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1. Summary

Runs of the NSTAB equilibrium and stability code show there are many

3D solutions of the advanced tokamak problem subject to axially symmet-
ric boundary conditions. These numerical simulations based on mathe-

matical equations in conservation form predict that the ITER project will
encounter pervasive disruptions and ELMs crashes. Test particle runs of

the TRAN Monte Carlo code suggest that for quasineutrality to prevail
in tokamaks a certain minimum level of 3D asymmetry of the magnetic
spectrum is required which is comparable to that found in quasiaxially

symmetric (QAS) stellarators. The computational theory suggests that a
QAS stellarator with two field periods and proportions like those of ITER

is a good candidate for a fusion reactor. For DEMO we propose an ex-
periment that combines the best features of ITER with a system of QAS

coils providing some external rotational transform. Exploratory runs for
such a project have produced promising results.

2. Computational Models of Magnetic Fusion

A hot plasma of hydrogen isotopes can be confined in a strong magnetic

field with toroidal geometry so the ions fuse to form helium and release
energetic neutrons. Models of such magnetic fusion devices developed in

computational science have been implemented as codes that comprise an
effective numerical simulation of the most essential features of modern

tokamak and stellarator experiments. This has led to the discovery of
advanced concepts that make fusion reactors a realistic prospect for a
commercial source of energy. Here we work with runs of the NSTAB and

TRAN computer codes, which provide an example of the theory.
When the mesh size of the computational grid for fusion calculations

is comparable to the island width, an exceptionally accurate radial differ-
ence scheme in conservation form enables one to capture magnetic islands
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successfully despite a nested surface hypothesis imposed by the mathe-
matics. Three-dimensional (3D) asymmetries in bifurcated solutions of

the axially symmetric tokamak problem can be examined to ascertain
their relevance to the observation of neoclassical tearing modes (NTMs)

and edge localized modes (ELMs) in experiments. Compact stellarator
equilibria with quasiaxial symmetry are calculated to see whether phys-
ical advantages of these configurations might support the feasibility of

magnetic fusion if difficulties with safety and stability are encountered in
the International Thermonuclear Experimental Reactor (ITER) project.

3. Conservation Form

Let us consider the magnetohydrodynamic (MHD) model of plasma
physics. We have ∇ · B = 0, where B is the magnetic field. The re-

quirement of force balance put on the plasma follows from the simplified
form

∫ ∫ ∫

(

1

2
B2 − p

)

dV = minimum

of the MHD variational principle, where p is the fluid pressure and the gas
constant is zero. In a stable system the energy throughout the volume

of plasma must be a minimum. A mathematical consequence of this
principle asserts that the Lorentz force must balance the pressure, so that

∇ · T = 0 , ∇ · B = 0 ,

where T is the Maxwell stress tensor

T = BB−
(

B2/2 + p
)

I .

The divergence theorem can be applied to the MHD equations over any
test volume of the plasma because we have put them in a conservation

form with each term expressed as an exact partial derivative. It follows
that the normal components of the magnetic field and the force do not

have jumps across any discontinuity of the plasma such as might occur at
a free boundary or in a weak solution satisfying integrated conservation

laws rather than differential equations. The result can be stated more
precisely in the form

B ·N = 0 ,
[

B2/2 + p
]

= 0 ,
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where the square brackets indicate that a jump is to be calculated.
In selecting a desirable stellarator configuration a first step is to find a

representation for the free boundary

r + iz = eiu
∑

∆mn e−imu+inv

that optimizes physical properties of the plasma inside. After the shape

of the plasma has been found one must determine positions of coils on
an outer control surface defined by an expression like the one for the
free boundary. These coils should be smooth so they can be constructed

effectively and so they generate an external magnetic field, consistent
with the one inside the plasma, that has robust flux surfaces devoid of

extraneous harmonics. Attractive coils producing the desired field have
been found even when their distance from the separatrix is large in units

of the plasma radius.

