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Chapter 1

The fluid continuum

This course will deal with a mathematical idealization of common fluids such as
air or water. The main idealization is embodied in the notion of a continuum
and our “fluids” will generally be identified with a certain connected set of points
in RN , where we will consider dimension N to be 1,2, or 3. Of course the fluids
will move, so basically our subject is that of a moving continuum.

This description is an idealization which neglects the molecular structure of
real fluids. Liquids are fluids characterized by random motions of molecules on
the scale of 10−7 − 10−8 cm, and by a substantial resistance to compression.
Gases consist of molecules moving over much larger distances, with mean free
paths of the order of 10−3 cm, and are readily compressed. Both liquids and
gases will fall within the scope of the theory of fluid motion which we will develop
below. The theory will deal with observable properties such as velocity, density,
and pressure. These properties must be understood as averages over volumes
which contains many molecules but are small enough to be “infinitesimal” with
respect to the length scale of variation of the property. We shall use the term
fluid parcel to indicate such a small volume. The notion of a particle of fluid
will also be used, but should not be confused with a molecule. For example,
the time rate of change of position of a fluid particle will be the fluid velocity,
which is an average velocity taken over a parcel and is distinct from molecular
velocities. The continuum theory has wide applicability to the natural world,
but there are certain situations where it is not satisfactory. Usually these will
involve small domains where the molecular structure becomes important, such
as shock waves or fluid interfaces.

1.1 Eulerian and Lagrangian descriptions

Let the independent variables (observables) describing a fluid be a function of
position x = (x1, . . . , xN) in Euclidean space and time t. Suppose that at
t = 0 the fluid is identified with an open set S0 of RN . As the fluid moves,
the particles of fluid will take up new positions, occupying the set St at time
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4 CHAPTER 1. THE FLUID CONTINUUM

t. We can introduce the map Mt,S0 → St to describe this change, and write
MtS0 = St. If a = (a1, . . . , aN) is a point of S0, we introduce the function
x = X (a, t) as the position of a fluid particle at time t, which was located at
a at time t = 0. The function X (a, t) is called the Lagrangian coordinate of
the fluid particle identified by the point a. We remark that the“coordinate” a

need not in fact be the initial position of a particle, although that is the most
common choice and will be generally used here. But any unique labeling of the
particles is acceptable.1

The Lagrangian description of a fluid emerges from this focus on the fluid
properties associated with individual fluid particles. To “think Lagrangian”
about a fluid, one must move with the fluid and sample the fluid properties in
each moving parcel. The Lagrangian analysis of a fluid has certain conceptual
and mathematical advantages, but it is often difficult to apply to useful exam-
ples. Also it is not directly related to experience, since measurements in a fluid
tend to be performed at fixed points in space, as the fluid flows past the point.

If we therefore adopt the point of view that we will observe fluid properties
at a fixed point x as a function of time, we must break the association with a
given fluid particle and realize that as time flows different fluid particles will
occupy the position x. This will make sense as long as x remains within the
set St. Once properties are expressed as functions of x, t we have the Eulerian
description of a fluid. For example, we might consider the fluid to fill all space
and be at rest “at infinity”. We then can consider the velocity u(x, t) at each
point of space, with lim|x|→∞ u(x, t) = 0. Or, we might have a fixed rigid
body with fluid flowing over it such that at infinity we have a fixed velocity
U. For points outside the body the fluid velocity will be defined and satisfy
lim|x|→∞ u(x, t) = U.

It is of interest to compare these two descriptions of a fluid and understand
their connections. The most obvious is the meaning of velocity: the definition
is

xt =
∂X
∂t

∣
∣
∣
a

= u(x(a, t), t). (1.1)

That is to say, following the particle we calculate the rate of change of posi-
tion with respect to time. Given the Eulerian velocity field, the calculation of
Lagrangian coordinates is therefore mathematically equivalent to solving the
initial-value problem for the system (1.1) of ordinary differential equations for
the function x(t), with the initial condition x(0) = a, the order of the system
being the dimension of space. The special case of a steady flow leads to a system
of autonomous ODEs.

Example 1.1: In two dimensions (N = 2), with fluid filling the plane, we
take u(x, t) = (u(x, y, t), v(x, y, t)) = (x,−y). This velocity field is independent
of time, hence we call it a steady flow. To compute the Lagrangian coordinates
of the fluid particle initially at a = (a, b) we solve:

∂x

∂t
= x, x(0) = a,

∂y

∂t
= −y, y(0) = b, (1.2)

1We shall often use (x, y, z) in place of (x1, x2, x3), and (a, b, c) in place of (a1, a2, a3).
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Figure 1.1: Stagnation-point flow

so that X = (aet, be−t). Note that, since xy = ab, the particle paths are hyper-
bolas; the curves independent of time, see figure 1.1. If we consider the fluid in
y > 0 only and take y = 0 as a rigid wall, we have a flow which is impinging
vertically on a wall. The point x = y = 0, where the velocity is zero, is called
a stagnation point. This point is a hyperbolic point relative to particle paths.
A flow of this kind occurs at the nose of a smooth body placed in a uniform
current. Because this flow is steady, the hyperbolic particle paths are also called
streamlines.

Example 1.2: Again in two dimensions, consider (u, v) = (y,−x). Then
∂x
∂t

= y and ∂y
∂t

= −x. Solving, the Lagrangian coordinates are x = a cos t +
b sin t, y = −a sin t + b cos t, and the particle paths (and streamlines) are the
circles x2 + y2 = a2 + b2. The motion on the streamlines is clockwise, and fluid
particles located at some time on a ray x/y =constant remain on the same ray
as it rotates clockwise once for every 2π units of time. This is sold-body rotation.

Example 1.3: If instead (u, v) = (y/r2,−x/r2), r2 = x2+y2 , we again have
particle paths which are circles, but the velocity becomes infinite at r = 0. This
is an example of a flow representing a point vortex. We shall take up the study
of vortices in chapter 3.

1.1.1 Particle paths, instantaneous streamlines, and streak

lines

The present considerations are kinematic, meaning that we are assuming knowl-
edge of fluid motion, through an Eulerian velocity field u(x, t) or else Lagrangian
coordinates x = X (a, t), irrespective of the cause of the motion. One useful
kinematic characterization of a fluid flow is the pattern of streamlines, as al-
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Figure 1.2: Particle path and streak line in example 1.4.

ready mentioned in the above examples. In steady flow the streamlines and
particle paths coincide. In an unsteady flow this is not the case and the
only useful recourse is to consider instantaneous streamlines, at a particular
time. In three dimensions the instantaneous streamlines are the orbits of the
u(x, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)) at time t. These are the integral
curves satisfying

dx

u
=
dy

v
=
dz

w
. (1.3)

As time flows these streamlines will change in an unsteady flow, and the con-
nection with particle paths is not obvious in flows of any complexity.

Visualization of flows in water is sometimes accomplished by introducing dye
at a point in space. The dye can be thought of as labeling by color the fluid
particle found at the point at a given time. As each point is labeled it moves
along its particle path. The resulting streak line thus consists of all particles
which at some time in the past were located at the point of injection of the
dye. To describe a streak line mathematically we need to generalize the time
of initiation of a particle path. Thus we introduce the generalized Lagrangian
coordinate x = X (a, t, ta), defined to be the position at time t of a particle that
was located at a at time ta. A streak line observed at time t > 0, which was
started at time t = 0 say, is given by x = X (a, t, ta), 0 < ta < t. Particle paths,
instantaneous streamlines, and streak lines are all distinct objects in unsteady
flows.

Example 1.4: Let (u, v) = (y,−x + ε cosωt). For this flow the instan-
taneous streamlines satisfy dx/y = dy/(−x + ε cosωt) and so are the circles
(x− ε cosωt)2 + y2 = constant. The generalized Lagrangian coordinates can be
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obtained from the general solution of a second-order ODE and takes the form

x = − ε

ω2 − 1
cosωt+A cos t+B sin t, y =

εω

ω2 − 1
sinωt+B cos t−A sin t, (1.4)

where

A = −b sin ta +
εω

ω2 − 1
sinωta sin ta + a cos ta +

ε

ω2 − 1
cosωta cos ta, (1.5)

B = a sin ta + b cos ta −
ε

ω2 − 1
cosωta sin ta +

εω

ω2 − 1
sinωta cos ta. (1.6)

The particle path with ta = 0, ω = 2, ε = 1 starting at the point (2, 1) is given
by

x = −1

3
cos 2t+ sin t+

7

3
cos t, y = cos t− 7

3
sin t+

2

3
sin 2t, (1.7)

and is shown in figure 1.2(a). All particle paths are closed curves. The streak
line emanating from (2,1) over the time interval 0 < t < 2π is shown in figure
1.2(b).

This last example is especially simple since the 2D system is linear and
integrable explicitly. In general two-dimensional unsteady flows and three-
dimensional steady flows can exhibit chaotic particle paths and streak lines.

Example 1.5: A nonlinear system exhibiting this complex behavior is the
oscillating point vortex: (u, v) = (y/r2,−(x−ε cosωt)/r2). We show an example
of particle path and streak line in figure 1.3.

1.1.2 The Jacobian matrix

We will, with a few obvious exceptions, be taking all of our functions as in-
finitely differentiable wherever they are defined. In particular we assume that
Lagrangian coordinates will be continuously differentiable with respect to the
particle label a. Accordingly we may define the Jacobian of the Lagrangian map
Mt by matrix

Jij =
∂xi
∂aj

∣
∣
∣
t

(1.8)

Thus dli = Jijdaj is a differential vector which can be visualized as connecting
two nearby fluid particles whose labels differ by daj.

2 If da1 · · ·daN is the volume
of a small fluid parcel, then Det(J)da1 · · ·aN is the volume of that parcel under
the map Mt. Fluids which are incompressible must have the property that all
fluid parcels preserve their volume, so that Det(J)= constant=1 when a denotes
initial position, independently of a, t. We then say that the Lagrangian map
is volume preserving. For general compressible fluids Det(J) will vary in space
and time.

Another important assumption that we shall make is that the map Mt is
always invertible, Det(J)> 0. Thus when needed we can invert to express a as
a function of x, t.

2Here and elsewhere the summation convention is understood: unless otherwise started
repeated indices are to be summed from 1 to N .
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Figure 1.3: The oscillating vortex, ε = 1.5, ω = 2.

1.2 The material derivative

Suppose we have some scalar property P of the fluid that can be attached to a
certain fluid parcel, e.g. temperature or density. Further, suppose that, as the
parcel moves, this property is invariant in time. We can express this fact by the
equation

∂P
∂t

∣
∣
∣
a

= 0, (1.9)

since this means that the time derivative is taken with particle label fixed, i.e.
taken as we move with the fluid particle in question. We will say that such
an invariant scalar is material. A material invariant is one attached to a fluid
particle. We now asked how this property should be expressed in Eulerian
variables. That is, we select a point x in space and seek to express material
invariance in terms of properties of the fluid at this point. Since the fluid is
generally moving at the point, we need to bring in the velocity. The way to
do this is to differentiate P(x(a, t), t), expressing the property as an Eulerian
variable, using the chain rule:

∂P(x(a, t), t)

∂t

∣
∣
∣
a

= 0 =
∂P
∂t

∣
∣
∣
x

+
∂xi
∂t

∣
∣
∣
a

∂P
∂xi

∣
∣
∣
t
= Pt + u · ∇P. (1.10)
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In fluid dynamics the Eulerian operator ∂
∂t+u·∇ is called the material derivative

or substantive derivative or convective derivative. Clearly it is a time derivative
“following the fluid”, and translates the Lagrangian time derivative in terms of
Eulerian properties of the fluid.

Example 1.6: The acceleration of a fluid parcel is defined as the material

derivative of the velocity u. In Lagrangian variables the acceleration is ∂2x
∂t2

∣
∣
∣
a
,

and in Eulerian variables the acceleration is ut + u · ∇u.
Following a common convention we shall often write

D

Dt
≡ ∂

∂t
+ u · ∇, (1.11)

so the acceleration becomes Du/Dt.

Example 1.7: We consider the material derivative of the determinant of the
Jacobian J. We may divide up the derivative of he determinant into a sum of
N determinants, the first having the first row differentiated, the second having
the next row differentiated, and so on. The first term is thus the determinant
of the matrix 






∂u1

∂a1

∂u1

∂a2
· · · ∂u1

∂aN

∂x2

∂a1

∂x2

∂a2
· · · ∂x2

∂aN

...
...

. . .
...

∂xN

∂a1

∂xN

∂a2
· · · ∂xN

∂aN







. (1.12)

If we expand the terms of the first row using he chain rule, e.g.

∂u1

∂a1
=
∂u1

∂x1

∂x1

∂a1
+
∂u1

∂x2

∂x2

∂a1
+ · · ·+ ∂u1

∂xN

∂xN
∂a1

, (1.13)

we see that we will get a contribution only from the terms involving ∂u1

∂x1
, since

all other terms involve the determinant of a matrix with two identical rows.
Thus the term involving the derivative of the top row gives the contribution
∂u1

∂x1
Det(J). Similarly, the derivatives of the second row gives the additive con-

tribution ∂u2

∂x2
Det(J). Continuing, we obtain

D

Dt
DetJ = div(u) Det(J). (1.14)

Note that, since an incompressible fluid has Det(J) = 1, such a fluid must
satisfy, by (1.14), div(u) = 0, which is the way an incompressible fluid is defined
in Eulerian variables.

1.2.1 Solenoidal velocity fields

.
The adjective solenoidal applied to a vector field is equivalent to “divergence-

free”. We will used either div(u) or ∇·u to denote divergence. The incompress-
ibility of a material with a solenoidal vector field means that the Lagrangian
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Figure 1.4: Solenoidal velocity fields. (a) Two streamlines in two dimensions.
(b) A stream tube in three dimensions.

map Mt preserves volume and so whatever fluid moves into a region of space
is matched by an equal amount of fluid moving out. In two dimensions the
equation expressing the solenoidal condition is

∂u

∂x
+
∂v

∂y
= 0 (1.15)

If ψ(x, y) posses continuous second derivatives we may satisfy (1.15) by setting

u =
∂ψ

∂y
. v = −∂ψ

∂x
. (1.16)

The function ψ is called the stream function of the velocity field. The reason
for the term is immediate: The instantaneous streamline passing through x, y
has direction (u(x, y), v(x, y)) at this point. The normal to the streamline at
this point is ∇ψ(x, y). But we see from (1.16) that (u, v) · ∇ψ = 0 there, so the
lines of constant ψ are the instantaneous streamlines of (u, v).

Consider two streamlines ψ = ψi, i = 1, 2 and any oriented simple contour
(no self-crossings) connecting one streamline to the other. The claim is then
that the flux of fluid across this contour, from left to right seen by an observed
facing in the direction of orientation of the contour is given by the difference of
the values of the stream function, ψ2 − ψ1 if the contour is oriented to go from
streamline 1 to streamline 2, see figure 1.4(a). Indeed, oriented as shown the line
integral of flux is just

∫
(u, v) · (dy,−dx) =

∫
dψ = ψ2 −ψ1. In three dimensions,

we similarly introduce a stream tube, consisting of a collection of streamlines,
see figure (1.4)(b). The flux of fluid across any “face” cutting through the tube
must be the same. This follows immediately by applying the divergence theorem
to the integral of div u over the stream tube. Note that we are referring here
to the flux of volume of fluid, not flux of mass.

In three dimensions there are various “stream functions” used when special
symmetry allow them. An example of a class of solenoidal flows generated by
two scalar functions is u = ∇α × ∇β where the intersections of the surfaces
of constant α(x, y, z) and β(x, y, z) are the streamlines. Since ∇α × ∇β =
∇× (α∇β) we see that these flows are indeed solenoidal.
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1.2.2 The convection theorem

Suppose that St is a region of fluid particles and let f(x, t) be a scalar function.
Forming the volume integral over St, F =

∫

St
fdVx, we seek to compute dF

dt
.

Now dVx = dx1 · · ·dxN = Det(J)da1 · · ·aN = Det(J)dVa. Thus

dF

dt
=

d

dt

∫

S0

f(x(a, t), t)Det(J)dVa =

∫

S0

Det(J)
d

dt
f(x(a, t), t)dVa

+

∫

S0

f(x(a, t), t)
d

dt
Det(J)dVa =

∫

S0

[Df

Dt
+ fdiv(u)

]

Det(J)dVa,

and so
dF

dt
=

∫

St

[Df

Dt
+ fdiv(u)

]

dVx. (1.17)

The result (1.17) is called the convection theorem. We can contrast this
calculation with one over a fixed finite region R of space with boundary ∂R. In
that case the rate of change of f contained in R is just

d

dt

∫

R
fdVx =

∫

R

∂f

∂t
dVx. (1.18)

The difference between the two calculations involves the flux of f through the
boundary of the domain. Indeed we can write the convection theorem in the
form

dF

dt
=

∫

St

[∂f

∂t
+ div(fu)

]

dVx. (1.19)

Using the divergence (or Gauss’) theorem, and considering the instant when
St = R, we have

dF

dt
=

∫

R

∂f

∂t
dVx +

∫

∂R
fu · ndSx, (1.20)

where n is the outer normal to the region and dSx is the area element of ∂R. The
second term on the right is flux of f out of the region R. Thus the convection
theorem incorporates into the change in f within a region, the flux of f into or
out of the region, due to the motion of the boundary of the region. Once we
identify f with a useful physical property of the fluid, the convection theorem
will be useful for expressing the conservation of this property, see chapter 2.

1.2.3 Material vector fields: The Lie derivative

Certain vector fields in fluid mechanics, and notably the vorticity field, ω(x, t) =
∇× u, see chapter 3, can in certain cases behave as a material vector field. To
understand the concept of a material vector one must imagine the direction of
the vector to be determined by nearby material points. It is wrong to think of
a material vector as attached to a fluid particle and constant there. This would
amount to a simple translation of the vector along the particle path.
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Instead, we want the direction of the vector to be that of a differential
segment connecting two nearby fluid particles, dli = Jijdaj. Furthermore, the
length of the material vector is to be proportional to this differential length
as time evolves and the particles move. Consequently, once the particles are
selected, the future orientation and length of a material vector will be completely
determined by the Jacobian matrix of the flow.

Thus we define a material vector field as one of the form (in Lagrangian
variables)

vi(a, t) = Jij(a, t)Vj(a) (1.21)

Of course, given the inverse a(x, t) we can express v as a function of x, t to
obtain its Eulerian structure.

We now determine the time rate of change of a material vector field following
the fluid parcel. To obtain this we differentiate v(a, t) with respect to time for
fixed a, and develop the result using the chain rule:

∂vi
∂t

∣
∣
∣
a

=
∂Jij
∂t

∣
∣
∣
a
Vj(a) =

∂ui
∂aj

Vj

=
∂ui
∂xk

∂xk
∂aj

Vj = vk
∂ui
∂xk

. (1.22)

Introducing the material derivative, we see that a material vector field satisfies
the following equation in Eulerian variables:

Dv

Dt
=
∂v

∂t

∣
∣
∣
x

+ u · ∇v − v · ∇u ≡ vt + Luv = 0 (1.23)

In differential geometry Lu is called the Lie derivative of the vector field v with
respect to the vector field u.

The way this works can be understood by moving neighboring point along
particle paths.

Figure 1.5: Computing the time derivative of a material vector.

Let v = AB = ∆x be a small material vector at time t, see figure 1.5. At
time ∆tlater, the vector has become CD. The curved lines are the particle
paths through A,B of the vector field u(x, t). Selecting A as x, we see that
after a small time interval ∆t the point C is A+ u(x, t)∆t and D is the point
B + u(x + ∆x, t)∆t. Consequently

CD −AB

∆t
= u(x + ∆x, t)− u(x, t). (1.24)
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The left-hand side of (1.24) is approximately Dv/Dt, and right-hand side is
approximately v · ∇u, so in the line ∆x,∆t → 0 we get (1.23). A material
vector field has the property that its magnitude can change by the stretching
properties of the underlying flow, and its direction can change by the rotation
of the fluid parcel.

Problem Set 1

1. Consider the flow in the (x, y) plane given by u = −y, v = x + t. (a)
What is the instantaneous streamline through the origin at t = 1?(b) what is
the path of the fluid particle initially at the origin, 0 < t < 6π? (c) What is the
streak line emanating form the origin, 0 < t < 6π?

2. Consider the “point vortex ” flow in two dimensions,

(u, v) = UL(
−y

x2 + y2
,

x

x2 + y2
), x2 + y2 6= 0,

where U, L are reference values of speed and length. (a) Show that the La-
grangian coordinates for this flow may be written

x(a, b, t) = R0 cos (ωt + θ0), y(a, b, t) = R0 sin (ωt+ θ0)

where R2
0 = a2 +b2, θ0 = arctan (b/a), and ω = UL/R2

0. (b) Consider, at t = 0 a
small rectangle of marked fluid particles determined by the points A(L, 0), B(L+
∆x, 0), C(L+ ∆x,∆y), D(L,∆y). If the points move with the fluid, once point
A returns to its initial position what is the shape of the marked region? Since
(∆x,∆y) are small, you may assume the region remains a parallelogram. Do
this, first, by computing the entry ∂y/∂a in the Jacobian, evaluated at A(L, 0).
Then verify your result by considering the “lag” of particle B as it moves on a
slightly larger circle at a slightly slower speed, relative to particle A, for a time
taken by A to complete one revolution.

3. As was noted in class, Lagrangian coordinates can use any unique labeling
of fluid particles. To illustrate this, consider the Lagrangian coordinates in two
dimensions

x(a, b, t) = a+
1

k
ekb sink(a + ct), y = b− 1

k
ekb cos k(a+ ct),

where k, c are constants. Note here a, b are not equal to (x, y) for any t0 By
examining the determinant of the Jacobian, verify that this gives a unique label-
ing of fluid particles provided that b 6= 0. What is the situation if b = 0?(These
waves, which were discovered by Gerstner in 1802, represent gravity waves if
c2 = g/k where g is the acceleration of gravity. They do not have any simple
Eulerian representation. These waves are discussed in Lamb’s book.)

4. In one dimension, the Eulerian velocity is given to be u(x, t) = 2x/(1+ t).
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(a) Find the Lagrangian coordinate x(a, t). (b) Find the Lagrangian velocity as
a function of a, t. (c) Find the Jacobean ∂x/∂a = J as a function of a, t.

5. For the stagnation-point flow u = (u, v) = U/L(x,−y), show that a fluid
particle in the first quadrant which crosses the line y = L at time t = 0, crosses
the line x = L at time t = L

U log (UL/ψ) on the streamline Uxy/L = ψ. Do

this in two ways. First, consider the line integral of u · ~ds/(u2 + v2) along a
streamline. Second, use Lagrangian variables.

6. Let S be the surface of a deformable body in three dimension, and let
I =

∫

S
fndS for some scalar function f , n being the outward normal. Show

that
d

dt

∫

fndS =

∫

S

∂f

∂t
ndS +

∫

S

(ub · n)∇fdS. (1.25)

(Hint: First convert to a volume integral between S and an outer surface S′

which is fixed. Then differentiate and apply the convection theorem. Finally
convert back to a surface integral.)



Chapter 2

Conservation of mass and

momentum

2.1 Conservation of mass

Every fluid we consider is endowed with a non-negative density, usually denoted
by ρ, which is in the Eulerian setting is a scalar function of x, t. Its unit are mass
per unit volume. Water has a density of about 1 gram per cubic centimeter.
For air the density is about 10−3 grams per cubic centimeter, but of course
pressure and temperature affect air density significantly. The air in a room
of a thousand cubic meters= 109 cubic centimeters weighs about a thousand
kilograms, or more than a ton!

2.1.1 Eulerian form

Let us suppose that mass is being added or subtracted from space as a function
q(x, t), of dimensions mass per unit volume per unit time. The conservation of
mass in a fixed region R can be expressed using (1.20) with f = ρ:

d

dt

∫

R
ρdVx =

∫

R

∂ρ

∂t
dVx +

∫

∂R
ρu · ndSx. (2.1)

Now
d

dt

∫

R
ρdVx =

∫

R
qdVx (2.2)

and if we bring the surface integral in (2.1) back into the volume integral using
the divergence theorem we arrive at

∫

R

[∂ρ

∂t
+ div(uρ) − q

]

dVx = 0. (2.3)

Since our functions are continuous and R is an arbitrary open set in RN , the
integrand in (2.3) must vanish, yielding the conservation of mass equation in

15
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the Eulerian form:
∂ρ

∂t
+ div(uρ) = q. (2.4)

Note that this last equation can also be written

Dρ

Dt
+ ρdiv u = q. (2.5)

The conservation of mass equation in either of these forms is sometimes called
(for obscure reasons) the equation of continuity.

The form (2.5) shows that the material derivative of the density changes in
two ways, either by sources and sinks of mass q > 0 or q < 0 respectively, or else
by the non-vanishing of the divergence of the velocity field. A positive value of
the divergence, as for u = (x, y, z), is associated with an expansive flow, thereby
reducing local density. This can be examined more closely as follows. Let V be
a small volume of fluid where the density is essentially constant. Then ρV is
the mass within this fluid parcel, which is a material invariant D(ρV )/Dt = 0.
Thus Dρ/Dt + ρV −1DV/Dt = 0. Comparing this with (2.5) we have

div u =
1

V

DV

Dt
. (2.6)

Example 2.1: As we have seen in Chapter 1, an incompressible fluid satis-
fies div u = 0. For such a fluid, free of sources or sinks of mass, we have

Dρ

Dt
= 0, (2.7)

that is, now density becomes a material property. This does not say that the
density is constant everywhere in space, only that is constant at a given fluid
parcel, as it moves about . (Note that we use parcel here to suggest that we
have to average over a small volume to compute the density.) However a fluid of
constant density without mass addition must be incompressible. This difference
is important. Sea water is essentially incompressible but density changes due to
salinity are an important part of the dynamics of the oceans.

2.1.2 Lagrangian form

If q = 0 the Lagrangian form of the conservation of mass is very simple because
if we move with the fluid the density changes that we see are due to expansion
and dilation of the fluid parcel, which is controlled by Det(J). Let a parcel have
volume V0 initially, with essentially constant initial density ρ0. Then the mass
of the parcel is ρ0V0, and is a material invariant. At later times the density is
ρ and the volume is V0Det(J), so conservation of mass is expressed by

DetJ(a, t) =
ρ0

ρ
. (2.8)

If q 6= 0 the Lagrangian conservation of mass must be written

∂

∂t

∣
∣
∣
a
ρDet(J) = Det(J)q(x(a, t), t). (2.9)
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It is easy to get from Eulerian to Lagrangian form using (1.14). Assuming q = 0,

Dρ

Dt
+ ρ div u = 0 =

Dρ

Dt
+ ρ

DDet(J)/Dt

Det(J)
=

1

Det(J)

D

Dt
(ρDet(J)) (2.10)

and the connection is complete.

Example 2.2: Consider, in one dimension, the unsteady velocity field
u(x, t) = 2xt

1+t2
. We assume no sources of sinks of mass, and set ρ(x, 0) = x.

What is the density field at later times, in both Eulerian and Lagrangian forms?
First note that this is a reasonable question, since we have a conservation of
mass equation to evolve the density in time. First deriving the Lagrangian
coordinates, we have

dx

dt
=

2xt

1 + t2
, x(0) = a. (2.11)

The solution is x = a(1 + t2). The Jacobian is then J = 1 + t2. The equation of
conservation of mass in Lagrangian form, given that ρ0(a) = a, is ρ = a/(1+t2).
Since a = x/(1 + t2), the Eulerian form of the density is ρ = x(1 + t2)2. It is
easy to check that this last expression satisfies the Eulerian conservation of mass
equation in one dimension ρt + (ρu)x = 0.

Example 2.3 Consider the two-dimensional stagnation-point flow (u, v) =
(x,−y) with initial density ρ0(x, y) = x2 + y2 and q = 0. The flow is incom-
pressible, so ρ is material. In Lagrangian form, ρ(a, b, t) = a2 + b2. To find ρ
as a function of x, y, t, we note that the Lagrangian coordinates of the flow are
(x, y) = (aet, be−t), and so

ρ(x, y, t) = (xe−t)2 + (yet)2 = x2e−2t + y2e2t. (2.12)

The lines of constant density, which are initially circles centered at the origin,
are flattened into ellipses by the flow.

2.1.3 Another convection identity

Frequently fluid properties are most conveniently thought of as densities per
unit mass rather than per unit volume. If the conservation such a quantity, f
say, is to be examined, we will need to consider ρf to get “f per unit volume”
and so be able to compute total amount by integration over a volume. Consider
then

d

dt

∫

St

ρfdVx =

∫

St

[∂ρf

∂t
+ div(ρfu)

]

dVx. (2.13)

We now assume conservation of mass with q = 0. From the product rule of
differentiation we have div(ρfu) = fdiv(ρu)+ρu·∇f , and so the integrand splits
into a part which vanishes by conservation of mass, and a material derivative of
f time the density:

d

dt

∫

St

ρfdVx =

∫

St

ρ
Df

Dt
dVx. (2.14)

Thus the effect of the multiplier ρ is to turn the derivative of the integral into
an integral of a material derivative.
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2.2 Conservation of momentum in an ideal fluid

The momentum of a fluid is defined to be ρu, per unit volume. Newton’s second
law of motion states that momentum is conserved by a mechanical system of
masses if no forces act on the system. We are thus in a position to use (2.14),
where the “sources and sinks” of momentum are forces.

If F(x, t) is the force acting on the fluid, per unit volume, then we have
immediately (assuming conservation of mass with q = 0),

ρ
Du

Dt
= F. (2.15)

Since we have seen that Du
Dt is the fluid acceleration, (2.15) states Newton’s Law

that mass times acceleration equals force, in both magnitude and direction.

Of course the Lagrangian form of (2.15) is obtained by replacing the accel-
eration by its Lagrangian counterpart:

ρ
∂2x

∂t2

∣
∣
∣
a

= F. (2.16)

The main issues involved with conservation of momentum are those connected
with the forces which are on a parcel of fluid. There are many possible forces to
consider: pressure, gravity, viscous, surface tension, electromotive, etc. Each has
a physical origin and a mathematical model with a supporting set of observation
and analysis. In the present chapter we consider only an ideal fluid. The only
new fluid variable we will need to introduce is the pressure, a scalar function
p(x, t).

In general the force F appearing in (2.15) is assumed to take the form

Fi = fi +
∂σij
∂xj

. (2.17)

Here f is a body force (exerted from the “outside”), and σ is a second-order
tensor called the stress tensor. Integrated over a region R, the force on the
region is

∫

R
FdVx =

∫

R
fdVx +

∫

∂R
σ · ndSx, (2.18)

using the divergence theorem. We can thus see that the effect of the stress tensor
is to produce a force on the boundary of any fluid parcel, the contribution from
an area element to this force being σijnjdSx for an outward normal n. The
remaining body force f will sometimes be taken to be a uniform gravitational
field f = ρg, where g = constant. On the surface of the earth gravity acts
toward the Earth’s center with a strength g ≈ 980 cm/sec2. We also introduce
a general force potential Φ, such that f = −ρ∇Φ.
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2.2.1 The pressure

An ideal fluid is defined by a stress tensor of the form

σij = −pδij =





−p 0 0
0 −p 0
0 0 −p



 , (2.19)

where δij = 1, i = j,= 0 otherwise. Thus when pressure is positive the force
on the surface of a parcel is opposite to the outer normal, as intuition suggests.
Note that now

div σ = −∇p. (2.20)

For a compressible fluid the pressure accounts physically for the resistance
to compression. But pressure persists as a fundamental source of surface forces
for an incompressible fluid, and its physical meaning in the incompressible case
is subtle.1

An ideal fluid with no mass addition and no body force thus satisfies

ρ
Du

Dt
+ ∇p = 0, (2.21)

together with
Dρ

Dt
+ ρdiv u = 0. (2.22)

This system of equation for an ideal fluid are also often referred to as Euler’s
equations. The term Euler flow is also in wide use.

With Euler’s system we have N + 1 equations for the N + 2 unknowns
u1, . . . , uN , ρ, p. Another equation will be needed to complete the system. One
possibility is the incompressible assumption div u = 0. A common option is to
assume constant density. Then ρ is eliminated as an unknown and the conserva-
tion of mass equation is replaced by the incompressibility condition. For gases
the missing relation is an equation of state, which brings in the thermodynamic
properties of the fluid.

The pressure force as we have defined it above is isotropic, in the sense
the pressure is the same independently of the orientation of the area element
on which it acts. A simple two-dimensional diagram will illustrate why this
is so, see figure 2.1. Suppose that the pressure is pi on the face of length Li.
Equating forces, we have p1L1 cos θ = p2L2, p1L1 sin θ = p3L3. But L1 cos θ =
L2, L1 sin θ = L3, so we see that p1 = p2 = p3. So indeed the pressure sensed
by a face does not depend upon the orientation of the face.

2.2.2 Lagrangian form of conservation of momentum

The Lagrangian form of the acceleration has been noted above. The momentum
equation of an ideal fluid requires that we express ∇p as a Lagrangian variable.

1One aspect of the incompressible case should be noted here, namely that the pressure
is arbitrary up to an additive constant. Consequently it is only pressure differences which
matter. This is not the case for a compressible gas.
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Figure 2.1: Isotropicity of pressure.

That is, if p is to be a function of a, t then since ∇ here is actually the x gradient
∇x, we have ∇xp = J−1∇ap. This appearance of the Jacobian is an awkward
feature of Lagrangian fluid dynamics, and is one of the reasons that we shall
emphasize Eulerian variables in discussing the dynamics of a fluid.

2.2.3 Hydrostatics: the Archimedean principle

Hydrostatics is concerned with fluids at rest (u = 0), usually in the presence of
gravity. We consider here only the case of a fluid stratified in one dimension.
To fix the coordinates let the z-axis be vertical up, and g = −giz , where g is a
positive constant. We suppose that the density is a function of z alone. This
allows, for example, a body of water beneath a stratified atmosphere. Let a solid
three-dimensional body (any deformation of a sphere for example) be submerged
in the fluid. Archimedes principle says that the force exerted by the pressure
on the surface of the body is equal to the total weight of the fluid displaced by
the body. We want to establish this principle in the case considered.

Now the pressure satisfies ∇p = −gρ(z)iz . The pressure force is given by
Fpressure = −

∫
pndS taken over the surface of the body. But this surface

pressure is just the same as would be acting on a virtual surface within the
fluid, no body present. Using the divergence theorem, we may convert this to
an integral over the interior of this surface. Of course, there is no fluid within
the body. We are just using the math to evaluate the surface integral. The
result is Fpressure = giz

∫
ρdV . This is a force upward equal to the weight of

the displaced fluid, as stated.

2.3 Steady flow of a fluid of constant density

This special case gives us an opportunity to obtain some useful results rather
easily in a class of problems of some importance. We shall allow a body force of
the form f = −ρ∇Φ, so the momentum equation may be written, after division
by the constant density,

u · ∇u + ρ−1∇p+ ∇Φ = 0. (2.23)

We note now a vector identity which will be useful:

A × (∇× B) + B× (∇× A) + A · ∇B + B · ∇A = ∇(A · B). (2.24)
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Applying this to A = B = u we have

u · ∇u =
1

2
∇|u|2 − u× (∇× u). (2.25)

Using (2.25) in (2.23) we have

∇(ρ−1p+ Φ +
1

2
|u|2) = u× (∇× u). (2.26)

Taking the dot product with u on both sides we obtain

u · ∇(ρ−1p + Φ +
1

2
|u|2) = 0. (2.27)

The famous Bernoulli theorem for steady flows follows:In the steady flow of an
ideal fluid of constant density the quantity H ≡ ρ−1p + Φ + 1

2 |u|2, called the
Bernoulli function, is constant on the streamlines of the flow. The importance
of this result is in the relation it gives us between velocity and pressure. Apart
from the contribution of Φ, the constancy of H implies that an increase of
velocity is accompanied by a decrease of the pressure. This is not an obvious
dynamical consequence of the equations of motion, and it is interesting that we
have derived it without referring to the solenoidal property of u. Recall that
the latter is implied by the constancy of density when there is no mass added
or removed. If we make use of the solenoidal property then, using the identity
∇ · (Aψ) = ψ∇ ·A + A · ∇φ for vector and scaler fields, we see that uH is also
solenoidal, and so the flux of this quantity is conserved in stream tubes. This
vector field arises when conservation of mechanical energy, relating changes in
kinetic energy to the work done by forces, is studied, see problem 2.2.

It is helpful to apply the Bernoulli theorem to flow in a smooth rigid pipe
of circular cross section and slowly varying diameter, with Φ = 0. For an ideal
(frictionless) fluid we may assume that the velocity is approximately constant
over the section, this being reasonable if the slope of the wall of the pipe is small.
The velocity may thus be taken as a scalar function u(x). If the section area is
A(x), then the conservation of mass (and here, volume) implies that uA ≡ Q =

constant, so that ρ−1p + Q2

2 A
−2 = constant. If we consider a contraction, as

in figure 2.2., where the area and velocity go from A1, u1 to A2, u2, then the
fluid speeds up to satisfy A1u1 = A2u2 = Q. To achieve this speedup in steady
flow, a force must be acting on the fluid, here a pressure force. Conservation
of momentum states the flux of momentum out minus the flux of momentum
in must equal the pressure force on the fluid in the pipe between section 1
and section 2. Now H = p/ρ+ 1

2(Q/A)2 is constant, so (if force is positive to
the right) the two ends of the tube give a net pressure force p1A1 − p2A2 =
ρQ2/2(1/A2−1/A1) acting on the fluid. But there is also a pressure force along

the curved part of the tube. This is seen to be
∫A2

A1
pdA = −

∫ A2

A1

ρ
2 (Q/A)2dA =

ρQ2/2(1/A2−1/A1). These two contributions are equal in our one-dimensional
approximation, and their sum is ρQ2(1/A2 − 1/A1) But the momentum out
minus momentum in is ρ(A2u

2
2 − A1u

2
1) = ρQ2(1/A2 − 1/A1) and is indeed
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Figure 2.2: Steady flow through a contraction.

equal to the net pressure force. Intuitively then, to achieve the speedup of the
fluid necessary to force the fluid through a contraction, and to maintain such a
flow as steady in time, it is necessary to supply a larger pressure at station 1 than
at station 2. Bernoulli’s theorem captures this creation of momentum elegantly,
but ultimately the physics comes down to pressure differences accelerating fluid
parcels.

