Ben Arous G., Guionnet A. (1997). It thus
remains to prove the uniqueness of U as a minimizer of I(-). To prove this,
we begin by showing that if x4 is a minimizer of I(-), then it must be of
compact support. Indeed, fix R large (eventually, we take R — oo0). With
Bpr denoting as above the centered disc of radius R in the complex plane,
let 6 := u(B%), and write p = (1 — 0)uf* + 6n%, where p® is a probability
measure supported on Bg and 5 is a probability measure supported on
B%. Define

o= (1 —0)u” 4 6U.
Then,

21 () ~ 1)
= 0( [ Jao) = 5) =200 =0) [ [ 10wl = a0~ 0y

([ [ 1ogle = sl (deynay) = (25 = 5). (2.15)
Note that for some constant C' independent of R, for any € Bp,
| [ogls =yl < C1 4 log ).
while
[ togla = sty < [ tox@iulin" )
and, using the inequality log |z — y| < [log|z| | + | log|y| | + 2,
[ [ 1osle = sla @y ) < 20+ [ rog el (i)
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134 GERARD BEN AROUS AND OFER ZEITOUNI

Hence, substituting in (2.15), with C denoting again a constant independent

of R,
20100 = 1) > 0( | [e*1"(ds) = 5) = 260 = 0)( | tog(3lan"(ds)

+C(1+1ogR))—010‘2(1+/Clog|x|nR(d:c)).

Since log R < R for R large enough and limp_ ., 8 = 0 but 8 > 0 for all
R, one concludes that for some R large enough, I(x) > I(f), leading to a
contradiction.

Knowing that the minimizing p is of compact support, we can now apply
the potential theoretic arguments from Hille E. (1962). In fact, one follows
verbatim the proof of Theorem 2.3b in Mhaskar H.N., Saff E.B. (1985). O

REMARK 2.6. An inspection of the proof reveals that a similar large devi-
ations statement would be available either when other ensembles are con-
sidered such that a statement similar to Lemma 2.3 holds (possibly with
different function replacing |z|?) or when exponential weighting depending
on the empirical measure of the eigenvalues is added. In the self-adjoint or
in the unitary cases, this corresponds to well known families, we do not have
however a concrete application in mind in the complex case and therefore
have not pursued this direction here. We refer to Hiai F., Petz D. (1997a),
Hiai F., D. Petz (1997b) for several large deviations statements for certain
ensembles of matrices.
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