4. Force Balance

The NSTAB code captures islands correctly despite a nested surface
hypothesis made in the numerical algorithm employed. Partial differ-

ential equations are solved in a conservation form described above that
calculates force balance correctly across islands that are treated as dis-
continuities. The reliability of the code has been established by using it

to study zero pressure stellarators where islands are known to exist in
equilibria found by solving the Laplace equation. We have made calcula-

tions of this phenomenon in which the rotational transform ι changes sign
so that a sizeable island appears where it vanishes, but the computations

are sensitive to details about the profile of ι.
In the NSTAB code we implement a continuum model of plasma physics

that is defined by differential equations for the magnetic field B, the cur-
rent density J, and the fluid pressure p. The Maxwell stress tensor T

is used to put the equations in conservation form so that analogous fi-

nite difference equations have the advantage that when they are summed
over a test volume they telescope into an approximate statement of force

balance across the boundary that is globally correct. Numerical calcula-
tions of weak solutions that capture discontinuities at resonant surfaces
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in plasma equilibria serve to simulate significant aspects of the physics
that are hard to analyze by other methods.

The theory can be justified by considering the simplified example of
the Burgers equation

2Ψx Ψxx = (Ψ2

x
)x = η Ψxxx ,

subject to three boundary conditions Ψ(−1) = Ψ(1) = 0, Ψx(−1) =
1 . This models a reversed field pinch (RFP) depending on only one

coordinate x, where Ψ is the flux, Ψx is the principal component of the
magnetic field, Ψxx is the current, and η is an artificial resistivity. The

conservative difference scheme

(Ψn+1 − Ψn)
2 − (Ψn − Ψn−1)

2 = η (Ψn+2 − 3Ψn+1 + 3Ψn − Ψn−1)

for the Burgers equation computes jumps across discontinuities correctly

and therefore imposes force balance across a sharp boundary which occurs
at x = 0 in the limiting case where η = 0 so that the solution reduces to

Ψ = 1 − |x| .
Let us consider a finite difference scheme for the RFP problem that is

not in conservation form and is defined by the equation

(Ψn+1 − Ψn)
2 − (Ψn − Ψn−1)

2 + ǫ (Ψn+1 − 2Ψn + Ψn−1)
2 =

η (Ψn+2 − 3Ψn+1 + 3Ψn − Ψn−1) ,

where ǫ 6= 0 is an auxiliary parameter. The slopes at opposite ends of

the solution characterizing a jump in the magnetic field across a current
sheet differ, so force balance fails. It is when η is of the same order of

magnitude as the mesh size that it becomes necessary to switch to the
conservative method.

5. Bifurcated Equilibria in Tokamaks

The variational method employs a representation

B = ∇s ×∇θ = ∇φ + ζ∇s

of the magnetic field in terms of the toroidal flux s, another flux function
θ, and two Clebsch potentials φ and ζ. If there is no net current and
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ι stands for the rotational transform, the variables θ + ιφ and φ can be
renormalized to become invariant poloidal and toroidal angles on each

flux surface s =const., where s is the radial coordinate. We refer to the
Fourier coefficients Bmn in the resulting expansion

1

B2
=
∑

Bmn(s) cos [mθ − (n − ιm)φ]

as the magnetic field spectrum. There is an effective correlation between
the shape factors ∆mn of the plasma boundary and the corresponding co-
efficients Bmn. Good confinement is achieved when the magnetic spectrum

has quasiaxial symmetry so the column Bm0 dominates, or has quasiheli-
cal symmetry (QHS) so the diagonal Bmm dominates.

By transforming the magnetostatic equations it can be shown that for
stellarators there is an expansion

J ·B

B2
= p′

∑ mBmn(s)

n − ιm
cos [mθ − (n − ιm)φ]

for the parallel current like the one for the magnetic field strength. In

three dimensions the small denominators n − ιm are seen to vanish at
a dense set of rational surfaces where ι = n/m. The presence of these

resonances shows that smooth solutions of the equilibrium problem with
3D asymmetry do not in general exist. Hence one should only try to
construct weak solutions that may not be differentiable. Small magnetic

islands are then modeled computationally by contact discontinuities when
a finite difference scheme in conservation form is applied.

The NSTAB code has been developed to simulate 3D equilibrium and
stability in tokamaks and stellarators. Magnetic islands in bifurcated

solutions of the tokamak problem suggest that 3D effects may be more
important than has generally been realized. The most remarkable exam-

ples of bifurcated equilibria are three-dimensionally asymmetric solutions
of the tokamak problem subject to axially symmetric boundary conditions
for which a 2D solution exists, too.