2.4 Intrinsic coordinates in steady flow

The one-dimensional analysis just given suggests looking briefly at the relations
obtained in an arbitrary steady flow of an ideal fluid using the streamlines a
part of the coordinate system. The resulting intrinsic coordinates are revealing
of the dynamics of fluid parcels. Let t be the unit tangent vector to an oriented
streamline. The we may write u = qt, q = |u|. If s is arclength along the
streamline, then

∂u

∂s
=
∂q

∂s
t + q

∂t

∂s
=
∂q

∂s
t + qκn, (2.28)

where n is the unit normal, κ the streamline curvature, and we have used the
first Frenet-Serret formula. Now the operator u · ∇ is just q ∂∂s , and so we have
from (2.28)

u · ∇u = q
∂q

∂s
t + q2κn. (2.29)

This shows that the acceleration in steady flow splits into a component along
the streamline, determined by the variation of q, and a centripetal accelera-
tion associated with streamline curvature. The equations of motion in intrinsic
coordinates (zero body force) are therefore

ρq
∂q

∂s
+
∂p

∂s
= 0, ρκq2 +

∂p

∂n
= 0. (2.30)
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What form does the solenoidal condition take in intrinsic coordinates? We
consider this question in two dimensions. We have

∇ · u = ∇ · (qt) = t · ∇q + q∇ · t =
∂q

∂s
+ q∇ · t. (2.31)

Let us introduce an angle θ so that t(s) = (cos θ(s), sin θ(s)). Then

∇ · t = − sin θ
∂θ

∂x
+ cos θ

∂θ

∂y
= n · ∇θ =

∂θ

∂n
. (2.32)

Since κ = ∂θ
∂s

is the streamline curvature, ∂θ
∂n

, which we write as κn, is the
curvature of the coordinate lines normal to the streamlines. Thus the solenoidal
condition in two dimensions assumes the form

∂q

∂s
+ qκn = 0. (2.33)

2.5 Potential flows with constant density

Another important and very large class of fluid flows are the so-called potential
flows, defined as flows having a velocity field which is the gradient of a scalar
potential, usually denoted by φ:

u = ∇φ. (2.34)

For simplicity we consider here only the case of constant density, but allow a
body force −ρ∇Φ and permit the flow to be unsteady. Since we now also have
that u is solenoidal, it follows that

∇ · ∇φ = ∇2φ = 0. (2.35)

Thus the velocity field is determined by solving Laplace’s equation (2.35)
The momentum equation has not yet been needed, but it necessary in order

to determine the pressure, given u. The momentum equation is

ut + ∇(
1

2
|u|2 + p/ρ+ Φ) = u× (∇× u). (2.36)

Since u = ∇φ we now have ∇× u = 0 and therefore

∇(φt +
1

2
|∇φ|2 + p/ρ+ Φ) = 0, (2.37)

or

φt +
1

2
|∇φ|2 + p/ρ+ Φ = h(t). (2.38)

The arbitrary function h(t) may in fact be set equal to zero; otherwise we
can replace φ by φ −

∫
hdt without affecting u. We see that (2.38) is another

“Bernoulli constant”, this time applicable to any connected region of space
where the potential flow is defined. It allows us to compute the pressure in an
unsteady potential flow, see problem 2.6.



24 CHAPTER 2. CONSERVATION OF MASS AND MOMENTUM

2.6 Boundary conditions on an ideal fluid

As we have noted, a main physical property of real fluid which is not present for
an ideal fluid is a viscosity. The ideal fluid is“slippery”, in the following sense.
Suppose that adjacent to a solid wall the pressure varies along the wall. The
only force a fluid parcel can experience is a pressure force associated with the
pressure gradient. If the gradient at the wall is tangent to the wall, fluid will
be accelerated and there will have to be a tangential component of velocity at
the wall. This suggests that we cannot place any restriction on the tangential
component of velocity at a rigid fixed boundary of the fluid.

On the other hand, by a rigid fixed wall we mean that fluid is unable to
penetrate the wall, and so we will have to impose the condition n ·u = un = 0 on
the wall. There is a subtlety here connected with our continuum approximation.
It might be though that the fluid cannot penetrate into a rigid wall, but could it
not be possible for the fluid to tear off the wall, forming a free interface next to
an empty cavity? to see that this cannot be the case for smooth pressure fields,
consider the reversed stagnation-point flow (u, v) = (−x, y). On the upper y-
axis we have a Bernoulli function p/ρ+ 1

2
y2. The gradient of pressure along this

line is indeed accelerating the fluid away from the wall, but the fluid remains at
rest at x = y = 0. We cannot really contemplate a pressure force on a particle,
which might cause the particle to leave the wall, only on a parcel. In fact in this
example fluid parcels near the y-axis are being compressed in the x-direction
and stretched in the y-direction.

Thus, the appropriate boundary condition at a fixed rigid wall adjacent to
an ideal fluid is

un = 0 on the wall. (2.39)

For a potential flow, this becomes

∂φ

∂n
= 0 on the wall. (2.40)

We shall find that these conditions at a rigid wall for an ideal fluid are sufficient
to (usually uniquely) determine fluid flows in problems of practical importance.

Another way to express the appropriate boundary condition on a ideal fluid
at a rigid wall is that fluid particles on a wall stay on the wall. This alternative
is attractive because it is also true of a moving rigid wall, where the velocity
component normal to the wall need not vanish at the wall. So what is the
appropriate condition on a moving wall? To obtain this it is convenient to define
the surface as a function of time by the equation Σ(x, t) = 0. For a particle at
position xp(t) to be on the surface means that Σ(xp(t), t) = 0. Differentiating
this expression with respect to time we obtain

∂Σ

∂t

∣
∣
∣
x

+ u · ∇Σ = 0. (2.41)

For example, let a rigid cylinder of radius amove in the x-direction with velocity
U . Then Σ = (x − Ut)2 + y2 − a2, and (2.41) becomes −2U(x − Ut) + 2(x −
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Ut)u+ 2yv = 0 Evaluating this on the surface of the cylinder, we get

u cos θ + v sin θ = U cos θ = un. (2.42)

We remark that the same reasoning can be applied to the moving interface
between two fluids. This interface may also be regarded as consisting of fluid
particles that remain on the interface. We refer to this generalized boundary
condition at a moving surface as a surface condition.

Finally, as part of this first look at the boundary condition of fluid dynamics,
we should note that for unsteady fluid flows we will sometimes need to prescribe
initial conditions, insuring that the fluid equations may be used to carry the
solution forward in time.

Example 2.4: We consider an example of potential flow past a body in
two dimensions, constant density, no body force. The body is the circular
cylinder r = a, and the fluid “ at infinity” has fixed velocity (U, 0) In two
dimensional polar coordinates, Laplace’s equation has solutions of the form
ln r, (rn, r−n)(cos θ, sin θ), n = 1, 2, . . .. The potential Ur cos θ = Ux has the
correct behavior at infinity, and so we need a decaying solution which will insure
the boundary condition ∂φ

∂r
= 0 when r = a. The correct choice is clearly a

multiple of r−1 cos θ and we obtain

φ = U cos θ(r + a2/r) (2.43)

Note that U cos a2/r is the potential of a flow seen by an observer at rest relative
to the fluid at infinity, when the cylinder moves relative to the fluid with a
velocity (−U, 0). We see that indeed this potential satisfies ∂φ

∂r

∣
∣
r=a

= −U cos θ
as required by (2.42). Streamlines both inside and outside the cylinder are
shown in figure 2.3.

We have found a solution representing the desired flow, but is the solution
unique? Perhaps surprisingly, the answer is no. The reason, associated with the
fluid region being non-simply connected, will be discussed in chapter 4.

Example 2.5 An interesting case of unsteady potential flow occurs with
deep water waves (constant density). The fluid at rest is a liquid in the domain
z < 0 of R3. Gravity acts downward so Φ = −gz. The space above is taken as
having no density and a uniform pressure p0. If the water is disturbed, waves
can form on the surface, which we will assume to be described by a function
z = Z(x, y, t) (no breaking of waves). Under appropriate initial conditions it
turns out that we may assume the liquid velocity to be a potential flow. Thus
our mathematical problem is to solve Laplace’s equation in z < Z(x, y, t) with
a surface condition on φ and a pressure condition pz=Z = p0. For the latter we
can use the Bernoulli theorem for unsteady potential flows, to obtain

p0/ρ =
[

− φt −
1

2
|∇φ|2 + gz

]

z=Z
. (2.44)

The surface condition is D
Dt (z − Z(x, y, t)) = 0 or

[

z − Zt − uZx − vZy

]

z=Z
= 0. (2.45)
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Figure 2.3: Potential flow past a circular cylinder.

The object is to find φ(x, y, z, t), Z(x, y, t), given e.g. that the water is initially
at rest and that the fluid surface is at an initial elevation z = Z0(x, y). We will
consider water waves in more detail in Chapter 9.
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Problem set 2

1. For potential flow over a circular cylinder as discussed in class, with
pressure equal to the constant p∞ at infinity , find the static pressure on surface
of the cylinder as a function of angle from the front stagnation point. (Use
Bernoulli’s theorem.) Evaluate the drag force (the force in the direction of
the flow at infinite which acts on the cylinder), by integrating the pressure
around the boundary. Verify that the drag force vanishes. This is an instance
of D’Alembert’s paradox, the vanishing of drag of bodies in steady potential
flow.

2. For an ideal inviscid fluid of constant density, no gravity, the conservation
of mechanical energy is studied by evaluating the time derivative of total kinetic
energy in the form

d

dt

∫

D

1

2
ρ|u|2dV =

∫

∂D

F · ndS.

Here D is an arbitrary fixed domain with smooth boundary ∂D. What is the
vector F? Interpret the terms of F physically.

3. An open rectangular vessel of water is allowed to slide freely down a
smooth frictionless plane inclined at an angle α to the horizontal, in a uniform
vertical gravitational field of strength g. Find the inclination to the horizontal of
the free surface of the water, given that it is a surface of constant pressure. We
assume the fluid is at rest relative to an observer riding on the vessel. (Consider
the acceleration of the fluid particles in the water and balance this against the
gradient of pressure.)

4. Water (constant density) is to be pumped up a hill (gravity = (0, 0,−g))
through a pipe which tapers from an area A1 at the low point to the smaller
area A2 at a point a vertical distance L higher. What is the pressure p1 at
the bottom, needed to pump at a volume rate Q if the pressure at the top is
the atmospheric value p0? (Express in terms of the given quantities. Assuming
inviscid steady flow, use Bernoulli’s theorem with gravity and conservation of
mass. Assume that the flow velocity is uniform across the tube in computing
fluid flux and pressure.)

5. For a barotropic fluid, pressure is a function of density alone, p = p(ρ).
In this case derive the appropriate form of Bernoulli’s theorem for steady flow
without gravity. If p = kργ where γ, k are positive constants, show that q2 +
2γ
γ−1

p
ρ

is constant on a streamline, where q = |u| is the speed.

6. Water fills a truncated cone as shown in the figure. Gravity acts down (the
direction −z). The pressure at the top surface, of area A2 is zero. The height of
the container is H . At t = 0 the bottom, of area A1 < A2, is abruptly removed
and the water begins to fall out. Note that at time t = 0+ the pressure at the
bottom surface is also zero. The water has not moved but the acceleration is non-
zero. We may assume the resulting motion is a potential flow. Thus the potential



28 CHAPTER 2. CONSERVATION OF MASS AND MOMENTUM

Figure 2.4: Truncated cone of fluid

φ(z, r, t) in cylindrical polars has the Taylor series φ(r, z, t) = tΦ(r, z) + O(t2),
so dφ/dt = Φ(r, z)+O(t). Using these facts, set up a mathematical problem for
determining the pressure on the inside surface of cone at t = 0+. You should
specify all boundary conditions. You do not have to solve the resulting problem,
but can you guess what the surfaces Φ =constant would look like qualitatively?
What is the force felt at t = 0+ by someone holding the cone, in the limits
A1 → 0 and A1 → A2?



Chapter 3

Vorticity

We have already encountered the vorticity field in the identity

u · ∇u = ∇1

2
|u|2 − u × (∇× u). (3.1)

The vorticity field ω(x, t) is defined from the velocity field by

ω = ∇× u. (3.2)

A potential flow is a flow with zero vorticity. The term irrotational flow is widely
used. According to (3.1) the contribution to the acceleration coming from the
gradient of velocity can be split into two components, one having a potential
1
2 |u|2, the other given as a cross product orthogonal to both the velocity and
the vorticity. The latter component in older works in fluid dynamics has been
called the vortex force.

We remark that, in analogy with stream lines, we shall refer to the flow lines
of the vorticity field, i.e. the integral curves of the system

dx

ωx
=
dy

ωy
=
dz

ωz
, (3.3)

as (instantaneous) vortex lines. Similarly, in analogy with a stream tube in
three dimensions, we will refer to a bundle of vortex lines a vortex tube.

This straightforward definition of the vorticity field gives little insight into
its importance, either physically and theoretically. This chapter will be devoted
to examining the vorticity field from a variety of viewpoints.

3.1 Local analysis of the velocity field

The first thing to be noted is that vorticity is fundamentally an Eulerian prop-
erty since it involves spatial derivatives of the Eulerian velocity field. In a sense

29
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the analytical structure of the flow is being expanded to include the first deriva-
tives of the velocity field. Suppose we expand the velocity field in a Taylor series
about the fixed point x:

ui(x + y, t) = ui(x, t) + yj
∂ui
∂xj

(x, t) + O(|y|2). (3.4)

We can make the division

∂ui
∂xj

=
1

2

[∂ui
∂xj

+
∂uj
∂xi

]

+
1

2

[ ∂ui
∂xj

− ∂uj
∂xi

]

. (3.5)

The term first term on the right, 1
2

[
∂ui

∂xj
+

∂uj

∂xi

]

, is often denoted by eij and is

the rate-of-strain tensor of the fluid. Here it will play a basic role when viscous

stresses are considered (Chapter 5). The second term, 1
2

[
∂ui

∂xj
− ∂uj

∂xi

]

, can be

seen to be, in three dimensions, the matrix

Ω =
1

2





0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 . (3.6)

Example 3.1: In two dimensions, since u, v depend only on x, y, only one
component of the vorticity is non-zero, ω3 = ∂v

∂x − ∂u
∂y . This is usually written

simply as the scalar ω. Consider the two-dimensional flow (u, v) = (y, 0). In
this case

e =
1

2

(
0 1
1 0

)

, Ω =
1

2

(
0 1
−1 0

)

. (3.7)

and ω = −1. This is a simple “shear flow” with horizontal particle paths. Both
e and Ω are non-vanishing.

Example 3.2: Consider the flow (u, v) = (−y, x). This is a simple solid-
body rotation in the anti-clockwise sense. The vorticity is ω = 2, and e = 0.

These examples are a bit atypical because the vorticity is constant, but
they emphasize that a close association of the vorticity with fluid rotation, a
connection suggested by the skew-symmetric form of Ω, can be misleading.

Vorticity is a point property, but can only be defined by the limit operations
implicit in the needed derivatives. So it is impossible to attach a physical
meaning to “the vorticity of a particle”. We can truncate (3.4) and consider the
Lagrangian paths of fluid particles near x. Since e is real symmetric, it may
be diagonalized by a rotation to principal axes. Let the eigenvalues along the
diagonal be λi, i = 1, 2, 3. We the may assume our coordinate system is such
that e is the diagonal matrix D(x). Then the Lagrangian coordinates of the
perturbed path y satisfies

yt = D(x)y +
1

2
ω(x) × y. (3.8)

These equations couple together the rotation associated with the vorticity at
x with the straining field described by the first term. Note that the angular
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velocity associated with second term is 1
2ω. The statement “ vorticity at x

equals twice the angular velocity of the fluid at x” is often heard. But this
statement in fact makes no sense, since an angular velocity cannot be attributed
to a point. Given the velocity field of a fluid, one can determine the effects of
vorticity on the fluid only on a small open set, i.e. a fluid parcel.

On the other hand it is true that when vorticity is sufficiently large there
is sensible rotation observed in the fluid, and it is true that when one sees
“rotation” in the fluid, then vorticity is present. In a sense this is the key to
understanding its role, since it forces a definition of “rotation” in a fluid.

3.2 Circulation

Let C be a simple, smooth, oriented closed contour which is a deformation of
a circle, hence the boundary of an oriented surface S. Now Stokes’ theorem
applied to the velocity field states that

∫

C

u · dx =

∫

S

n · (∇× u)dS, (3.9)

where the direction of the normal n to S is chosen from the orientation of C by
the “right-hand rule”. We can interpret the right-hand side of (3.9) as the flux
of vorticity through S. So it must be that the left-hand side is an expression of
the effect of vorticity on the velocity field. We thus define the fluid circulation
of the velocity field u on the contour C by

ΓC =

∮

C

u · dx. (3.10)

The circulation is going to be our measure of the rotation of the fluid.
The key “point” is that is that circulation is defined globally, not at a point.

We need to consider an open set containing S in order to make this definition.
Example 3.3: Potential flows have the property that circulation vanishes

on any closed contour, as long as u is well-behaved in an open set containing S.
This is an obvious property of an irrotational flow.

Example 3.4 In two dimensions, the flow (u, v) = 1
2π (−y/r2 , x/r2) is a

point vortex. If C is a simple closed curve encircling the origin, then ΓC is
equal to the circulation on a circle centered at the origin, by independence of
path since (u, v) is irrotational everywhere except at the origin. The circulation
on a circle, taken counter-clockwise, is found to be unity. Indeed in polar form
the velocity is given by ur = 0, uθ = 1

2πr . The circulation on the circle of radius
r is thus 2πr

2πr = 1. This flow is called the point vortex of unit strength.

3.3 Kelvin’s theorem for a barotropic fluid

In chapters 12-14 we will be taking up the dynamics of general compressible
fluids. The intervening discussion will deal with only a restricted class of com-
pressible flows, the barotropic fluids. A barotropic fluid is defined by specifying
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pressure as a given function of the density, p(ρ). This reduces the dependent
variables of an ideal fluid to u, ρ and so the system of momentum and mass
equations is closed.

Theorem 1 (Kelvin’s theorem) Let C(t) be a simple close material curve in an
ideal fluid with body force −ρ∇Φ. Then, if either (i) ρ = constant, or (ii) the
fluid is barotropic, then the circulation ΓC(t) of u on C is invariant under the
flow:

d

dt
ΓC(t) = 0. (3.11)

To prove this consider a parametrization x(α, t) of C(t), 0 ≤ α ≤ A. Then

d

dt

∮

C

u · dx =
d

dt

∫ A

0

u · ∂x
∂α

dα =

∫ A

0

[Du

Dt
· ∂x
∂α

+ u · ∂u
∂α

]

dα. (3.12)

Making use of the momentum equation Du
Dt + 1

ρ∇p+ ∇Φ = 0 we have

dΓC
dt

=

∫ A

0

[

− (
1

ρ
∇p+ ∇Φ) · ∂x

∂α
+ u · ∂u

∂α

]

dα, (3.13)

This becomes
dΓC
dt

=

∮

C

[−dp
ρ

+ d(
1

2
|u|2 − Φ)

]

. (3.14)

Now if ρ is a constant, or if the fluid is barotropic, the integrand may be written
as perfect differential (in the barotropic case a differential of −

∫
ρ−1 dp

dρdρ +
1
2 |u|2 − Φ). Since all variables are assumed single-valued, the integral vanishes
and the theorem is proved.

Kelvin’s theorem is a cornerstone of ideal fluid theory since it expresses a
global property of vorticity, namely the flux through a surface, as an invariant
of the flow. We shall see that it is very useful in understanding the kinematics
of vorticity.

3.4 The vorticity equation

In the present section we again assume that either ρ = constant, or else the
fluid is barotropic.

In either case it is of interest to consider an equation for vorticity, which can
be obtained by taking the curl of

Du

Dt
+

1

ρ
∇p+ ∇Φ = 0. (3.15)

Under the conditions stated, this will give

∇× Du

Dt
= 0. (3.16)
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Recalling u · ∇u = ∇ 1
2 |u|2 − u× ω, we use the vector identity

∇× (A× B) = B · ∇A−A · ∇B + A∇ ·B −B∇ · A. (3.17)

For the case of constant density and no mass addition, both ∇ · u and ∇ · ω

vanish, with the result
Dω

Dt
= ω · ∇u. (3.18)

For a barotropic fluid, we need to bring in conservation of mass to evaluate
∇ · u = −ρ−1Dρ/Dt. We then get in place of (3.18)

Dω

Dt
= ω · ∇u +

ω

ρ

Dρ

Dt
. (3.19)

This can be rewritten as
D(ω

ρ
)

Dt
=

ω

ρ
· ∇u. (3.20)

Now we want to compare (3.18) and (3.20) with (1.23), and observe that ω

in the first case and ω/ρ is the second is a material vector field as we defined
it in chapter 1. This is a deep and remarkable property of the vorticity field,
which gives it its importance in fluid mechanics. It tells us, for example, that
vorticity magnitude can be increased if two nearby fluid particles lying on the
same vortex line move apart.

Example 3.5 In two dimensions ω · ∇u = 0 and so the vorticity ω satisfies

Dω

Dt
= 0, (3.21)

i.e. in two dimensions, for the cases studied here, vorticity is a scalar material
invariant, whose value is always the same on a given fluid parcel.

In three dimensions the term ω ·∇u is sometimes called the vortex stretching
term. Its existence make two and three-dimensional vorticity behaviors entirely
different.

There is a Lagrangian form of the vorticity equation, due to Gauss. We
can obtain it here by recalling that vi(a, t) = Jij(a, t)Vi(a) defines a material
vector field. Let us assume that, given the initial velocity and therefore initial
vorticity fields, vorticity may be solved for uniquely at some function time t
using Euler’s equations. Then, any material vector field assuming the assigned
initial values for vorticity must be the unique vorticity field ω. However, if the
initial vorticity is ω0(x), then a material vector field which takes on these initial
values is J(a, t) · ω0(a). By uniqueness, we must have

ωi(a, t) = Jij(a, t)ω0j. (3.22)

in the constant density case. For the barotropic case, given initial density ρ0(x),
the corresponding equation is

ρ−1ωi(a, t) = ρ−1
0 (a)Jij(a, t)ω0j . (3.23)
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A

C

B
D

Figure 3.1: A segment of an oriented vortex tube.

This is Cauchy’s “solution” of the vorticity equation . Of course nothing has
been solved, only represented in terms of the unknown Jacobian. It is however a
revealing relation which directly ties the changes in vorticity to the deformation
experienced by a fluid parcel.

3.5 Helmholtz’ Laws

In dicussing the behavior of vorticity in a fluid flow we will want to consider as
our basic element a section of a vortex tube as shown in figure 3.1. Recall that a
vortex tube is a bundle of vortex lines, each of the lines being the instantaneous
flow lines of of the vorticity field.

In the mid-nineteenth century Helmholtz laid the foundations for the me-
chanics of vorticity. His conclusions can be summarized by the following three
laws:

• Fluid parcels free of vorticity stay free of vorticity.

• Vortex lines are material lines.

• The strength of a vortex tube, to be defined below, is an invariant of the
motion.

We have seen that the vorticity field, or the field divided by density in the
barotropic case, is a material vector field. The vortex lines are the same in each
case if ω is the same. Hence particles on a particular vortex line at one time,
remain on a line at a later time, and so the line is itself material. Thus the tube
segment in figure 3.1 is bounded laterally by a surface of vortex lines. The small
patch D in the surface thus carries no flux of vorticity. The bounding contour
of this patch is a material curve, and by Kelvin’s theorem the circulation on
the contour is a material invariant. Since this circulation is initially zero by the
absence of flux of vorticity through the patch, it will remain zero. Consequently
the lateral boundary of a vortex tube remains a boundary of the tube.
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In follows from the solenoidal property of vorticity and the divergence the-
orem that the flux of vorticity through the end surface A, must equal that
through the end surface B. This flux is a property of a vortex tube, called the
vortex tube strength. Note that this is independent of the compressibility or
incompressibility of the fluid. The tube strength expresses simply a property of
a solenoidal vector field.

To establish the third law of Helmholtz we must show that this strength is
a material invariant. But this follows immediately from Kelvin’s theorem, since
the circulation on the contour C is a material invariant. This circulation, for
the orientation of the contour shown in the figure, is equal to the vortex tube
strength by Stokes’ theorem, and we are done.

The first law is also established using Kelvin’s theorem. Suppose that a flow
is initially irrotational but at some time a fluid parcetionl is found where vor-
ticity is non-zero. A small closed contour can then be found with non-vanishing
circula is non-zero, by Kelvin’s theorem. This contradicts the irrotationality of
the initial flow.

Using these laws we may see how changes in the shape of a fluid parcel can
change the magnitude of vorticity. In figure 3.2 we show a segment of small
vortex tube which has changes under the flow from have length L1and section
area A1, to new values A2, L2. If the density is constant, volume is conserved,
A1L1 = A2L2. If the vorticity magnitudes are ω1, ω2, then invariance of the tube
strength implies ω1A1 = ω2A2. Comparing these expressions, ω2/ω1 = L2/L1.
Consequently, for an ideal fluid of constant density the vorticity is proportional
to vortex line length. We understand here that by line length we are referring
to the distance between to nearby fluid particles on the same vortex line. Thus
the growth or decay of vorticity in ideal fluid flow is intimately connected to
the stretching properties of the Lagrangian map.1 Fluid tubulence is observed
to contain small domains of very large vorticity, presumably created by this
stretching.

For a compressible fluid the volume of te tube need not be invariant, but
mass is conserved. Thus we have, introducing the initaial and final densities
ρ1, ρ2,

ρ1A1L1 = ρ1A2L2, ω1A1 = ω2A2. (3.24)

It follows that

ω2/ρ2

ω1/ρ1
= L2/L1. (3.25)

Thus we see that it is the magnitude of the material field, whether |ω| or ρ−1|ω|,
which is proportional to line length. Notice that in a compressible fluid vorticity
may be increased by compressing a tube while holding the length fixed, so as to
increase the density.

1This make chaotic flow, with positive Liapunov exponents, of great interest in amplifying
vorticity.
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Figure 3.2: Deformation of a vortex tube under a flow.

3.6 The velocity field created by a given vortic-

ity field

Suppose that in R3 the vorticity field is non-zero in some region and vanishes
at infinity. What is the velocity field or fields is created by this vorticity? It is
clear that given a vorticity field ω, and a vector field u such that ∇× u = ω,
another vector field with the same property is given by v = u + ∇φ for some
scalar field φ, uniqueness is an issue. However, under appropriate conditions a
unique construction is possible.

Theorem 2 Let the given vorticity field be smooth and vanish strongly at in-
finity, e.g. for some R > 0

|ω| ≤ Cr−N , r > R, r =
√

x2 + y2 + z2 (3.26)

Then there exists a unique solenoidal vector field u such that ∇ × u = ω and
limr→∞ |u| = 0. This vector field is given by

u =
1

4π

∫

R3

(y − x) × ω(y)

|x− y|3 dVy. (3.27)

To prove this consider the vector field v defined by

v =
1

4π

∫

R3

ω

|x− y|dVy. (3.28)
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This field exists and given (3.26) and can be differentiated if ω is a smooth
function. Let u = ∇× v. Now we have the vector identity

∇× (∇×A) = ∇(∇ ·A) −∇2A. (3.29)

The right-hand side of (3.28) is the unique solution of the vector equation ∇2v =
ω which vanishes at infinity. Also

div

∫

R3

ω · ∇x

1

|x− y|dVy = −
∫

R3

ω · ∇y

1

|x− y|dVy

= −
∫

R3

∇y ·
[

ω(y)

|x− y|
]

dVy = 0 (3.30)

by the divergence theorem and the fact that the integral of |ω| over r = R be
bounded in R in (3.26) holds. Thus u as defined by (3.27) satisfies ∇× u = ω.
as required. Also, this vector field is solenoidal since it is the curl of v, and
vanishes as |x| → ∞. And it is unique. Indeed if u′ is another vector field with
the same properties, then ∇× (u − u′) = 0 and so u − u′ = ∇φ for some scale
field whose gradient vanishes at infinity. But by the solenoidal property of u,u′

we see that ∇2φ = 0, and this implies φ = constant, giving the uniqueness of
u.

For compressible flows a general velocity field w with vorticity ω will have
the form w = u + ∇φ where u is given by (3.27) and φ is an arbitrary scalar
field.

The kernel
1

4π

(y − x) × (·)
|x− y|3 (3.31)

is interesting in the insight it gives into the creation of velocity as a cross product
operation. The velocity induced by a small segment of vortex tube is orthogonal
to both the direction of the tube and the vector joining the observation point
to the vortex tube segment. A similar law relates magnetic field created by an
electric cucrrent, where it is know as the Biot-Savart law.

3.7 Some examples of vortical flows

We end this chapter with a few examples of ideal fluid flows with non-zero
vorticity.

3.7.1 Rankine’s combined vortex

This old example is an interesting use of a vortical flow to model a “bath tub
vortex”, before the depression of the surface of the fluid develops a “hole”. It
will also give us an example of a flow with a free surface. The fluid is a liquid
of constant density ρ with a free surface given by z = Z(r) in cylindrical polar
coordinates, see figure 3.3. The pressure above the free surface is the constant
p0. The body force is gravitational, f = −giz . The vorticity is a solid-body
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rotation in a vertical tube bounded by r = a, z < Z. The only nonzero velocity
component it the θ-component uθ.

In r > a, z < Z Euler’s equations will be solved by the field of a two-
dimensional point vortex (actually a line vortex). This will be matched with a
rigid rotation for r < a so that velocity is continuous:

uθ =

{

Ωa2/r, when r ≥ a,
Ωr, when r < a.

(3.32)

Here Ω is the angular velocity of the core vortex. Now in the exterior region
r > a the flow is irrotational and so we have by the Bernoulli theorem for
irrotational flows

pext
ρ

=
p0

ρ
− 1

2
Ω2a4r−2 − gz, (3.33)

for z < Z, where we have taken Z = 0 at r = ∞. The free surface is thus given
for r > a by

Z = −Ω2a4

gr2
. (3.34)

Inside the vortex core, the equations reduce to

1

ρ

∂p

∂r
=
u2
θ

r
= Ω2r,

1

ρ

∂p

∂z
= g. (3.35)

Thus
1

2
Ω2r2 − gz +C ≡ pcore

ρ
, r < a, z < Z. (3.36)

On the cylinder r = a, z < Z we require that the pcore = pext, so

1

2
Ω2a2 − gz +C =

p0

ρ
− gz − 1

2
Ω2a2. (3.37)

Therefore the constant C is given by

C =
p0

ρ
− Ω2a2, (3.38)

and
pcore
ρ

=
p0

ρ
− Ω2a2

(

1 − r2

2a2

)

− gz. (3.39)

The free surface is then given by

Z =







−a4Ω2

2gr2 , when r ≥ a,

Ω2a2

g

(
r2

2a2 − 1
)

, when r < a./cr
(3.40)

We have used the adjective “combined” to emphasize that this vortex flow
is an example of a solution of the equations of motions which is not smooth,
since duθ/dr is not continuous at r = a, z < Z. Since all other components



3.7. SOME EXAMPLES OF VORTICAL FLOWS 39

Figure 3.3: Rankine’s combined vortex

of velocity are zero and the pressure is the only variable with a z-dependence,
the equation are in fact satisfied everywhere. In a real, viscous fluid, if the
ideal flow was taken as an initial condition, the irregularity at r = a would be
immediately smoothed out by viscous stresses. The ideal fluid solution would
nonetheless be a good representation of the flow for some time, until the vortex
core is substantially affected by the viscosity.

3.7.2 Steady propagation of a vortex dipole

We consider steady two-dimensional flow of an ideal fluid of constant density,
no body force. Since then u · ∇ω = 0, introducing the stream function ψ,
(u, v) = (ψy,−ψx), we have

ψy(∇2ψ)x − ψx(∇2ψ)y = 0. (3.41)

Consequently contours of constant ψ and of constant ω must agree, and so

∇2ψ = f(ψ). (3.42)

where the function f is arbitrary. We will look for solutions of the simplest
kind, by choosing f = −k2ψ, where k is a constant. Using polar coordinates,
we look for solutions of the equation ∇2ψ + k2ψ in the disc r < a, which can
match with the velocity in r > a that is the same as irrotational flow past a
circular body of radius a. That potential flow is easily re-expressed in terms of
the stream function, since we see that in irrotational flow, where our function f
vanishes, the stream function is harmonic. We then have

ψ = Uy
(
1 − a2

r2
)

= U sin θ
(
r − a2

r

)
. (3.43)

Setting ψ = h(r) sin θ in ∇2ψ + k2ψ = 0 we we obtain the ODE for the Bessel
functions of order 1. A solution regular in r < a is therefore h = CJ1(kr). Ths

ψ = C sin θJ1(kr). (3.44)

Also

ω = Ck2 sin θJ1(kr). (3.45)
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Figure 3.4: A propagating vortex dipole.

We have two constants to determine, and we will do this by requiring that
both ω and uθ be continuous on r = a. The condition on ω requires that
J1(ka) = 0. We thus choose ka to be the smallest zero if J1, ka ≈ 3.83.

The constant C is determined by the requirement that uθ be continuous on
r = a. Now uθ = − sin θ ψy − cos θ ψx = −ψr , and

d

dr
J1(kr) = −k−1 d

2

dz2
J0(z)

∣
∣
∣
z=kr

= k−1
(1

z

dJ0

dz
+J0

)

z=kr
= k−1

(

−1

z
J1+J0

)

z=kr
.

(3.46)
Thus

d

dr
J1(kr)

∣
∣
∣
r=a

= k−1J0(ka). (3.47)

The condition that ψr be continuous on r = a thus becomes

C = 2k−1 U

J0(ak)
. (3.48)

Thus

ω = −∇2ψ =
2kU

J0(ak)
sin θJ1(kr). (3.49)

Since J0(3.83) ≈ −.403 we see that the constant multiplier in this last equation
has a sign of opposite to that of U . Let us see if this makes sense. If U were
negative, then the vorticity in the upper half of the disc would be positive.
A positive vorticity implies an eddy rotating counterclockwise. This vorticity
induces the vortex in the lower half of the disc to move to the right. Similarly
the negative vorticity in the lower half of the disk causes the upper vortex to
move to the right. Thus the vortex dipole propagates to the right, and in the
frame moving with the dipole U is negative.
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3.7.3 Axisymmetric flow

We turn now to a large class of vortical flows which are probably the simplest
flows allowing vortex stretching, namely the axisymmetric Euler flows. These
are solutions of Euler’s equations in cylindrical polar coordinates (z, r, θ), under
the assumption that all variables are independent of the polar angle θ. Euler’s
equations for the velocity u = (uz, ur, uθ) in cylindrical polar coordinates are

∂uz
∂t

+ u · ∇uz +
1

ρ

∂p

∂z
= 0, (3.50)

∂ur
∂t

+ u · ∇ur −
u2
θ

r
+

1

ρ

∂p

∂r
= 0, (3.51)

∂uθ
∂t

+ u · ∇uθ +
uruθ
r

+
1

ρr

∂p

∂θ
= 0, (3.52)

where

u · ∇(·) =
[

uz
∂

∂z
+ ur

∂

∂r
+
uθ
r

∂

∂θ

]

(·). (3.53)

We take the density to be constant, so the solenoidal condition applies in the
form

∂uz
∂z

+
1

r

∂rur
r

+
1

r

∂uθ
∂θ

= 0. (3.54)

The vorticity vector is given by

(ωz, ωr, ωθ) =
[1

r

∂ruθ
∂r

− 1

r

∂ur
∂θ

,
1

r

∂uz
∂θ

− ∂uθ
∂z

,
∂ur
∂z

− ∂uz
∂r

]

. (3.55)

The vorticity equation is

∂ω

∂t
+

[

u ·∇ωz,u ·∇ωr,u ·∇ωθ+
uθωr
r

]

−
[

ω ·∇uz,ω ·∇ur,ω ·∇uθ+
urωθ
r

]

= 0.

(3.56)
In the axisymmetric case we thus have

∂uz
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

uz +
1

ρ

∂p

∂z
= 0, (3.57)

∂ur
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

ur −
u2
θ

r
+

1

ρ

∂p

∂r
= 0, (3.58)

∂uθ
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

uθ +
uruθ
r

= 0, (3.59)

∂uz
∂z

+
1

r

∂rur
r

= 0. (3.60)

(ωz, ωr, ωθ) =
[1

r

∂ruθ
∂r

,−∂uθ
∂z

,
∂ur
∂z

− ∂uz
∂r

]

(3.61)
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If the swirl velocity component uθ vanishes, the system simplifies further:

∂uz
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

uz +
1

ρ

∂p

∂z
= 0, (3.62)

∂ur
∂t

+
[

uz
∂

∂z
+ ur

∂

∂r

]

ur +
1

ρ

∂p

∂r
= 0, (3.63)

∂uz
∂z

+
1

r

∂rur
r

= 0. (3.64)

(ωz, ωr, ωθ) =
[

0, 0,
∂ur
∂z

− ∂uz
∂r

]

. (3.65)

Note that the only nonzero component of vorticity is ωθ. The vortex lines are
therefore all rings with a common axis, the z−axis. The vorticity equation now
has the form

∂ωθ
∂t

+ uz
∂ωθ
∂z

+ ur
∂ωθ
∂r

− urωθ
r

= 0. (3.66)

The last equation may be rewritten

D

Dt

ωθ
r

= 0,
D

Dt
=

∂

∂t
+ uz

∂

∂z
+ ur

∂

∂r
. (3.67)

Thus ωθ

r
is a material invariant of the flow. We can easily interpret the meaning

of this fact. A vortex ring of radius r has length 2πr, and the vorticity associated
with a given ring is a constant ωθ. But the vorticity of a line is proportional
to the line length (recall the increase of vorticity by line stretching). Thus the
ratio ωθ

2πr must be constant on a given vortex ring. Since vortex rings move with
the fluid, ωθ

r is a material invariant.
To compute axisymmetric flow without swirl we can introduce the stream

function ψ for the solenoidal velocity in cylindrical polar coordinates:

uz =
1

r

∂ψ

∂r
, ur = −1

r

∂ψ

∂z
. (3.68)

This ψ is often referred to as the Stokes stream function. Then

ωθ = −1

r
L(ψ), L ≡ ∂2

∂z2
+

∂2

∂r2
− 1

r

∂

∂r
. (3.69)

In the steady case, the vorticity equation gives

[1

r

∂ψ

∂r

∂

∂z
− 1

r

∂ψ

∂z

∂

∂r

] 1

r2
L(ψ) = 0. (3.70)

Thus a family of steady solutions can be obtained by solving any equation of
the form

L(ψ) = r2f(ψ), (3.71)
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where f is an arbitrary function, for the stream function ψ. The situation
here is closely analogous to the steady two-dimensional case, see the previous
subsection.

Now turning to axisymmetric flow with swirl, the instantaneous streamline
and vortex lines can now be helices and a much larger class of Euler flows results.
The same stream function applies. The swirl velocity satisfies, from (3.59)

Druθ
Dt

= 0,
D

Dt
=

∂

∂t
+ uz

∂

∂z
+ ur

∂

∂r
. (3.72)

We can understand the meaning of (3.72) using Kelvin’s theorem. First note
that a ring of fluid particles initially on a given circle C defined by initial values
of z, r, will stay on the same circular ring as it evolves. The uθ component takes
the ring into itself, and the (uz, ur, 0) sub-field determines the trajectory C(t) of
the ring, and thus the ring evolves as a material curve. Since uθ is constant on
the ring, the circulation on C(t) is 2πruθ. By Kelvin’s theorem, this circulation
is a material invariant, and we obtain (3.72).

In the case of steady axisymmetic flow with swirl we see from (3.72) that we
may take

ruθ = g(ψ), (3.73)

where the function g is arbitrary. Bernoulli’s theorem for steady flow with
constant density gives

1

2
|u|2 +

p

ρ
= H(ψ), (3.74)

stating that the Bernoulli function H is constant on streamlines. From the
momentum equation in the form ∇H−u×ω = 0 we get, from the z-component
e.g.:

urωθ − uθωr =
∂H

∂z
. (3.75)

Using the expressions for the components of vorticity and expressing everything
in terms of the stream function, we get from (3.73) and (3.75)

1

r2
∂ψ

∂z
+

1

r2
g
dg

dψ

∂ψ

∂z
=
dH

dψ

∂ψ

∂z
. (3.76)

Eliminating the common factor ∂ψ
∂z and rearranging,

L(ψ) = r2f(ψ) − g
dg

dψ
, f(ψ) =

dH

dψ
. (3.77)

Thus two arbitrary functions, f, g are involved and any solution of (3.77) deter-
mines a steady solution in axisymmetric flow with swirl.

Problem set 3

1. Consider a fluid of constant density in two dimensions with gravity, and
suppose that the vorticity vx−uy is everywhere constant and equal to ω. Show
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that the velocity field has the form (u, v) = (φx + χy, φy − χx) where φ is
harmonic and χ is any function of x, y (independent of t), satisfying ∇2χ = −ω.
Show further that

∇(φt +
1

2
q2 + ωψ + p/ρ+ gz) = 0

where ψ is the stream function for u, i.e. u = (ψy,−ψx), and q2 = u2 + v2.

