

1.(15pts) Using the similarity method, derive the fundamental solution $U(x, y, t)$ of the heat equation in 2D, satisfying

$$U_t - k(U_{xx} + U_{yy}) = 0, \quad t > 0,$$

$$\lim_{t \rightarrow 0^+} U = \delta(x)\delta(y).$$

Note, you may assume $U = U(r, t)$, $r^2 = x^2 + y^2$, and $U_{xx} + U_{yy} = U_{rr} + r^{-1}U_r$, so that the integral condition is

$$2\pi \int_0^\infty Ur dr = 1, \quad t > 0.$$

Also, we may assume U and its derivatives vanish at infinity. Show that

$$U = \frac{1}{4\pi kt} e^{-r^2/(4kt)}.$$

Use the solution to write the solution to the IVP in the Cauchy form for 2D.

2.(15pts) Express the solution of the following inhomogeneous problem as the sum of a Fourier series (giving explicitly the coefficients) and a function of the form $Ax + B$:

$$T_t - kT_{xx} = 0, \quad 0 < x < 2\pi,$$

$$T(0, t) = 4, \quad T(2\pi, t) = 3, \quad T(x, 0) = 0.$$

3.(10pts) Suppose that the IVP for the 1D heat equation on $-\infty < x < +\infty$ is solved with $u(x, 0) = f(x)$, $f(-x) = -f(x)$. Show that the solution may be written in the form

$$u(x, t) = \int_0^{+\infty} f(\xi)[U(x - \xi, t) - U(x + \xi, t)]d\xi,$$

where U is the fundamental solution. From this deduce that u is the solution to the IVP for the half interval $x > 0$, with initial values $f(x)$ on this interval, subject to the boundary condition $u(0, t) = 0$. This is an example of *the reflection method*.

4.(20pts) Consider the following problem with mixed boundary condition:

$$T_t - kT_{xx} = 1, \quad 0 < x < L,$$

$$T(0, t) = 0, \quad T_x(L, t) = \alpha T(L, t),$$

where α is a positive constant. Find an equation for the eigenvalues λ_n , giving the eigensolutions

$$\phi_n(x, t) = e^{-\lambda_n kt} \psi_n(x)$$

and by means of a sketch show there are an infinite number of them. (You do not have to determine the eigenvalues explicitly.) Find the asymptotic form of the positive eigenvalues for large n . Be sure to consider all possible values of α . Under what conditions on αL will the solution of the IVP invariably decay to zero?

5.(20pts) Use the Fourier transform to find the fundamental solution of the partial differential equation

$$\frac{\partial u}{\partial t} + k \frac{\partial^4 u}{\partial x^4} = 0.$$

Express your answer as an inverse Fourier transform. Show that the answer has the form $u = t^{-1/4} f(x/t^{1/4})$. Derive a differential equation for f from this form and show that it reduces to $\eta f + 4f\eta\eta\eta = 0$. Show that the Fourier integral solution satisfies this differential equation.

6.(20pts) The ocean may be considered for this problem a 2D domain where contaminants such as oil from an oil spill diffuse with diffusivity k . Suppose that a spill of volume Q occurs at $t = 0$ at a point $(0, y_0)$ where $y_0 > 0$ and the line $y = 0$ is a coastline. The spill is cleaned as it arrives at the coast, so that the flux of oil onto the beach is given by

$$F = \int_{-\infty}^{+\infty} -k \frac{\partial u}{\partial y}(x, 0, t) dx,$$

where $u(x, y, t)$ is the oil density, solving the diffusion equation in 2D with diffusivity k . Give an expression for F as a function of time. At what time, in terms of y_0, k , does the flux reach a maximum?. Use the fundamental solution from problem 1.