Fully 3D equilibria are calculated by at first imposing and later re-
leasing a suitable constraint in runs of the NSTAB code chosen to find

bifurcated solutions that cannot be obtained without permitting discon-
tinuous alterations in the topology of the magnetic surfaces. On relatively
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crude radial grids the computations are capable of capturing small islands
whose widths are of the same order of magnitude as the mesh size, but

are big enough to account for a significant change in topology. The resid-
uals increase while a dangerous mode is being computed and only later

decrease to a level of round off error establishing that the discrete prob-
lem has been solved numerically. Islands are found more readily at a
resonance midway between two mesh points because the finite difference

scheme employed is in a conservation form that captures discontinuities
there more effectively. The outcome of such computations is consistent

with observations of NTMs and ELMs in laboratory plasmas.
We have computed a variety of bifurcated equilibria in tokamaks. The

KAM theory displays small denominators at rational surfaces of 3D so-
lutions, and analysis of the continuous spectrum shows that the stability

of tokamaks is marginal. These results are consistent with observations
of sawtooth oscillations, NTM and ELM instabilities, and disruptions.
Acceptable 3D solutions of the MHD equilibrium equations may not ex-

ist, may not be unique, and may not depend continuously on the data.
Yet success of experiments fosters a belief that it is possible to design a

magnetic fusion reactor. We propose a QAS stellarator as an alternate
configuration to study, since some rotational transform should come from

the external magnetic field. The numerical evidence suggests that a pro-
ductive approach to these issues lies in the numerical calculation of weak
solutions of the equations.

6. Confinement and Quasineutrality

The Monte Carlo method evaluates transport by tracking test particles

in a fixed background of plasma and calculating how long it takes them
to leave. Agreement with experiment is achieved by computing the ion

and the electron confinement times separately and introducing 3D effects
to impose quasineutrality so that the results become the same. In sim-
ulations we compare observations of the energy confinement time with a

third of the test particle confinement time. This theory becomes more
convincing in light of the new 3D equilibria that can now be computed.
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Our transport calculations employ the TRAN Monte Carlo code after
applying the NSTAB code to find bifurcated equilibria that determine the

magnetic field in a plasma background. The random walk approximating
a collision operator need not conserve momentum in the split time calcu-

lation of the test particle model. Experimental data are used to validate
the results of numerical computations. At temperatures of 3 keV observed
in the LHD experiment the TRAN code predicts an energy confinement

time of 160 ms that agrees with measured values.
Runs of the TRAN code have been compared with measurements from

tokamak experiments as well. These simulations suggest that a 2D model
does not explain observations. The Monte Carlo method takes into ac-

count a long mean free path and the complex geometry of the drift sur-
faces, so it captures the essential physics. In the calculations if 3D per-

turbations of 1/B2 are set equal to zero and no iteration of the electric
potential is performed, then the confinement times do not come into line
with observations. But when quasineutrality is successfully imposed to

determine the 3D terms then the numerical answers agree with measured
data. Among many bifurcated equilibria that exist for tokamaks, only

those satisfying a condition of quasineutrality seem to be valid.
The numerical evidence shows that it is not realistic to assume intrinsic

ambipolarity in tokamaks. The justification for that hypothesis must be
examined from the point of view of more rigorous mathematical analy-
sis. A simplified theory that neglects the role of the displacement current

because it is multiplied by a small factor like the Debye length seems to
ignore important contributions that appear when long orbits are tracked

accurately by the Monte Carlo method. The computational model sug-
gests that for the 2D tokamak problem there might be no steady state

solution satisfying the requirement of quasineutrality.
The NSTAB code provides accurate information about the magnetic

spectrum. together with current and pressure profiles. That enables the
TRAN code to estimate the confinement times of both ions and electrons
in a realistic fashion. The result of such calculations suggests that a fail-

ure of quasineutrality may lead to resonant perturbations in force balance
that could trigger the appearance of bifurcated equilibria with 3D asym-

metries affecting stability and transport. We are examining these issues
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in a renewed attempt to account for anomalies in theoretical estimates of
confinement time that are incompatible with observations. With special

attention to the mathematics, we perform computational analyses of con-
finement in plasmas that treat transport as a random walk of test particles

among complicated orbits and drift surfaces that have global structure.