2. Show that, for an incompressible fluid, but one where the density can
vary independently of pressure (e.g. salty seawater), the vorticity equation is

Dω

Dt
= ω · ∇u + ρ−2∇ρ×∇p.

Interpret the last term on the right physically. (e.g. what happens if lines of
constant p are y = constant and lines of constant ρ are x− y =constant?). Try
to understand how the term acts as a source of vorticity, i.e. causes vorticity to
be created in the flow.

3. For steady two-dimensional flow of a fluid of constant density, we have

ρu · ∇u + ∇p = 0,∇ · u = 0.

Show that, if u = (ψy ,−ψx), these equations imply

∇ψ ×∇(∇2ψ) = 0.

Thus, show that a solution is obtained by giving a function H(ψ) and then
solving ∇2ψ = H ′(ψ). Show also that the pressure is given by p

ρ = H(ψ) −
1
2 (∇ψ)2+constant.

4. Prove Ertel’s theorem for a fluid of constant density: If f is a scalar
material invariant, i.e. Df/Dt = 0, then ω · ∇f is also a material invariant,
where ω = ∇× u is the vorticity field.

5. A steady Beltrami flow is a velocity field u(x) for which the vorticity
is always parallel to the velocity, i.e. ∇ × u = f(x)u for some scalar function
f . Show that if a steady Beltrami field is also the steady velocity field of an
inviscid fluid of constant density, the necessarily f is constant on streamlines.
What is the corresponding pressure? Show that u = (Bsiny+C cos z, C sin z+
A cos x, A sinx + B cos y) is such a Beltrami field with f = −1. (This last flow
an example of a velocity field yielding chaotic particle paths. This is typical of
3D Beltrami flows with constant f , according to a theorem of V. Arnold.)

6. Another formula exhibiting a vector field u = (u, v, w) whose curl is
ω = (ξ, η, ζ), where ∇ · ω = 0, is given by

u = z

∫ 1

0

tη(tx, ty, tz)dt− y

∫ 1

0

tζ(tx, ty, tz)dt,
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v = x

∫ 1

0

tζ(tx, ty, tz)dt− z

∫ 1

0

tξ(tx, ty, tz)dt,

w = y

∫ 1

0

tξ(tx, ty, tz)dt− x

∫ 1

0

tη(tx, ty, tz)dt.

Verify this result. (Note that u will not in general be divergence-free, e.g. check
ξ = ζ = 0, η = x. A derivation of this formula, using differential forms, may be
found in Flanders’ book on the subject.)

7. In this problem the object is to find a 2D propagating vortex dipole
structure analogous to that studied in subsection 3.6.2. In the present case, the
structure will move clockwise on the circle of radius R with angular velocity
Ω. Consider a rotating coordinate system and a circular structure of radius
a, stationary and with center at (0, R). Relative to the rotating system the
velocity tends to Ω(−y, x) = Ω(−y′, x)+ΩR(−1, 0), y′ = y−R. It turns out that
(assuming constant density), the momentum equation relative to the rotating
frame can be reduced to that in the non-rotating frame in that the Coriolis force
can be absorbed into the gradient of a modified pressure, see a later chapter.
Thus we again take ∇2ψ + k2ψ = 0, r′ < a. Here r′ =

√

(y′)2 + x2. A new
term proportional to J0(kr) must now be included. We require that uθ aAand
ω must be continuous on r′ = a. Show that, relative to the rotating frame,

ψ =

{

− 2RΩ
kJ0(ak)

sin θJ1(kr
′) + 2Ω

k2J0(ka)
J0(kr

′), if r′ < a,

−Ω
2 r

′2 − ΩR(r′ − a2/r′) + Ωa2 ln r′ +C, if r′ ≥ a.
(3.78)
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Chapter 4

Potential flow

Potential or irrotational flow theory is a cornerstone of fluid dynamics, for two
reasons. Historically, its importance grew from the developments made possible
by the theory of harmonic functions, and the many fluids problems thus made
accessible within the theory. But a second, more important point is that po-
tential flow is actually realized in nature, or at least approximated, in many
situations of practical importance. Water waves provide an example. Here fluid
initially at rest is set in motion by the passage of a wave. Kelvin’s theorem
insures that the resulting flow will be irrotational whenever the viscous stresses
are negligible. We shall see in a later chapter that viscous stresses cannot in gen-
eral be neglected near rigid boundaries. But often potential flow theory applies
away from boundaries, as in effects on distant points of the rapid movements of
a body through a fluid.

An example of potential flow in a barotropic fluid is provided by the theory
of sound. There the potential is not harmonic, but the irrotational property
is acquired by the smallness of the nonlinear term u · ∇u in the momentum
equation. The latter thus reduces to

∂u

∂t
+

1

ρ
∇p ≈ 0. (4.1)

Since sound produces very small changes of density, here we may take ρ to be will
approximated by the constant ambient density. Thus u = ∇φ with ∂φ

∂t
= −p/ρ.

4.1 Harmonic flows

In a potential flow we have
u = ∇φ. (4.2)

We also have the Bernoulli relation (for body force f = −ρ∇Φ)

φt +
1

2
(∇φ)2 +

∫
dp

ρ
+ Φ = 0. (4.3)

47



48 CHAPTER 4. POTENTIAL FLOW

Figure 4.1: A domain V , bounded by surfaces Si,o where ∂φ
∂n

is prescribed.

Finally, we have conservation of mass

ρt + ∇ · (ρ∇φ) = 0. (4.4)

The most extensive use of potential flow theory is to the case of constant density,
where ∇ · u = ∇2φ = 0. These harmonic flows can thus make use of the highly
developed mathematical theory of harmonic functions. in the problems we study
here we shall usually consider explicit examples where existence is not an issue.
On the other hand the question of uniqueness of harmonic flows is an important
issue we discuss now. A typical problem is shown in figure 4.1.

A harmonic function φ has prescribed normal derivatives on inner and outer
boundaries Si, So of an annular region V . The difference ud = ∇φd of two
solutions of this problem will have zero normal derivatives on these boundaries.
That the difference must in fact be zero throughout V can be established by
noting that

∇ · (φd∇φd) = (∇φd)2 + φd∇2φd = (∇φd)2. (4.5)

The left-hand side of (4.5) integrates to zero over V to zero by Gauss’ theo-
rem and the homogeneous boundary conditions of ∂φd

∂n . Thus
∫

V
(∇φd)2dV = 0,

implying ud = 0.
Implicit in this proof is the assumption that φd is a single-value function. A

function φ is single-valued in V if and only if
∮

C dφ = 0 on any closed contour
C contained in V . In three dimensions this is insured by the fact that any such
contour may be shrunk to a point in V . In two dimensions, the same conclusion
applies to simply-connected domains. In non-simply connect domains uniqueness
of harmonic flows in 2DS is not assured. Note for a harmonic flow

∮

C

dφ =

∮

C

u · dx = ΓC , (4.6)

so that a potential which is not single valued is associated with a non-zero
circulation on some contour. Since there is no vorticity within the domain of
harmonicity, we must look outside of this domain to find the vorticity giving
rise to the circulation.
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Example 4.1: The point vortex of problem 1.2 is an example of a flow
harmonic in a non-simply connected domain which excludes the origin. If
u = 1

2π
(−y/r2, x/r2) then the potential is θ

2π
+ constant and the circulation

on an simply closed contour oriented counter-clockwise is 1. This defines the
point vortex of unit circulation. Here the vorticity is concentrated at the origin,
outside the domain of harmonicity.

Example 4.2 Steady two-dimensional flow harmonic flow with velocity
(U, 0) at infinity, past a circular cylinder of radius a centered at the origin,
is not unique. The flow of example 2.4 plus an arbitrary multiple of the point
vortex flowof example 4.1 will again yield a flow with the same velocity at in-
finity, and still tangent to the boundary r = a:

φ = Ux(1 + a2/r2) +
Γ

2π
θ. (4.7)

4.1.1 Two dimensions: complex variables

In two dimensions harmonic flows can be studied with the powerful apparatus of
complex variable theory. We define the complex potential as an analytic function
of the complex variable z = x+ iy:

w(z) = φ(x, y) + iψ(x, y). (4.8)

We will suppress t in our formulas in the case when the flow is unsteady. If we
identify φ with the potential of a harmonic flow, and ψ with the stream function
of the flow, then by our definitions of these quantities

(u, v) = (φx, φy) = (ψy,−ψx), (4.9)

yielding the Cauchy-Riemann equations φx = ψy, φy = −ψx. The derivative of
w gives the velocity components in the form

dw

dz
= w′(z) = u(x, y) − iv(x, y). (4.10)

Notice that the Cauchy-Riemann equations imply that ∇φ · ∇ψ = 0 at every
point where the partials are defined, implying that the streamlines are there
orthogonal to the lines of constant potential φ.

Example 4.3: The uniform flow at an angle α to the horizontal, with
velocity Q(cosα, sinα) is given by the complex potential w = Qze−iα.

Example 4.4: In complex notation the harmonic flow of example 4.2 may
be written

w = U(z + a2/z) − iΓ

2π
log z (4.11)

where e.g. we take the principle branch of the logarithm function.

As a result of the identification of the complex potential with an analytic
function of a complex variable, the conformal map becomes a valuable tool in
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Figure 4.2: Flow onto a wedge of half-angle α.

the construction of potential flows. For this application we may start with the
physical of z-plane, where the complex potential w(z) is desired. A conformal
map z → Z transforms boundaries and boundary conditions and leads to a
problem which can be solved to obtain a complex potential W (Z). Under the
map values of ψ are preserved, so that streamlines map onto streamlines.

Example 4.5: The flow onto a wedge-shaped body (see figure 4.2). Consider
in the Z plane the complex potential of a uniform flow,−UZ, U > 0. The region
above upper surface of the wedge to the left, and the and the positive x-axis to
the right, is mapped onto the upper half-plane Y >) by the function Z = z

π
π−α .

Thus w(z) = −Uz π
π−α .

Example 4.6: The map z(Z) = Z+ b2

Z maps the circle of radius a > b in the

Z-plane onto the ellipse of semi-major axis a2+b2

a and semi-minor (y)-axis a2−b2
a

in the z-plane. And the exterior is mapped onto the exterior. Uniform flow
with velocity (U, 0)at infinity, past the circular cylinder |Z| = a, has complex
potential W (Z) = U(Z + a2/Z). Inverting the map and requiring that Z ≈ z
for large |z| gives Z = 1

2 (z +
√
z2 − 4b2). Then w(z) = W (Z(z)) is the complex

potential for uniform flow past the ellipse. Notice how the map satisfies dz
dZ → 1

as z → ∞ This insures that that infinity maps by the identity and so the uniform
flow imposed on the circular cylinder is also imposed on the ellipse.

4.1.2 The circle theorem

We now state a result which gives the mathematical realization of the physical
act of “placing a rigid body in an ideal fluid flow”, at least in the two-dimensional
case.

Theorem 3 Let a harmonic flow have complex potential f(z), analytic in the
domain |z| ≤ a. If a circular cylinder of radius a is place at the origin, then the

new complex potential is w(z) = f(z) + f
(
a2

z̄

)

.

To show this we need to establish that the analytical properties of the new
flow match those of the old, in particular that the analytic properties and the
singularities in the flow are unchanged. Then we need to verify that the surface
of the circle is a streamline. Taking the latter issue first, note that on the circle
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a2

z̄
= z, so that there we have w = f(z)+f(z), implying ψ = 0 and so the circle

is a streamline. Next, we note that the added term is an analytic function of z if
it is not singular at z. (If f(z) is analytic at z, so is f(z̄). As for the location of

singularities of w, since f is analytic in |z| ≤ a it follows that f
(
a2

z

)

is analytic

in |z| ≥ a, and the same is true of f
(
a2

z̄

)

. Thus the only singularities of w(z)

in |z| > a are those of f(z).

Example 4.7: If a cylinder of radius a is placed in a uniform flow, then
f = Uz and w = Uz + U(a2/z̄) = U(z + a2/z) as we already know. If a
cylinder is placed in the flow of a point source at b > a on the x-axis, then
f(z) = Q

2π ln(z − b) and

w(z) =
Q

2π
(ln(z−b)+ln

(a2

z̄
− b

)
=

Q

2π
(ln(z−b)+ln(z−a2/b)−lnz)+C, (4.12)

where C is a constant. From this form it may be verified that the imaginary
part of w is constant when z = aeiθ. Note that the image system of the source,
with singularities within the circle, consists of a source of strength Q at the
image point a2/b, and a source of strength −Q at the origin.

Example 4.8: A point vortex at position zk of circulation Γk has the com-
plex potential wk(z) = −iΓk

2π ln(z−zk). A collection of N such vortices will have

the potential w(z) =
∑N

k=1 wk(z). Since vorticity is a material scalar in two-
dimensional ideal flow, and the delta-function concentration may be regarded
as the limit of a small circular patch of constant vorticity, we expect that each
vortex must move with he harmonic flow created at the vortex by the other
N −1 vortices. Thus the positions zk(t) of the vortices under this law of motion
is governed by the system of N equations,

dzj
dt

=
−i
2π

N∑

k=1,k 6=j

Γk
z − zk

. (4.13)

Note the conjugation on the left coming from the identity w′ = u− iv.

4.1.3 The theorem of Blasius

An important calculation in fluid dynamics is the force exerted by the fluid on
a rigid body. In two dimensions and in a steady harmonic flow this calculation
can be carried out elegantly using the complex potential.

Theorem 4 Let a steady uniform flow past a fixed two-dimensional body with
bounding contour C be a harmonic flow with velocity potential w(z). Then, if
no external body forces are present, the force (X, Y ) exerted by the fluid on the
body is given by

X − iY =
iρ

2

∮

C

(dw

dz

)2

dz. (4.14)
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Here the integral is taken round the contour in the counter-clockwise sense.
This formula, due to Blasius, reduces the force calculation to a complex contour
integral. Since the flow is harmonic, the path of integration may be distorted to
any simple closed contour encircling he body, enabling the method of residues
to be applied. The exact technique will depend upon whether are not the are
singularities in the flow exterior to the body.

To prove the result, first recall that dX − idY = p(−dy − idx) = −ipdz̄.
Also, Bernoulli’s theorem for steady ideal flow applies, so that

p = −ρ
2

∣
∣
∣
dw

dz

∣
∣
∣

2

+C, (4.15)

where clearly the constant C will play no role. Thus

X − iY =
iρ

2

∮

C

dw

dz

dw

dz
dz̄. (4.16)

However, the contour C is a streamline, so that dψ = 0 there, and so on C we

have dw
dz dz̄ = dw̄ = dw = dw

dz dz. using this in (4.16) we obtain (4.14).

Example 4.9: We have found in problem 2.1 that the force on a circular
cylinder in a uniform flow is zero. To verify this using Blasius’ theorem, we set

w = U
(

z + a2

z

)

so that U2
(

1− a2

z2

)

2 is to be integrated around C. Since there

is no term proprotional to z−1 in the Laurent expansion about the origin, the
residue is zero and we get no contribution to the force integral.

Example 4.10: Consider a source of strength Q placed at (b, 0) and intro-
duce a circular cylinder of radius a < b into the flow. From example 4.6 we
have

dw

dz
=

1

z − b
+

1

z − a2/b
− 1

z
. (4.17)

Squaring, we get

1

(z − b)2
+

1

(z − a2/b)2
+

1

z2
+

2

(z − b)(z − a2/b)
− 2

z(z − a2/b)
− 2

z(z − b)
. (4.18)

The first three terms to not contibute to the integral around the circle |z| = a.
For the last three, the partial fraction decomposition is

A

z − b
+

B

z − a2/b
+
C

z
, (4.19)

where we compute A = 2a2

(b2−a2)b , B = 2b3

a2(a2−b2) , C = 2(a2+b2)
a2b . The contributions

come from the poles within the circle and we have

X − iY =
iρ

2

Q2

4π2
2πi(B +C) =

Q2ρ

2π

a2

b(b2 − a2)
. (4.20)

The cylinder is therefore feels a force of attraction toward the source.
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This introduction to the use of complex variables in the analysis of two-
dimenisonal harmonic flows will provide the groundwork for a discussion of lift
and airfoil design, to be taken up in chapter 5.

4.2 Flows in three dimensions

We live in three dimensions, not two, and the “flow past body” problem in two
dimensions introduces a domain which is not simply connected, with important
consequences. The relation between two and three-dimensional flows is partic-
ularly significant in the generation of lift, as we shall see in chapter 5. In the
present section we treat topics in three dimensions which are direct extensions
of the two-dimensional results just given. They pertain to bodies, such as a
sphere, which move in an irrotational, harmonic flow.

4.2.1 The simple source

The source of strength Q in three dimensions satisfies

div u = Qδ(x), u = ∇φ. (4.21)

Here δ(x) = δ(x)δ(y)δ(z) is the three-dimensional delta function. It has the
following properties: (i) It vanishes if x 6= 0. (ii) Any integral of δ(x) over
an open region containing the origin yields unity. It is best to think of all
relations involving delta functions and other distributions as limits of relations
using smooth functions.

In our case, integrating ∇2φ = Qδ(x) over a sphere of radius R0 > 0 we get

∫

R=R0

∂φ

∂n
dS = Q. (4.22)

Since ∇2φ = 0,x 6= 0, and since the delta function must be regarded as an
isotropic distribution, having no exceptional direction, we make the guess (
using now ∇2φ = R−1d2(Rφ)/dR2) that φ = C/R,R2 = x2 + y2 + z2 for some
constant C. Then (4.22) shows that C = − Q

4π . Thus the simple source in three
dimensions, of strength Q, has the potential

φ = − Q

4π

1

R
. (4.23)

Note that Q is equal to the volume of fluid per unit time crossing any deforma-
tion of a spherical surface, assuming the deformed surface surounds the origin.
1

1We indicate how to justify this calculation using a limit operation. Define the three-
dimensional delta function by limε→0 δε(R) where δε = 3

2πε3
1

1+(R/ε)3
. Solving ∇2φε = δε =

R−2 d
dR

(
R2 dφε

dR

)
, under the condition that φε vanish at infinity, we obtain φε = − 1

4πR
+

∫
∞

R
R−2

[
tan−1(R3ε−3) − π/2

]
dR. For any positive R the integral tends to zero as ε→ 0.
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Figure 4.3: The Rankine fairing. All lengths are in units of k.

4.2.2 The Rankine fairing

We consider now a simple source of strength Q placed at the origin in a uniform
flow W iz. The combined potential is then

φ = Uz − Q

4π

1

R
. (4.24)

The flow is clearly symmetric about the z-axis. In cylindrical polar coordinates
(z, r, θ), r2 = x2 + y2 we introduce again the Stokes stream function ψ:

uz = φz =
1

r

∂ψ

∂r
, ur = φr = −1

r

∂ψ

∂z
. (4.25)

Thus for (4.24) we have
1

r

∂ψ

∂r
= U +

Q

4π

z

R3
. (4.26)

Integrating,

ψ = Ur2/2 − Q

4π

( z

R
+ 1

)

. (4.27)

In (4.27) we have chosen the constant of integration to make ψ = 0 on the
negative z-axis.

We show the stream surface ψ = 0, as well as several stream surfaces ψ > 0,
in figure 4.3. This gives a good example of a uniform flow over a semi-infinite
body. An interesting question is whether or not such a body would experience
a force. We will find below that D’Alembert’s paradox applies to finite bodies
in three dimensions, that the drag force is zero, but it is not obvious that the
result applies to bodies which are not finite.

We will use this question to illustrate the use of conservation of momentum
to calculate force on a distant contour. In figure 4.4 the large sphere S of radius
R0 is centered at the origin and intersects the fairing on the at a circle bounding
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Figure 4.4: Geometry of the momentum integral for computation of the force
on the Rankine fairing.

the disc A. Let S′ be the spherical surface S minus hat part within the boundary
of A. We are considering steady harmonic flow and so the momentum equation
may be written

∂

∂xj
[ρui uj + p ] = 0. (4.28)

Let V ′ be the region bounded by S′ and the piece of fairing enclosed. Integrating
(4.28) over V ′ and using the divergence theorem., the contribution from the
surface of the fairing is the integral −np over this surface, where n is the outer
normal of the fairing. Thus this contribution is the force F experienced by the
enclosed piece of fairing, a force clearly directed along the z axis and therefore
equal to the drag, F = Diz . The remainder of the integral, taking only the
z-component, takes the form of an integral over S minus the contribution from
A. Thus conservation of momentum gives

D+ ρ

∫

S

uzu · R/R+
1

2

[
U2 − |u|2

] z

R
dS − ρIA = 0. (4.29)

We have here using the Bernoulli formula for the flow, p + 1
2
|u|2 = 1

2
U2, the

pressure at infinity being taken to be zero. Treating first the integral over S,
we have

u = U iz +
Q

4π

R

R3
, |u|2 = U2 +

UQ

2π

z

R3
+

Q2

16π2

1

R4
. (4.30)

Thus the integral in question becomes

∫

S

(

U +
Q

4π

z

R3

)(Uz

R
+
Q

4π

1

R2

)

− 1

4π

(

UQ
z2

R4
+

1

8π

Q2z

R5

)

dS. (4.31)

We see that this last integral gives UQ+ 1
2
UQ − 1

2
UQ = UQ. For the contri-

bution IA, we take the limit R0 → ∞ to obtain IA = U2πr2∞, where r∞ is the
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Figure 4.5: Flow around an airship.

asymptotic radius of the airing as z → ∞. In this limit D′ → D, the total drag
of the fairing. Thus the momentum integral method gives

D + ρ(UQ − U2πr2∞) = 0. (4.32)

But from (4.27) we see that the stream surface ψ = 0 is given by

z =
r2 − 1

2
k2

√
k2 − r2

, k2 =
Q

πU
. (4.33)

Thus r∞ = k, and (4.32) becomes

D + ρ(UQ − UQ) = D = 0, (4.34)

so the drag of the fairing is zero.

Example 4.11: The flow considered now typifies the early attempts to
model the pressure distribution of an airship. The model consists of a source
of strength Q at position z = 0 on the z-axis, and a equalizing sink (source of
strength −Q) at the pint z = 1 on the z-axis. Since the source strengths cancel,
a finite body is so defined when the singularities are place in the uniform flow
U iz . It can be shown (see problem 4.7 below), that stream surfaces for the flow
are given by constant values of

Ψ =
U

2
R2 sin2 θ − Q

4π

(

cos θ+
1 − R cos θ√

R2 − 2R cos θ + 1

)

, (4.35)

where R, θ are spherical polars at the origin, with axial symmetry. We show the
stream surfaces in figure 4.4.
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4.2.3 The Butler sphere theorem.

The circle theorem for two-dimensional harmonic flows has a direct analog in
three dimensions.

Theorem 5 Consider an axisymmetric harmonic flow in spherical polars (R, θ, ϕ),
uϕ = 0, with Stokes stream function Ψ(R, θ) vanishing at the origin:

uR =
1

R2 sin θ

∂Ψ

∂θ
, uθ =

−1

R sin θ

∂Ψ

∂R
. (4.36)

If a rigid sphere of radius a is introduced into the flow at the origin, and if the
singularities of Ψ exceed a in distance from the origin, then the stream function
of the resulting flow is

Ψs = Ψ(R, θ) − R

a
Ψ(a2/R, θ). (4.37)

It is clear that Ψs vanishes when R = a, so the surface of the sphere is a
stream surface. Also the added term introduces no new singularities outside the
sphere. Thus the theorrm is proved if we can verify that R

aΨ(a2/R, θ) represents
a harmonic flow. In spherical polars with axial symmetry the only component
of vorticity is

ωϕ =
1

R

[∂(Ruθ)

∂R
− ∂uR

∂θ

]

. (4.38)

Thus the condition on Ψ for an irrotational flow is

R2∂
2Ψ

∂R2
+ sin θ

∂

∂θ

( 1

sin θ

∂Ψ

∂θ

)

≡ LRΨ = 0. (4.39)

If R
a
Ψ(a2/R, θ) is inserted into (4.39) we can show that the equation is satisfied

provided it is satisfied by Ψ(R, θ), see problem 4.8. Finally, since Ψ(R, θ) van-
ishes at the origin at least as R, RΨ(a2/R, θ is bounded at infinity and velocity
component must decay as O(R−2), so the uniform flow there is undisturbed.

Example 4.12: A sphere in a uniform flow U iz has Stokes stream function

Ψ(R, θ) =
U

2
R2 sin2 θ

[

1 − a3

R3

]

. (4.40)

This translates into the following potential:

φ = Uz
(

1 +
1

2

a3

R3

)

. (4.41)

Example 4.13: Consider a source of strength Q place on the z axis at z = b
and place a rigid sphere of radius a < b at the origin. The streamfunction for
this source which vanishes at the origin is

Ψ(R, θ) = − Q

4π
(cos θ1 + 1), (4.42)
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Figure 4.6: A a sphere of radius a in the presence of a source at z = b > a.

where θ1 is defined in figure 4.6.
Now from the law of cosines and figure 4.6 we have

R cos θ − b = R1 cos θ1, R2
1 = b2 − 2bR cos θ +R2. (4.43)

Thus

cos θ1 =
R cos θ − b√

b2 − 2bR cos θ+ R2
. (4.44)

Thus the stream function including the sphere, Ψs, is given by

Ψs = − Q

4π

[ R cos θ− b√
b2 − 2bR cos θ + R2

+ 1
]

+
Q

4π

R

a

[ a2

R
cos θ − b

√

b2 − 2ba
2

R cos θ + a4

R2

+ 1
]

.

(4.45)

Now, again using the law of cosines,
√

b2 − 2ba
2

R
cos θ + a4

R2 = bR2/R. Also we

may use R2 = R2
2 + 2a

2

b
R cos θ − a4

b2
. Then Ψs may be brought into the form

Ψs = − Q

4π

[R cos θ − b

R1
+ 1

]

− a

b

Q

4π

[R cos θ − a2

b

R2

]

+
Q

4π

[R− R2

a

]

. (4.46)

The first term on the right is the source of strength Q at z = b. The second term
is another source, of strength a

bQ, at the image point z = a2/b. The last term

can be understood as a line distribution of sinks of density Q
4πa

, extending from
the origin to the image point a2/b. Indeed, if a point P on this line segment
is associated with an angle θP , the the contribution from such a line of sinks
would be

Q

4πa

∫ a2

b

0

cos θP dz. (4.47)

But dR = − cos θP dz, so the integral becomes

− Q

4πa

∫ R2

R

dR =
Q

4πa
(R− R2). (4.48)
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4.3 Apparent mass and the dynamics of a body

in a fluid

Although harmonic flow is an idealization never realized exactly in actual fluids
(except in some cases of super fluid dynamics), it is a good approximation in
many fluid problems, particularly when rapid changes occur. A good example is
the abrupt movement of a solid body through a fluid, for example a swimming
stroke of the hand. We know from experience that a abrupt movement of the
hand through water gives rise to a force opposing the movement. It is easy to see
why this must be, within the theory of harmonic flows. An abrupt movement of
the hand through still water causes the fluid to move relative to a observer fixed
with the still fluid at infinity. This observer would therefore compute at the
instant the hand is moving a finite kinetic energy of the fluid, whereas before
the movement began the kinetic energy was zero. To produce this kinetic energy
work must have been done, and so a force with a finite component opposite to
the direction of motion must have occurred. We are here dealing only with the
fluid, but if the body has mass the clearly a force is also needed to accelerate
that mass. Thus both the body mass and the fluid movement contribute to the
force experienced.

In a harmonic flow we shall show that, in the absence of external body
forces, the force on a rigid body is proportional to its acceleration, and further
the force contributed by the fluid can be expressed as an addition, apparent
mass of the body. In other words the augmented force due to the presence of
the surrounding fluid and the energy it acquires during motion of a body, can be
explained as an inertial force associated with additional mass and the work done
against that force. The term virtual mass is also used to denote this apparent
mass. For a sphere, which has an isotropic geometry with no preferred direction,
the apparent mass is just a scalar to be added to the physical mass. In general,
however, the apparent mass associated with the momentum of a body in two
or three dimensions will depend on the direction of the velocity vector. It thus
must be a second order tensor, represented by the apparent mass matrix.

4.3.1 The kinetic energy of a moving body

Consider an ideal fluid at rest and introduce a moving rigid body, in two or
three dimensions. An observer at rest relative to the fluid at infinity will se
a disturbance of the flow which vanishes at infinity. It would be natural to
compute compute the momentum of this motion by calculating the integral
∫
ρudV of the region exterior to the body. The problem is that such harmonic

flows have an expansion at infinity of the form

φ ∼ a ln r − A · rr−2 + O(r−2) (4.49)

in two dimensions and

φ ∼ a

R
−A ·RR−3 +O(R−3) (4.50)
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in three dimensions. Thus

ρ

∫

∇φdV =

∫

S

φndS, (4.51)

where S comprises both a surface in a neighborhood of infinity as well as the
body surface, is not absolutely convergent as the distant surfaces recedes. We
point out that a = 0 in two dimensions if the area of the body is fixed and there
is no circulation about the body. In three dimensions a vanishes if the body has
fixed volume, see problem 4.12.

But even if a = 0 and φ = O(R−1) the value of the integral is only condi-
tionally convergent will depend on how one defines the distant surface. So the
value attributed to the fluid momentum is ambiguous by this calculation.

An unambiguous result is however possible, if we instead focus on the kinetic
energy and from it determine the incremental momentum created by a change
in velocity. Let us fix the orientation of the body and consider its movement
through space, without rotation. This translation is completely determined by
a velocity vector U(t). The, from the discussion of section 2.6 we know that a
harmonic flow will satisfy the instantaneous boundary condition

∂φ

∂n
= U(t) · n (4.52)

on the surface of the body. Now ∇2φ = 0 is a linear equation, and so we see
that there must exist a vthe Φi as encoding the effect of the shape of the body
from all possible harmonic flows associated with translation of the body.

We may now compute the kinetic energy E of the fluid exterior to the body
using

u = Ui∇Φi. (4.53)

Thus

E(t) =
1

2
MijUiUj , Mij = ρ

∫

∇Φi · ∇ΦjdV. (4.54)

the integral being over the fluid domain. Clearly the matrix Mij is symmetric,
and thus

dE = MijUjdUi. (4.55)

On the other hand the change of kinetic energy, dE, must equal, in the absence
of external body forces, the work done by the force F which the body exerts on
the fluid, dE = F ·Udt. But according to Newton’s second law, the incremental
momentum dP is given by dP = Fdt. Consequently dE = U · dP. From (4.54)
we thus have

dE = MijdUjUi = dPiUi. (4.56)

Since this holds for arbitrary U we must have dPi = MijdUj . Integrating and
using the fact that Mij is independent of time and P = 0 when U = 0 we obtain

Pi = MijUj . (4.57)
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Thus we have reduced the problem of computing momentum, and then the
inertial force, to calculating Mij . Since Mij arises here as an effective mass
term associated with movement of the body, it is called the apparent mass
matrix.

But the calculation of Mij is not ambiguous since the integral for the kinetic
energy converges absolutely, and we can deduce Mij once the energy is written
in the form (4.54). We write

E =
ρ

2

∫

V

|u|2dV =
ρ

2

∫

V

(u −U) · (u + U)dV +
ρ

2

∫

V

|U|2dV. (4.58)

The reason for this splitting is to exhibit u −U, whose normal component will
vanish on the body by (4.52). Now u+U = ∇(φ+U ·x and u−U is solenoidal,
so u − U) · (u + U∇ ·

[
(φ + U · x)(u − U)

]
. Thus, remembering that |U|2 is

a constant, the application of the divergence theorem and use of (4.52) on the
inner boundary aallows us to reduce (9.31) to

E =
ρ

2

∫

So

(φ+ U · x)(u − U) · ndS + |U|2(V − Vb), (4.59)

where S0 is the outer boundary, Vis the volume contained by So, and V0 is the
volume of the body.

To compute the integral in (4.59) we need only the leading term of φ. Re-
ferring to (4.49),(4.50), we note that a = 0 for a finite rigid body (or even for a
flexible body of constant area/volume), see problem 4.11. Using

φ = −A · x
|x|N , u =

−A

|x|N +
NA · x x

|x|N+2
(4.60)

in (4.59) we have

E ∼ ρ

2

∫

So

[−A · x
|x|N + U · x

][ −A

|x|N +
NA · x x

|x|N+2
−U

]

· ndS. (4.61)

We are free to choose So to be a sphere of radius Ro. The term quadratic in A

in (4.61) is O(R1−2N
o )and so the contribution is of order R−N

o and will vanish
in the limit. The term under the integral quadratic in U yields −|U|2V, thus
canceling part of the last term in (4.59). Finally two of the cross terms in U,A
cancel out, the remaining term giving rthe contribution 2πρ(N −1)A ·U. Thus

E =
ρ

2

[
2πρ(N − 1)A · U − Vb|U|2

]
. (4.62)

Since φ = ΦiUi, we may write Ai(t) = ρ−1mijUj where mij is dependent on
body shape but not time. Then

E =
1

2

[
2π(N − 1)mij − Vbρδij

]
UiUj . (4.63)

Comparing (4.63) and (4.54) we obtain an expression for the apparent mass
matrix:

Mij = 2π(N − 1)mij − Vbρδij , N = 2, 3. (4.64)
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We thus can obtain the apparent mass of a body by a knowledge of the
expansion of φ in a neighborhood of infinity.

Given that we have computed a finite fluid momentum we are in a position
to state

Theorem 6 (D’Alembert’s paradox) In a steady flow of a perfect fluid in three
dimensions, and in steady flow in two dimensions for a body with zero circula-
tion, the force experienced by the body is zero.

Clearly if the flow is steady dP/dt = F = 0, and we are done. Of course
the proof hinges on the existence of a finite fluid momentum associated with a
single-value potential function.

Example 4.14: To find the apparent mass matrix of a elliptic cylinder in
two dimensions, we may use example 4.6. In the Z-plane the complex potential
for uniform flow −Q(cos θ, sin θ) past the cylinder of radius a > b is W (Z) =
−Qe−iθZ −Qeiθsa/Z. Since Z = 1

2 (z +
√
z2 − 4b2) we may expand at infinity

to get

w(z) ∼ −Qe−iθz −Q
[a2eiθ − b2e−iθ

z

]
+ . . . , (4.65)

so that
A =

[
U(a2 − b2), V (a2 + b2)

]
, (U, V ) = Q(cos θ, sin θ). (4.66)

Now the ellipse intersects the positive x-axis at its semi-major axis α = a2+b2

a
,

and the positive y-axis at its semi-minor axis β = a2−b2
a . From (4.66) we obtain

the apparent mass matrix

M = 2πρ

(
a2 − b2 0

0 a2 + b2

)

− π
a4 − b4

a2

(
1 0
0 1

)

= πρ

(
β2 0
0 α2

)

. (4.67)

In particular for a circular cylinder the apparent mass is just the mass of of the
fluid displaced by the body.

An alternative expression for the apparent mass matrix in terms of an inte-
gral over the surface of the body rather than a distant surface is readily obtained
in terms of the potential Φi. We have

E =
ρ

2

∫

V

∇Φi · ∇ΦjUiUjdV =
ρ

2

∫

V

∇ · Φj∇Φi]dV UiUj . (4.68)

Applying the divergence theorem to the integral, surfaces So, sB , and observing
that Φi∇Φj = O(|x|1−2N), we see that the receding surface integral will give

zero contribution. Recalling that ∂φ
∂n

= U · n on the body surface, we see that
∂Φi

∂n = ni where the normal is directed out of the body surface. In applying the
divergence theorem the normal at the body is into the body, with the result
that (4.54) applies with

Mij = −ρ
∫

Sb

ΦjnidS, n directed out of the body. (4.69)
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It follows from (4.57) that the fluid momentum is given by

P = −ρ
∫

Sb

φndS. (4.70)

We can verify the fact that (4.70) gives the fluid momentum by taking its
time derivative, using the result of problem 1.6:

d

dt

∫

Sb

φndS =

∫

Sb

∂φ

∂t
ndS +

∫

Sb

(u · n)∇φdS. (4.71)

Using the Bernoulli theorem for harmonic flow we have

d

dt

∫

Sb

φndS =

∫

Sb

[

− p

ρ
− 1

2
|u|2

]

n − (u · n)udS. (4.72)

Converting the terms on the right involving u to a volume integral, we observe
that the latter converges absolutely at infinity, as so we have, for the integration
over the domain exterior to Sb,

∫

V

[
u · ∇u− 1

2
∇|u|2

]
dV = −

∫

V

u × (∇× u)dV = 0. (4.73)

Therefore

− d

dt
ρ

∫

Sb

φndS =

∫

Sb

pndS = F, (4.74)

where F is the force applied by the body to the fluid.
Finally we note again that the inertial force required to accelerate a body

in a perfect fluid will contain a contribution from the actual mass of the body,
Mb. This mass appears as an additional term Mbδij in the expression (4.64)
for the apparent mass matrix. The total momentum of the body including its
apparent mass is thus Pi = MijUj +MbUi and Newton’s second law becomes

dPi
dt

= Fi, (4.75)

where F is the force applied to the body, to accelerate it and the surrounding
fluid.

The case of time-dependent Mij

.
Since we have used an energy method to define the apparent mass of a body,

the foregoing has assumed that the orientation of the body in space was fixed as
a function of time. Thus time has entered only though U(t). However a change
of shape of the body allows a particularly simple way to alter its effective mass,
which offers the possibility of inertial modes of locomotion, see the final section
of this chapter. To treat the case of time-dependent Mij , we simply adopt
Newton’s second law (4.75) as our basic assumption. The computation of kinetic
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energy of a deforming body must involve the contribution from the deformation
as well as the contribution from translation. Proper accounting of this new
component allows the energy mthod to be generalized, but we omit details.
Since we now know how to computeMij for any shape based on its instantaneous
translation, we may now apply (4.75) allowing for a time-dependent apparent
mass.

4.3.2 Moment

We have so far restricted the motion of the body to translation, i.e. with no
rotation relative to the fluid at infinity. In general a moment is experienced
by a body in translational motion, so that in fact a free body will rotate and
thereby give the apparent mass matrix a dependence upon time. The theory
may be easily extended to include a time dependent apparent mass, due either
to rotation and/or deformation of he body, see section 4.4. But even in steady
translational motion of a body, a non-zero moment can result, see problem 4.14.
(There is no D’Alembert paradox for moment.)

For example, in analogy with (4.69), the apparent angular momentum of the
fluid exterior to a body is defined by

PA = −ρ
∫

Sb

φ(x× n)dS, (4.76)

the normal being out of the body. It may be shown in a manner similar to that
used for linear momentum that

dPA

dt
= T, (4.77)

where T is the torque applied to the fluid by the body.

4.4 Deformable bodies and their locomotion

It might be thought that, in an ideal, or more suggestively, a “slippery” fluid, it
would be impossible for a body to locomote, i.e. to “swim” by using some kind
of mechanism involving changes of shape. The fact is, however, that inertial
forces alone can allow a certain kind of locomotion. The key point is that the
flow remains irrotational everywhere, and this will have the effect of disallowing
the possibility of the body producing an average force on the fluid which can
then accelerate the body. Rather, it is possible to locomote in the sense of
getting from point A to point B, put without any finite average acceleration. If
the body is assumed to deform periodically over some cycle of configurations,
then the kind of locomotion we envision is of a finite, periodic translation (and
possible rotation) of the body, repeated with each cycle of deformation.

