1. Problem 2, page 153 of text. (Recall, if \(f \) is analytic within the region bounded by two simple, closed, positively oriented contours, and is also analytic on the contours, then the integral of \(f \) is the same on each contour.)

2. Evaluate

\[
I(z_0) = \int_C \frac{dz}{z - z_0}
\]

taken once around the contour shown in the figure, for all point \(z_0 \) not on the contour. Be sure to consider \(z_0 \) located in each of the regions I, II, III, IV.

4. If \(P(z) \) is the polynomial \(\Pi_{k=1}^n (z - z_k) \) where the \(z_k \) are complex numbers, and \(C \) is a simple closed contour containing all of the \(z_k \), show that

\[
\int_C \frac{P'(z)}{P(z)} \, dz = 2\pi in.
\]

5. By using the method and the rectangular contour of problem (3) above, applied now to the function \(f(z) = \frac{1}{1 + z^2} \), show that

\[
\int_{-\infty}^{+\infty} \frac{(1 - b^2 + x^2)}{(1 - b^2 + x^2)^2 + 4b^2 x^2} \, dx = \pi,
\]

where \(b \) is real and \(0 < b < 1 \). (Recall \(\int \frac{1}{1+x^2} \, dx = \tan^{-1} x \). Be sure to recognize integrals of functions which vanish by being odd in \(x \). Also note that \(|1 + a^2 - y^2 + 2iay| \geq |1 + a^2 - y^2| \geq 1 + a^2 - b^2 > 0 \) on the integrals on the vertical sides.)

6. Evaluate

\[
\int_0^\infty \frac{\sin x}{\sqrt{x}} \, dx
\]

By integrating \(\frac{\sin z}{\sqrt{z}} \) over the contour \(C = C_1 + C_2 + C_3 + C_4 \) shown in the figure, involving arcs of radius \(\epsilon \) and \(R \), then letting \(\epsilon \to 0 \) and \(R \to \infty \).(Hint: To estimate the integral \(C_2 \) use \(\sin \theta \geq 2\theta / \pi, 0 \leq \theta \leq \pi / 2 \). You should show that \(C_4 \) vanishes as \(\epsilon \to 0 \) and that \(C_2 \) vanishes as \(R \to \infty \). Take \(\sqrt{z} = \sqrt{\epsilon} e^{i\theta/2}, 0 \leq \theta \leq \pi / 2 \). You can check your result against \(\int_0^\infty \sin(t^2) \, dt \) as done in class by a change of variables.)