Applied Mathematics II SPECIAL PROBLEM SET Due February 20, 2001

The following problems are intended to fill in some material outlined at the end of lecture 3.
Recall that we have calculated the fundamental solution of the wave equation in 3D. R(x,t) = R3(x,1t),
in the form
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Recall r = (22 + 92 + 2%)'/? and R satisfies
Rit — 2V2R = 6§(z)0(y)6(2)6(t) = 6(x)8(¢).
Also, R solves the homogeneous wave equation for ¢ > 0 with initial conditions
R(x,0) =0, R;(x,0) = d(x).

Here x = (z,y, 2) According to the superposition principle given in class, the function u(x,t) satisfying the
wave equation for ¢ > 0 and initial conditions

U(X, 0) = O,Ut(X, 0) = 'l/}(X)
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Here dV' indicates the volume element attached to x’, the dummy variable of integration.
Problem 1: Show that the last equation may be written as
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where dS’ is the area element attached to x’ and o(x,t) denotes the sphere of radius ¢t and center at x.

Hints: First set x' = x + y so that in the integral |y| = ¢t. Then use a spherical coordinate system
centered at x to make dS' = c?t2d2 where d() is the element of solid angle attached to y. Then do the
integration with respect to the radius |y| = p say. You will then have
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Now use the following two properties of the one dimensional delta function:

5(=2) = 8(z), 8(cx) = || '3(a),

where c is any nonzero real number. With these you should obtain the indicated result.
Recall now that the Kirchoff solution of uy — ¢2V2u = 0,¢ > 0 with initial values u(x,0),us(x,0)

prescribed is
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Consider then again the problem of the bursting balloon. The pressure p of the sound field can them
be taken as the variable u of the Kirchoff solution, with p(x,0) = p; for 0 < r < 7, and zero elsewhere. Also
pe(x,0) = 0.

is given by




Problem 2: Show that the Kirchoff solution gives the same answer in the bursting balloon problem as
we obtained from the D’Alembert solution.

Hints: Let an observer be located at a point A a distance R > rp from the center of the balloon.
Consider the intersection of a spherical surface of radius ct, centered at A, with the balloon. The part of
the surface within the balloon is bounded by a circle, and any line drawn from A to this circle will make an
angle a with the line from the center of the balloon to A (draw a side view). From geometry we know that
the area of the spherical surface within the balloon is then 27(1 — cos @)c?t?. Also from the geometry of the
triangle we have that r7 = R? + ¢?t> — 2Rct cos a. Using this information and the Kirchoff formula, find the
pressure field as ¢t varies through the balloon and obtain the “N” wave we obtained before.

Consider now the fundamental solution of the wave equation in 2D, Ry (z,y,t) say, satisfying

uge + V23 = §()d(y)d(t).

As we indicated in class, this solution can be obtained by the “method of descent”. Here the descent is
from 3 to 2 dimensions. If R(x,?) is the fundamental solution in 3D, the idea is to apply the principle of
superposition, and write
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Problem 3: Formally applying the 3D wave operator to the integrand of the last equation, verify that
this gives us the 2D solution.
Problem 4: Show that, if o, = (22 + 3?)/2,

0, if ¢t < rq,
Ry(z,y,1) = e gmasy H0<ra<ct
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Hints: You sill need to make use of the following result for 1D delta functions: Let f(z) be a twice
differentiable function with exactly one 1 simple zero z¢ in the interval [a,b]. Then
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To prove this, write f(z) = f'(zo)(x — xo) + f"(k(x,20))(® — z0)?/2. Then use the earlier rule for §(cz),
then the basic definition of the delta function.