We first note that the Newtonian relationships that we derived above for a
rigid body carry over to an arbitrary deformable body, which for simplicity we
take to have a fixed area/volume. This follows immediately from our verification
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of dP
dt = F from (4.70), since we made no assumption about the velocity of the

body surface.
Now the idea behind inertial swimming is to deform the body in a periodic

cycle which causes a net translation. To simplify the problem we consider only a
simple traslation of a suitable symmetric body along a line, e.g a body symmetric
about the z-axis, translating with velocity U(t)along this axis. In general we
cannot expect the velocity to remain of one sign, but over one cycle there will be
a positive translation, say to the right. Let Um(t) be the velocity of the center
of mass of the body, and let Uv(t) be the velocity of the center of volume of
the body. Also let PD be the momentum of deformation of the body relative
to its center of volume. If the total mass of the body is m, then Um(t)m is
the momentum of the body mass. Consider now the momentum of the fluid.
If the apparent mass of the body (now a scalar M(t)) is multiplied by Uv(t),
we get the fluid momentum associated with the instantaneous motion of the
shape of the body at time t. Finally, we have the momentum associated with
the motion of the boundary of the body relative to the center of volume. If
the potential of this harmonic flow of deformation is φD, then the deformation
momentum is PD(t) = −ρ

∫

Sb
φDn · idS. The total momentum if body and fluid

is thus mUm(t)+M(t)Uv(t)+PD. If initially the fluid and body is at rest, then
this momentum, which is conserved, must vanish, and it is for this reason that
locomotion is possible.

Consider first a body of uniform density. so the center of mass and of volume
coincide. The Um = Uv = U and

U(t) =
PD(t)

m+M(t)
. (4.78)

There is no reason for the right-hand side o (4.78) to have non-zero time average,
and when it does not, we call this locomotion by squirming. To see squirming
in action it is best to treat an simple case, see example 4.15 below.

Alternatively, we can imagine that the center of mass changes relative to
the center of volume without and deformation. Then deformation occurs giving
a new shape, then the center of mass again changes relative to the center of
volume holding the boy fixed in the new shape. If the two shapes lead to
different apparent masses, locomotion occurs by recoil swimming, see example
4.16.

Example 4.15: We show in figure 4.7(a) a squirming body of a simplified
kind. The body consists of a thin vertical strip of length L1(t), and a horizontal
part of length L2(t). The length will change as a function of time, think of L2

as being extruded from the material of L1. We neglect the width w of the strips
except when computing mass and volume. The latter are constant, implying
L1 +L2 = L is constant. The density of the material is taken as ρb, so the total
mass is Mb = ρbwL and the total volume is wL.

A cycle begins with L1 = L, when L2 begins to grow to the right. If X(t)
denotes the position of the point P , then (ρbwL1+πρL2

1/4)dX
dt

is the momentum
of the fluid and vertical segment, where we have used the formula for apparent
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Figure 4.7: Swimming in an ideal fluid.
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Figure 4.8: ∆X/L versus λ for the model squirmer of figure 4.7(a).

mass of a flat plate in 2D. The velocity of the extruded strip varies linearly

from dX
dt

at P to d(X+L2)
dt

at Q, so the momentum of the horizontal part is
ρbwL2d(X + 1

2
L2)/dt, where we neglect the apparent mass of the extruded

strip. The first half of the cycle stops when L1 = 0. Assuming the start is from
fluid and body at rest, the sum of these momenta remains zero throughout the
half-cycle:

(ρbwL + πρL2
1/4)

dX

dt
+
ρbwL2

2

dL2

dt
= 0. (4.79)

If we etL2 = Lt/T, L1 = L(1− t/T ) where T is the half-period of the cycle, then
we may obtain the change ∆X of X over the half-cycle by quadrature:

∆(X) =
1

λ
ln(1 + λ) − 1√

λ
tan−1(

√
λ), λ =

πρL

4ρbw
. (4.80)

We show this relation in figure 4.8 So we see that at the end of the half-cycle
the point P has moved a distance −∆X to the left. At this point, we imagine
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another half-cycle in which L1 is created at the expense of L2, but at the point
Q. Observe that at the start of the second half-cycle Q is located a distance
L + ∆X from the initial position of P . It can be seen from considerations of
symmetry that the point Q will move to the left a distance −∆X in time T over
the second half-cycle. The the cycle is complete, L2 = L, and the midpoint can
be relabeled P . Thus the net advance to the right of the point P in time 2T
has been L + 2∆X, which from figure 4.8 always exceeds about .68L.

Example 4.16: Recoil swimming can be illustrated by the 2D model of
Figure (4.7)b. Let P denote the center of an elliptical surface of major,minor
semi-axes α, β. Within this body is a mass M on a bar enabling it to be driven
to the right or left. The weight of the shell and mechanism ism. Let the position
of the center be X(t) and the position of the mass be x(t). At the beginning
of the half-cycle the mass lies a distance β/2 to the right of P and the ellipse
has its major axis vertical. The mass the moves to the left a distance β. Since
momentunm is conserved, we have

(m+ ρπα2)
dX

dt
+M(

d(X + x)

dt
= 0. (4.81)

Thus over a half-cycle (m+ ρπα2)∆X +M(∆X + ∆x) = 0 or, since ∆x = β,

∆X1 = − Mβ

m+M + ρπα2
. (4.82)

at this point the surface of the body deforms in a symmetric way, the points
(0,±α/2 moving down to (0,±β/2 and the points (±β/2, 0 moving our to
(±α/2, 0), so that the major and minor axes get interchanged. There is no
movement of P during this process. No the mass is moved back, a distance β
to the left. We see that in this second half-cycle the displacement is

∆X2 =
Mβ

m+M + ρπβ2
. (4.83)

The displacement over one cycle is then

∆X = ∆X1 + ∆X2 =
Mβ

m+M + ρπβ2
− Mβ

m+M + ρπα2
, (4.84)

which is positive since β < α.

Problem set 4

1. (a) Show that the complex potential w = Ueiαz determines a uniform
flow making an angle α with respect to the x-axis and having speed U .

(b) Describe the flow field whose complex potential is given by

w = Uzeiα +
Ua2e−iα

z
.
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2. Recall the system (4.13) governing the motion of point vortices in two
dimensions. (a) Using these equations, show that two vortices of equal circu-
lations Γ, a distance L apart, rotate on a circle with center at the midpoint of
the line joining them, and find the speed of their motion.

(b) Show that two vortices of circulations Γ and −Γ, a distance L apart,
move together on straight parallel lines perpendicular to the line joining them.
Again find the speed of their motion.

3. Using the method of Blasius, show that the moment of a body in 2D
potential flow, about the axis perpendicular to the plane (positive counter-
clockwise), is given by

M = −1

2
ρRe[

∫

C

z(dw/dz)2dz],

where Re denotes the real part and C is any simple closed curve about the body.
Using this, verify by the residue method that the moment on a circular cylinder
with a point vortex of circulation Γ at its center, in uniform flow, experiences
zero moment.

4. Compute, using the Blasius formula, the force exerted by a point vortex
at the point c = beiθ, b > a upon a circular cylinder at the origin of radius a.
The complex potential of a point vortex at c is −Γi

2π ln(z − c). (Use the circle
theorem and residues). Verify that the cylinder is pushed away from the vortex.

5. Prove Kelvin’s minimum energy theorem: In a simply-connected domain
V let u = ∇φ,∇2φ = 0, with ∂φ/∂n = f on the boundary S of V . (This u

is unique in a simply-connected domain). If v is any differentiable vector field
satisfying ∇ · v = 0 in V and v · n = f on S, then

∫

V

|v|2dV ≥
∫

V

|u|2dV.

(Hint: Let v = u + w , and apply the divergence theorem to the cross term.)

6. Establish (4.33) and work though he details of the proof of zero drag of
the Rankine fairing using the momentum integral method, as outlined in section
4.2.2.

7. In spherical polar coordinates (r, θ, ϕ) a Stokes stream function Ψ may
be defined by uR = 1

R2 sin θ
∂Ψ
∂θ , uθ = −1

R sin θ
∂Ψ
∂R .) Show that in spherical polar

coordinates, the stream function Ψ for a source of strength Q, placed at the
origin, normalized so that Ψ = 0 on θ = 0, is given by Ψ = Q

4π
(1− cos θ). Verify

that the stream function in spherical polars for the airship model consisting
of equal source and sink of strength Q, the source at the origin and the sink
at R = 1, θ = 0, in a uniform stream with stream function 1

2UR
2(sin θ)2, is

given by (4.35). (Suggestion: The sink will involve the angle with respect to
R = 1, θ = 0. Use the law of cosines (c2 = a2 + b2 − 2ab cosθ for a triangle with
θ opposite side c) to express Ψ in terms of R, θ.)
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8. In the Butler sphere theorem, we needed the following result: Show that

Ψ1(R, θ) ≡ R
aΨ(a

2

R , θ) is the stream function of an irrotational, axisymmetric
flow in spherical polar cordinates, provided that Ψ(R, θ) is such a flow. (Hint:
Show that LRΨ1(R, θ) = R

aLR1Ψ(R1, θ), where R1 = a2/R. Here LR is defined
by (4.39).)

9. (Reading, Milne-Thomson sec. 13.52 on “stationary vortex filaments
in the presence of a circular cylinder” in 3rd edition.) Consider the following
model of flow past a circular cylinder of radius a with two eddies downstream of
the body. Consider two point vortices, of opposite strengths, the upper vortex
having clockwise circulation −Γ(i.e. Γ > 0) located at the point c = beiθ, thus
adding a term (iΓ/2π) ln(z − c) to the complex potential w, the other being
having circulation Γ at the point c̄ = be−iθ. Here b > a > 0.

Using the circle theorem, write down the complex potential for the entire flow
field, and determine by differentiation the complex velocity. Sketch the positions
of the vortices and all vortex singularities within the cylinder, indicating their
strengths.

10. Continuing problem 9, verify that x = ±a, y = 0 remain stagnation
points of the flow. Show that the vortices will remain stationary behind the
cylinder (i.e. not move with the flow) provided that

U(1 − a2

c2
) =

iΓ

2π

(c2 − a2)(b2 − a2) + (c − c̄)2a2

(c − c̄)(c2 − a2)(b2 − a2)
.

Show (by dividing both sides of the last equation by their conjugates and sim-
plifying the result) that this relation implies b − a2/b = 2b sin θ, that is, the
distance between the exterior vortices is equal to the distance between a vortex
and its image vortex.

11. Show that the apparent mass matrix for a sphere is M0/2δij where M0

is the mass of fluid displaced by the sphere.

12. Show that for a body which may have a time-dependent shape but is of
fixed area/volume, the quantity a in (4.49),(4.50) must vanish.

13. Using the alternative definition (4.69), show that Mij is a symmetric
matrix.

14. Let the elliptic cylinder of examples 4.14 and 5.13 be place in a steady
uniform flow (U, V ). Show, using the result of problem 4.3, that the moment
experienced by the cylinder is −πρUV (α2−β2), α, β being the major and minor
semi-axes of the ellipse.
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Chapter 5

Lift and drag in ideal fluids

We take up now the study of the effects of vorticity on ideal fluid flow. One of
the most interesting and subtle properties of ideal fluid flow theory is its relation
to the physical properties of real, viscous fluids as the viscosity tends to zero.
We will consider viscous fluids in chapters 6-8. In the present chapter we shall
need to comment on some aspects of the role of viscous stresses in determining
the relevance of the ideal fluid and the applicability of Euler’s equations when
vorticity and circulation do not vanish.

Our main point is to draw a distinction between the limit process flow ob-
tained from a real fluid flow in the limit of vanishing viscosity, and the ideal
fluid flow theory which results from setting viscosity formally equal to zero.
Because of the nature of the mathematical form of viscous stresses, involving
the spatial rate of change of the velocity, viscous stresses can be non-negligible
at arbitrarily small viscosity when the velocity changes sufficiently rapidly. In
ideal fluid theory the fluid velocity is assumed to be tangent to any fixed solid
boundary abutting the flow. If this surface undergoes rapid changes in slope, as
at a corner, large viscous stresses can develop. To relieve these stresses the flow
can change, and we shall give examples of this below. The effect can persist
even as viscosity vanishes. In fact surfaces need not be present. The persistent
effect of viscosity also occurs in fluid away from boundaries, when the fluid is in
turbulent motion. In that case the small spatial scales come from the stretching
of vortex tubes by the flow. When a rigid body moves rapidly through a fluid
it will often create vorticity, which is then embedded in the otherwise irrota-
tional flow, and we shall explore examples of this. These considerations lead
to ideal flow models which incorporate the effects of the viscosity of the real
fluid, despite the fact that viscosity has been expelled from the equations of
motion. Since the theoretical basis for dealing precisely with limit process flows
is not well developed, the models we will study are fairly crude approximations.
Nevertheless they adequately capture the essential physics and have important
applications.

The title of this chapter emphasizes the most important applications of these
ideas, to the concepts of lift and drag in aerodynamics. A closely related problem

71
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is the generation of thrust in flapping flight and by swimming fish. We begin
with the calculation of lift of two-dimensional airfoils, then consider a model of
a lifting three-dimensional wing. We also show in that case that drag is realized
in an ideal (but not irrotational) fluid. Both lift and drag will be associated
with vorticity. This vorticity may occur within a body, in which case it is called
bound vorticity, or it may be in the flow exterior to the body, where it behaves
as a material vector field. It is then called free vorticity. For a body moving
with constant velocity through a quiescent ideal fluid can create a vortical wake
stretching out behind it, a familiar example being the trailing vortices behind a
high-flying jet. Vortical wakes are also creating by birds in forward flight, and
by swimming fish.

It is easy to see how drag might be associated with a vortical wake. First
we need to clarify these terms. Drag is conventionally equal to the component
of force experienced by a body, parallel to the direction of motion. Lift is the
component normal to the direction of motion, positive if opposite to gravity. If
a body is pulled through the fluid with speed U and creates vorticity at a steady
rate, this vorticity is carried off to infinity, and in the absence of viscosity there
will be no decay. Consequently the associated flux of energy FE is a loss to the
system, which must be replenished by the work done against drag D, UD = FE .
A weightless self-propelled body in motion with constant average velocity is,
according to Newton, not exerting any average force on the fluid. So in steady
flight the drag must be balanced by thrust developed by a propeller, a jet engine,
or a flapping fin. If the weight of a body minus the buoyancy (Archimedean)
force is nonzero, then an unaccelerated body will exert a net force downward
(against gravity) to compensate this net weight. The equilibrium can thus be
expressed as thrust= drag and lift= weight in steady translation. In this case
the energy in the vortical wake must equal to the work being done on the fluid
by the body as it moves, to enable the flying or swimming, whether this is by a
propeller, flapping wings, or a tail fin.

5.1 Lift in two dimensions and the Kutta-Joukowsky

condition

In an ideal fluid any force on a two-dimensional body must be a result of the
pressure exerted on the body. Accoring to the Bernoulli theorem for steady flow,
the distribution of the pressure force over the surface of the body is directly
related to the distribution of velocity there. This viewpoint can then lead to an
attempt to understand the creation of lift as being a result of higher velocity
over the top of the airfoil than over the bottom. Such an explanation, although
mathematically correct, offers no hint of why the observed velocity distribution
occurs.

To understand the basis of lift in two dimensions it is helpful to consider
the simplest of “airfoils”, namely a simple flat plate. Of course this choice is
special since each end point of the plate is an extreme corner where the tangent
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Figure 5.1: Streamlines for uniform flow past a flat plat, α = .2. (a) Zero
circulation. (b) Circulation determined by the Kutta-Joukowsky condition.

to the surface changes in direction by 180o. We will later consider more realistic
airfoils.

Now the circle of radius a into the Z-plane is mapped into the doubly-covered
segment |x| ≤ 2a in the z-plane by z = Z + a2/Z. We know also that uniform
potential flow with velocity (U, V ) = Q(cosα, sinα) past the circular cylinder is
not unique; the general solution is

W (Z) = Q[e−iαZ + a2eiαZ−1] − iΓ

2π
lnZ, (5.1)

where Γ is the circulation about the cylinder. With w(z) = W (Z(z)) we can
then consider the streamline pattern about the plate for various Γ. The angle
α, in the language of aeronautics, is called the angle of attack of the airfoil, here
a flat plate.

We show in figure 5.1(a) the case of zero circulation Γ = 0. There are points
of zero velocity, or stagnation points on the surface of the plate. The flow is
forced around the endpoints so as to maintain the tangency of velocity at the
body, and it is easy to see that there are singularities of velocity and pressure at
z = (±2a, 0). In figure 5.1(b) we show the same flow with a negative Γ, chosen
to move the stagnation point on the upper surface to the point (2a, 0) and to
eliminate the singularity there. The singularity at the point (−2a, 0) remains.

We must now ask, what does one observe in a wind tunnel? Under conditions
where ideal flow theory should prevail, except very close to the body surface,
it is observed that the flow does come away smoothly from the downstream or
“trailing” edge of the plate, as in figure 5.1(b). Experiments also show that
the flow art the upstream or “leading” edge of the plate is actually as shown
in figure 5.2, with separation of the boundary streamline at the leading edge,
and reattachment further back, a small circulating eddy being enclosed by the
separating streamline.
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Figure 5.2: Leading-edge separation from a flat plate.

What we thus see is a definite upstream-downstream asymmetry of the flow
in its response to the singular points of the boundary. 1 The flow seeks to make
a smooth flow off the trailing edge, but accommodates itself on the leading edge
by forming a separation bubble which effectively gives a smooth shape to the
upstream end of the surface.

It can be assumed that this observed flow actually persists in the limit of
arbitrarily small viscosity. In fact, hydrodynamic instabilities will generally
prevent one from every observing the limit process as a steady flow, but the as-
sumed limit would presumably apply to the unstable steady branch of solutions
of the equations of the real fluid.

The condition which selects, among all possible values of Γ, the unique value
which eliminates the singularity at the trailing edge of the plate, is called the
Kutta-Joukowsky condition. To apply it in the present case, we note that

dw

dz
=

[

Q[e−iα − a2eiαZ−2]− iΓ

2π
Z−1

]dZ

dz

=
[

Q[e−iα − a2eiαZ−2] − iΓ

2π
Z−1

][
√
z2 − 4a2 + z

2
√
z2 − 4a2

]

. (5.2)

The terms within the first set of large brackets must sum to zero at Z = a if
the singularity at z = 2a is to be removed. Thus we find

Γ = −4πQa sinα (5.3)

from the Kutta-Joukowsky condition. Once this condition is applied, the ideal
flow theory matches the observations at the trailing edge, but fails to account
for the separation bubble at the leading edge. This turns out not to be a serious
discrepancy since the bubble acts to smooth the pressure distribution and mimic
the smoothing of the airfoil leading edge.

To see that the resulting flow gives rise to a lift force, we compute the force
on the body from Blasius’ formula (4.14). From the residue of (dw/dz)2(z) we
find for pour flat plate problem (see problem 5.1(a))

X − iY = ρΓQ(sinα+ i cosα). (5.4)

This is a force of magnitude L = 4πρaQ2 sinα, which is orthogonal to the free
stream velocity for the geometry of figure 5.1(b), and is upward for positive α
by (5.3) (Γ < 0) , so it is indeed a lift. It is not orthogonal to the plate itself,

1We shall see in chapter 8 that this asymmetry can be traced to the parabolic nature of
the partial-differential equation for the viscous boundary layer on the surface of the body.
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which raises the paradoxical situation where a pressure force, presumably always
orthogonal to the surface, seems to be in violation of that fact. The resolution of
this paradox involves a careful analysis of the singularity near the leading edge.
The airfoils considered in the next section have a smooth leading edge, and the
flate plate may be regarded as the limit of a family of such smoothed foils. Now
for each member of the family, it is found that the pressure distribution around
the smooth nose in fact produces a component of force parallel to the plate,
which is precisely the magnitude needed to make the lift vector orthogonal to
the free stream velocity. This “leading edge suction force” is preserved in the
limit, even though the “edge” the disappears, and gives the result (5.1) for the
flat plate.

The result (5.1) is known as the Kutta-Joukowsky theorem. It is central to
airfoil theory because it is a general result independent of the actual shape of
the airfoil. The reason for this generality can be understood once on sees how
the residue computation goes for the flat plate. For any foil at angle of attack
in a uniform stream the expansion of w(z) near infinity will have the form

w = Qze−α − iΓ

2π
log z +

A

z
+
B

z2
+ . . . , (5.5)

which follows from the definition of circulation. The subsequent terms involving
A,B, . . . are determined by the particular shape of the airfoil. When we compute
the residue of (dw/dz)2 at infinity we obtain − iQ

π
e−iα and this leads to . Thus

the lift computation for any airfoil really amounts only to a determination of of
the circulation required by the Kutta-Joukowsky condition.

Although the K-J condition gives a unique circulation and lift for an airfoil,
it remains an approximation to reality. Rapid movements of an airfoil can pro-
duce momentary flows which differ from that obtained under the K-J condition,
and may be close to the flow with zero circulation in figure 5.1(a). In fact the
“true” K-J theory, which would allow the “correct” ideal flow representing the
slightly viscous flow under arbitrary movements of a body, remains an impor-
tant, outstanding unsolved problem of fluid dynamics, and lies at the heart of
a rigorous theory of vortex shedding from surfaces.

5.2 Smoothing the leading edge: Joukowski air-

foils

We have noted that the leading edge of a flat plate is not well suited to the
smooth flow that we wanted to establish around an airfoil by the application
of the Kutta-Joukowsky condition. Airfoil designers therefore prefer a shape
which maintains the sharp trailing edge, so as to “force” the Kutta-Joukowsky
condition there, but which also provides a smooth leading edge around which
the flow may pass without detachment.

Remarkably, such foils can be obtained by a simple modification of the con-
formal map associated with the flat plate flow. Instead of considering flow



76 CHAPTER 5. LIFT AND DRAG IN IDEAL FLUIDS

3 2 1 0 1 2 3
0. 5

0

0.5

3 2 1 0 1 2 3
0. 5

0

0.5

3 2 1 0 1 2 3
0. 5

0

0.5

(a)

(b)

(c)

Figure 5.3: Joukowsky airfoils, a=1. (a) ε = −.1,∇ = 0 (b) ε = 0,∇ = .1 (c)
ε = −.1,∇ = .1.

around the circular cylinder of radius a and center at the origin, we con-
sider the flow past a circular cylinder with center at Z0 = ε + iδ and radius
c =

√

(a− ε)2 + δ2, with ε < 0, δ > 0. We show in figure 5.3 the foil shapes
that result from various choices of ε, δ. Note that ε determines the foil thickness,
and δ its camber, or the arc the foil makes relative to the x-axis. The geometry
of the Z-plane is shown in figure 5.4. The trailing edge is a cusp.

It is not difficult to modify the force calculation to accommodate the Joukowsky
family of profiles, and there results a lift force orthogonal to the free stream ve-
locity, but with magnitude (see problem 5.1(b))

= 4πρcQ2 sin(α+ β), tanβ =
δ

a− ε
. (5.6)

Note that the effect of camber is to change the angle of attack at which the lift
vanishes.

The moment on a Joukowsky airfoil can be computed by residue theory using
the formula given in problem 4.3. To work this out we have

(dw

dz

)2

=
[

Qe−iα − c2

z2
Qeiα − iΓ

2πz
− iΓZ0

2πz2

]2[

1 − a2

z2

]2

+)(z−3), (5.7)

and so the residue at infinity of z(dw/dz)2 is−2Q2a2e−21α−2Q2c2− i
π
QΓZ0e

−iα−
1

4π2 Γ2. Thus

M = −1

2
ρ<

[

(2πi)
[
− 2Q2a2e−2iα − 2Q2c2 − i

π
QΓZ0e

−iα − 1

4π2
Γ2

]
. (5.8)
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Figure 5.4: Geometry of the Z-plane for the Joukowsky airfoils. Z0 = ε+ iδ.

After substituing Z0 = Z0 − a+ a = −ce−iβ + a we obtain

M = −2πρQ2
[
a2 sin 2α+ c2 sin 2(α+ β) − 2ac cosα sin(α+ β)

]
. (5.9)

Recall moment is positive in the counter-clockwise direction and (5.9) refers to
a Joukowski airfoil with the trailing edge to the right. If β = 0 and α, δ are
small, then a ≈ C and M ≈ −4πρQ2a2α ≈ −aL. This places center of lift at
approximately z = −a. The length of the foil, known as the chord, ≈ 4a, so the
center of lift is approximately at the quarter-chord point. For many aircraft the
position of the center of gravity is is located near this point to provide stability
to forward flight.

If one looks at wind tunnel data for Joukowsky airfoils, or for the many
other foil designs of a similar kind, it is found that the predictions for lift
at small angles of attack is reasonably good, especially in slope. Usually one
plots a lift coefficient CL = L

1
2ρQ

24a
versus α. For the Joukowsky foils CL =

2π sin(α+β)
cosβ . Realized lift is usually somewhat smaller than predicted. More

dramatic is the failure of the theory to account for airfoil stall, a fall-off lift
with increasing α, which usually begins for α in the range 10 − 15o. Stall is
a result of separation of the flow from the foil, again a manifestation of the
effects of viscosity. Usually the flow becomes unsteady as well, so an aircraft
experiences buffeting and an abrupt loss of lift. Aircraft designers introduce
modifications of three-dimensional wings, such as twist, reducing the angle of
attack of outboard wing sections relative to inboard, to minimize the control
problems and make the stall a more gradual phenomenon as angle of attack
increases.
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5.3 Unsteady and quasi-steady motion of an air-

foil

Unsteady motion of an airfoil occurs during th take-off and maneuvering of an
airplane, and in the flapping of the wings of birds and insects. A interesting
thought experiment is to imagine an airfoil at positive angle of attack and lead-
ing edge to the left, to be suddenly accelerated from rest to the velocity (−Q, 0).
After the flow has settled down, and observer moving with the foil would see
a steady flow (Q, 0) past the foil and would measure a lift, hence a circulation
Γ > 0. Now repeat the experiment with a large material contour initially en-
circling the foil, see figure 5.5. The initial circulation on this contour is is zero
since the fluid is at rest. After the acceleration to a fixed velocity, there exists a
negative circulation about the foil. However, according to Kelvin’s theorem, the
circulation about the image of the large initial contour, now distorted by the
motion of the foil, must remain zero. (The contour is a material curve.) Since
we know the foil has negative circulation, there must be other vorticity within
the contour contributing positive circulation. Observation of the acceleration
of foils shows that this missing vorticity occurs at the initial acceleration of the
foil. Positive vorticity is rapidly shed at the trailing edge, to form a coherent
starting vortex whose circulation exactly cancels the circulation bound to the
foil in steady flight, as we show in figure 5.5. This is an example of the un-
steady aerodynamics of an airfoil. Such unsteady motions will generally involve
shedding of vorticity from the trailing edge, and the shed vorticity will then
influence the flow external to the foil. The shed vorticity moves with the fluid,
and must be accounted for in calculating the forces on the foil.

A measure of unsteadiness is a parameter of the form L
TU where L is some

typical length, T a time over which a cycle of motion is performed, and U a
speed of flight. If this dimensionless number is of order unity or larger, the the
resulting flow is sqid to be fully unsteady. If the number is small, the flow is said
to be quasi steady. A dragonfly may beat its wings once in T = 1/40 second and
have a wing chord L=1 cm. If it moves at U=40 cm/sec then L

TU = 1 and the
flow is unsteady. A pigeon with a wingbeat each 1/5 sec, a wing chord of 10 cm,
flying at 3 m/sec has L

TU = 1/6, so its flight might be considered quasi-steady.

Let us devise a quasi-steady theory of forward fight of a flapping wing. While
it is true that birds are flapping their wings to fly, the fact is that the main reason
for flapping is to produce thrust, so as to overcome drag. A flapping Joukowsky
airfoil at angle of attack α = −β produces only thrust. To acquire lift it is only
necessary to increase the angle of attack while maintaining the flapping at that
angle of attack. But of course to develop lift the wing must be moving! So
the initiation of flappong flight is a kind of “bootstrap” operation where special
wing movements may be needed.

To understand thrust production without any net lift consider a simple flat
plate in uniform flow, which maintains itself horizontal while moving up and
down in a periodic motion, see figure 5.6. Remember that as the plate moves
we sshall assume quasi-steady aerodynamics, meaning that the instantaneous
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Figure 5.5: The starting vortex shed by a lifting foil abruptly accelerated to a
constant velocity.
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Figure 5.6: Thrust production by quasi-steady flapping of a flat plate.

flow about the plate will be the steady flow corresponding to the instantaneous
velocity the wing sees approaching it, and we assume the Kutta-Joukowsky
condition applies. Thus in figure 5.6(a) the wing is moving down with speed
V , and so sees an effective angle of attack α, tanα = V/U . The “lift” vector L

is orthogonal to this the instantaneous approach velocity vector (U, V ), which
produces a thrust component T = L sinα = 4πaQ2 sin2 α. In fig 5.6(b) the wind
moves up, but the same expression for thrust results. Thus the average in time

of the thrust is positive, T = 4πaQ2sin2 α.
We remark that in quasi-steady flapping flight there is a steady stream of

vorticity shed from the the trailing edge of the foil, but it is swept downstream
so fast that its effect on the flow is small.

5.4 Drag in two-dimensional ideal flow

In the present section we give two examples of the modeling of drag in an ideal
fluid. Recall that for irrotational flow the drag force will vanish in two or three
dimensions. In fact, a body in a real fluid will experience drag. We will see how
drag in two-dimensional flow can result from vorticity in the fluid.

5.4.1 The Von Kármán vortex street

Experiments with flow past a circular cylinder in a wind tunnel, and numerical
calculation in two dimensions, show that as the velocity of the stream increases,
a point is reached where the flow becomes unsteady and vortices are shed into
the flow, alternating between the top and bottom of the cylinder, see figure
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(a)

(b)
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Figure 5.7: (a) Kármán vortex street in the atmosphere due to motion past
an island off the Chilean coast. These atmospheric motions are very nearly
two-dimensional. (b) Schematic of vortex shedding from a circular cylinder. (c)
The doubly infinite street. The upper vortices carry circulation −γ. The lower
vortices carry circulation γ > 0.

5.7(a). These vortices (really patches of vorticity) are the carried by the flow
downstream, forming a vortical wake. This wake carries energy downstream, and
cylinder experiences a drag. The time dependence can give rise to an oscillating
lateral force, and one manifestation is the “singing” of wires in a wind.

Von Kármán developed a simple model for such a wake, called now the
Kármán vortex street. It consists of a periodic array of point vortices of strengths
±γ, extending from the cylinder to downstream infinity. It can be most con-
veniently analyzed by extending the street to upstream infinity as well. So the
model is of the wake well downstream of the cylinder, see figure 5.7(b). The
We show in figure 5.7(c) Von Kármán’s doubly infinite vortex street. To study
this flow, consider first a single finite line of vortices of circulation γ, spaced a
distance a apart on the x-axis. The velocity potential is

wN = − iγ

2π

+N∑

n=−N
log(z − na) = − iγ

2π
log

[πz

a
ΠN
n=1

(
1 − z2

n2a2

)]

+ constant.

(5.10)
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cn

Cb

Figure 5.8: Contours for calculating drag for the vortex street.

Using the identity

sin z = z
(
1 − z2

π2

)(
1 − z2

22π2

)(
1 − z2

32π2

)
· · · , (5.11)

we get, in the limit N → ∞ for a suitable additive constant,

wn → w∞ = − iγ

2π
log sin

πz

a
. (5.12)

For the vortex street shown in figure 5.7(c), we thus have

w∞ =
iγ

2π
log

( sin π
a
(z − ib/2)

sin π
a
(z − a/2 + ib/2)

)

. (5.13)

Since the vortices are being shed by a body in a flow (U, 0), relative to the body
the complete velocity potential is

w = Uz + w∞. (5.14)

Two see how the vortices are moving relative to an observer fixed with the body,
we can, by symmetry, consider the velocity at (0, b/2) for the system minus the
vortex at that point. Thus the vorticies move with velocity

lim
z→ib/2

[dw

dz
− iγ

2π

1

z − ib/2

]

= U − V. (5.15)

Evaluating this limit, we find

V =
γ

2a
tanh

πb

a
. (5.16)

In experiments V is considerably less than U , so the vortices move downstream
with a speed slightly less than the free stream speed. For a circular cylinder of
diameterD the vortices of like sign are shed with a frequency f where fd/U ≈ .2.
Thus (U − V )/f = a ≈ 5D.

The drag force can be computed using the Blasius formula for force, but with
an added effect due to the fact that vortices are being steadily added as they are
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shed from the body. We describe the ideas involved with this calculation without
all the details. Relative to an observer fixed with the vortex street the velocity
at infinity is V , the body is moving to the left with speed U − V . Imagine a
rectangular boundary C0 = ABCD surrounding the the entire region, as shown
in figure 5.8. The dotted sides will eventually move off move off to infinity and
the solid line will be placed at a position far downstream where the street will be
effectively doubly infinite. The small positively oriented contours cn surround
the vortices, and the contour Cb is the body contour. The solid right side of the
outer rectangular contour does not intersect any vortex. At a particular time
the the Blasius theorem may be applied to yield

X − iY = −
∮

∑
cn

(dw

dz

)2

dz +

∮

C0

(dw

dz

)2

dz, (5.17)

where the sum is over the cn within C0. In this frame the potential seen on AB,

wV = V z + w∞, (5.18)

will be essentially independent of time of the street is taken as doubly infinite.
The contributions from the first integral in (5.17) are seen to contribute only
to Y , since the residues are just 2V ±iγ

2π γ. (These contributions would allow us
to deduce an oscillating vertical force on the body.) The second term in (5.17)
gets a contribution in the limit only from the right vertical side of the outer
contour, and we obtain the following contribution to the drag from (5.17):

D1 = < iρ
2

∫ +i∞

−i∞

(dwV
dz

)2

dz =
γ2ρ

2πa

(

1 − πb

a
tanh

πb

a

)

. (5.19)

However there is also momentum being created as a function of time by the
shedding of vortices within C0. At this point we must do an approximate
calculation, for the shed vortices break the symmetry of a doubly infinite street.
We can approximate the calculation by determining the x−momentum per unit
length of the street from w∞, m say, then determining the momentum shed
per cycle period T as ma/T . Since (U − V )T = a, the contribution will be
D2 = −m(U − V ) since positive drag contributes negative x-momentum.

To compute ma, we need only consider two adjacent vortices of opposite
sign. Thus

ma = ρ

∫
dw∞
dz

dS

= ρ

∫ +∞

−∞
dy

∫ +∞

−∞

( iγ

2π(x+ iy − ib)
− iγ

2π(x+ iy − a/2 + ib)

)

dx.

=
iργ

2π

∫ +∞

−∞

[
log(x+ iy − ib) − log(x+ iy − a/2 + ib)

]x=+∞
x=−∞dy. (5.20)

Now the integrand in (5.20) gets contributions from the change of the argument
of the log terms as x goes from −∞ to +∞. This is seen to give +2πi when
|y| < b and zero when |y| > b. Thus we have

ma = −ργb, (5.21)
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and
D2 = ρbγ(U − V )/a. (5.22)

Thus the drag of the body is

D = D1 +D2 =
γ2ρ

2πa

(

1 − πb

a
tanh

πb

a

)

+ ρbγ(U − V )/a

=
ργb

a
(U − 2V ) +

ργ2

2πa
. (5.23)

5.4.2 Free streamline theory of flow normal to a flat plate

There is another body of theory in two-dimensional ideal fluid flow involving
streamlines on which velocity is discontinuous, and where these lines of disconti-
nuity are embedded in the flow exterior to any boundaries. These free streamline
theories effectively embed free vorticity in an otherwise irrotational flow field.
Suppose that one one side of a streamline, as the streamline is approached, the
velocity is non-zero, but on the other side the velocity is identically zero and
pressure is constant. If the flow is steady and Bernoulli’s theorem applies then
on the flow side p+ ρ

2 |u|2 is constant on the streamline. We now assert that at
such a streamline pressure must be continuous. Otherwise a difference of pres-
sure would act across a sheet, with no inertia to support such a force by a finite
acceleration. Thus it must be that |u| = q is constant on the free streamline.

We will now examine a model, due to Kirchoff, which seeks to represent
the detached flow that is observed behind bluff bodies in a uniform stream.
The theory will deal with a steady flow, even though the observed flows are
always time-dependent. The structure is shown in figure 5.9 in the case of flow
broadside onto a finite flat plate. Two free separation streamlines leave the tips
of the plate and extend to infinity aft of the body. The region behind the plate,
between the free streamlines, is a cavity or “dead water” region, where velocity
is zero and pressure a constant p0. Well upstream the velocity is (U, 0) and the
pressure is p0. Thus p + ρ

2q
2 = p0 + ρ

2U
2 and in particular q = U on the free

streamlines.
Ths solution to this flow problem involves a interesting technique in confor-

mal mapping, which exploit a correspondence between identical maps in distinct
variables, allowing a direct connection between these variables and an equation
determining the complex potential. The procedure is sometimes referred to as
a hodograph method because the velocity components appear in the definition of
an intermediate complex variable. We now describe the series of maps involved
and the connections between them.

We first note that w = φ(x, y) + iψ(x, y), whatever form it may take, maps
the z or physical plane shown in figure 5.9 onto the w-plane as shown in figure
5.10(a). The body is here a streamline ψ = 0. We next map the w plane onto
the Z plane as shown in figure 5.10(b). The map is defined by

w =
C

2
Z2 (5.24)
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Figure 5.9: Free streamline flow onto a flat plate, a=1.
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Figure 5.10: The conformal mappings for the Kirchoff solution.
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where the constant C will need to be chosen to make the points B,B′ map onto
(1, 0) and (−1, 0).

Next, consider the variable

Q = ln
U

q
+ iθ, (5.25)

where q =
√
u2 + v2, θ = tan−1 v

u
with u−iv = dw/dz.. The Q plane will be the

hodograph plane. The mapping of Y = 0 to the hodograph plane is especially
simple since either the angle or the speed is constant. Thus we are bound to
get a polygon. Since we know how to map a polygon onto the upper half-plane,
we can connect Z to Q.

We show the Q plane in figure 5.10(c). The map from z to Q is a Schwarz-
Christoffel map, given by

dQ

dZ
=

1

Z
√
Z2 − 1

× constant. (5.26)

The integral may ve calculated using a substitution Z = 1/ coshX. We obtain

Q = C1 cosh−1 1

Z
+C2 = C1 log

[ 1

Z
+

√

1

Z2
− 1

]

+C2 = Q(Z), (5.27)

where C1,2 are constants.
But Q(eiπ) = −C1iπ + C2 = −iπ/2, Q(1) = C2 = iπ/2, giving

Q = log
( 1

Z
+

√

1

Z2
− 1

)

+
iπ

2
. (5.28)

Since Q = log U
dw
dz

we have using (5.28)

U
dz

dw
= iZ−1[1 +

√

1 − Z2]. (5.29)

Also dw
dZ = CZ, so

U
dz

dZ
= iC(1 +

√

1 − Z2). (5.30)

If the width of the plate is L, then

∫ +1

−1

U
dz

dZ
dZ = iUL = iC

∫ +1

−1

(1 +
√

1 − Z2dZ = iC(2 + π/2). (5.31)

This determines C and gives

w =
UL

4 + π
Z2. (5.32)

Since we also have

U−1 dw

dz
=

iZ

1 +
√

1− Z2
, (5.33)
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we have defined implicitly w(z).
We will now show that, because of the cavity, the plate experiences a drag.

The drag is given by

D =

∫

plate

pdy = −i
∫

pdz =
−iρ
2

∫

(U2 − q2)dz. (5.34)

Now on the front face of the plate q2 = v2 =
(
∂φ
∂y

)2
= −(dw/dz)2, and so , using

(5.32) and (5.30) we have

D =
ρU2L

2
− iρ

2

∫ +1

−1

(dw/dZ)2(dZ/dz)dZ

=
ρU2L

2
− ρUL

4 + π

∫ +1

−1

(1 −
√

1 − Z2)dZ =
ρU2L

2

4 − π

4 + π
=
ρU2Lπ

π + 4
. (5.35)

This drag is close to what is observed when a flat plate is placed in a stream
and a wake cavity forms. As we have already noted observed bluff body flows
are time dependent and of course the cavity is finite in extent. Nevertheless the
Kirchoff solution is a classic example of fluid modeling, exhibiting many features
of observed flows and providing a good example of the role of free streamlines
in the production of drag.