7. Stability of Stellarators

One way to assess MHD stability of the toroidal equilibrium of a plasma

by the variational method is to introduce a small perturbation in the
equlibrium equations and then calculate the corresponding change of the

solution. A reliable test of linear stability by means of the NSTAB code
consists in removing the forcing term after a certain number of cycles, but
continuing the iterations to find out whether a bifurcated solution different

from the original one can be constructed. Failure of uniqueness usually
furnishes a convincing proof of instability. The preconditioned method

of steepest descent implemented in NSTAB produces a perturbation of
the solution that incorporates more structure of the unstable mode than

was input by the displacement. In this sense the code solves for the
most dangerous eigenfunction of linear stability theory without requiring

calculation of derivatives that may not exist. The good resolution of the
spectral method, combined with excellent accuracy in the radial difference
scheme, is what makes the approach a success in practice.

Runs of the NSTAB code show that the LHD stellarator is linearly
unstable, but remains nonlinearly stable, at a β above 4.0% achieved ex-

perimentally. Predictions of ballooning stability for the LHD are more
pessimistic than these estimates from bifurcated solutions calculated over

1, 2, 5 or 10 field periods. In the case of tokamaks we have made detailed
comparisons with observations from the DIII-D, and there is substantial

agreement. Examination of 3D bifurcated equilibria that we have calcu-
lated confirms the experimental result that in a standard configuration
the β limit is near 5%, but when shaping coils are employed to push the

plasma inward and reduce the aspect ratio then values of β above 10%
can be attained.
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Figure 1: Flux surfaces at four cross sections over the two field periods of a stellarator
equilibrium at β = 0.03. The rotational transform ι increases from the low value 0.33 at
the magnetic axis to a peak value of 0.47 and then falls to 0.40 at the separatrix. This
configuration is a good candidate for DEMO because its geometry is similar to that of
the ITER tokamak. There is enough flexibility in the shaping of the plasma to control
the stellarator contribution to ι so as to compensate for unforeseen complications with
the bootstrap current.

8. Power Plant Studies

We have described applications of the NSTAB and TRAN codes to
tokamak and stellarator equilibria with parameters of major experiments.

Good correlation of the computations with observations in the DIII-D and
the LHD validates predictions about equilibrium, stability, and transport
for QAS stellarators. A reactor configuration with two field periods has

been designed that has major radius 8m and plasma radius 3m. The 3D
asymmetries are below 0.005 in units of the field strength, the β limit

is 4%, and 12 moderately twisted coils provide robust magnetic surfaces
with islands whose widths are small. The gap between the separatrix and
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filaments defining the coils is everywhere bigger than 140 cm, and there
is access for maintenance through ports between the coils. Theory and

practice show that it is only when smooth coils are found that the struc-
ture of the field lines outside the plasma becomes well enough organized

to allow for the construction of an effective divertor. That is achieved by
employing a judiciously filtered set of harmonics in an implementation of
the Biot-Savart law.

Refinement of the numerical method implemented in the NSTAB code
produces a diagnostic for the presence of magnetic islands in tokamaks

and stellarators. When this technique is applied to ITER, it suggests that
bifurcated equilibria contribute to disruptions and degrade confinement.

If the difficulties turn out to be significant one might want to switch to a
similar QAS stellarator as the best concept to demonstrate properties of a

fusion reactor. Therefore NSTAB computations are needed to see whether
the effect of islands is tolerable provided the rotational transform avoids
dangerous resonances.