5.5 The 3D wing: Prandtl’s lifting line theory

Airplanes and birds fly in three dimensions. We will now explore how lift and
drag arise in the real world. Since D’Alembert’s paradox now implies neither
lift nor drag is possible in irrotational flow, it is clear that lift and/or drag imply
the existence of vorticity in the fluid.

We start by reviewing the vorticity stucture of a 2D Airfoil, in particular a
flat plate at angle of attack with the Kutta-Joukowsky condition applied. We
know the complex potential in the flat plate problem from section 5.1:

w(z) = W (Z(z)),W (Z) = Q[e−iαZ + a2eiαZ−1] − iΓ

2π
lnZ, (5.36)

with

Z(z) =
1

2
[z +

√

z2 − 4a2],Γ = −4πa sinα. (5.37)

Since the airfoil has zero thickness, vorticity must be concentrated on the line
segment |x| < 2a, y = 0. Now v = 0 on the segment, so the vorticity ω = vx−uy
is given by −uy, and we shall see that u is discontinuous on the segment. Thus
the vorticity of the flat plate is proportional to δ(y), and the total vorticity at
a given value of x must be computed as γ(x) = −u(x, 0+) + u(x, 0−), with

Γ =

∫ 2a

−2a

γ(x)dx. (5.38)
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Figure 5.11: The distribution of vorticity on a flat plate, in units of −2 sinα.

The plate is therefore said to contain a vortex sheet of strength γ(x).

Using (5.36) and (5.37), and the fact that
√
z2 − 4a2 = ±i

√
4a2 − x2 when

z = (x, 0±) we obtain (see problem 5.5)

Q−1u(x, 0±) = ±
√

2a− x

2a+ x
sinα+ cosα, γ(x) = −2Q

√

2a− x

2a+ x
sinα. (5.39)

We show γ(x) in figure 5.11.

The vorticity of this foil is said to be bound to the foil, meaning that it exists
“in the plate” and is not present in the fluid. Suppose now that we consider
a three-dimensional wing, as shown in figure 5.12. If the wing is sliced by a
plane y = constant, we obtain a 2D airfoil section. For example, it might be
a Joukowsky section, with its chord c, thickness, camber, and local angle of
attack, all functions of y. The direction y is called the spanwise direction. The
wingspan is here 2b. Since all of the airfoil parameters can vary down the span,
we expect the lifting properties of the wing to be a function of y. We also expect
that near the center of the wing, the section AB of the figure 5.13(a), the flow
should behave as if the section were approximately a two-dimensional airfoil,
with vorticity bound to the foil and carrying an associated circulation and lift.
However as we move to the tips of tdhe wing, eventually the section lift must
go to zero, if for no other reason than that the section chord goes to zero. Since
vorticity is a solenoidal vector, the question has to be, what happens to the
vortex lines which were bound to the center section? The answer, suggested in
figure 5.13(a), is that the the decrease in the lift distribution as one moves from
center to tip, vortex lines turn and are shed into the wake of the wing, thereby
reducing the section circulation. Thus there is a sheet of vorticity emerging
from the trailing edge of the wing. For many wings the lift decreases to zero
rapidly near the tips, so that substantial free vorticity is released near the tips,
and this is the source of the “tip vortices” seen in the wake of high-flying jets.
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Figure 5.12: The 3D wing.

To understand this shedding process, consider figure 5.13(b). We consider
a strip of wing sections of width dy. The wing is assumed to be changing so
slowly in the spanwise direction that each such strip acts as if it were a 2D
airfoil. On this section the lift will then be l(y)dy where l(y) is the 2D lift of
the local section. Let the pressure on the upper and lower surfaces be p±(x).
Then

l(y) = −
∫

chord

(p+(x, y) − p−(x, y))dx = −
∫

[p]dy = −ρUΓ(y), (5.40)

where Γ(y) is the circulation of the local section and the brackets denote the
jump from bottom to top surface. Now consider

dl

dy
= −

∫

chord

∂[p]

∂y
dx =

∫

chord

ρ
D[v]

Dt
dx, (5.41)

where v is the spanwise velocity component and we are assuming an ideal fluid
of constant density. If we assume that the spanwise acceleration is so small that
a fluid particles near the wing surface, passing over or under the wing, acquire a
spanwise velocity that is small compared to U , then we may substitute dx = Udt
and evaluate the last integral as a time integral to obtain

ρU [∆v], (5.42)

giving the jump in spanwise velocity developed by a fluid particles flowing over
the top and bottom surfaces, ∆v± being the spanwise velocities developed at
the trailing edge of the section. Since we expect the lift to decrease as we move
toward each tip, the directions of spanwise flow are indicated in figure 5.13(b)
for a piece of the left wing looking upstream from the rear of the wing. Since the
pressures are increasing on the upper surface toward the tip the flow is driven
away from the tip. On the bottom surface the spanwise flow is in the opposite
direction (the dotted arrow in figure 5.13(b), since on this surface loss of lift is
associated with a decrease in pressure.
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We thus have
dl

dy
= ρU

dΓ

dy
= ρU [∆v] (5.43)

or
dΓ

dy
= [∆v]. (5.44)

Here Γ, the circulation on a section, is positive if the spanwise vorticity is in the
direction of positive y. Since Γ is the local circulation of a section, (5.44) relates
the spanwise change of local lift to the exitence of a discontinuity in spanwise
velocity at the strailing edge of the wing.

This discontinuity, [∆v], is associated with the production of a vortex sheet
at the trailing edge in the x-velocity component ωx = wy−vz. Integrating from
z = 0− to z = 0+ at the trailing edge, we have

∫
ωxdz = −[∆v]. This means

that −[∆v]dy is incremental vorticity shed into the wake at the trailing edge at
section y due to the change of l with y. For the left half-wing, as seen from an
observer behind the wing looking upstream, [∆v]dy is positive if lift increases
with y there. Thus −[∆v]dy is negative, and so the shed vorticity represents a
turning downstream of some of the vortex lines bound to the wing, as shown
for y < 0 in figure 5.13(a). Similarly, for the right half-wing the decrease of lift
with increasing y causes −[∆v]dy to be positive.

We now examine the model of the 3D wing created by Prandtl, who sought
as a simple means of deducing the lift and drag of a wing, given the section
properties of the wing. This model is sometimes called the lifting line model.
The idea is basically to regard the wing as long and thin. An aspect ratio
can be defined for a wing planform (projection onto the x, y plane) by =
wingspan2/wingarea = 4b2/A where b is the half-span. Mathematically, the
Prandtl model is an asymptotic approximation to the fluid dynamics of a 3D
wing in the limit → ∞. The situation is as shown in figure 5.13(c). Because
in this limit the chord is small compared to the wingspan, the bound vorticity
can be though of as confined to a line, but the circulation about this line becomes
a function of y, namely Γ(y). If, to fix ideas, ee take each section of the wsing to
be a Joukowski foil, then we know from (5.6) that l(y) = 4πρc(y)Q2 sin(α+ β).
We will, along with Prandtl, make the assumption that the angles α, β are
small, so that sin(α+β) ≈ α+β and Q ≈ U . Then, with the orientation of the
coordinate system of 5.13(c) we have, approximately,

Γ(y) = 4πc(y)U(α(y) + β(y)). (5.45)

We now need to make a crucial reinterpretation of α. Owing to the shed vorticity
of the wake, the effective angle of attack, that is, the angle made byt the oncom-
ing stream at the particular section, will be dependent upon the z-component of
velocity induced at that section by the shed vorticity. If this veclocity is w(y),
then the (small) effective angle of attack is give by

αeff = α+
w

U
, (5.46)
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Figure 5.13: (a) The vorticity shed from a 3D lifting wing. (b) The origin of
the shed vorticity. (c) Prandtl’s lifting line model.
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where α is the angle made by the section relative to the velocity at true infinity.
In other words, the induced w near the wing, the so called downwash, changes
the apparent “velocity at infinity” from its true value to αeff , and each section
will “see” a different approach angle. 2 Now w is an as yet unknown function
of y, while β, c are given functions of y determined by the section properties.

With

Γ(y) = 4πc(y)U(α +
w(y)

U
+ β(y)) (5.47)

we are now in a position to use the Bior-Savart expression for velocity in terms
of vorticity, to determine w(y) from Γ(y). Recall the the shed x-component
of vorticity at each section is −dΓ(y) = −dΓ

dy dy. Now a doubly-infinite vortex
induces a velocity given by the 2D point vortex flow. Such a line, carrying unit
circulation, parallel to the x-axis at position y = η in the z = 0 plane, will
induce a velocity

1

2π

1

y − η
(5.48)

at any point y on the bound vortex. Since the shed vortex is only semi-infinite,
this induced vorticity is reduced by a factor 1

2 . Since the circulation shed at

section η is −dΓ
dy dy evaluated at y = η, we have

w = − 1

4π

∫ +b

−b

dΓ
dy

(η)

y− η
dη. (5.49)

Thus, from (12.30) we obtain

Γ(y) = 4πc(y)U
[

α+ β(y) − 1

4πU

∫ +b

−b

dΓ
dy (η)

y − η
dη, (5.50)

which is an integral equation form Γ(y).

The beauty of this model is the direct insight it gives into an important
fact about three-dimensional aerodydnamics, namely the creation of drag in a
perfect fluid model. Observed that whenever the w(y) is negative, which is
generally the case for normal wings, the effective angle of attack is less than
α. Since our 2D airfoil theory tells us that the local lift is perpendicular to the
“flow at infinity”, here the apparent or effective flow at infinity, we see that the
local lift vector is rotated slightly so as to produce a component in the direction
of positive x. This is a drag component, and the summation over all sections
will give rise to the wing drag. This drag, since is is caused by the downwash
induced at the wing sectionn by the vortical wake, is called the induced drag.

We now indicate how to solve the integral equation (5.50) and calculate the
lift and induced drag of our 3D wing. We set y = −b cos θ, 0 ≤ θ ≤ π, and

2If dΓ
dy

≥ 0 on the left half-wing and dΓ
dy

≤ 0 on the right half-wing, then, then the

shed vorticity is such as to make w(y) ≤ 0 everywhere at the lifting line, hence the term
“downwash”.
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suppose that Γ is an even function of y, so it can be is represented by a Fourier
series

Γ = Ub

∞∑

n=0

B2n+1 sin(2n+ 1)θ. (5.51)

Then
dΓ

dy
dy =

dΓ

dθ
dθ = Ub

∞∑

n=0

B2n+1 cos(2n+ 1)θdθ. (5.52)

Using this in (5.50) we obtain the definite integral

∫ π

0

cosmθ′

cos θ− cos θ′
dθ′ = −π sinmθ

sin θ
, (5.53)

The verification of which we leave as problem 5.6. Thus, if c(y) = C(θ) and
c(y)[α + β(y)] = D(θ), (5.50) becomes

b

∞∑

n=0

B2n+1 sin θ sin(2n+ 1)θ

−πC(θ)

∞∑

n=0

(2n+ 1)B2n+1 sin(2n+ 1)θ = 4π sin θD(θ). (5.54)

Given C(θ) and D(θ), we are in a position to express all terms as Fourier series
in sin(2n+ 1)θ and solve the resulting linear system for the B2n+1.

Given a solution the lift is

L = ρU

∫ +b

−b
Γ(y)dy = ρUb

∫ π

0

Γ(θ) sin θdθ =
π

2
ρU2b2B1. (5.55)

From small w/U , then induced drag is given by

Dind = −ρ
∫ +b

−b
wΓdy =

π

8
ρU2b2

∞∑

n=0

(2n+ 1)B2
2n+1. (5.56)

Problem set 5

1. (a) Verify (5.1) for the flat plate with the Kutta-Joukowski condition
applied. (b) Verify that for the Joukowsky family of airfoils the lift is given
by (5.6), and that the change comes from the new value of the circulation as
determined by the K-J condition.

2. Consider the Joukowski airfoil with Z0 = bi a > b > 0. (a) Show that
the airfoil is an arc of the circle with center at (0,−(a2 − b2)i/b and radius
(a2 + b2)/b. (b) With Kutta condition applied to the trailing edge, at what
angle of attack (as a function of b) is the lift zero?
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3. Let the airfoil parameters other than chord (i.e. k, β) be independent
of y, the coordinate along the span of the wing. Also, assume the planform is
symmetric about the line x = 0 in the x− y plane. Using Prandtl’s lifting-line
theory, show that for a given lift the minimal induced drag occurs for a wing
having an elliptical planform. Show in this case that the coefficient of induced
drag CDi

= 2 × drag/(ρU2S) and lift coefficient CL = 2 × lift/(ρU2S) are
related by

CDi
= C2

L/(π ).

Here S is the wing area and is the aspect ratio 4b2/S. (Some of the WW II
fighters, notably the Spitfire, adopted an approximately elliptical wing.)

4. This problem will study flow past a slender axisymmetric body whose
surface is given (in cylindrical polar coordinates), by r = R(z), 0 ≤ z ≤ L. Here
R(z) is continuous, and positive except at 0, L where it vanishes. By “slender”
we mean that max0≤x≤LR << L. The body is placed in the uniform flow
(uz, ur, uθ) = (U, 0, 0). We are interested in the steady, axisymmetric potential
flow past the body. It can be shown that such a body perturbs the free stream
by only a small amount, so that in particular, uz ≈ U everywhere. On the
other hand the flow must be tangent at the body, which implies φr(z, R(z)) ≈
UdR/dz, 0 < z < L.

We look for a representation of φ as a distribution of sources with strength
f(z). Thus

φ(z, r) = − 1

4π

∫ L

0

f(ζ)
√

(z − ζ)2 + r2
dζ.

(a) Compute ∂φ
∂r , and investigate the resulting integral as r → 0, 0 < z < L.

Argue that the dominant contribution comes near ζ = z, and hence show that
∂φ
∂r ≈ 1

4π
f(z)
r

∫ +∞
−∞ (1 + s2)−3/2ds for r << L.

(b) From the above tangency condition, deduce that f(z) ≈ dA/dz where
A(z) = πR2 is the cross-sectional area of the body.

(c) By expanding the above expression for φ for large z, r, show that in the
neighborhood of infinity

φ ≈ − 1

4π

z

(z2 + r2)3/2

∫ L

0

A(ζ)dζ, z2 + r2 → ∞.

5. Verify (5.39).

6. Verify (5.53). (Suggestion: Let z = eiθ
′

, ζ = eiθ, and convert the integral
to one on a contour around the unit circle in the z-plane. You will want to
indent the contour at poles on the boundary. Evaluate using theory.)

7. The Trefftz plane is a virtual plane orthogonal to the x-axis in figure 5.13
and placed at large x downstream of the wing. The vortical wake in Prandtl’s
model may be regarded as intersecting the Trefftz plane on the segment I : |y| ≤
b, z = 0. The induced drag may be calculated in the Trefftz plane as follows.
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Adopt the energy balance that UDind, the rate of working done by the induced
drag, is equal to UE, the flux of wake energy through the Trefftz plane (TP).
Here

E =
ρ

2

∫

TP

(∇φ)2dydz, (5.57)

where ∇φ = (0, v, w) = (0, φy, φz). That is, in the Trefftz plane the velocity
perturbations of the free stream are dominated by the induced velocities of the,
now doubly infinite line vortices. Use the fact that φz = w is continuous on Y
but φ is discontinuous there to show that

Dind = −ρ
2

∫ +b

−b
wTP [φ]TPdy, (5.58)

where wTP is twice the downwash computed at the lifting line in Prandtl’s
model, and [φ]TP = φ(y.0+)− φ(y, 0−) on I. From this result show that (5.56)
follows from the definition of circulation.



Chapter 6

Viscosity and the

Navier-Stokes equations

6.1 The Newtonian stress tensor

Generally real fluids are not inviscid or ideal. 1 Modifications of Euler’s equa-
tions, needed to account for real fluid effects at the continuum level, introduce
additional forces in the momentum balance equations. There exists a great va-
riety of real fluids which can be treated at the continuum level, differing in what
we shall call their rheology. Basically the problem is to identify the forces ex-
perienced by a fluid parcel as it is moved about and deformed according to the
mathematical description we have developed. Because of the molecular struc-
ture of various fluid materials, the nature of these forces can vary considerably
and there are many rheological models which attempt to capture the observed
properties of fluids under deformation.

The simplest of these rheologies is the Newtonian viscous fluid. To under-
stand the assumptions let us restrict attention to the determination of a viscous
stress tensor at x, t, which depends only upon the fluid properties within a fluid
parcel at that point and time. One could of course imagine fluids where some
local average over space determines stress at a point. Also it is easy enough to
find fluids with a memory, where the stress at a particular time depends upon
the stress history at the point in question.

It is reasonable to assume that the forces dues to the rheology of the fluid are
developed by the deformation of fluid parcels, and hence could be determined
by the velocity field. If we allow only point properties, deformation of parcels
must involve more than just the velocity itself; first and higher-order partial
derivatives with respect to the spatial coordinates could be important. (The
time derivative of velocity has already been taken into consideration in the
acceleration terms.) A moment’s thought shows viscous forces cannot depend

1In quantum mechanics the superfluid is in many respects an ideal fluid, but the laws
governing vorticity, for example, need to be modified.

95
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A
y=y

y=y
B

u(y)

Figure 6.1: Momentum exchange by molecules between lamina in a shear flow.

on velocity. The bulk translation of the fluid with constant velocity produces
no force. Thus the deformation of a small fluid parcel must be responsible for
the viscous force, and the dominant measure of this deformation should come
from the first derivatives of the velocity field, i.e. from the components of the
velocity derivative matrix ∂ui

∂xj
. The Newtonian viscous fluid is one where the

stress tensor is linear in the components of the velocity derivative matrix, with
a stress tensor whose specific form will depend on other physical conditions.

To see why a linear relation of this might capture the dominant rheology
of many fluids consider a flow (u, v) = (u(y), 0).Each different plane or lamina
of fluid, y= constant, moves with a particular velocity. Now consider the two
lamina y = yA, yB as shown in figure 6.1, moving at velocities uB < uA. If a
molecule moves from B to A, then it is moving from an environment with ve-
locity uB to an environment with a larger velocity uA. Consequently it must be
accelerated to match the new velcity. According to Newton, a force is therefore
applied to the lamina y = yA in the direction of negative x. Similarly a molecule
moving from yA to yB must slow down, exerting a force on lamina y = yB in
the direction of positive x. Thus these exchanges of molecules would tend to
reduce the velocity difference between the two lamina. 2

This tendency to reduce the difference in velocities can be thought of as
a force applied to each lamina. Thus if we insert a virtual surface at some
position y, a force should be exerted on the surface, in the positive x direction
if du/dy(y) > 0. Generally we expect the gradients of the velocity components
to vary on a length scale L comparable to some macroscopic scale- the size of
a container, the size of a body around which the fluid flows, etc. On the other
hand the scale of the molecular events envisaged above is very small compared
to the macroscopic scale. Thus it is reasonable to assume that the force on the

2Perhaps a more direct analogy would be two boats gliding along on the water on parallel
paths, one moving faster than the other. If, at the instant they are side by side, an occupant
of the fast boat jumps into the slow boat, the slower boat with speed up, and similarly an
occupant of the slow boat can slow up the fast boat by jumping into it.
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Figure 6.2: Showing why σ12 = σ21. The forces are per unit area. The area of
each face is ∆2.

lamina is dominated by the first derivative,

F (y) = µ
du

dy
. (6.1)

The constant of proportionality, µ, is called the viscosity, and a fluid obeying
this law is called a Newtonian viscous fluid.

We have considered so far only a simple planar flow (u(y), 0). In general all
of the components of the velocity derivative matrix need to be considered in the
construction of the viscous stress tensor. Let us write

σij = −pδij + dij. (6.2)

That is, we have simply split off the pressure contribution and exhibited the
deviatoric stress tensor dij, which contains the viscous stress. We first show that
dij, and hence σij, must be a symmetric tensor. We can do that by considering
figure 6.2. We show a square parcel of fluid of side ∆. We show those forces
on each face which exert a torque about the z-axis. We see that the torque is
∆3(σ21−σ12), since each face has area ∆2 and each of the four forces considered
has a moment of ∆/2 about the z-axis. Now this torque must be balanced by
the angular acceleration of the parcel about the z-axis. Now the moment of
inertial of the parcel is a multiple of ∆4. As ∆ → 0 we see that the angular
acceleration must tend to infinity as ∆−1. It follows that the only way to have
stability of a parcel is for σ21 = σ12. The same argument applies to moments
about the other axes.

A final requirement we shall place on dij, so a further condition on the fluids
we shall study, is that there should be no preferred direction, the condition of
isotropy. The conditions of isotropy of symmetric matrices of second order then
imply that dij can satisfy these while being linear in the components of the
velocity derivative matrix only if it has either of two forms:

∂ui
∂xj

+
∂uj
∂xi

,
∂uk
∂xk

δij . (6.3)
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For a Newtonian fluid the linearity implies that the most general allowable
deviatoric stress has the form

dij = µ
( ∂ui
∂xj

+
∂uj
∂xi

− 2

3

∂uk
∂xk

δij

)

+ µ′∂uk
∂xk

δij . (6.4)

Notice that we have divided the two terms so that the first term, proportional
to µ, has zero trace. Thus if µ′ = 0, the deviatoric stress contributes nothing to
the normal force on an area element; this is given solely by the pressure force.
The possibility of a normal force distinct from the pressure force is allowed by
the second term of (6.4). We have attached the term viscosity to µ, so µ′ is
usually called the second viscosity. Often it is taken as zero, an approximation
that is generally valid for liquids. The condition µ′ = 0 is equivalent to what is
sometimes called the Stokes relation. In gases in particular µ′ may be positive,
in which case the thermodynamic pressure and the normal stresses are distinct.

It should be noted that if we had simply taken dij to be proportional to
the velocity derivative matrix, then the splitting (3.5) would show that only
eij could possibly appear, since otherwise uniform rotation of the fluid would
produce a force orthogonal to the rotation axis, , which is never observed. The
second term in (6.4) then follows as the only isotropic symmetric tensor linear in
the velocity derivative which could be included as a contribution to “pressure”.

In this course we shall be dealing with two special cases of (6.4). The first
is an incompressible fluid, in which case

σij = −pδij + µ(
∂ui
∂xj

+
∂uj
∂xi

)

, (incompressible fluid). (6.5)

Note that with the incompressibility

∂σij
∂xj

= − ∂p

∂xi
+ µ∇2ui. (6.6)

The second case is compressible flow in one space dimension. Then u =
(u(x, t), 0, 0) and the only non-zero component of the stress tensor is

σ11 = −p+ µ′′∂u

∂x
, µ′′ =

4

3
µ+ µ′, one − dimensional gas flow. (6.7)

The momentum balance equation in the form

ρ
Dui
Dt

=
∂σij
∂xj

, (6.8)

together with the stress tensor given by (6.4), defines the momentum equation
for the Navier-Stokes equations. These are the most commonly used equations
for the modeling of the rheology of fluids. The have been found to apply to a
wide variety of practical problems, but it is important to realize their limitations.
First, for highly rarified gases the mean free path of molecules of the gas can
become so large that the concept of a fluid parcel, small with respect to the
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macroscopic scale but large with respect to mean free path, becomes untenable.
Also, many common fluids, honey being an example, are non-Newtonian and can
exhibit effects not captured by the Navier-Stokes equations. Finally, whenever
a flow involves very small domains of transition, the Navier-Stokes model may
break down. Example of this occurs in shock waves in gases, where changes
occur over a distance of only several mean free paths, and in the interface
between fluids, which can involve transitions over distances comparable to inter-
molecular scales. In these problems a multi-scale analysis is usually needed,
which can bridge the macroscopic-molecular divide.

Finally, we point out that the viscosities in this model will generally depend
upon temperature, but for simplicity we shall neglect this variation, and in
particular for the incompressible case we always take µ to be constant. Also
we shall often exhibit the kinematic viscosity ν = µ

ρ in place of µ. We remark

that ν has dimensions length2/ time, as can be verified from the momentum
equations after division by ρ.

6.2 Some examples of incompressible viscous flow

We now take the density and viscosity to be constant and consider several exact
solutions of the incompressible Navier-Stokes equations. We shall be dealing
with fixed or moving rigid boundaries and we need the following assumption
regarding the boundary condition on the velocity in the Navier-Stokes model:

Assumption (The non-slip condition): At a rigid boundary the relative mo-
tion of fluid and boundary will vanish.

Thus at a non-moving rigid wall the velocity of the fluid will be zero, while
at any point on a moving boundary the fluid velocity must equal the velocity
of that point of the boundary. This condition is valid for gases and fluids in
situations where the stress tensor is well approximated by (6.4). It can fail in
small domains and in rarified gases, where some slip may occur.

6.2.1 Couette flow

Imagine two rigid planes y = 0, H where the no-slip condition will be applied.
The plane y = H moves in the x-direction with constant velocity U , while the
plane y = 0 is stationary. The flow is steady, so the velocity field must be a
function of y alone. Assuming constant density, u = (u(y), 0) and px = 0 we
obtain a momentum balance if

−µuyy = 0. (6.9)

Thus given that u(0) = 0, u(H) = U , we have u = Uy/H. We see that the
viscous stress is here constant and equal to µU/H . This is the force per unit
area felt by the plane y = 0. No pressure gradient is needed to sustain this stress
field. Couette flow is the simplest exact solution of the Navier-Stokes equations
with non-zero viscous stress.
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Figure 6.3: The velocity in the Rayleigh problem at t=0 mod 2π, y in units of
√

µ/ω.

6.2.2 The Rayleigh problem

A related unsteady problem results from the time dependent motion in the x-
direction with velocity U(t)of the plane y = 0. A no-slip condition is applied
on this plane. A fluid of constant density occupies the semi-infinite domain
y > 0. In this case an exact solution of the Navier-Stokes equations is provided
by u = (u(y, t), 0), p = 0, with

ut − µuyy = 0, u(0) = U(t). (6.10)

In the case U(t) = U0 cosωt we see that u(y, t) = <(eiωtf(y)) where f(y) is the
complex-valued function of y satisfying

iωf − µfyy = 0, f(0) = U0. (6.11)

We shall also require that u(∞) = 0. Thus

u = <U0e
iωt−(1+i)y

√
ω
2ν = U0 cos

(
ωt −

√
ω

2ν
y
)
e−y

√
ω
2ν . (6.12)

We show the velocity field in figure 6.3. Note that the oscillation dies away
extremely rapidly, with barely one reversal before decay is almost complete.
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6.2.3 Poiseuille flow

We consider now a flow in a cylindrical geometry. A Newtonian viscous fluid of
constant density is in steady motion down a cylindrical tube of radius R and of
infinite extent in both directions. Because of viscous stresses at the walls of the
tube, we expect there to be a pressure gradient down the tube. Let the axis of
the tube be the z-axis, r the radial variable, and u = (uz, ur, uθ) = (uz(r), 0, 0)
the velocity field in cylindrical polar coordinates. We note here, for future
reference, the form of the Navier-Stokes equations in these coordinates:

∂uz
∂t

+ u · ∇uz +
1

ρ

∂p

∂z
= ν∇2uz, (6.13)

∂ur
∂t

+ u · ∇ur −
u2
θ

r
+

1

ρ

∂p

∂r
= ν

(

Lur −
2

r2
∂uθ
∂θ

)

, (6.14)

∂uθ
∂t

+ u · ∇uθ +
uruθ
r

+
1

rρ

∂p

∂θ
= ν

(

Luθ +
2

r2
∂ur
∂θ

)

, (6.15)

∂uz
∂z

+
1

r

∂(rur)

∂r
+

1

r

∂uθ
∂θ

= 0. (6.16)

Here

u · ∇ = uz
∂

∂z
+ ur

∂

∂r
+
uθ
r

∂

∂θ
, (6.17)

∇2 =
∂2(·)
∂z2

+
1

r

∂

∂r

(

r
∂(·)
∂r

)

+
1

r2
∂2(·)
∂θ2

, L = ∇2 − 1

r2
. (6.18)

For the problem at hand, we set p = −Gz+ constant to obtain the following
equation for uz(r):

µ∇2uz = −G = µ
(∂2uz
∂r2

+
1

r

∂uz
∂r

)

. (6.19)

The no-slip condition applies at r = R, so the relevant solution of (6.19) is

uz =
G

4µ
(R2 − r2). (6.20)

Thus the velocity profile is parabolic. The total flux down the tube is

Q ≡ 2π

∫ R

0

ruzdr =
πGR4

8µ
. (6.21)

If a tube of length L is subjected to a pressure difference ∆p at the two ends,

then we can expect to drive a total volume flow or flux Q = π∆pR4

8µL down the
tube. The rate W at which work is done to force the fluid down a tube of length
L is the pressure difference between the ends of the tube times the volume flow
rate Q, i.e.

W =
πG2LR4

8µ
(6.22)
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Poiseuille flow can be easily observed in the laboratory, particularly in tubes of
small radius, and measurements of flow rates through small tubes provides one
way of determining a fluid’s viscosity. Of course all tubes are finite, the velocity
profile (6.20) is not established at once when fluid is introduced into a tube.
This entry effect can persist for substantial distances down the tube, depending
on the viscosity and the tube radius, and also on the velocity profile at the
entrance. Another interesting question concerns the stability of Poiseuille flow
in a doubly infinite pipe; this was studied by the engineer Osborne Reynolds in
the 1870’s. He observed instability and transition to turbulence in long tubes.
An application of Poiseuille flow of some importance is to blood flow; and in the
arterial system there are many branches which are too short to escape significant
entry effects.

A generalization of Poiseuille flow to an arbitrary cylinder, bounded by gen-
erators parallel to the z-axis and having a cross section S is easily obtained.
The equation for uz is now

∇2uz =
∂2uz
∂x2

+
∂2uz
∂y2

= −G/µ, uz = 0 on ∂S. (6.23)

The solution is necessarily ≥ 0 for G > 0 and can be found by standard methods
for the inhomogeneous Laplace equation.

6.2.4 Flow down an incline

We consider now the flow of a viscous fluid down an incline, see figure 6.4. The
velocity has the form (u, v, w) = (u(z), 0, 0) and the pressure is a function of z
alone. The fluid is forced down the incline by the gravitational body force. The
equations to be satisfied are

ρg sinα+ µ
d2u

dz2
= 0,

dp

dz
+ ρg cosα = 0. (6.24)

On the free surface z = H the stress must equal the normal stress due
to the constant pressure, p0 say, above the fluid. Thus σxz = ν dudz = 0 and
σzz = −p = −p0 when z = H . Since the no-slip condition applies, we have
u(0) = 0. Therefore

u =
ρg sinα

2µ
z(2H − z), p = p0 + ρg(H − z) cosα. (6.25)

The volume flow per unit length in the y-direction is

∫ U

0

udz =
gH3 sinα

3ν
. (6.26)
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Figure 6.4: Flow of a viscous fluid down an incline.

6.2.5 Flow with circular streamlines

We consider a velocity field in cylindrical polar coordinates of the form (uz, ur, uθ) =
(0, 0, uθ(r, t)), with p = p(r, t). From (6.13)-(6.18) the equation for uθ is

∂uθ
∂t

= ν
(∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)

, (6.27)

with the equation
∂r

∂r
=
ρ

r
u2
θ (6.28)

determining the pressure. The vorticity is

ω =
1

r

∂ruθ
∂r

. (6.29)

From (6.27) we then find an equation for the vorticity

∂ω

∂t
= ν

(∂2ω

∂r2
+

1

r

∂ω

∂r

)

= ν∇2ω. (6.30)

This equation, which is the symmetric form of the heat equation in two space
dimensions, may be used to study the decay of a point vortex in two dimensions,
see problem 6.2.

6.2.6 The Burgers vortex

Th implication of (6.30) is that vorticity confined to circular streamlines in two
dimensions will diffuse like heat, never reaching a non-trivial steady state in
R2. We now consider a solution of the Navier-Stokes equations which involves
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a two-dimensional vorticity field ω = (ωz, ωr, ωθ)) = (ω(r), 0, 0). The idea is to
prevent the vorticity from diffusing by placing it in a steady irrotational flow
field of the form (uz, ur, uθ) = (αz,−αr/2, 0). Thus the full velocity field has
the form

(uz, ur, uθ) = (αz,−αr/2, uθ(r, t)). (6.31)

Now the z-component of the vortiity equation is, with (6.31),

∂ω

∂t
− α r

2

∂ω

∂r
− αω = ν

1

r

∂

∂r

(

r
∂ω

∂r

)

, ω =
1

r

∂ruθ
∂r

. (6.32)

First note that if ν = 0, so that there is no diffusion of ω, we my solve the
equation to obtain

ω = eαtF (r2eαt), (6.33)

where F (r2) is the initial value of ω. This solution exhibits the exponential
growth of vorticity coming from the stretching of vortex tubes in the straining
flow (αz,−αr/2, 0).

If now we restore the viscosity, we look for a steady solution of (6.32), repre-
senting a vortex in for which diffusion is balanced by the advection of vorticity
toward the z-axis. We have

1

r

∂

∂r

(α

2
r2ω + νr

∂ω

∂r

)

= 0. (6.34)

Integrating and enforcing the condition2 that r2ω and r ∂ω∂r vanish when r = ∞,
we have

α

2
rω + ν

dω

dr
= 0. (6.35)

Thus

ω(r) = Ce
−αr2

4ν , (6.36)

so that

uθ =
Γ

2π

1 − e
−αr2

4ν

r
, (6.37)

where we have redefined the constant to exhibit the total circulation of the
vortex. Note that as ν decreases the size of the vortex tubes shrinks. With Γ
fixed this would mean that the vorticity of the tube is increased.

6.2.7 Stagnation-point flow

In this example we attempt to modify the two-dimensional stagnation point
flow with streamfunction UL−1xy to a solution in y > 0 of the Navier-Stokes
equations with constant density, satisfying the no-slip condition on y = 0. The
vorticity will satisfy

u
∂ω

∂x
+ v

∂ω

∂y
− ν

(∂2ω

∂x2
+
∂2ω

∂y2

)

= 0. (6.38)
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Figure 6.5: f ′ versus η for the viscous stagnatioin point flow.

If we set ψ = UL−1xF (y), then ω = −UL−1yF ′′. Insertion in (6.38) gives

F ′F ′′ − FF ′′′ − Re−1F ′′′′, (6.39)

where Re = UL/ν . The boundary conditions are that F (0) = F ′(0) = 0 to
make ψ, u, v vanish on the wall y = 0, and F ∼ y as y → ∞, so that we obtain
the irrotational stagnation point flow at y = ∞.

One integration of (6.39) can be carried out to obtain

F ′2 − FF ′′ −Re−1F ′′′ = 1. (6.40)

With F = Re−1/2f(η), η = Re1/2y, (6.40) becomes

f ′
2 − ff ′′ − f ′′′ = 1, (6.41)

with conditions f ′(∞) = 1, f(0) = f ′(0) = 0. We show in figure 6.5 the solution
f ′(η) of this ODE problem. This represents a gradual transition through a layer
of thickness of order

√

UL/nu between the null velocity on the boundary and
the velocity U(x/L) which u has at the wall in the irrotational stagnation point
flow. We shall be returning to a discussion of such transition layers in chapter
7, where we take up the study of boundary layers.

6.3 Dynamical similarity

In the stagnation point example just considered, the dimensional combination
Re = UL/ν has occurred as a parameter. This parameter, called the Reynolds
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number in honor of Osborne Reynolds, arose because we chose to exhibit the
problem in a dimensionless notation. Consider now the Navier-Stokes equations
with constant density it their dimensional form:

∂u

∂t
+ u · ∇u +

1

ρ
∇p− ν∇2u = 0, ∇ · u = 0. (6.42)

We may define dimensionless (starred) variables as follows:

u∗ = u/U,x∗ = x/L, p∗ = p/ρU2. (6.43)

Here U, L are assumed to be a velocity and length characteristic of the problem
being studied. In the case of flow past a body, L might be a body diameter and
U the flow speed at infinity. In these starred variables it is easily checked that
the equations become

∂u∗

∂t
+ u∗ · ∇∗u∗ + ∇∗p∗ − 1

Re
∇∗2

u∗ = 0, ∇∗ · u∗ = 0. (6.44)

Thus Re survives as the only dimensionless parameter in the equations. For
a given value of Re a given problem will have a solution or solutions which
are fully determined by the value of Re.3 Nevertheless the set of solutions is
fully determined by Re and Re alone. Thus we are able to make a correspon-
dence between various problems having different U and L but the same value of
Re. We call this correspondence dynamical self-similarity. Two flows which are
self-similar in this respect become identical which expressed in the starred, di-
mensionless variables (6.43). In a sense the statement “the viscosity ν is small”
conveys no dynamical information, although the intended implication might be
that Re � 1. If L is also “small”, then it could well be that Re = 1 or e � 1.
The only meaningful way to state that a fluid is “almost inviscid” is through
the Reynolds number, Re � 1. If we want to consider fluids whose viscosity is
dominant compared to inertial forces, we should require Re� 1. These remarks
underline the oft-repeated definition of Re as “the ratio of inertial to viscous
forces”. This is because

ρu · ∇u

µ∇2u
= Re

u∗ · ∇∗u∗

∇∗2u∗ ∼ Re (6.45)

since we regard all starred variables as of order unity.
example 6.1: The drag D per unit length of a circular cylinder of radius L

in a two-dimensional uniform flow of speed U must satisfy D = ρU2LF (Re) for
some function F . Note that we are assuming here that cylinders are fully de-
termined by their radius. In experiments other factors, such as surface material
or roughness, slight ellipticity, etc. must be considered.

Problem set 6

3It is not always the case that well-formulated boundary-value problems for the Navier-
Stokes equations have unique solutions. See the example of viscous flow in a diverging channel,
page 79 of Landau an Lifshitz.
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Figure 6.6: Bifurcating Poiseuill flow. Assume a parabolic profile in each section.

1. Consider the following optimzation problem: A Newtonian viscous fluid
of constant density flows through a cylindrical tube of radius R1, which then
bifurcates into two straight tubes of radius R2, see the figure. A volume flow Q
is introduced into the upper tube, which divides into flows of equal flux Q/2 at
the bifurcation. Because of the material composition of the tubes, it is desirable
that the wall stress µdu/dr, evaluated at the wall, be the same in both tubes.
If L and H are given and fixed, what is the angle θ which minimizes the rate of
working required to sustain the flow Q?. Be sure to verify that you have a true
minimum.

2. Look for a solution of (6.30) of the form ω = t−1F (r/
√
t), satisfying

ω(∞, t) = 0, 2π
∫ ∞
0
rω(r, t)dr = 1, t >). Show, by computing uθ with uθ(∞, t) =

0, that this represents the decay of a point vortex of unit strength in a vbiscous
fluid, i.e.

lim
t→0+

uθ(r, t) =
1

2πr
, r > 0. (6.46)

3. A Navier-Stokes fluid has constant ρ, µ, no body forces. Consider a motion
in a fixed bounded domain V with no-slip condition on its rigid boundary. Show
that

dE/dt = −Φ, E =

∫

V

ρ|u|2/2dV,Φ = µ

∫

V

(∇× u)2dV.

This shows that for such a fluid kinetic energy is converted into heat at a rate
Φ(t). This last function of time gives the net viscous dissipation for the fluid
contained in V . (Hint: ∇ × (∇ × u) = ∇(∇ · u) − ∇2u. Also ∇ · (A × B) =
∇× A · B−∇× B · A.)
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4. In two dimensions, with streamfunction ψ, where (u, v) = (ψy,−ψx),
show that the incompressible Navier-Stokes equations without body forces for
a fluid of constant ρ, µ reduce to

∂

∂t
∇2ψ − (∂(ψ,∇2ψ)

∂(x, y)
− ν∇4ψ = 0.

In terms of ψ, what are the boundary conditions on a rigid boundary if the
no-slip condition is satisfied there?

5. Find the time-periodic 2D flow in a channel −H < y < H , filled with
viscous incompressible fluid, given that the pressure gradient is dp/dx = A +
B cos(ωt), where A,B, ω are constants. This is an oscillating 2D Poiseuille flow.
You may assume that u(y, t) is even in y and periodic in t with period 2π/ω.

6. verify (6.33).

7. The plane z = 0 is rotating about the z-axis with an angular velocity
Ω. A Newtonian viscous fluid of constant density and viscosity occupies z > 0
and the fluid satisfies the no-slip condition on the plane, i.e. at z = 0 the fluid
rotates with the plane. By centrifugal effect we expect the fluid near the plane
to be thrown out radially and a compensating flow of fluid downward toward
the plane.

Using cylindrical polar coordinates, look for a steady solution of the Navier-
Stokes equations of the form

(uz, ur, uθ) = (f(z), rg(z), rh(z)). (6.47)

We assume that the velocity component uθ vanishes as z → ∞. Show that then

p

ρ
= ν

df

dz
− 1

2
f2 + F, (6.48)

where F is a function of r alone. Now argue that, if h(∞) = 0, i.e. no rotation
at infinity, then F must in fact be a constant. From the r and θ component of
the momentum equation together with ∇ · u = 0, find equations for f, g, h and
justify the following conditions:

f =
df

dz
= 0, h = Ω, z = 0; f ′, h→ 0, z → ∞. (6.49)

(The solution of these equations is discussed on pp. 75-76 of L&L and 290-92
of Batchelor.)



Chapter 7

Stokes flow

We have seen in section 6.3 that the dimensionless form of the Navier-Stokes
equations for a Newtonian viscous fluid of constant density and constant vis-
cosity is, now dropping the stars,

∂u

∂t
+ u · ∇u + ∇p− 1

Re
∇2u = 0, ∇ · u = 0. (7.1)

The Reynolds number Re is the only dimensionless parameter in the equa-
tions of motion. In the present chapter we shall investigate the fluid dynamics
resulting from the a priori assumption that the Reynolds number is very small
compared to unity, Re � 1. Since Re = UL/ν , the smallness of Re can be
achieved by considering extremely small length scales, or by dealing with a very
viscous liquid, or by treating flows of very small velocity, so-called creeping
flows.

The choice Re� 1 is an very interesting and important assumption, for it is
relevant to many practical problems, especially in a world where many products
of technology, including those manipulating fluids, are shrinking in size. A
particularly interesting application is to the swimming of micro-organisms. In
all of these areas we shall, with this assumption, unveil a special dynamical
regime which is usually referred to as Stokes flow, in honor of George Stokes,
who initiated investigations into this class of fluid problems. We shall also refer
to this general area of fluid dynamics as the Stokesian realm, in contrast to the
theories of inviscid flow, which might be termed the Eulerian realm.

What are the principle characteristics of the Stokesian realm? Since Re is
indicative of the ratio of inertial to viscous forces, the assumption of small Re
will mean that viscous forces dominate the dynamics. That suggests that we
may be able to drop entirely the term Du/Dt from the Navier-Stokes equations,
rendering the system linear. This will indeed be the case, with some caveats
discussed below. The linearity of the problem will be a major simplification.

Looking at (7.1)in the form

Re
(∂u

∂t
+ u · ∇u + ∇p

)

= ∇2u, ∇ · u = 0, (7.2)

109
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It is tempting to say that the smallness of Re means that we can neglect the
left-hand side of the first equation, leading to the reduced (linear) system

∇2u = 0, ∇ · u = 0. (7.3)

Indeed solutions of (7.3) belong to the Stokesian realm and are legitimate.
Example 7.1: Consider the velocity field u = A×R

R3 in three dimensions

with A a constant vector and R = (x, y, z). Note that u = ∇ × A
R

, and so
∇ · u = 0 and also ∇2u = 0, R > 0 since 1

R
is a harmonic function there. This

in fact an interesting example of a Stokes flow. Consider a sphere of radius a
rotating in a viscous fluid with angular velocity Ω. The on the surface of the
sphere the velocity is Ω×R if the no-slip condition holds. Comparing this with
our example we see that if A = Ωa3 we satisfy this condition with a Stokes flow.
Thus we have solved the Stokes flow problem of a sphere spinning in an infinite
expanse of viscous fluid.

It is not difficult to see, however, that (7.3) does not encompass all of the
Stokes flows of interest. The reason is that the pressure has been expelled from
the system, whereas there is no physical reason for this. If, in the process of
writing the dimensionless equations, we had defined the dimensionless pressure
as pL/(µU) instead of p/(ρU2, (7.2) would be changed to

Re
(∂u

∂t
+ u · ∇u

)

+ ∇p = ∇2u, ∇ · u = 0, (7.4)

leading in the limit < → 0 to

∇p−∇2u = 0, ∇ · u = 0. (7.5)

We see that any solution of (7.5) will have the form u = ∇φ+v where ∇2φ = p
and ∇2v = 0,∇ · v = −p. This larger class of flows, valid for Re small, are
called Stokes flows. The special family of flows with zero pressure form a small
subset of all Stokes flows.

7.0.1 Some caveats

We noted above that the dropping of the inertial terms in Stokes flow might have
to be questioned in some cases, and we consider these exceptions now. First,
it can happen that there is more than one possible Reynolds number which
can be formed, involving one or more distinct lengths, and/or a frequency of
oscillation, etc. It can then happen that the time derivative of u needs to be
kept even though the u · ∇u nonlinear term may be dropped. An example is
a wall adjacent too a viscous fluid, executing a standing wave with amplitude
A, frequency ω and wavelength L. If ωL2/ν is of order unity, and we take
U = ωL, then the Reynolds number UL/ν is of order unity and no terms may
be dropped. However the actual velocity is of order ωA, and if A� L then the
nonlinear terms are negligible.

Another unusual situation is associated with the non-uniformity of the Stokes
equations in three dimensions near infinity, in steady flow past a finite body.
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Even through the Reynolds number is small, the fall off of the velocity as R−1

(associated with the fundamental solution of the Stokes equations) means that
near infinity the perturbation of the free stream speed U is or order R−1. Thus
the u ·∇u term is O(U2/R2)) while the viscous term is O(νU/R3). The ratio is
UR/ν , which means that when R ∼ ν/U the stokes equations cannot govern the
perturbational velocity. The momentum equation needed to replace the Stokes
equation contains the term U ∂u

∂x . We shall remark later on the need for this
new set of equations, the Oseen equations, in connection with two-dimensional
Stokes flow.

7.1 Solution of the Stokes equations

Returning to dimensional equations, the Stokes equations are

∇p− µ∇2u = 0, ∇ · u = 0. (7.6)

From the divergence of ∇p−∇2u = 0, using the solenoidal property of u, we
see that ∇2p = 0, and hence that ∇4u = ∇2∇2u = 0. The curl of this equation
gives also ∇2∇ × u = 0. The components of u thus solve the biharmonic
equation ∇4φ = 0 as well as the solenoidal condition, and the vorticity is a
harmonic vector field. We shall combine these constraints now and set up a
procedure for constructing solutions from a scalar biharmonic equation.

We first set

ui =
( ∂2χ

∂xi∂xj
− δijχ

)

aj, p = µ
∂∇2χ

∂xj
aj , (7.7)

where a is a constant vector. Inserting these expressions into (7.6) we see that
the equations are satisfied identically provided that

∇4χ = 0. (7.8)

A second class of solution, having zero pressure, has the form

εijk
∂φ

∂j
ak, ∇2φ = 0, (7.9)

for a constant vector a, where εijk = 1 for subscripts which are an even per-
mutation of 123, and is −1 otherwise. The solutions (7.9) include example 7.1,
with A = a and φ = R−1.

Example 7.2: The fundamental solution of the Stokes equations in three
dimensions corresponds to a point force Fδ(x) on the right of the momentum
equation, F a constant vector:

∇p− µ∇2u = Fδ(x), ∇ · u = 0. (7.10)

Setting a = F in (7.7) we must have

µ∇4χ = δ(x). (7.11)
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We know the fundamental solution of ∇2φ = 0, satisfying ∇2φ = δ(x) and
vanishing at infinity is − 1

4πR
in three dimensions. Thus

∇2χ = − 1

4π

1

R
=
µ

R

d2Rχ

dR2
, (7.12)

and so

χ = − 1

8πµ
R+A +BR−1. (7.13)

The singular component is incompatible with (7.11) and the constant A may be
set equal to zero without changing u, and so χ = − 1

8πµR. Then we find

ui =
1

8πµ

(xixj
R3

+
δij
R

)

Fj, p =
1

4π

xjFj
R3

. (7.14)

The particular Stokes flow (7.14) is often referred to as a Stokeslet.

7.2 Uniqueness of Stokes flows

Consider Stokes flow within a volume V having boundary S. Let the boundary
have velocity uS . By the no-slip condition (which certainly applies when vis-
cous forces are dominant), the fluid velocity u must equal uS on the boundary.
Suppose now that there are two solutions u1,2 to the problem of solving (7.6)
with this boundary condition on S. Then v = u1 − u2 will vanish on S while
solving (7.6). But then

∫

V

v · (∇p− µ∇2v)dV = 0 =

∫

V

∂

∂xj

(

vjp− µvi
∂vi
∂xj

)

dV + µ

∫

V

( ∂vi
∂xj

)2

dV,

(7.15)
where the solenoidal property of v has been used. The first integral on the
right vanishes under the divergence theorem because of the vanishing of v on S.
The second is non-negative (with understood summation over i, j), and vanishes
only if v = 0. We remark that the non-negative term is equal to the rate of
dissipation of kinetic energy into heat as a result of viscous stresses, for the
velocity field v. This dissipation can vanish only if the velocity is identically
zero.

The solution of the Stokes equations is not easy in most geometries, and
frequently the coordinate system appropriate to the problem will suggest the
best formulation. We illustrate this process in the next section.

7.3 Stokes’ solution for uniform flow past a sphere

We now consider the classic solution of the Stokes equations representing the
uniform motion of a sphere of radius a in an infinite expanse of fluid. We
shall first consider this problem using the natural coordinates for the available
symmetry, namely spherical polar coordinates. Then we shall re-derive the
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solution using (7.7). The velocity field in spherical coordinates has the form
(uR, uθ, uφ) = (uR, uθ, 0) and the solenoidal condition is

1

R

∂R2uR
∂R

+
1

sin θR

∂ sin θuθ
∂θ

= 0. (7.16)

We thus introduce the Stokes steam function Ψ,

uR =
1

R2 sin θ

∂Ψ

∂θ
, uθ = − 1

R sin θ

∂Ψ

∂R
. (7.17)

Now Stokes’ equations in spherical coordinates are

∂p

∂R
= µ

(

∇2uR − 2uR
R2

− 2

R2 sin θ

∂ sin θuθ
∂θ

)

, (7.18)

1

R

∂p

∂θ
= µ

(

∇2uθ +
2

R2

∂uR
∂θ

− uθ

R2 sin2 θ

)

, (7.19)

together with (7.16). The vorticity is (0, 0, ωφ), where

ωφ = − 1

R sin θ
LΨ, (7.20)

where

L =
∂2

∂R2
+

sin θ

R2

∂

∂θ

( 1

sin θ

∂

∂θ

)

. (7.21)

Now from the form ∇p+ µ∇×∇× u = 0 of the momentum equation, we have
the alternative form

∂p

∂R
= − µ

R sin θ

∂

∂θ
ωφ sin θ, (7.22)

1

R

∂p

∂θ
=
µ

R

∂

∂R
Rωφ. (7.23)

Eliminating the pressure and using (7.20) we obtain

1

R2

∂

∂θ

1

sin θ

∂

∂θ
LΨ +

∂

∂R

1

sin θ

∂

∂R
LΨ = 0. (7.24)

We seek to solve (7.24) with the conditions

uR = uθ = 0, R = a, Ψ ∼ 1

2
R2 sin2 θU, R → ∞. (7.25)

We now separate variables in the form

Ψ = sin2 θf(R), (7.26)

to obtain from (7.24)
( ∂2

∂R2
− 2

R2

)2

f = 0. (7.27)
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Trying f = Rλ we get (λ2 − 1)(λ − 2)(λ − 4) = 0 and therefore the general
solution of (7.27) is

f =
A

R
+BR +CR2 +DR4. (7.28)

From the behavior needed for large R, D = 0, C = U/2. The two conditions at
R = a,namely f(a) = f ′(a) = 0, then require that

A =
1

4
Ua3, B = −3

4
Ua. (7.29)

Thus

Ψ =
1

4
U

(a3

R
− 3aR+ 2R2

)

sin2 θ. (7.30)

7.3.1 Drag

To find the drag on the sphere, we need the following stress component evaluated
on R = a:

σRR = −p+ 2µ
∂uR
∂R

, σRθ = µR
∂

∂R

(uθ
R

)

+
µ

R

∂uR
∂θ

. (7.31)

Given these functions the drag D is determined by

D = a2

∫ 2π

0

∫ π

0

[σRR cos θ − σRθ sin θ] sin θdθdφ. (7.32)

Now from (7.23) the pressure is determined by

1

R

∂p

∂θ
= − µ

R sin θ

∂

∂R
sin2 θ

(

fRR − 2

R2
f
)

, (7.33)

or, using (7.30),

p = −3

2
µUa

cos θ

R2
+ p∞. (7.34)

Also

uR =
1

R2 sin θ

∂Ψ

∂θ
=
U cos θ

2R2
(a3/R− 3aR+ 2R2), (7.35)

uθ = − 1

R sin θ

∂Ψ

∂R
= −U sin θ

4R
(−a3/R− 3a+ 4R). (7.36)

Thus

D = 2πa2

∫ π

0

[
[3

2
µUa

cos θ

R2
− p∞ + 2µ cos θ

(−3a3

R4
− 3a

R

)

R=a

]

cos θ

+
µU sin2 θ

4

(3a2

R4
+

3a

R2

)

R=a

]

sin θdθ. (7.37)

Thus
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D = 3πµaU

∫ π

0

cos2 θ sin θdθ

︸ ︷︷ ︸

pressure

+3πµaU

∫ π

0

sin3 θdθ

︸ ︷︷ ︸

viscous

,

= 2πµaU + 4πµaU = 6πµaU. (7.38)

That is, one-third of the drag is due to pressure forces, two-thirds to viscous
forces.

7.3.2 An alternative derivation

We can re-derive Stokes’ solution for a sphere by realizing that at large distances
from the sphere the flow field must consist of a uniform flow plus the fundamental
solution for a force −6πµUai. This must be added a term or terms which will
account for the finite sphere size. Given the symmetry we try a dipole term
proportional to ∇(x/R3). We thus postulate

u = U i − 6πµaU

8πµ

(xR

R3
+

i

R

)

+C
( i

R3
− 3

xR

R5

)

, (7.39)

where C remains to be determined. By inspection we see that C = −1
4a

2U
makes u = 0 on R = a, so we are done! The pressure is as given previously
p = −3

2
µUax/R3 + p∞, and is entirely associated with the fundamental part of

the solution.

7.4 Two-dimensions: Stokes’ paradox

The fundamental solution of the Stokes equations in two dimensions sets up
as given in example 7.2, except that the biharmonic equation is to be solved
in two dimensions. If Radial symmetry is again assumed, we may try to solve
the problem equivalent to flow past a sphere, i.e. Stokes flow past a circular
cylinder of radius a. If the pressure is eliminated from the Stokes equations in
two dimensions, we get

µ∇2ω = µ∇4ψ = 0. (7.40)

in terms of the two-dimensional stream function ψ. We the set ψ = sin θf(r) to
separate variables in polar coordinates, leading to

[ d2

dr2
+

1

r

d

dr
− 1

r2

]2

f = 0. (7.41)

We are now in a position to study flow over a circular cylinder of radius a. The
no-slip condition at the surface of the cylinder requires that ψ(a) = ∂ψ

∂r (a) = 0,
while the attaining of a free stream u = (U, 0) at infinity requires that f ∼
Ur, r → ∞. Now by quadrature we can find the most general solution of (7.41)
as

f(r) = Ar3 +Br ln r + Cr+Dr−1. (7.42)
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The condition at infinity requires that A = B = 0. The no-slip conditions then
yield

Ca+Da−1 = 0, C −Da−2 = 0, (7.43)

which imply C = D = 0. There is no satisfactory steady solution of the two-
dimensional Stokes equations representing flow of an unbounded fluid past a
circular cylinder. This result, known as Stokes paradox, underlines the profound
effect that dimension can play in fluid dynamics.

What is the reason for this non-existence? We can get some idea of what is
going on by introducing a finite circle r = R on which we make u = (U, 0). Then
there does exist a function f(r) satisfying f(a) = f ′(a) = 0, f(R) = R, f ′(R) =
1.1 We shall obtain as asymptotic approximation for large R/a to this solution
by setting A = 0 in (7.42) and satisfying the conditions at r = a with the
remaining terms. Then we obtain

f ∼ B[r ln r − (ln a+ 1/2)r+
1

2
a2/r]. (7.44)

We then make f(R) ∼ UR,R/a → ∞ by setting B = U/ ln(R/a). Then
also f ′(R) ∼ 1 + o(1), R/a → ∞, so all conditions are satisfied exactly or
asymptotically for large R/a. Thus

f ∼ U

ln(R/a)

[
r(ln(r/a) − 1/2) +

1

2
a2/r

]
. (7.45)

A a fixed value of r/a > 1 we see that f → 0 as R/a → ∞. It is only when
ln(r/a)
ln(R/a)

become O(1) that order UR values of f , and hence order U values of

velocity, are realized. Thus a cylindrical body in creeping through a viscous
fluid will tend to carry with it a large stagnant body of fluid, and there is no
solution of the boundary-value problem for an infinite domain in Stokes flow.

This paradox results from a failure to properly account for the balance of
forces in a viscous fluid at large distances from a translating body, however
small the Reynolds number of translation may be. If the velocity of translation
is U and the body size L The remedy for this paradox is involves a problem
of singular perturbation wherein the regions distant from the cylinder see a
disturbance from a point force. Let the velocity at some point a distance R � a
from the body be q. The the inertial forces at this point sill be approximately
∼ ρUq/R, (since we should linearize u ·∇u about the free stream velocity). Also
the viscous forces there are of order µq/R2. These two estimates are comparable
when R/L ∼ ν/(UL) = 1/Re. Thus when Re < 1 and we try to apply the Stokes
equations, there is always distant points where the neglect of the inertial terms
fails to be valid.

In the case of three dimensions, we have Stokes’ solution for a sphere and
we know that at distances O(1/Re) the perturbation velocity caused by the
sphere is small, or order Re. Thus, the Stokes approximation fails in a region

1If ψy = U,ψx = 0 on a circle r = R, then f/r+ (f/r)′(y2/r) = U, (f/r)′(xy/r) = 0 when
r = R, by differentiation of sin θf . Thus f(R) = R and f ′(R) = 1.
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where the free stream velocity is essentially unperturbed, and there is no Stokes
paradox. In two dimensions, the perturbation caused by the cylinder persists
out to distances of order 1/Re. Thus the Stokes equations fail to be uniformly
valid in a domain large enough to allow necessary conditions at infinity to be
satisfied.

The remedy for this paradox in two dimensions involves a proper accounting
for the singular nature of the limit Re → 0 in the neighborhood of infinity. At
distances r ∼ Re−1 the appropriate equations are found to be

ρU
∂u

∂x
+ ∇p− µ∇2u = 0, ∇ · u = 0. (7.46)

This system is known as Oseen’s equations. Oseen proposed them as a way of
approximately accounting for fluid inertia in problems where there is an ambient
free stream U i. Their advantage is of course that they comprise a linear system
of equations. The fact remains that they arise rigorously to appropriately treat
viscous flow in the limit of small Reynolds numbers, in a way that expels any
paradox associated with large distances.

To summarize, in creeping flow the Stokes model works well in three di-
mensions; near the body the equations are exact, and far from the body the
non-uniformity, leading to the replacement of the Stokes equations by the Os-
een equations, is of no consequence and Stokes’ solution for a sphere is valid. In
two dimensions the distant effect of a cylinder must be determined from Oseen’s
model. It is only by looking at that solution, expanded near the position of the
cylinder, that we can determine the appropriate solution of Stokes’ equations in
two dimensions; this solution remains otherwise undetermined by virtue of the
Stokes paradox.

7.5 Time-reversibility in Stokes flow

Consider a viscous fluid contained in some finite region V bounded by surface
or surfaces ∂V . If Stokes flow prevails, and if the boundary moves, each point
of ∂V being assigned a boundary velocity ub, then we have a boundary-value
problem for the Stokes equations, whose solution will provide the instantaneous
velocity of every fluid particle in V . We assume the existence of this solution,
and we have seen that this solution must be unique.and verify now that it will
be unique.

Thus in Stokes flow the instantaneous velocity of a fluid particle at P is
determined uniquely by the instantaneous velocities of all points on the bound-
ary of the fluid domain. Let us now assume a motion of the boundary through
a sequence of configurations C(t). Each C represents a point in configuration
space, and the motion can be thought of as a path in configuration space with
time as a parameter. Indeed “time” has no dynamical significance. A path
from A to B in configuration space can be taken quickly or slowly. In general,
let the configuration at time t be given by C(τ (t)), where τ (0) = 0, τ (1) = 1
but is otherwise an arbitrary differentiable function of time. If the point P has
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velocity uP (t), 0 ≤ t ≤ 1 when τ (t) = t, then in general uP (t) = τ̇ (t)uP (τ (t)).
The vector displacement of the point P under this sequence of configurations is

∆P =

∫ t=1

t=0

τ̇ (t)uP (τ (t))dt =

∫ 1

0

u(τ )dτ (7.47)

and so is independent of the choice of τ . Another way to say this is that the
displacement depends upon the ordering of the sequence of configurations but
not on the timing of the sequence.

The displacement does however depend in general on the path taken in con-
figuration space in going from configuration C0 to C1. We now give an example
of this dependence.

Example 7.3: We must find two paths in configuration space having the
same starting and finishing configurations (i.e. the boundary points coincide
in each case), but for which the displacement of some fluid particle is not the
same. Consider then a two-dimensional geometry with fluid contained in the
circular annulus a < r < b. Let the inner cylinder of radius a rotate with time
so that the angle made by some fixed point on the cylinder is θ(t) relative to a
reference axis. The outer circle r = b sis fixed. The instantaneous velocity of
each point of the fluid. Given that ∂p

∂θ
= 0 and that the velocity is 0.uθ(r), the

function uθ(r) satisfies (from the Stokes form of (6.15)) Luθ = 0. Integrating
and applying boundary conditions, the fluid velocity in the annulus is

uθ =
aθ̇

a2 − b2
r − ab2θ̇

a2 − b2
r−1. (7.48)

Consider not two paths which leave the position of the point of the inner circle
unchanged. In the first, θ rotates from 0 to π/4 in one direction, then from π/4
back to zero in the other direction. Clearly every fluid particle will return to its
original position after these two moves. For the second path, rotate the cylinder
through 2π. Again every point of the boundary returns to its starting point,
but now every point of fluid in a < r < b moves through an angle θ which is
positive and less than 2π. Thus only the points on the two circles r = a, b are
in their starting positions at the end of the rotation.

Note that in this example the first path, returning all fluid particles to
their starting positions, is special in that the sequence of configurations in the
second movement is simply a reversal of the sequence of configurations in the
first movement (a rotation through angle π/4. A moments reflection shows
that zero particle displacement is a necessary consequence of this kind path- a
sequence followed by the reverse sequence. And note that the timing of each of
these sequences may be different.

The second path, a full rotation of the inner circle, involves no such reversal.
In fact if the direction of rotation is reversed, the fluids point move in the
opposite direction. If we now let these two paths be repeated periodically, say
every one unit of time t, then in the first case fluid particles move back and
forth periodically with no net displacement, while in the second case particles
move on circles with a fixed displacement for each unit of time. Notice now an
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importance difference in the time symmetry of these two cases. If time is run
backwards in the first case, we again see fluid particles moving back and forth
with no net displacement. In the second case, reversal of time leads to steady
rotation of particles in the opposite direction. We may say that the flow in
the first case exhibits time reversal symmetry, while in the second case it does
not exhibit this symmetry. In general, a periodic boundary motion exhibiting
time reversal symmetry cannot lead to net motion of any fluid particle over one
period, as determined by the resulting time-periodic Stokes flow. On the other
hand, if net motion is observed, the boundary motion cannot be symmetric
under time reversal.

However a motion that is not symmetric under time reversal may in fact not
produce any displacement of fluid particles.

Example 7.4 In the previous example, let both circles rotate through 2π
with θ̇b = b

a θ̇a. The boundary motion does not then exhibit time-reversal sym-
metry, and in fact the fluid can be seen to be in a solid body rotation. Thus
every fluid particle returns to its starting position.

Theorem 7 Time reversal symmetry of periodic boundary motion is sufficient
to insure that all fluid particles return periodically to their starting positions.
If particles do not return periodically to their starting position, the boundary
motion cannot be time-symmetric.

7.6 Stokesian locomotion and the scallop theo-

rem

One of the most important and interesting applications of Stokes flow hydrody-
namics is to the swimming of micro-organisms. Most micro-organisms move by
a periodic or near periodic motion of organelles such as cilia and flagella. The
aim of this waving of organelles is usually to move the organisms from point A
to point B, a process complementary to a variable boundary which moves the
fluid about but does not itself locomote. Indeed time-reversal symmetry plays
an key role in the selection of swimming strategies.

Theorem 8 (The scallop theorem) Suppose that a small swimming body in an
infinite expanse of fluid is observed to execute a periodic cycle of configurations,
relative to a coordinate system moving with constant velocity U relative to the
fluid at infinity. Suppose that the fluid dynamics is that of Stokes flow. If the
sequence of configurations is indistinguishable from the time reversed sequence,
then U = 0 and the body does not locomote.

The reasoning here is that actual time reversal of the swimming motions
would lead to locomotion with velocity −U. But if the two motions are indis-
tinguishable then U = −U and so U = 0. The name of the theorem derives
from the non-locomotion of a scallop in Stokes flow that simple opens and closes
its shell periodically. In Stokes flow this would lead to a back and forth motion
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along a line (assuming suitable symmetry of shape of the shell), with no net
locomotion.

In nature the breaking of time-reversal symmetry takes many forms. Flagella
tend to propagate waves from head to tail. The wave direction gives the arrow
of time, and it reverses, along with the swimming velocity, under time reversal.
Cilia also execute complicated forward and return strokes which are not time
symmetric.

Problem set 7

1. Consider the uniform slow motion with speed U of a viscous fluid past a
spherical bubble of radius a, filled with air. Do this by modifying the Stokes flow
analysis for a rigid sphere as follows. The no slip condition is to be replaced on
r = a by the condition that both ur and the tangential stress σrθ vanish. (This
latter condition applies since there is no fluid within the bubble to support this
stress.) Show in particular that

Ψ =
U

2
(r2 − ar) sin2 θ

and that the drag on the bubble is D = 4πµUa. Note: On page 235 of Batchelor
see the analysis for a bubble filled with a second liquid of viscosity µ̄. The present
problem is for µ̄ = 0.

2. Prove that Stokes flow past a given, rigid body is unique, as follows. Show
if p1,u1 and p2,u2 are two solutions of

∇p− µ∇2u = 0,∇ · u = 0,

satisfying ui = −Ui on the body and

u ∼= O(1/r),
∂ui
∂xj

, p ∼ O(1/r2)

as r → ∞, then the two solutions must agree. (Hint: Consider the integral of
∂/∂xi(wj∂wj/∂xi) over the region exterior to the body, where w = u1 − u2.)

3. Two small spheres of radius a and density ρs are falling in a viscous fluid
with centers at P and Q. The line PQ has length L� a and is perpendicular to
gravity. Using the Stokeslet approximation to the Stokes solution past a sphere,
and assuming that each sphere sees the unperturbed Stokes flow of the other
sphere, show that the spheres fall with the same speed

U ≈ Us(1 + ka/L+O(a2/L2)),

and determine the number k. Here Us = 2a2g/9ν(ρs/ρ−1) is the settling speed
of a single sphere in Stokes flow.



Chapter 8

The boundary layer

The concept of the boundary layer is a classic example of an applied science
greatly influencing the development of mathematical methods of wide applica-
bility. The key idea was introduced in a 10 minute address in 1904 by Ludwig
Prandtl, then a 29 year old professor in Hanover, Germany. Prandtl had done
experiments in the flow of water over bodies, and sought to understand the effect
of the small viscosity on the flow. Realizing that the no-slip condition had to
apply at the surface of the body, his observations led him to the conclusion that
the flow was brought to rest in a thin layer adjacent to the rigid surface. His
reasoning suggested that the Navier-Stokes equations should have a somewhat
simpler form owing to the thinness of this layer. This led to the equations of
the viscous boundary layer. Boundary-layer methods now occupy a fundamental
place in many asymptotic problems for partial differential equations.

8.1 The limit of large Re

Let us consider the steady viscous two-dimensional flow over a flat plate aligned
with a uniform stream (U, 0). In dimensionless variables the steady Navier-

0  L
x

y u=U

Figure 8.1: Boundary layer on a finite flat plate.

121



122 CHAPTER 8. THE BOUNDARY LAYER

Stokes equations in two dimensions may be written

u · ∇u+ px −
1

Re
∇2u = 0, (8.1)

u · ∇v + py −
1

Re
∇2v = 0, (8.2)

ux + vy = 0. (8.3)

We are dealing with the geometry of figure 8.1. The boundary layer is seen to
grow in thickness as x moves from 0 to L. This suggests that the term u · ∇u
in (8.1) has been properly estimated as of order U2/L in the dimensionless
formulation, and so should be taken as O(1) at large Re in (8.1). If this term is
to balance the viscous stress term, then the natural choice, since the boundary
layer on the plate is observed to be so thin, is to assume that the y-derivatives
of u are so large that the balance is with 1

Reuyy. Thus it makes sense to define

an stretched variable ȳ =
√
Rey. If we now apply the stretched variable to (8.3),

still taking ux as of order unity, then in order to keep this essential equation
intact we must compensate the stretched variable ȳ by a streched form of the
y-velocity component:

v̄ =
√
Rev. (8.4)

Prandtl would have been comfortable with this last definition. The boundary
layer on the plate was so thin that there could have been only a small velocity
component normal to its surface. Thus the continuity equation will survive our
limit Re→ ∞:

ux + v̄ȳ = 0. (8.5)

Returning now to consideration of (8.1), retain the pressure term px as O(1)
as well so that the simplified equation, obtained in the limit Re → ∞ in the
stretched variables, amounts to dropping the term 1

Re
uxx:

uux + v̄uȳ + px − uȳȳ = 0. (8.6)

Finally, using these stretched variables in (8.2) we have

pȳ = − 1

Re
(uv̄x + v̄v̄ȳ − v̄ȳȳ) +

1

Re2
v̄xx. (8.7)

Thus in the limit Re→ ∞ the vertical momentum equation reduces to

pȳ = 0. (8.8)

We thus see from (8.8) that the pressure does not change as we move ver-
tically through the thin boundary layer. That is, the pressure throughout the
boundary layer at a station x must be the pressure outside the layer. At this
point a crucial contact is made with inviscid fluid theory. The “pressure out-
side the boundary layer” should be determined by the inviscid theory, since the
boundary layer is thin and will presumably not disturb the inviscid flow very
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x

y U(x)

Figure 8.2: Boundary layer over a general body with varying U(x).

much. In particular for a flat plate the Euler flow is the uniform stream- the
plate has no effect- and so the pressure has its constant free-stream value.

Prandtl’s striking insight is clearer when we consider flow past a general
smooth body, as in figure 8.2. Since the boundary layer is again taken as thin in
the neighborhood of the body, curvilinear coordinates may be introduced, with
x the arc length along curves paralleling the body surface and y the coordinate
normal to these curves. In the stretched variables, and in the limit for large Re,
it turns out that we again get (8.6)-(8.8), only now (8.8) must be interpreted to
mean that the pressure is what would be computed from the inviscid flow past
the body. If p0, U0 are the free stream values of p, u, then Bernoulli’s theorem
for steady flow yields along the body surface

peuler = p0 +
1

2
− 1

2
U2(x) = p(x), (8.9)

and it is this p(x) which now applies in the boundary layer, by (8.8). Thus
the inviscid flow past the body determines the pressure variation which is then
impose on the boundary layer through the now known function px in (8.6).

We note that the system (8.6)=(8.8) are usually called the Prandtl boundary-
layer equations.

We are giving here the essence of Prandtl’s idea without any indication of
possible problems in implementing it for an arbitrary body. The main problem
which will arise is that of boundary layer separation. It turns out that the
function p(x), which is determined by the inviscid flow, may lead to a boundary
layer which cannot be continued indefinitely along the surface of the body. What
can and does occur is a breaking away of the boundary layer from the surface,
the ejection of vorticity into the free stream, and the creation of free separation
streamline similar to the free streamline of the Kirchoff flow we considered in
chapter 6. Separation is part of the stalling of an airfoil at high angles of attack,
for example.

8.2 Blasius’ solution for a semi-infinite flat plate

We now give the famous Blasius solution of the boundary layer past a semi-
infinite flat plate; geometrically the problem is that of figure 8.1 with L = ∞.
The fact that the plate is infnite will mean that the boundary layer extends
to infinity. We will comment on this later. For the moment simply note that
we have now expelled the length L from the problem, even though we used
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it previously to define a Reynolds number, which number we then let tend to
infinity. Without a length in the problem, however, it becomes much simpler to
solve, because the no-slip conditions applies on the entive line x > 0, ȳ = 0.

We recall that for the aligned flat plate the pressure in Prandtl’s boundary
layer equations is zero, so we seek to solve

uux + v̄uȳ − uȳȳ = 0, ux + v̄ȳ = 0, (8.10)

subject to the conditions u = v̄ = 0, ȳ = 0, x > 0, and u → 1 as ȳ → ∞, x > 0.
We can satisfy the solenoidal condition in the usual way with a boundary-layer
stream function ψ̄ =

√
Reψ such that u = ψ̄ȳ, v̄ = −ψ̄x. We then observe that

our problem has a self-similar structure in the following sense. The equations
and conditions are invariant under the group of “stretching” transformations

x→ Ax, ȳ → Bȳ, ψ̄ → Cψ̄, (8.11)

provided that A = B2 and B = C. Indeed, the condition u = 1 transforms to

uC/B = 1 so we must have B = C. Also the term uux scales like C2

AB2 while
uȳȳ scales like C/B3, and the equality of these two factors requires A = BC.
The remaining terms follow suit and so (8.10) and the conditions are invariant
under the stated conditions A = B2 = C2. Now the combination η = y/

√
x is

then invariant under (8.11), and therefore so is the equation ψ̄ =
√
xF (η) for

any function F . If we assume a ψ̄ of this form and substitute it into

ψ̄ȳψ̄xȳ − ψ̄xψ̄ȳȳ − ψ̄ȳȳȳ = 0, (8.12)

it is straightforward to show that we get

−1

x

[1

2
FF ′′ + F ′′′

]

= 0. (8.13)

The conditions to be satisfied are then

F (0) = F ′(0) = 0, F ′ → 1, η → ∞. (8.14)

The simplest way to solve this problem is to replace it by the following
initial-value problem:

1

2
GG′′ +G′′′ = 0, G(0) = G′(0) = 0, G′′(0) = 1. (8.15)

When this problem is solved (a simple matter using ode45 in MATLAB on an
interval 0 < η < 5 say, we obtain values of G′(η) similar to figure 8.3 (the
solution of the actual problem) but asymptoting to c = 2.0854 instead of 1.
However if G(η) is a solution of our equation, so is AG(Aη) for any constant A.
Since G ∼ cη + o(η), η → ∞, we set

F (η) = c−1/2G(c−1/2η). (8.16)

This give the curve for F ′(η) shown in figure 8.3. One finds

F (η) ∼ η − 1.7208 + o(1), η → ∞, (8.17)

and also F ′′(0) = c−3/2 = .332
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Figure 8.3: The Blasius boundary layer velocity profile.

8.2.1 Discussion of the Blasius solution

Recalling that the dimensional form of the stream function is ULψ, the dimen-
sional form of ψ is ULψ = ULR−1/2ψ̄. In terms of x, y which have dimensions,

ψ̄ = (x/L)1/2F
( √

Ry/L√
(x/L)

)

. Thus with dimensions fully restored the stream func-

tion may be written
√
UνxF

(

y

√

U

νx

)

. (8.18)

confirming the fact that the problem we have solved is free of a length L. From
the asymptotic behavior of F for large η we then have the dimensional stream
function for large y in the form

Uy − 1.7208
√
Uνx+ o(1), y → ∞. (8.19)

This combination of terms vanishes when y = 1.7208
√

νx/U. This shows that
well away from the plate the streamlines look like those over a thin parabolic
cylinder. This process of “lifting” the distant streamlines makes the plate look
like it has some thickness, which grows downstream as

√
x. This thickness,

which has been given the term displacement thickness, can be understood from
the nature of the volume flux in the boundary layer. As the boundary layer
grows with increasing x more and more fluid parcels originally moving with
the free-stream velocity U , are found to be moving more slowly. This depleted
volume flux near the wall, which increases with x, must be compensated by an
outward full of volume away from the wall. It is this outward flux which lifts
the streamlines to their parabolic form.
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The displacement thickness can be given a precise definition as follows. Let

δ(x) =

∫ ∞

0

(1 − u/U)dy. (8.20)

Then Udδ(x) = V (x)dx where V (x) is the compensating upward velocity is
equal to the integral of U − u through the layer, which is the reduced volume

flux through the boundary layer. But according to (8.18) u = UF ′
(

y
√

U
νx

)

and

so, since F (η) ∼ η − 1.7208 + o(1) we have

δ(x) =

√
νx

U
lim
η→∞

(η − F (η)) = 1.7208

√
νx

U
. (8.21)

Thus

V (x) = 1.7208Uδ′(x) = .8604

√

Uν

x
= dy/dx, (8.22)

where y(x) = 1.7208
√

νx/U is the zero streamline of the “effective body” whose
thickness we may now identify with the displacement thickness as defined.

It is interesting to ask what error is being made if we substitute the Blasius
solution into the full Navier-Stokes equations and look at the remainder. We
consider here only the dimensionless form of the x-momentum equation. There
the terms we expelled to get the boundary layer equation were 1

Ruxx and px.
Substituting u = F ′(η) we obtain the exact equation

px −
1

x

[1

2
FF ′′ + F ′′′

]

− η

4x2R

[

3F ′′ + ηF ′′′
]

= 0. (8.23)

We see that the second bracketed term fails to be smaller that the first when
xR = O(1). Thus near the front edge of the plate the boundary layer equations
are not uniformly valid. In a small circular domain of order 1/R in radius about
the origin, the full Navier-Stokes equations can be shown to govern the fluid
flow. This small non-uniformity does not affect the validity elsewhere, however.
We can assert this because of the existence of the Blasius solution, and the fact
that experimental measurements confirm its validity at large R.

As a final remark concerning the Blasius solution, we note that the finite
flat plate, of length L, can be approached with exactly the same apparatus.
Although the Prandtl boundary-layer equations fail to hold at x = L as well as
x = 0, the development of the layer on the plate is unaltered to first order. In
paticular the drag on the plate, accounting fro both sides is given by

D = 2µ

∫ L

0

uy(x, 0)dx = 2µU

∫ L

0

√

U

νx
F ′′(0)dx (8.24)

This yields

D = 2µU · 2
√

UL

ν
· .332 = 1.328ρU2/

√
R. (8.25)

Thus friction drag on a plate is O(R−1/2) at large R, at least in a laminar flow.
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8.2.2 The Falkner-Skan family of boundary layers

An immediate generalization of the Blasius solution is to boundary layers whose
pressure gradient is some power of x. From the Bernoulli equation for steady
flow, a gradient px = −mA2x2m−1 results from an external stream with velocity
U(x) = Axm. We remark that for positive m there is an associated physical
Euler flow problem. Such a velocity variation occurs on the surface of an infinite
wedge aligned with a constant free stream, provided that the half-angle of the
wedge is m

m+1π. Then x is measured along the surface of the wedge, and y
is measured perpendicular to the surface. So again there is no length in the
problem. The equations to be solved are then, in dimensional form,

uux + vuy −mA2x2m−1 − νuyy = 0, ux + vy = 0. (8.26)

Since there is no length, we are led to look for a similarity solution . If we try
ψ = xαF (y/xβ), then the factors of x coming from insertion into (8.26) will
cancel, leaving an ordinary differential equation, provided that

α ==
1 +m

2
, β =

1 −m

2
. (8.27)

Setting

ψ = AKx
1+m

2 F (η), η =
y

Kx
1−m

2

, K =

√
ν

(m+ 1)A
, (8.28)

the equation which results (see problem 8.1) is

F ′′′ +
1

2
FF ′′ +

m

1 +m
(1 − F ′2) = 0. (8.29)

The boundary conditions are again F (0) = F ′(0) = 0, F ′(∞) = 1.
We show in figure 8.4 several profiles for variousm. For m positive existence

and uniqueness of the solution has be established, and the profiles become some-
what steeper. The cases m > 0 are said to correspond to a favorable pressure
gradient, U ′(x) > 0 and p′(x) < 0. The boundary layer can be said to respond
favorably to a pressure which decreases in the streamwise direction. When m
becomes negative, the story is significantly different. Uniqueness of the profile
can be lost, although profiles such that u ≥ 0 for all η can be shown to be unique.
In figure 8.4 we show the limiting case of such non-negative profiles, occurring
when m = −.0904. Note that F ′′(0) = 0 for this profile. This implies du/dy
vanishes at the wall, and so the viscous friction force is zero there. Positive
pressure gradients are said to be unfavorable, and can lead to the phenomenon
of boundary layer separation. We will return to the separation problem below.
Here the suggestion is that m < .0904 would lead to a boundary layer which
has a negative value of uy at the wall, and so would involve a region of reversed
flow; the streamline ψ = 0 must actually bifurcate from the wall, so the term
“separation” is appropriate.

We may summarize the general picture of high Reynolds number flow, as
provided by the boundary-layer concept, as follows. For a general finite body



128 CHAPTER 8. THE BOUNDARY LAYER

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

.3

.1 0
−.05

−.0904

F
p

ri
m

e

eta

Figure 8.4: The Falkner-Skan profiles for various m.

in a flow, there should be a portion of the surface of the body, upstream of any
point or point of separation of the boundary layer, where the flow is that of
an inviscid fluid except within a small layer adjacent to the body, called the
boundary layer. Within the boundary layer, the pressure gradient is imposed
by the inviscid exterior flow. At the same time the boundary layer modifies the
inviscid flow slightly due to its displacement thickness. The picture is clouded
by separation, and the tendency of high Reynolds number flows to be unstable
and hence time dependent.

Finally, with the example which follows we indicate how boundary-layer
techniques can arise in a somewhat different context.

Example 8.1

We give here as example of the application of boundary-layer ideas to a
different physical problem. The idea is to model a laminar two-dimensional
steady jet issuing from a small slit in a wall, see figure 8.5. We are going to
treat the jet as “thin” when Re� 1, and so apply Prandtl’s reasoning to obtain
again his boundary layer equations. Since pȳ = 0 the is invariant through the
jet, and assuming that at ȳ = ∞ we have uniform conditions, we may assert
that p is independent of x, as in Blasius’ semi-infinite plate problem. There is
no length in the problem (ignoring the small width of the slit), so again we are
led to try a solution of the form ψ = xαF (y/xβ). The condition that u · ∇u
and uyy have common factors of x requires that α + β = 1. We do not have
a nonzero value assumed by F ′ at infinity, as in the Blasius problem. However
there is a new physical constraint. Since the pressure is constant throughout,
there are no forces available to cause the net flux of x-momentum to vary as a
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Figure 8.5: A two-dimensional laminar jet emerges from a slit in a wall.

function of x. Consequently the integral (omitting a constant factor of ρ)

M =

∫ +∞

−∞
u2dy (8.30)

must be independent of x. This requires that β = 2α, so that α = 1/3, β = 2/3.1

Substituting ψ = x1/3F (y/x2/3) into the dimensional equation for ψ,

ψyψxy − ψxψyy − νψyyy = 0, (8.31)

we get the equation

νF ′′′ +
1

3
(FF ′)′ = 0. (8.32)

We require that F ′′, F ′ → 0 as η → ∞ and

∫ +∞

−∞
F ′2dη = M. (8.33)

Integrating twice,

1

6
F 2 + νF ′ =

1

6
F 2
∞, F∞ = F (∞). (8.34)

The integral yields

F = F∞ tanh
(F∞η

6ν

)

. (8.35)

Applying the condition (8.33) we obtain

ν

4
F 3
∞ = M, (8.36)

1To get this by a stretching group, x → Ax, y → By, ψ → Cψ, the momentum equation
requires A = BC as in the Blasius solution, but the momentum flux constraint is invariant
when C2 = B, so then C3 = A. Thus y/x2/3 is invariant, and ψ must be proportional to
x1/3.
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which determine F∞ in terms ofM . The velocity component u, which dominates
in the jet, is given by

u =
F 2
∞

6νx1/3

1

cosh2
(
F∞η
6ν

) . (8.37)

Note that the jet spreads as x2/3 and decays as x−1/3. In practice it is difficult
to establish a laminar jet because of instabilities, and the jets obtained in the
laboratory are usually turbulent.

8.3 Boundary-layer analysis as a matching prob-

lem

We now digress somewhat to indicate some of the mathematical ideas that
have grown our of Prandtl’s approach to high Reynolds number flow. We have
suggested that there is a kind of interaction at work between an “outer”, inviscid
flow, and an “inner” boundary-layer flow. That is, the pressure gradient is
fundamentally an outer condition imposed on the boundary layer. On the other
hand the boundary-layer modifies somewhat the strreamlines well away from
the body, in the inviscid flow. We now explore a model problem in one space
dimension, involving a singular perturbation of an ordinary differential equation.
The small parameter ε will replace 1/Re, and the problem is not one of fluid
dynamics; nevertheless there will be an inner solution and an outer solution that
will be analogous to our viscous boundary layer and out outer inviscid flow. We
suggest that the model indicates how a more formal approach to boundary layer
theory might proceed, although we shall not pursue this further here.

The model problem is the following: let f(x) = f(x, ε) satisfy

εf ′′ + f ′ = a, 0 < a < 1, 0 ≤ x ≤ 1, y(0) = 0, y(1) = 1. (8.38)

The “singular” adjective is usually applied to problems where the limiting op-
eration, in this case ε→ 0 reduces the order of the differential equation, in our
case from order two to order one.

We first define our “outer problem”, analogous to the inviscid Euler flow.
We bound x away from zero, 0 < A ≤ x ≤ 1, and apply the limit ε → 0 to the
model equation. This gives the reduced system

f ′ = a. (8.39)

We apply the condition at x−1 to the solution of this reduced equation, yielding

fouter = ax+ 1 − a. (8.40)

We see that fouter does not satisfy the condition on f at x = 0. This adjustment
will happen in a boundary layer near x = 0. So we consider with Prandtl how
to deal with the combination εfxx. If derivatives become large this combination
need not be small. On the other hand fx can also be large, so that it is tempting
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to suppose that at least minimally εfxx and fx must be the same size. This
suggests function of x/ε, so we define the stretched variable x̄ = x/ε. 2

Using the stretched variable our equation takes the form

fx̄x̄ + fx̄ = εa. (8.41)

We no consider the limit ε → 0 with 0 ≤ x̄ < B < ∞, obtaining the limiting
equation

fx̄x̄ + fx̄ = 0. (8.42)

This is our model of the Prandtl boundary layer. We require that its solution
vanish at x̄ = 0, so that

finner = C(1 − e−x̄). (8.43)

Here C is an undetermined constant. Note that finner → C as x̄ → ∞, so
that we have the model equivalent of obtaining the “velocity at infinity” for the
viscous boundary layer. Since f is suppose to be represent by fouter away from
x = 0, it is natural to identify C with the limit of fouter for small x. This yields

C = 1 − a. (8.44)

This is usually stated as a matching condition:

lim
x̄→∞

finner = lim
x→0

fouter. (8.45)

An approximation to f(x, ε) which applies to the entire interval can be ob-
tained by adding with inner and outer solutions, provided we account for any
terms that are common to both. The common part in our problem is just 1−a.
We define the approximate composite solution by

fcomp = finner + fouter − 1 + a = ax+ (1 − a)(1 − e−
x
ε ). (8.46)

It is interesting to compare our approximation with the exact solution of the
model problem, namely

f(x, ε) = ax+
(1 − a)

1 − e−
1
ε

(1 − e−
x
ε ). (8.47)

The difference is of order e−
1
ε uniformly over the domain.

Anyone wishing to explore further the use of singular perturbations in fluid
dynamics should consult the book Perturbation Methods in Fluid Mechanics, by
Milton D. Van Dyke. For boundary-layer theory these methods culminated in
an analytical attack on the problem of separation, which we explore briefly in
the final section of this chapter.

2The fact that we do not have a square root in defining a stretched variable, as we did for
the Reynolds number in the Prandtl boundary layer, reflects the vast difference in the fluid
equations and the model equation. This however is a relatively unimportant difference.
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Figure 8.6: The triple deck

8.4 Separation

One of the great accomplishments of 20th century fluid dynamics was an under-
standing of the fundamental mechanisms of separation of a boundary layer in
the limit of large R. This work, due to Stewartson, Williams, Messiter, Neiland,
Smith, Sychev, Kaplun, and others, led to a full description of the mechanism of
separation in a class of problems of wide applicability. A review of much of the
work on the separation problem may be found in Stewartwon, K., D’Alembert’s
paradox, SIAM Review vol. 23, No. 3, p.308 (1981).

The main result of this effort has been the so-called triple deck theory. The
name applies to the layering of domains of different orders of magnitude, in the
neighborhood of the point of separation. We show the structure of the triple
deck in figure 8.6. The main point to be made in discussing triple deck is that
the layered structure results from a nonlinear interaction between the boundary
layer and the pressure gradient. In other words, separation represents a breaking
of the inner-outer separation of the pressure gradient from the boundary layer
responding to the pressure gradient. Within the triple-deck region the boundary
layer is modifying the pressure gradient, which in turn is affecting the boundary
layer. Entering from the left of the main deck is the profile of the boundary
layer as it has evolved through a length we call L in the figure. Thus the
main deck has thickness LR−1/2. The thinner lower deck is a region where the
full boundary layer equations apply, with viscous stress important and reversal
of the flow occurring following separation. Over a ∆x of order LR−3/8 the
boundary layer is essentially raised by the same order, forming the upper layer.
During this lifting the main deck profile is unchanged by viscosity, since it is
traversing such a small domain. This lifting of the boundary layer modifies the
pressure gradient locally, and this penetrates down to the lower layer, providing
the feeedback that completes the cycle.
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Unfortunately this brief description of separation does not do justice to the
analysis involved, nor to the insight that was needed to determine the construc-
tion of the triple deck, nor to the many related questions that have been tackled
with this machinery.

Problem set 8

2. Verify (8.27) and (8.29).

2. Oseen’s equations are sometimes also proposed as a model of the Navier-
Stokes, equations, in the study of steady viscous flow past a body. Oseen’s
equations, for a flow with velocity (U, 0, 0) at infinity, are

U
∂u

∂x
+

1

ρ
∇p− ν∇2u = 0,∇ · u = 0.

(a) Show that in this model, if viscous stresses are neglected, the vorticity is a
function of y, z alone.

(b) For the Oseen model, and for a flat plate aligned with the flow, carry
out Prandtl’s simplifications for deriving the boundary-layer equations in two
dimensions, given that the boundary condition of no slip is retained at the body.
That is, find the form of the boundary layer on a flat plate of length L aligned
with the flow at infinity, according to Oseen’s model, and show that in the
boundary layer the the x-component of velocity, u, satisfies

U
∂u

∂x
− ν

∂2u

∂y2
= 0.

What are the boundary conditions on u for the flat-plate problem? Find the

solution, by assuming that u is a function of y
√

U
νx , for 0 < x < L.

(c) Compute the drag coefficient of the plate (drag divided by ρU2L, and
remember there are two sides), in the Oseen model.

3. What are the boundary-layer equations for the boundary-layer on the
front portion of a circular cylinder of radius a, when the free stream velocity is
(−U, 0, 0)? (Use cylindrical polar coordinates). What is the role of the pressure
in the problem? Be sure to include the effect of the pressure as an explicit
function in your momentum equation, the latter being determined by the po-
tential flow past a circular cylinder studied previously. Show that, by defining
x = aθ, ȳ = (r − a)

√
R in the derivation of the boundary-layer equations, the

equations are equivalent to a boundary layer on a flat plate aligned with the
free stream, in rectangular coordinates, but with pressure a given function of x.
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4. For a cylindrical jet emerging from a hole in a plane wall, we have a prob-
lem analogous to the 2D jet considered in class. Consider only the boundary-
layer limit. (a) Show that

∂

∂z
(u2
z) +

1

r

∂

∂r
(ruruz) −

ν

r

∂

∂r
(r
∂uz
∂r

) = 0,

and hence that the momentum M is a constant, where

M = 2πρ

∫ ∞

0

ru2
zdr.

(b) Letting (uz, ur) = (1/r)(ψr,−ψz) where ψ(0, z) = 0 show that we must have
ψ = zf(η), η = r2/z2. Determine the equation for f and thus show that the
boundary-layer limit has the form

f = 4ν
η

η + η0
,

where η0 is a constant. Express η0 in terms of M , the momentum flux of the
jet defined above.

5.consider the Prandtl boundary-layer equations with U(x) = 1/x, so p(x)/ρ =
p∞−1/(2x2). Verify that the similarity solution has the form ψ = f(η), η = y/x.
Find the equation for f . Show that there is no continuously differentiable so-
lution of the equation which satisfies f(0) = f ′(0) = 0 and f ′ → 1, f ′′ → 0 as
η → ∞. (Hint: Obtain an equation for g = f ′.)



Chapter 9

Energy

9.1 Mechanical energy

We recall the two conservation laws:
Conservation of mass:

∂ρ

∂t
+ ∇ · (ρu) = 0, (9.1)

Conservation of momentum:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= ρ

Dui
Dt

= Fi +
∂σij
∂xj

,
D

Dt
=

∂

∂t
+ u · ∇. (9.2)

Here σij are the components of the viscous stress tensor: 1

σij = −pδij + µ
[ ∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij∇ · u

]

. (9.3)

We now want to use these results to compute the rate of change of total
kinetic energy within a fixed fluid volume V . We see that

d

dt

∫

V

1

2
ρu2dV =

∫

V

[
ρui

∂ui
∂t

+
1

2

∂ρ

∂t
u2

]
dV

=

∫

V

([
− ρuj

∂ui
xj

+
∂σij
∂xj

+ Fi
]
ui −

1

2

∂ρuj
∂xj

u2
)

dV

=

∫

V

[
uiFi + p∇ · u

]
dV − Φ +

∫

S

[
− 1

2
ρuju

2 + uiσij
]
njdS, (9.4)

1You will find that Landau and Lifshitz allow a deviation from the Stokes relation. Recall
that this relation makes the trace of the non-pressure part of the stress tensor (the deviatoric
stress) zero. This deviation is accomplished by adding a term µ′δij∇ · u to the stress tensor,
where µ′ is called the second viscosity. For simplicity, and sionce the exact form is not material
to the problems we shall study, we neglect this second viscosity in the present notes. However
for applications to real gases it should be retained as the Stokes relation does not hold for
many gases.
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where S is the boundary of V and Φ is the total viscous dissipation in V :

Φ =

∫

φ

dV, φ = µ
[1

2

( ∂ui
∂xj

+
∂uj
∂xi

)2 − 2

3
(∇ · u)2

]

. (9.5)

We note from (9.4) that the contributions in order come from the work done
by body forces, the work done by pressure in compression, viscous heating, flux
of kinetic energy through S, and work done by stresses on S. We refer to (9.4)
as the mechanical energy equation, since we have use only conservation of mass
and momentum.

To put this expression into a different form we now complete the fluid equa-
tions by assuming a barotropic fluid, p = p(ρ). Then

∫

V

p∇ · udV =

∫

S

pu · ndS −
∫

V

u · ∇pdV. (9.6)

But ∫

V

u · ∇pdV =

∫

ρu · ∇
∫

1

ρ
p′(ρ)dρdV

=

∫

S

ρ

∫
1

ρ
p′(ρ)dρu · ndS +

∫

V

∂ρ

∂t

∫
1

ρ
p′(ρ)dρdV. (9.7)

We now define g(ρ) by

∫
1

ρ
p′(ρ)dρ = g′(ρ), g(0) = 0. (9.8)

and define e by

g = ρe. (9.9)

Noting that

d

dρ

(
p− ρ

∫
1

ρ
p′(ρ)dρ

)
= −

∫
1

ρ
p′(ρ)dρ = −g′ = −(ρe)′, (9.10)

we have that

p− ρ

∫
1

ρ
p′(ρ)dρ = −ρe. (9.11)

Thus ∫

V

p∇ · udV = −
∫

S

ρeu · ndS −
∫

V

∂ρ

∂t
(ρe)′dV. (9.12)

Using this in (9.4) we obtain

d

dt

∫

V

EdV +

∫

S

Eu · ndS = −Φ +

∫

V

uiFidV +

∫

S

uiσijnjdS, (9.13)

where

E = ρ
(
e+

1

2
u2

)
. (9.14)
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Note that if µ = 0 and Fi = 0 then (9.13) reduces to a conservation law of the
form

d

dt

∫

V

EdV +

∫

S

(E + p)u · ndS = 0. (9.15)

We note that E should have the meaning of energy, and we shall refer to e as
the internal energy of the fluid (per unit mass). Then (9.13) can be viewed as
as expression of the first law of thermodynamics ∆E = ∆Q −W , where ∆E
is the change of energy of an isolated system (not flux of energy through the
boundary), ∆Q is the heat added to the system, and W is the work done by the
system.

The form of (9.13) can however be used as a model for formulating a more
general energy equation, and we shall do this after first reviewing some of the
basic concepts of reversible thermodynamics.

9.2 Elements of classical thermodynamics

Thermodynamics deals with transformations of energy within an isolated sys-
tem. These transformations are determined by thermodynamic variables. These
come in two types: Extensive variables are proportional to the amount of ma-
terial involved. Examples are internal energy, entropy, heat. Intensive variables
are not proportional to quantity. Examples are pressure, density, temperature.

We have just introduced two new scalar fields, the absolute temperature T ,
and the specific entropy s. We shall also make use of specific volume v, defined
by v = 1/ρ.

We now discuss the thermodynamics of gases. In general we shall assume
the existence of an equation of state of the gas, connecting p, ρ, T . An important
example is the equation of state of an ideal or perfect gas, defined by

pv = RT. (9.16)

Here R is a constant associated with the particular gas. In general all thermo-
dynamic variables are determined by ρ, p and T . With an equation of state, in
principle we can regard any variable as a function of two independent variables.

We can now view our thermodynamic system as a small volume of gas which
can do work by changing volume, can absorb and give off heat, and can change
its internal energy. The first law then takes the differential form

dQ = de+ pdv. (9.17)

It is important to understand that we are considering here small changes which
take place in such a way that irreversible dissipative processes are not present.
For example, when a volume changes the gas has some velocity, and there could
be resulting viscous dissipation. W are assuming that the operations are per-
formed so that such effects are negligible. We then say that the system is
reversible. If the changes are such that dQ = 0, we say that the system is
adiabatic.
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We define the following specific heats of the gas: The specific heat at constant
pressure is defined by

cp =
∂Q

∂T

∣
∣
∣
dp=0

=
( ∂e

∂T

)

p
+ p

( ∂v

∂T

)

p
. (9.18)

Note that for an ideal gas p
(
∂v
∂T

)

p
= R.

The specific heat an constant volume is defined by

cv =
∂Q

∂T

∣
∣
∣
dv=0

=
( ∂e

∂T

)

v
. (9.19)

We will make use of these presently.
The second law of thermodynamics for reversible systems establishes the

existence of the thermodynamics variable s, the specific entropy, such that

dQ = Tds. (9.20)

Thus we have the basic thermodynamic relation

Tds = de+ pdv. (9.21)

We know make use of (9.21) to establish an important property of an ideal
gas, namely that its internal energy is a function of T alone. To see this, note
from (9.21) that

(∂e

∂s

)

v
= T,

(∂e

∂v

)

s
= −p. (9.22)

Thus

R
(∂e

∂s

)

v
+ v

( ∂e

∂v

)

s
= 0. (9.23)

Thus e is a function of s − R ln v alone. Then, by the first of (9.22), T =
e′(s−R lnv), implying s−R lnv is a function of T alone, and therefore e is also
a function of T alone. Thus the derivative of e with respect to T at constant
volume is the same as the derivative at constant pressure. By the definition of
the specific heats, we have

cp − cv = R. (9.24)

For an ideal gas it then follows that cp and cv differ by a constant. If both
specific heats are constants, so that e = cvT , it is customary to define that ratio

γ = cp/cv. (9.25)

For air γ is about 1.4.
The case of constant specific heats gives rise to a useful model gas. Indeed

we then have

ds = cv
dT

T
+R

dv

v
. (9.26)

Note that here the right-hand side explicitly verifies the existence of the differ-
ential ds. Using the equation of state of an ideal gas, the last equation may be
integrated to obtain

p = k(s)ργ , k(s) = Kes/cv , (9.27)

where K is a constant. The relation p = kργ defines a polytropic gas.
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9.3 The energy equation

The fundamental variables of compressible fluid mechanics of ideal gases are
u, ρ, p, T . We have three of momentum equations, one conservation of mass
equations, and an equation of state. We need one more scalar equation to
complete the system, and this will be an equation of conservation of energy.
Guided by the mechanical energy equation, we are led to introduce the total
energy per unit mass as e+ 1

2u
2 = E/ρ, and express energy conservation by the

following relation:

d

dt

∫

V

EdV +

∫

S

Eu ·ndS =

∫

S

uiσijnjdS+

∫

V

FiuidV +

∫

S

λ∇T ·ndS. (9.28)

We have on the right the working of body and surface forces and the heat flux
to the system. The latter is based upon the assumption of Fick’s law of heat
condition, stating that heat flux is proportional to the gradient of temperature.
We have introduced λ as the factor of proportionality. Given that heat flows
from higher to lower temperature, λ as defined is a positive function, most often
of ρ, T .

We now use (9.4) to eliminate some of the terms involving kinetic energy.
Note the main idea here. Once we recognize that the energy of the fluid involves
both kinetic and internal parts, we are prepared to write the first law as above.
Then we make use of (9.4) to move to a more “thermodynamic” formulation.
Proceeding we see easily that (9.28) becomes

d

dt

∫

V

ρedV +

∫

S

ρeu · ndS =

∫

S

λ∇T · ndS + Φ −
∫

p∇ · udV. (9.29)

This implies the local equation

ρ
De

Dt
−∇ · λ∇T − Φ + p∇ · u = 0. (9.30)

Using Tds = de+pdv and the equation of conservation of mass, the last equation
may be written

ρT
Ds

Dt
= ∇ · λ∇T + Φ. (9.31)

This is immediately recognizable as having on the right precisely the heat inputs
associated with changes of entropy.

There are other forms taken by the energy equation in addition to (9.30)
and (9.31). These are easiest to derive using Maxwell’s relations. To get each
such relation we exhibit a principle function and from it obtain a differentiation
identity, by using Tds = de+ pdv in a form exhibiting the principle function.
For example if e is the principle function, then

(∂e

∂s

)

v
= T,

(∂e

∂v

)

s
= −p. (9.32)
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Then the Maxwell relation is obtained by cross differentiation:

(∂T

∂v

)

s
= −

(∂p

∂s

)

v
. (9.33)

We define the next principle function by h = e + pv, the specific enthalpy.
Then Tds = dh− vdp. Thus

(∂h

∂s

)

p
= T,

(∂h

∂p

)

s
= v, (9.34)

giving the relation
(∂T

∂p

)

s
=

(∂v

∂s

)

p
. (9.35)

The principle function and the corresponding Maxwell relation in the two re-
maining cases are:

The free energy F = e− Ts, yielding

( ∂p

∂T

)

v
=

(∂s

∂v

)

T
. (9.36)

The free enthalpy G = h− Ts, yielding the relation

(∂s

∂p

)

T
= −

( ∂v

∂T

)

p
. (9.37)

We illustrate the use of these relations by noting that

ds =
( ∂s

∂T

)

p
dT +

(∂s

∂p

)

T
dp

= cp
dT

T
−

( ∂v

∂T

)

p
dp, (9.38)

where we have used (9.37). Now for a perfect gas
(
∂v
∂T

)

p
= R/p, so that (9.31)

may be written

ρcp
DT

Dt
− Dp

Dt
= ∇ · λ∇T + φ. (9.39)

In particular if cp, λ, µ are known functions of temperature say, then we have
with the addition of (9.39)a closed system of six equations for u, p, ρ, T .



Chapter 10

Gas dynamics I

10.1 Some basic relations for the non dissipative

case µ = λ = 0

In these case local conservation of energy may be written

∂E

∂t
+ ∇ · (uE) = u · F −∇ · (up). (10.1)

Using conservation of mass we have

D(e+ 1
2
u2)

Dt
=

1

ρ

(

u ·F − u · ∇p+
p

ρ

Dρ

Dt

)

=
1

ρ

(

u · F +
∂p

∂t

)

− D

Dt

p

ρ
.

Thus
D

Dt

(

e+
1

2
u2 +

p

ρ

)

=
1

ρ

(

u · F +
∂p

∂t

)

. (10.2)

If now the flow is steady, and F = −ρ∇Ψ, then we obtain a Bernoulli equation
in the form

H ≡ e+
1

2
u2 +

p

ρ
+ Ψ = constant (10.3)

on streamlines of the flow.
To see how H changes from streamline to streamline in steady flow, note

that

dH = d
(1

2
u2 + h + Ψ

)
= d

(1

2
u2 + Ψ

)
+ Tds+ vdp, (10.4)

so that we may write

∇H = ∇(
1

2
u2 + Ψ

)
+ T∇s+

1

ρ
∇p. (10.5)
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But in steady flow with µ = 0 we have ρu · ∇u + ∇p = −ρ∇Ψ, or

∇(
1

2
u2 + Ψ

)
+

1

ρ
∇p = u × ω, (10.6)

where ω = ∇ × u is the vorticity vector. Using the last equation in (10.5) we
obtain Crocco’s relation:

∇H − T∇s = u × ω. (10.7)

A flow in which Ds/Dt = 0 is called isentropic. From (9.31) we see that
µ = λ = 0 implies isentropic flow. If in addition s is constant throughout space,
the flow is said to be homentropic. Wee see from (10.7) that in homentropic
flow we have

∇H = u × ω. (10.8)

Note also that in homentropic flow the Bernoulli relation (10.3) becomes
(since dh = vdp)

∫
c2

ρ
dρ+

1

2
u2 + Ψ = constant (10.9)

on streamlines. here

c2 =
(∂p

∂ρ

)

s
(10.10)

is the speed of sound in the gas.

10.1.1 Kelvin’s theorem in a compressible medium

Following the calculation of the rate of change of circulation which we carried
out in the incompressible case, consider the circulation integral over a material
contour C:

d

dt

∮

C(t)

u · dx =
d

dt

∮

C(t)

u · ∂x
∂α

dα, (10.11)

where α is a Lagrangian parameter for the curve. then

d

dt

∮

C(t)

u · dx =

∮

C

Du

Dt
· dx +

∮

C

u · du. (10.12)

Using Du/Dt = −∇p/ρ−∇Ψ, we get after disposing of perfect differentials,

d

dt

∮

C(t)

u · dx =

∫

S

1

ρ2
(∇ρ×∇p) · ndS. (10.13)

Here S is any oriented surface spanning C. In a perfect gas, Tds = cvdT + pdv,
so that

T∇T ×∇s = ∇ p

ρR
× p∇1

ρ
= − T

ρ2
∇p×∇ρ. (10.14)

Thus
d

dt

∮

C(t)

u · dx =

∫

S

(∇T ×∇s) · ndS. (10.15)



10.1. SOME BASIC RELATIONS FOR THE NON DISSIPATIVE CASE µ = λ = 0143

10.1.2 Examples

We now give a brief summary of two examples of systems of compressible flow
equations of practical importance. We first consider the equations of acoustics.
This is the theory of sound propagation. The disturbances of the air are so small
that viscous and heat conduction effects may be neglected to first approxima-
tion, and the flow taken as homentropic. Since disturbances are small, we write
ρ = ρ0 + ρ′, p = p0 + p′,u = u′where subscript “0” denotes constant ambient
conditions. If the ambient speed of sound is

(∂p

∂ρ

)

s

∣
∣
∣
0

= c20, (10.16)

we assume ρ′/ρ0, p
′/p0 ‖u′|/c0 are all small. Also we see that p′ ≈ c20ρ

′. With
no body force, the mass and momentum equations give us

∂u′

∂t
+
c20
ρ0

∇ρ′ = 0,
∂ρ′

∂t
+ ρ0∇ · u′ = 0. (10.17)

here we have neglected terms quadratic in primed quantities. Thus we obtain
acoustics as a linearization of the compressible flow equations about a homoge-
neous ambient gas at rest.

Combining (10.17) we obtain

( ∂2

∂t2
− c20∇2

)

(ρ′,u′) = 0. (10.18)

Thus we obtain the wave equation for the flow perturbations. If sound waves
arise from still air, Kelvin’s theorem guarantees that u′ = ∇φ, where φ will also
satisfy the wave equation, with

p′ = c20ρ
′ = − 1

ρ0

∂φ

∂t
. (10.19)

The second example of compressible flow is 2D steady isentropic flow of a
polytropic gas with µ = λ = Ψ = 0. Then

u · ∇u +
1

ρ
∇p = 0,∇ · (ρu) = 0. (10.20)

Let u = (u, v), q2 = u2 + v2 . In this case the Bernoulli relation hold in the form

1

2
q2 +

∫
dp

ρ
= constant (10.21)

on streamlines. For a polytropic gas we have

∫
dp

ρ
= k

γ

γ − 1
ργ−1 =

1

γ − 1
c2. (10.22)
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Now we have, in component form

uux + vuy +
c2

ρ
ρx = 0, uvx + vvy +

c2

ρ
ρy = 0, (10.23)

and
ux + vy + u(ρx/ρ) + v(ρy/ρ) = 0 (10.24)

Substituting for the ρ terms using (10.23), we obtain

(c2 − u2)ux + (c2 − v2)vy − uv(vx + uy) = 0. (10.25)

If now we assume irrotational flow, vx = uy, so that (u, v) = (φx, φy), then we
have the system

(c2 − φ2
x)φxx + (c2 − φ2

y)φyy − 2φxφyφxy = 0, (10.26)

φ2
x + φ2

y +
2

γ − 1
c2 = constant. (10.27)

10.2 The theory of sound

The study of acoustics is of interest as the fundamental problem of linearized
gas dynamics. we have seen that the wave equation results. In the present
section we drop the subscript “0” and write

∂2φ

∂t2
− c2∇2φ = 0, (10.28)

where c is a constant phase speed of sound waves.
We first consider the one-dimensional case, and the initial-value problem on

−∞ < x < +∞. The natural initial conditions are for the gas velocity and the
pressure or density, implying that both φ and φt should be supplied initially.
Thus the problem is formulated as follows:

∂2φ

∂t2
− c2

∂2φ

∂x2
= 0, φ(x, 0) = f(x), φt(x, 0) = g(x). (10.29)

The general solution is easily seen to have the form

φ = F (x− ct) +G(x+ ct), (10.30)

using the initial conditions to solve for F,G we obtain easily D’Alembert’s so-
lution:

φ(x, t) =
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(s)ds. (10.31)

In the (x, t) plane, a given point (x0, t0) in t > 0 in influenced only by the initial
data on that interval of the x-axis lying between the points of intersection with
the axis of the two lines x− x0 = ±c(t− t0). This interval is called the domain
of dependence of (x0, t0). Conversely a given point (x0, t0) in t ≥ 0 can influence
on the point with the wedge bounded by the two lines x− x0 = ±c(t− t0) with
t − t0 ≥ 0. This wedge is called the range of influence of (x0, t0). These lines
are also known as the characteristics through the point (x0, t0).



10.2. THE THEORY OF SOUND 145

10.2.1 The fundamental solution in 3D

We first note that the three dimensions, under the condition of spherical sym-
metry, the wave equation has the form

∂2φ

∂t2
− c2

(∂2φ

∂r2
+

2

r

∂φ

∂r

)

= 0. (10.32)

here r2 = x2 + y2 + z2. Note that we can rewrite this as

(rφ)tt − (rφ)rr = 0, (10.33)

Thus we can reduce the 3D problem to the 1D problem if the symmetry holds.
Now we are interested in solving the 3D wave equation with a distribution

as a forcing function, an with null initial conditions. In particular we seek the
solution of

φtt − c2∇2φ = δ(x)δ(t), (10.34)

with φ(x, 0−) = φt(x, 0−) = 0. Since the 3D delta function imposes no devia-
tion from spherical symmetry, we assume this symmetry and solve the problem
as a 1D problem. When t > 0 we see from the 1D problem that

φ =
1

r
[F (t− r/c) +G(t+ r/c)]. (10.35)

(The change r − ct to t − r/c is immaterial but will be convenient here.) Now
the term in G represents “incoming” signals propagating toward the origin from
∞. Such wave are unphysical in the present case. Think of the delta function
a disturbance localized in space and time, like a firecracker set off at the origin
and at t = 0. It should produce only outgoing signals. So we set G = 0. Also,
near the origin F (t − r/c) ≈ F (t), so the δ(x)δ(t) distribution would result,
using ∇2(1/r) = −4πδ(x), provided

F (t− r/c) =
1

4πc2
δ(t− r/c). (10.36)

Another way to be this is to integrate the left-hand side of (10.34) over the ball
r ≤ ε, use the divergence theorem, and let ε→ 0.

So we define the fundamental solution of the 3D wave equation by

Φ(x, t) =
1

4πc2r
δ(t− r/c). (10.37)

10.2.2 The bursting balloon problem

To illustrate solution in three dimensions consider the following initial conditions
under radial symmetry. We assume that the pressure perturbation p satisfies

p(x, 0) =

{
pb, if 0 < r < rb,
0, if r > rb.

≡ N(r) (10.38)
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Here pb is a positive constant representing the initial pressure in the balloon.
Now pt = c2ρt = −c2ρ0∇2φ. If the velocity of the gas is to be zero initially, as
we must assume in the case of a fixed balloon, then

pt(x, 0) = 0. (10.39)

Since rp satisfies the 1D wave equation, and P is presumably bounded at r = 0,
we extend the solution to negative r by making rp an odd function. Then the
initial value problem for rp is will defined in the D’Alembert sense and the
solution is

rp =
1

2

[
N(r − ct) +N(r + ct)

]
. (10.40)

Note that we have both incoming and outgoing waves since the initial condition
is over a finite domain. For large time, however, the incoming wave does not
contribute and the pressure is a decaying “N” wave of width 2rb centered at
r = ct.

10.2.3 Kirchoff’s solution

We now take up the solution of the general initial value problem for the wave
equation in 3D:

φtt − c2∇2φ = 0, φ(x, 0) = f(x), φt(x, 0) = g(x). (10.41)

This can be accomplished from two ingenious steps. We first note that if φ
solves the wave equation with the initial conditions f = 0, g = h, the φt solves
the wave equation with f = h, g = 0. Indeedφtt = c2∇2φ tends to zero as t → 0
since this is a property of φ.

The second step is to note that the solution φ with f = 0, g = h is give by

φ(x, t) =
1

4πtc2

∫

S(x,t)

h(x′)dS′. (10.42)

The meaning of S here is indicated in figure 10.1. To verify that this is
the solution, note first that we are integrating over a spherical surface of radius
4πc2t2, Given that h is bounded, division by t still leaves a factor t, so we obtain
0 in the limit as t → 0. Also

φ =
t

4π

∫

|y|=1

h(x + ytc)dSy (10.43)

by a simple change of variable.Thus

φt =
1

4π

∫

|y|=1

h(x + ytc)dSy +
t

4π

∫

|y|=1

cy · ∇h(x + ytc)dSy. (10.44)

The first term on the right clearly tends to h(x) as t → 0, while the second term
tends to zero providing that h is a sufficiently well-behaved function.
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ct

x

O

S(x,t)

Figure 10.1: Definition of S(x, t) in the Kirchoff solution.
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We now show that (10.43) solves the wave equation. Using the divergence
theorem we can write (10.44) in the form

φt =
1

4π

∫

|y|=1

h(x + ytc)dSy +
1

4πct

∫

V (x,t)

∇2h(x′)dV ′, (10.45)

where V (x, t) denotes the sphere of radius ct centered at x. Then

φt =
1

4π

∫

|y|=1

h(x + ytc)dSy +
1

4πct

∫ ct

0

∫

Sρ(x)

∇2h(y)dSydρ, (10.46)

where Sρ(x) is the spherical surface of radius ρ centered at x.
Now we can compute

φtt =
c

4π

∫

|y|=1

y·∇h(x+ytc)dSy−
1

4πct2

∫

V (x,t)

∇2h(x′)dV ′+
1

4πt

∫

S(x,t)

∇2h(y)dSy

=
1

4πct2

∫

V (x,t)

∇2h(x′)dV ′− 1

4πct2

∫

V (x,t)

∇2h(x′)dV ′+
1

4πt

∫

S(x,t)

∇2h(y)dSy

=
1

4πt

∫

S(x,t)

∇2h(y)dSy.

=
c2t

4π

∫

|y|=1

h(x + ytc)dSy = c2∇2φ. (10.47)

Thus we have shown that φ satisfies the wave equation.
Given these facts we may write down Kirchoff’s solution to the initial value

problem with initial data f, g:

φ(x, t) =
1

4πtc2

∫

S(x,t)

g(x′)dS′ +
∂

∂t

1

4πtc2

∫

S(x,t)

f(x′)dS′. (10.48)

Although we have seen that the domain of dependence of a point in space
at a future time is in fact a finite segment of the line in one dimension, the
corresponding statement in 3D, that the domain of dependence is a finite region
of 3-space, is false. The actual domain of dependence is the surface of a sphere
of radius ct, centered at x. This fact is know as Huygen’s principle.

We note that the bursting balloon problem can be solved directly using the
Kirchoff formula. A nice exercise is to compare this method with the 1D solution
we gave above.

Moving sound sources give rise to different sound field depending upon
whether or not the source is moving slower of faster that the speed of sound. In
the latter case, a source moving to the left along the x-axis with a speed U > c
will produce sound waves having a conical envelope, see figure 10.2.

Here sinα = c/U = 1/Mwhere M = U/c is the Mach number. A moving of a
slender body through a compressible fluid at supersonic speeds can be thought
of as a sound source. The effect of the body is then confined to within the
conical surface of figure 10.2. This surface is called the Mach cone.
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ct

UtO

α

Figure 10.2: Supersonic motion of a sound source.

10.2.4 Weakly nonlinear acoustics in 1D

We have seen that sound propagation in 1D involves the characteristics x±ct =
constant, representing to directions of propagation. If a sound pulse traveling
in one of these directions is followed, over time weak nonlinear effects can be-
come important, and a nonlinear equation is needed to describe the compressive
waves. In this section we shall derive the equation that replaces the simple linear
wave equation φt ± cφx = 0 associated with the two families of characteristics.

We shall suppose that the disturbance is moving to the right, i.e. is in linear
theory a function of x− ct alone. The characteristic coordinates

ξ = x− ct, η = x+ ct (10.49)
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can be used in place of x, t provided c > 0. Then

∂

∂t
= −c ∂

∂ξ
+ c

∂

∂η
,
∂

∂x
=

∂

∂ξ
+

∂

∂η
. (10.50)

Thus with the linear theory our right-moving disturbance is annihilated by the
operator

∂

∂η
=

1

2

∂

c∂t
+

∂

∂x
. (10.51)

We shall be therefore looking a compressive wave which, owing to nonlinearity,
has a nonzero but small variation with respect to η. The variation with respect
to ξ will involves small effects, both from nonlinearity and from the viscous
stresses.

If the variables are again ρ0 + ρ′, p0 + p′, and u′, the exact conservation of
mass equation is

∂ρ′

∂t
+ ρ0

∂u′

∂x
= −∂(ρ

′u′)

∂x
. (10.52)

To get the proper form of the momentum equation we expand the pressure as
a function of ρ, assuming that we have a polytropic gas. With p = hργ we have
the Taylor series

p = p0 + c2ρ′
(γ − 1)

ρ0

(ρ′)2

2
+ . . . . (10.53)

Here we have use c2 = γkργ−1
0 . Thus the momentum equation takes the form,

through terms quadratic in primed quantities,

ρ0
∂u′

∂t
+ c2

∂ρ′

∂x
= −ρ′ ∂u

′

∂t
− ρ0u

′∂u
′

∂x
− γ − 1

ρ0
c2ρ′

∂ρ′

∂x
+

4µ

3

∂2u′

∂x2
. (10.54)

Note that the viscous stress term comes from the difference 2µ − 2
3µ in the

coefficient of ∂u′

∂x in the 1D stress tensor. We assume here that µ is a constant.
To derive a nonlinear equation for the propagating disturbance we proceed

in two steps. First, eliminate the ξ differentiations from the linear parts of the
two equations. This will yield a equation with a first derivative term in η, along
with the viscosity term and a collection of quadratic nonlinearities in u′, ρ′.
Then we use the approximate linear relation between u′ and ρ′ to eliminate ρ′

in favor of u′ in these terms. The result will be a nonlinear equation for u′ in
will all terms are small but comparable.

The linear relation used in the nonlinear terms comes from

ρ0
∂u′

∂t
= −c2 ∂ρ

′

∂x
(10.55)

Since dependence upon η is weak, the last relation expressed in ξ, η variables
becomes

−cρ0
∂u′

∂ξ
= −c2 ∂ρ

′

∂ξ
, (10.56)
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so that
ρ′ ≈ ρ0

c
u′ (10.57)

in the nonlinear terms as well as in any derivative with respect to η.
Now in characteristic coordinates the linear parts of the equations take the

forms
∂

∂ξ
(−cρ′ + ρ0u

′) +
∂

∂η
(cρ′ + ρ0u

′) = −∂(ρ
′u′)

∂x
. (10.58)

∂

∂ξ
(−cρ0u

′ + c2ρ′) +
∂

∂η
(cρ0u

′ + c2ρ′) = . . . , (10.59)

where the RHS consists of nonlinear and viscous terms. Dividing the second of
these by c and adding the two equations we get

2
∂

∂η
(cρ′ + ρ0u

′) = −∂(ρ
′u′)

∂x
− 1

c
ρ′
∂u′

∂t
− ρ0

c
u′
∂u′

∂x
− γ − 1

ρ0
cρ′

∂ρ′

∂x
+

4µ

3c

∂2u′

∂x2
.

(10.60)
Since the LHS here involves now only the ηderivative, we may use (10.57) to
eliminate ρ′, and similarly with all terms on the RHS. Also we express x and t
derivatives on the RHS in terms of ξ. Thus we have

4ρ0
∂u′

∂η
= −2

ρ0

c
u′
∂u′

∂ξ
+
ρ0

c
u′
∂u′

∂ξ
− +

ρ0

c
u′
∂u′

∂ξ
− (γ − 1)ρ0

c
u′
∂u′

∂ξ
+

4µ

3c

∂2u′

∂ξ2
.

(10.61)
Thus

2c
∂u′

∂η
+
γ + 1

2
u′
∂u′

∂ξ
− 2µ

3ρ0

∂2u′

∂ξ2
= 0. (10.62)

Now
∂

∂η
=

1

2c

( ∂

∂t
+ c

∂

∂x

)
, (10.63)

so
∂u′

∂t
|x + c

∂u′

∂x
|t +

γ + 1

2
u′
∂u′

∂ξ
− 2µ

3ρ0

∂2u′

∂ξ2
= 0. (10.64)

Now this involves a linear operator describing the time derivative relative to an
observer moving with the speed c. The linear operator is now the time derivative
holding ξ fixed. Thus

∂u′

∂t
|ξ +

γ + 1

2
u′
∂u′

∂ξ
− 2µ

3ρ0

∂2u′

∂ξ2
= 0. (10.65)

The velocity perturbation u′, we emphasize, is that relative to the fluid at rest
at infinity. Moving with the wave the gas is seen to move with velocity u = u′−c
or u′ really denotes u+ c where u is the velocity seen by the moving observer.

What we have in (10.65) is the viscous form of Burgers’ equation. It is a
nonlinear wave equation incorporating viscous dissipation but not dispersion.
By suitable scaling it may be brought into the form

ut + uux − νuxx = 0. (10.66)
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If the viscous term is dropped we have the inviscid Burgers wave equation,

ut + uux = 0. (10.67)

This equation is much studied as a prototypical nonlinear wave equation. We
review the method of characteristics for such equations in the next section.



Chapter 11

Gas dynamics II

11.1 Nonlinear waves in one dimension

The simplest scalar wave equation can be written in the conservation form

∂u

∂t
+

∂

∂x
F (u) = 0, (11.1)

equivalent to
∂u

∂t
+ v(u)

∂u

∂x
= 0, v(u) = F ′(u). (11.2)

The last equation can be regarded as stating that an observer moving with the
velocity v(u) observes that u does not change. The particle path of the observer
is called a characteristic curve. Since u is constant on the characteristic and the
velocity v is a function of u alone we see that the characteristic is a straight line
in the x, t- plane. If u(x, 0) = u0(x), the characteristics are given by the family

x = v(u0(x0))t + x0. (11.3)

Here x0 acts like a Lagrangian coordinate, marking the intersection of the char-
acteristic with the initial line t = 0.

As an example of the solution of the initial-value problem using character-
istics, consider the equation

∂u

∂t
+ u2∂u

∂x
= 0, u0(x) =

{
0, if x < 0,
x, if 0 < x < 1,
1, if x > 1

. (11.4)

First observe that the characteristics are vertical line in x < 0, so that u = 0 in
x < 0, t > 0. Similarly the characteristics are the line x = t + x0 when x0 > 1,
so that u = 1 when x > 1 + t. Solving x = x2

0t+x0 for x0(x, t), we arrive at the
following solution in the middle region 0 < x < 1 + t:

u(x, t) =
−1 +

√
1 + 4xt

2t
. (11.5)
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Now we modify the initial condition to

u0(x) =

{
0, if x < 0,
x/ε, if 0 < x < ε,
1, if x > ε

. (11.6)

The solution is then, since the characteristics in the middle region are x =
(x0/ε)

2t + x0

u(x, t) =
ε

2t

[

−1 +
√

1 + 4xt/ε2
]

. (11.7)

letting ε→ 0 in (11.7) we obtain

u→
√
x

t
. (11.8)

This solution, existing in the wedge 0 < x/t < 1 of the x, t-plane, is called an
expansion fan. Given the discontinuous initial condition

u =

{
0, if x < 0,
1, if x > 0,

(11.9)

we can solve for the expansion fan directly by noting that u must be a function
of η = x/t Substituting u = f(η) in our equation, we obtain

−ηf ′ + f2f ′ = 0, (11.10)

implying f = ±√
η. The positive sign is needed to make the solution continuous

at the edges of the fan.

11.1.1 Dynamics of a polytropic gas

We have the following equation for a polytropic gas in one dimension, in the
absence of dissipative processes and assuming constant entropy:

ut + uux +
c2

ρ
ρx, ρt + uρx + ρux = 0. (11.11)

Here c2 = kγργ−1 . If we define the column vector [u ρ]T = w, the system may
be written wt +A · wx where

A =

(
u c2/ρ
ρ u

)

. (11.12)

We now try to find analogs of the characteristic lines x ± ct = constant which
arose in acoustics in one space dimension. We want to find curves on which
some physical quantity is invariant. Suppose that v is a right eigenvector of AT

(transpose of A), AT · v = λv. We want to show that the eigenvalue λ plays a
role analogous to the acoustic sound velocity.
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Indeed, we see that

vT · [wt +A · wx] = vT · wt + AT · v · wx = vT ·wt + λvT ·wx = 0. (11.13)

Now suppose that we can find an integrating factor φ such that φvT · dw = dF .
The we would have

Ft + λFx = 0. (11.14)

Thus dx/dt = λ would define a characteristic curve in the x, t- plane on which
F = constant. The quantity F is called a Riemann invariant.

Thus we solve the eigenvalue equation

det(AT − λI) =
∣
∣
∣

(
u− λ ρ
c2/ρ u− λ

)∣
∣
∣ = 0. (11.15)

Then (u− λ)2 = c2, or

λ = u± c ≡ λ±. (11.16)

We see that the characteristic speeds are indeed related to sound velocity, but
now altered by the doppler shift introduced by the fluid velocity. (Unlike light
through space, the speed of sound does depend upon the motion of the observer.
Sound moves relative to the compressible fluid in which it exists.)

Thus the following eigenvectors are obtained:

λ+ :

(
−c ρ
c2/ρ −c

)

v+ = 0, vT+ = [ρ c], (11.17)

λ− :

(
c ρ

c2/ρ c

)

v− = 0, vT− = [ρ − c], (11.18)

We now choose φ:

φ[ρ ± c]
[
du
dρ

]

= dF±. (11.19)

Since c is a function of ρ we see that we may take φ = 1/ρ, to obtain

F± = u±
∫

c

ρ
dρ, (11.20)

which may be brought into the form

F± = u± 2

γ − 1
c. (11.21)

Thus we find that the Riemann invariants u± 2
γ−1

c are constant on the curves
dx
dt = u± c:

[ ∂

∂t
+ (u± c)

∂

∂x

][

u± 2

γ − 1
c
]

= 0. (11.22)
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11.1.2 Simple waves

Any region of the x, t-plane which is adjacent to a region where are fluid variables
are constant (i.e. a region at a constant state), but which is not itself a region of
constant state, will be called a simple wave region, or SWR. The characteristic
families of curves associated with λ± will be denoted by C±. Curves of both
families will generally propagate through a region. In a simple wave region one
family of characteristics penetrates into the region of constant state, so that one
of the two invariants F± will be known to be constant over a SWR. Suppose
that F− is constant over the SWR. Then any C+ characteristic in the SWR
not only carries a constant value of F+ but also a constant value of F−, and
this implies a constant value of u + c (see the definitions (11.21) of F±). Thus
in a SWR where F− is constant the C+ characteristics are straight lines, and
similarly for the C− characteristics over a SWR where F+ is constant.

Let us suppose that a simple wave region involving constant F− involves
u > 0, so fluid particles move upward in the x, t-plane. All of the C+ char-
acteristics have positive slope. They may either converge on diverge. In the
latter case we have the situation shown in figure 11.1(a). Since u+ c > u, fluid
particles must cross the C+ characteristics from right to left. Moving along
this path, a fluid particle experiences steadily decreasing values of u + c. We
assume now that γ > 1. Since u = 2c

γ−1+ constant by the constancy of F−,
we see that in this motion of the fluid particle c, and hence ρ, is decreasing.
Thus the fluid is becoming less dense, or expanding. We have in figure 11.1(a)
what we shall call a forward-facing expansion wave. Similarly in figure 11.1(b)
F+ is constant in the SWR, and u − c is constant on each C− characteristic.
These are again an expansion waves, and we term them backward- facing. For-
ward and backward-facing compression waves are similarly obtained when C+

characteristics converge and C− characteristics diverge.

11.1.3 Example of a SWR: pull-back of a piston

We consider the movement of a piston in a tube with gas to the right, see figure
11.2. The motion of the piston is described by x = X(t), the movement being
to the left, dX/dt < 0. If we take X(t) = −at2/2, then u = −at on the piston.
We assume that initially u = 0, ρ = ρ0 in the tube.

On the C− characteristics, we have u− 2c
γ−1

= F− = −2c0
γ−1

, or

c = c0 +
γ − 1

2
u. (11.23)

Also on C+ characteristics we have u+ 2c
γ−1

constant. By this fact and (11.23) we

have 2u+ 2c0
γ−1

is constant on the C+ characteristics. But since u = up = −at
at the piston surface, this determines the constant value of u . Let the C+

characteristic in question intersect the piston path at t = t0. Then the equation
of this characteristic is

dx

dt
= u+ c =

γ + 1

2
u+ c0 = −γ + 1

2
at0 + c0. (11.24)
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t t

x x

(a) (b)

c+ c-

Figure 11.1: Simple expansion waves, the curves indicating the direction of
particle paths. (a) Forward-facing; (b) Backward facing.
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x=0

x=X(t)

C+

C-

t

x

gas

Figure 11.2: Pull-back of a piston, illustrating a simple wave region.
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Thus

x = −aγ + 1

2
t0t+

aγ

2
t20 + c0(t− t0). (11.25)

If we solve the last equation for t0(X, T ) we obtain

t0 =
1

aγ

[

c0 +
at(γ + 1)

2
−

√
(
c0 +

at(γ + 1)

2

)2
+ 2aγ(x− c0t)

]

. (11.26)

Then u = −at0(x, t) in the simple wave region, c being given by (11.23).
Note that according to (11.23), c = 0 when t = t∗, where at∗ = 2

γ−1
c0. This

piston speed is the limiting speed the gas can obtain. For t > t∗ the piston pulls
away from a vacuum region bounded by an interface moving with speed −at∗.

If we consider the case of instantaneous motion of the velocity with speed
up, the C+ characteristics emerge from the origin as an expansion fan. Their
equation is

x

t
= u+ c = c0 +

γ + 1

2
u, (11.27)

so that

u =
2

γ + 1

[x

t
− 2c0

]

. (11.28)

To compute the paths ξ(t) of fluid particles in this example, we must solve

dξ

dt
=

2

γ + 1

[ξ

t
− 2c0

]

. (11.29)

A particle begins to move with the rightmost wave of the expansion fan, namely
the line x = c0t, meets the initial particle position. Thus (11.29) must be solved
with the initial condition ξ(t0) = c0t0. The solution is

ξ(t) =
−2c0
γ − 1

t+ c0t0
γ + 1

γ − 1
(t/t0)

2
γ+1 . (11.30)

For the location of the C− characteristics we must solve

dx

dt
= u− c =

3 − γ

2
u− c0 =

3 − γ

γ + 1
(x/t− c0) − c0, (11.31)

with the initial condition x(t0) = c0t0. There results

x(t) =
−2c0
γ − 1

t+ c0t0
γ + 1

γ − 1
(t/t0)

3−γ

1−γ . (11.32)

11.2 Linearized supersonic flow

We have seen above that 2D irrotational inviscid homentropic flow of a poly-
tropic gas satisfies the system

(c2 − φ2
x)φxx + (c2 − φ2

y)φyy − 2φxφyφxy = 0, (11.33)
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φ2
x + φ2

y +
2

γ − 1
c2 = constant. (11.34)

We are interested in the motion of thin bodies which do not disturb the ambient
fluid very much, The assumption of small perturbations, and the corresponding
linearized theory of compressible flow, allows us to consider some steady flow
problems of practical interest which are analogs of sound propagation problems.

We assume that the air moves with a speed U past the body, from left to
right in the direction of the x-axis. Then the potential is taken to have the form

φ = U0x+ φ′, (11.35)

where |φ′
x| � U0. It is easy to derive the linearized form of (11.33), since the

second-derivative terms must be primed quantities. The other factors are then
evaluated at the ambient conditions, c ≈ c0, φx ≈ U). Thus we obtain

(M2 − 1)φ′
xx − φ′

yy. (11.36)

Here
M = U0/c0 (11.37)

is the Mach number of the ambient flow. We note that in the linear theory the
pressure is obtained from

U0
∂u′

∂x
+

1

ρ0

∂p′

∂x
, (11.38)

or
p′ ≈ −U0ρ0φ

′
x. (11.39)

We now drop the prime from φ′. The density perturbation is then ρ′ = −c−2
0 U0ρφx.
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x

y=y (x)
+

y-y (x)-

dy/dx=m (x)

dy/dx=m (x)

+

-

y

x

U0 α

Figure 11.3: Thin airfoil geometry.

11.2.1 Thin airfoil theory

We consider first the 2D supersonic flow over a thin airfoil.

Linearized supersonic flow results when M > 1, linearized subsonic flow
when M < 1. The transonic regime M ≈ 1 is special and needs to be examined
as a special case.

We show the geometry of a thin airfoil in figure 11.3. We assume that the
slopes dy±/dx and the angle of attack α are small. In this case

m±(x) ≈ −α+ dy±/dx. (11.40)
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let the chord of the airfoil be l, so we consider 0 < x < l. We note that

1

l

∫ l

0

(m+ +m−)dx = −2α,
1

l

∫ l

0

(m2
+ +m2

−)dx = −2α2 +
1

l

∫ l

0

(y2
+ + y2

−)dx.

(11.41)
The analysis now makes use the following fact analogous to the linear wave

equation in 1D: the linear operator factors as

[√

M2 − 1
∂

∂x
− ∂

∂y

][√

M2 − 1
∂

∂x
+

∂

∂y

]
. (11.42)

Thus φ = f(x − y
√
M2 − 1) + g(x+ y

√
M2 − 1), where f, g are arbitrary func-

tions. We now need to use physical reasoning choose the right form of solution.
In linearized supersonic flow past an airfoil the disturbances made by the foil
propagate out relative to the fluid at the speed of sound, but are simultaneously
carried downstream with speed U0. In supersonic flow the foil cannot therefore
cause disturbances of the fluid upstream of the body. Consequently the charac-
teristic lines x±y

√
M2 − 1 = constant, which carry disturbances away from the

foil, must always point downstream. Thus in the half space above the foil the
correct choice is φ = f(x − y

√
M2 − 1), while in the space below it the correct

choice is φ = g(x + y
√
M2 − 1). To determine these functions, we must make

the flow tangent to the foil surface. Since we are dealing with thin airfoils and
small angles, the condition of tangency can be applied, approximately, at y = 0.
Thus we have the tangency conditions

φy
U0

|y=0+ = m+(x) = −
√

M2 − 1U−1
0 f ′(x), (11.43)

φy
U0

|y=0− = m−(x) =
√

M2 − 1U−1
0 g′(x), (11.44)

Of interest to engineers is the lift and drag of a foil. To compute these we
first need the pressures

p′+(x) = −U0ρ0u
′(x, 0+) = −U0ρ0f

′(x), p′−(x) = −U0ρ0g
′(x). (11.45)

This yields

p′± = ± U2
0 ρ0√

M2 − 1
(−α+ dy±/dx). (11.46)

Then

Lift =

∫ l

0

(p′− − p′+)dx =
2αρ0U

2
0 l√

M2 − 1
, (11.47)

Drag =

∫ l

0

(p′+m+−p′−m−)dx =
ρ0U

2
0 l√

M2 − 1
[2α2+

1

l

∫ l

0

[(dy+/dx)
2+(dy−/dx)

2]dx.

(11.48)
Note that now inviscid theory gives a positive drag. We recall that for

incompressible potential flow we obtained zero drag (D’Alembert’s paradox).
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In supersonic flow, the characteristics carry finite signals to infinity. In fact the
disturbances are being created so that the rate of increase of kinetic energy per
unit time is just equal to the drag times U0. This drag is often called wave drag
because it is associated with characteristics, usually called in this context Mach
waves, which propagate to infinity.

What happens if we solve for compressible flow past a body in the subsonic
case M < 1? In the case of thin airfoil theory, it is easy to see that we must
get zero drag. The reason is that the equation we are now solving may be
written φxx + φȳȳ = 0 where ȳ =

√
1 −M2y. The boundary conditions are at

y = ȳ = 0 so in the new variables we have a problem equivalent to that of an
incompressible potential flow.

In fact compressible potential flow past any finite body will give zero drag
so long as the flow field velocity never exceeds the local speed of sound, i.e. the
fluid stays locally subsonic everywhere. In that case no shock waves can form,
there is no dissipation, and D’Alembert’s paradox remains.

11.2.2 Slender body theory

Another case of interest is the steady supersonic flow past a slender body of
revolution. If the ambient flow is along the z-axis in cylindrical polar coordinates
x, r, the body we consider is a slender body of revolution about the z-axis. It
is easy to show that the appropriate wave equation (coming from the linearized

equations ρ0U0
∂u′

∂z
+ c20

∂ρ′

∂z
= 0, U0

∂ρ′

∂z
+ ρ0∇ · u′ = 0), is

β2φzz − φrr −
1

r
φr = 0, β =

√

M2 − 1. (11.49)

To find a fundamental solution of this equation, not that

a2φxx + b2φyy + c2φxx = 0 (11.50)

clearly has a “sink-like” solution [(x/a)2 + (y/b)2 + (z/c)2]−1, equivalent to the
simple sink solution (−4π time the fundamental solution) 1/

√

(x2 + y2 + z2) of
Laplace’s equation in 3D. This holds for arbitrary complex numbers a, b, c. It
follows that a solution of (11.49) is given by

S(z, r) =
1

√

z2 − β2r2
. (11.51)

Note that this is a real quantity only if βr < z, where S is singular. We therefore
want to complete the definition of S by setting

S(z, r) = 0, βr > z. (11.52)

Suppose now that we superimpose these solutions by distributing them on
the interval (0, l) of the z-axis,

φ =

∫

0

f(ζ)
√

(z − ζ)2 − β2r2
dζ. (11.53)
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However notice that if we are interested in the solution on the surface z−βr = C,
then there can be no contributions from values of ζ exceeding C. We therefore
propose a potential

φ(z, r) =







∫ z−βr
0

f(ζ)√
(z−ζ)2−β2r2

dζ, if 0 < z − βr < 1,
∫ 1

0
f(ζ)√

(z−ζ)2−β2r2
dζ, if z − βr > 1.

(11.54)

where we now require f(0) = 0.

We can in fact verify that (11.54) gives us a solution of (11.49) for any
admissible f , but will leave this verification as a problem.

Consider now the behavior of φ near the body. When r is small the main
contribution comes from the vicinity of ζ = z, so we may extract f(z) and use
the change of variables ζ = z − βr cosh λ to obtain

φ ≈ f(z)

∫ cosh−1(z/βr)

0

dλ = f(z) cosh−1(z/βr) ∼ f(z) log(2z/βr). (11.55)

Now let the body be described by r = R(z), 0 < z < l. The tangency
condition is then

r
φr
U0

∣
∣
∣
r=R

= R
dR

dz
≈ −f(z)/U0 . (11.56)

If A(a) denotes cross-sectional area, then we have

f(z) = − 1

2π
U0
dA

dz
. (11.57)

The calculation of drag is a bit more complicated here, and we give the result
for the case where R(0) = R(l) = 0. Then

Drag =
ρ0U

2
0

4π

∫ l

0

∫ l

0

A′′(z)A′′(ζ)
1

log |z − ζ|dzdζ. (11.58)

The form of this emphasizes the importance of have a smooth distribution of
area. in order to minimize drag.

An alternative formulation and proof of the drag formula

To prove (11.58) it is convenient to reformulate the problem in terms of a stream-
function. We go back to the basic equations for steady homentropic potential
flow in cylindrical polar coordinates.

∂ur
∂z

− ∂uz
∂r

= 0,
∂rρuz
∂z

+
∂rρur
∂r

= 0, (11.59)

u2
z + u2

r +
2

γ − 1
c2 = constant. (11.60)
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α

z-βr < 0

0< z-βr < 1

z-βr>1

Figure 11.4: Steady supersonic flow past a slender body of revolution. Here
tanα = 1/

√
M2 − 1.
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From the second of (11.59) we introduce the streamfunction ψ,

rρuz =
∂ψ

∂r
, rρur = −∂ψ

∂z
. (11.61)

We then expand the equations as follows:

ψ =
U0

2
r2 + ψ′, ρ = ρ0 + ρ′, (11.62)

and linearize. The result is the equation for ψ′,

r
∂

∂r

1

r

∂ψ′

∂r
− β2 ∂

2ψ′

∂z2
= 0. (11.63)

Now the boundary condition in terms of the stream function is that ψ equal
zero on the slender body r = R(z). Approximately, this gives

ρ0
U0

2
r2 + ψ′(z, 0) ≈ 0. (11.64)

We also want no disturbance upstream, so ψ′ and ′′z should vanish on z =
0, r > 0. A solution of this problem is given by

ψ′ = −ρ0U0

2π

∫ z−βr

0

√

(z − ζ)2 + β2r2A′′dζ. (11.65)

It is easy to see that the equation and upstream conditions are satisfied
under the conditions that R(0) = 0. For the boundary condition we have

ψ′(z, 0) = −ρ0U0

2π

∫ z

0

(z − ζ)A′′dζ = −ρ0U0

2π

∫ z

0

A′dζ = −ρ0
U0

2
r2. (11.66)

Now the drag is given by

D =

∫ l

0

p′A′(ζ)dζ, (11.67)

where the linear theory gives p′ ≈ −ρ0U0uz. However it turns out that the ur
velocity components become sufficiently large near the body to make a leading
order contribution. Thus we have

p′ ≈ −ρ0U0uz −
1

2
u2
r + . . . . (11.68)

We note that

uz =
1

ρr

∂ψ

∂r
≈ 1

ρ0r

∂ψ′

∂r
− U0

ρ0c
2
0

p′, (11.69)

from which we have

−β2uz =
1

ρ0r

∂ψ′

∂r
. (11.70)
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Thus

uz = −U0

2π

∫ z−βr

0

A′′(ζ)
√

(z − ζ)2 + β2r2
dζ. (11.71)

Similarly

ur =
U0

2πr

∫ z−βr

0

(z − ζ)
A′′(ζ)

√

(z − ζ)2 + β2r2
dζ. (11.72)

We see by letting r → R ≈ 0 in (11.72) that

ur ≈
U0

2π
A′(z)/R(z). (11.73)

Also

uz ≈ −U0

2π

[

A′′(z − βr) cosh−1 z

βr
+

∫ z−βr

0

A′′(ζ) −A′′(z − βr)
√

(z − ζ)2 + β2r2
dζ

]

(11.74)

≈ −U0

2π

[

A′′ log
2z

βR
−

∫ z

0

A′′(z) − A′′(ζ)

z − ζ
dζ

]

. (11.75)

We are now in a position to compute D:

D =
ρ0U

2
0

2π

∫ l

0

A′(z)

∫ z−βR

0

[

A′′(z) log
2z

βr
−

∫ z

0

A′′(z) − A′′(ζ)

z − ζ
dζ−1

4
A−1(z)(A′)2(z)

]

dz.

(11.76)
After an integration by parts and a cancelation we have

D =
ρ0U

2
0

2π

∫ l

0

A′(z)
[

A′′(z) log z −
∫ z

0

A′′(z) −A′′(ζ)

z − ζ
dζ

]

dz. (11.77)

Our last step is to show that (11.77) agrees with (11.58). Now if B(z) = A′(z),

∫ l

0

∫ l

0

B′(z)B′(ζ) log |z − ζ|dζdz = 2

∫ l

0

B′(z)

∫ z

0

B′(ζ) log |z − ζ|dζdz

= 2

∫ l

0

B′(z)B(z) log zdz + 2

∫ l

0

B′(z)

∫ z

0

B(z) −B(ζ)

z − ζ
dζdz

= −2

∫ l

0

B′(z)B(z) log zdz − 2

∫ l

0

B(z)

∫ z

0

B′(z) −B′(ζ)

z − ζ
dζdz, (11.78)

which proves the agreement of the two expressions. Here we have used

d

dz

∫ z

0

B(z) −B(ζ)

z − ζ
dζ =

B(z) −B(ζ)

z − ζ

∣
∣
∣
ζ

= z+

∫ z

0

(z − ζ)B′(z) −B(z) + B(ζ)

(z − ζ)2
dζ

= B′(z) +
[ (z − ζ)b′(z) − B(z) +B(ζ)

(z − ζ)2

]z

0
+

∫ z

0

B′(z) − B(ζ)

z − ζ
dζ

=

∫ z

0

B′(z) −B′(ζ)

z − ζ
dζ + B(z)/z. (11.79)
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Chapter 12

Shock waves

12.1 Scalar case

We have seen that the equation ut + uux = 0 with a initial condition u(x, 0) =
1 − x on the segment 0 < x < 1 produces a family of characteristics

x = (1 − x0)t+ x0. (12.1)

This family of lines intersects at (x, t) = (1, 1). If the initial condition is ex-
tended as

u(x, 0) =

{
1, if x < 0,
0, if x > 1,

(12.2)

we see that at t = 1 a discontinuity develops in u as a function of x. We
thus need to study how such discontinuities propagate for later times as shock
waves. We study first the general scalar wave equation in conservation form,
ut +(F (u))x = 0. This equation is assumed to come from a conservation law of
the form

d

dt

∫ b

a

udx = F (u(a, t))− F (u(b, t)). (12.3)

Suppose now that in fact there is a discontinuity present at position ξ(t) ∈
(a, b). Then we study the conservation law by breaking up the interval so that
differentiation under the integral sign is permitted:

d

dt

[ ∫ ξ

a

udx+

∫ b

ξ

udx = F (u(a, t))− F (u(b, t)). (12.4)

Now differentiating under the integral and using the wave equation to eliminate
the time derivatives of u we obtain

dξ

dt
[u(ξ+, t) − u(ξ−, t)] = F (u(ξ+, t)) − F (u(ξ−, t)). (12.5)
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Thus we have an expression for the propagation velocity of the shock wave:

dξ

dt
=

[F ]x=ξ
[u]x=ξ

, (12.6)

where here [·] means “jump in”. The direction you take the jump is immaterial
provided that you do the same in numerator and denominator.

Example: Let ut + uux = 0,

u(x, 0) =







0, if x < −1,
1 + x, if −1 < x < 0,
1 − 2x, if 0 < x < 1/2
, 0, if x > 1/2.

(12.7)

The characteristic family associated with the interval −1 < x < 0 is x =
(1 +x0)t+ x0, while that of 0 < x < 1/2 is x = (1− 2x0)t+ x0. The shock first
occurs at (x, t) = (1/2, 1/2). To the right of the shock u = 0, while to the left
the former family gives

u = 1 + x0(x, t) = 1 +
x− t

1 + t
=

1 + x

1 + t
. (12.8)

Then
dξ

dt

1

2
[u(ξ−, t) + u(ξ+, t)] =

1

2

ξ + 1

1 + t
, ξ(1/2) = 1/2. (12.9)

Thus
ξ(t) =

√

3/2
√

1 + t− 1. (12.10)

We show the x, t-diagram for this in figure 12.1.

12.1.1 A cautionary note

One peculiarity of shock propagation theory is that it is strongly tied to the
physics of the problem. Suppose that u ≥ 0 solves ut + uux = 0. Then it
will also solve vt + [G(v)]x = 0 where G = 2

3v
3/2 and v = u2. In the firmer

case the shock wave propagation speed is 1
2(u+ + u−), while in the latter it is

2
3
(u2

+ + u+u− + u2
−)/(u+ + u−), which is different. What’s going on??

The point is that ut+uux = 0 is based fundamentally on a conservation law
involving F (u) = u2/2. In actual physical problems the conservation laws will
be known and have to be respected. Another way to say this is that equivalent
partial differential equations can arise from different conservation laws. It is the
conservation law that determines the relevant shock velocity however.

We illustrate this with a simple example from the continuum theory of traffic
flow. Consider a single-lane highway with n(x, t) cars per mile as the traffic
density. The cars are assumed to move at a speed determined by the local
density, equal to u = U(1 − n/n0 where U is the maximum velocity and n0

is the density of full packing and zero speed. The flux of cars is the F (n) =
nu = Un(1 − n/n0), and the corresponding conservation of car number yields
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x

t

Figure 12.1: Example of shock formation and propagation.
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shock

1 2

Figure 12.2: The stationary normal shock wave.

the PDE nt + [F (n)]x = 0. This is equivalent to vt + [G(v)]x = 0 where v = n2

and G = U [v − 2
3n0

v3/2. However the conservation law associated with v, G
makes no physical sense. We know how the speed of the cars depends upon
n, and conservation of number (if indeed that is what happens) dictates the
former conservation law. Not that if the square of density was somehow what
was important in the conservation of mass, we would end up with a conservation

of mass equation ∂ρ2

∂t + ∇ · (ρ2u) = 0.

12.2 The stationary normal shock wave

We now want to consider a stationary planar shock in gas dynamics, without
viscosity or heat conduction. We assume that constant conditions prevail on
either side of the shock denoted by the subscripts 1, 2, see figure 12.2.

We have the following conservation laws:

Mass : ρ1u1 = ρ2u2. (12.11)

Momentum : p1 + ρ1u
2
1 = p2 + ρ2u

2
2. (12.12)

Recall the following form of the energy equation:

∂ρe

∂t
+ ∇ · (ρeu) = −p∇ · u. (12.13)

From conservation of momentum we also have

D

Dt

1

2
ρu2 = −u · ∇p− 1

2
ρu2∇ · u. (12.14)



12.2. THE STATIONARY NORMAL SHOCK WAVE 173

Combining these to equation we have

∂E

∂t
+ ∇ · (E + p)u = 0, E = ρ(e +

1

2
u2). (12.15)

At the shock we must therefore require continuity of (ρu(e+ p
ρ + 1

2u
2), and since

ρu is continuous we have that e+ p
ρ + 1

2u
2 = h+ 1

2u
2 is continuous:

Energy : h1 +
1

2
u2

1 = h2 +
1

2
u2

2. (12.16)

Let us write m = ρu as the constant mass flux, and let v = 1/ρ. Then the
conservation of energy may be rewritten

h2 − h1 =
1

2
m2(v2

1 − v2
2). (12.17)

Also conservation of momentum can be rewritten

m2 =
p1 − p2

v2 − v1
(12.18)

Thus

h1 − h2 =
1

2
(v1 + v2)m

2(v2 − v1), (12.19)

which is equivalent to

h1 − h2 =
1

2
(v1 + v2)(p1 − p2). (12.20)

Written out, this means

e1 − e2 + p1v1 − p2v2 =
1

2
(v1 + v2))p1 − p2) (12.21)

or

e1 − e2 =
1

2
(v2 − v1)(p1 + p2). (12.22)

The relations (12.20),(12.22) involving the values of the primitive thermody-
namic quantities on either side of the shock are called the Rankine-Hugoniot
relations.

For a polytropic gas we have

e =
1

γ − 1
pv. (12.23)

This allows us to write (12.22) as

2

γ − 1
(p1v1 − p2v2) + (v1 − v2)(p1 + p2) = 0, (12.24)

or
γ + 1

γ − 1
(p1v1 − p2v2) − v2p1 + p2v1 = 0. (12.25)
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-µ  p
1

2

µ   v2
1

v

p

(v  ,p  )
11

Figure 12.3: The Hugoniot of the stationary normal shock wave.

We now introduce notation from Courant and Friedrichs: Let ν2 = γ−1
γ+1 . (µ

has no relation whatsoever to viscosity.)According to (12.25), if the state p1, v1
exists upstream of a shock, the possible downstream states p, v satisfy

−p1v1 + pv + µ2vp1 − µ2pv1 = 0, (12.26)

or

(p + µ2p1)(v − µ2v1) + (µ4 − 1)p1v1 = 0. (12.27)

We shall late see that the only allowed transition states are upward along
the Hugoniot from the point (v1, p1), as indicated by the arrow, corresponding
to an increase of entropy across the shock.

12.2.1 Prandtl’s relation

For a polytropic gas the energy conservation may use

h =
γ

gamma − 1

p

ρ
=

1 − µ2

2µ2
c2. (12.28)

Then conservation of energy across a shock becomes

(1 − µ2)c21 + µ2u2
1 = (1 − µ2)c22 + µ2u2

2 ≡ c2∗. (12.29)
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Note that then constancy of (1− µ2)c2 + µ2u2 implies that (1− µ2)(u2 − c2) =
u2 − c2∗. Since µ < 1, this last relation shows that u > c∗ iff u > c and u < c∗
iff u < c.

Prandtl’s relation asserts that

u1u2 = c2∗. (12.30)

This implies that the on one side of the shock u > c∗ and hence u > c, i.e.
the flow is supersonic relative to the shock position, and on the other side it is
subsonic. Since density increases as u decreases, the direction of transition on
the Hugoniot indicates that the transition must be from supersonic to subsonic
as the shock is crossed.

To prove Prandtl’s relation, note that (1+µ2)p = ρ(1−µ2)c2 since µ2 = γ−1
γ+1

.

Then, if P = ρu2 + p,

µ2P + p1 = µ2u2
1ρ1 + (1 + µ2)p1 = ρ1[µ

2u2
1 + (1 − µ2)c21] = ρ1c

2
∗. (12.31)

Similarly µ2P + p2 = c2∗ρ2. Thus

p1 − p2 = c2∗(ρ1 − ρ2),

or

c2∗ =
p1 − p2

ρ1 − ρ2
=
p1 − p2
1
ρ2

− 1
ρ1

1

ρ2ρ1
=

m2

ρ1ρ2
= u1u

′
2 (12.32)

where we have used (12.18).

12.2.2 An example of shock fitting: the piston problem

Suppose that a piston is driven through a tube containing polytropic gas at
a velocity up. We seek to see under what conditions a shock will be formed.
Let the shock speed be U . In going to a moving shock our relations for the
stationary shock remain valid provided that u − U replaces u. Thus Prandtl’s
relation becomes

(u1 − U)(u2 − U) = c2∗ = µ2(u1 − U)2 + (1 − µ2)c21, (12.33)

where the gas velocities are relative to the laboratory, not the shock. Rearrang-
ing, we have

(1 − µ2)(u1 − U)2 + (u1 − U)(u2 − u1) = (1 − µ2)c21. (12.34)

Consider now the flow as shown in figure 12.4.
The gas ahead of the chock is at rest, u1 = 0, with ambient sound speed

c1 = c0. Behind the shock the gas moves with the piston speed, u2 = up. Thus
we have a quadratic for U :

(1 − µ2)U2 − upU = (1 − µ2)c20. (12.35)
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2
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shock

x=u  tp

t

x

Figure 12.4: Shock fitting in the piston problem.



12.2. THE STATIONARY NORMAL SHOCK WAVE 177

Thus

U =
up +

√

u2
p + 4(1 − µ2)c20

2(1− µ2)
. (12.36)

We see that a shock forms for any piston speed. If u + p is small compared to
c0, the shock speed is approximately c0, but slightly faster, as we expect. To
get the density ρp behind the shock in terms of that ρ0 of the ambient air, we
note that mass conservation gives (up − U)ρp = −Uρ0 or

ρp =
U

U − up
ρ0. (12.37)