For realistic assumptions about the bootstrap current and with a sen-
sible choice of modular coils, we look for 3D configurations that perform

well at reactor conditions. Fig. 1 displays a candidate with geometry
like that of ITER. This numerical solution of the MHD equations has

converged to the level of round off error in double precision, assuring ex-
istence, uniqueness, and stability. The coils of the stellarator look easy
to construct, but its MHD properties need more research. Fourier coeffi-

cients specifying the boundary of the plasma are listed in Table 1.
Progress in magnetic fusion research calls for a major experiment to

show that the ion confinement time in a stellarator can be raised to the
level necessary for fusion. Because questions remain open at present about

the feasibility of a fusion reactor, it is important to keep in mind the ad-
vantages available from fully 3D geometry, even if that adds to the cost of

electricity. The two-dimensional model of tokamaks used to defend ITER
is inadequate. Better 3D simulations produced by the NSTAB and TRAN
computer codes predict that the project is at risk. A compact stellarator

configuration could be employed in DEMO to correct the problem if suf-
ficient information became available from earlier experiments, but that is

unlikely to happen if there are only low levels of support available for the
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m\n − 1 0 1 2 3

-1 0.200 0.140 0.000 0.000 0.000
0 0.000 1.000 0.000 0.000 0.000
1 0.045 2.500 0.075 0.005 0.000
2 0.010 - 0.100 - 0.350 - 0.045 - 0.005
3 0.000 0.000 0.030 0.050 0.015
4 0.000 0.015 0.025 - 0.020 - 0.005

Table 1: Coefficients ∆
mn

defining the QAS stellarator in Fig. 1 for values m =
−1, 0, 1, 2, 3, 4 of the poloidal index and values n = −1, 0, 1, 2, 3 of the toroidal index.
This is a configuration that depends on bootstrap current for good performance.

QAS and QHS concepts.
Wide variations in the length and time scales occurring in the plasma

physics of magnetic fusion make it hard to describe the dynamics of stel-
larators and tokamaks by solving conventional differential equations nu-
merically. It would be desirable to compare such theories with the success

we have had predicting the performance of major fusion experiments by
running the NSTAB and TRAN computer codes.

9. The QAS Stellarator Project

Implementation of the quasisymmetric stellarator idea requires choos-

ing the shape factors ∆mn of the plasma boundary so that the matrix
Bmn of spectral coefficients becomes dominated by a single row for QAS
configurations or the principal diagonal for QHS configurations. Success

depends on the fortunate circumstance that when the quotient of the
aspect ratio divided by the number of field periods is near 2, then the

value of the Fourier coefficient B21 producing the bulk of the rotational
transform becomes remarkably small. The best candidates for a reactor

seem to be either QAS stellarators with two field periods or QHS stellara-
tors with five periods, like the W7-X. Failure of the NCSX experiment
at PPPL is partially due to a choice of three field periods and low as-
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pect ratio producing inadequate quasisymmetry, combined with belief in
local stability criteria that are too pessimistic and lead to unnecessarily

complicated geometry.
Recent observations of surprisingly high values of β in the W7-AS and

LHD experiments have shown that predictions of the β limit in stellarators
by the Mercier and ballooning mode criteria are too low. More realistic
results are obtained by running the NSTAB equilibrium and stability code

to look for multiple solutions of the MHD equations that are typical of
instability. These computer simulations have been validated by extensive

comparisons with experimental data. The numerical method is facilitated
by computational evidence establishing that with our choice of indices,

and with the exception of some resonant cases, the Fourier coefficient Bmn

in the spectrum is largely determined by the corresponding coefficient

∆mn in the formula for the boundary of the plasma. Experience with this
procedure establishes that as few as 20 parameters ∆mn may suffice to
specify an optimal configuration. After the shape of the plasma has been

determined, Fourier series filtered to match those for the separatrix can
be selected judiciously to define an external magnetic field with robust

flux surfaces adequate for an experiment.
Specifications are given in Fig. 1 and Table 1 for a QAS stellarator

with two field periods of the kind we have described. The results summa-
rize an intensive study in computational science that might not be easy
to repeat without guidance. The configuration itself is important for the

role it could play at some future date in the design of DEMO, which
should have at least some rotational transform coming from an external

magnetic field so that ι > 0 at the edge of the plasma. The high cost
of the LHD experiment in Japan and the W7-X project in Germany sug-

gests that a proof of principle experiment to see whether a compact QAS
stellarator like this could achieve the values of β or of the hydrogen ion

temperature required for a fusion reactor might call for an annual budget
of $2,000,000,000.

We propose a more modest university experiment involving several

institutions at one major site that could be funded for about $50,000,000
per annum. With a major radius of just 2m and a magnetic field of

only 1/2 tesla, one should be able to address engineering issues about
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construction of the coils and one should be able to find out whether the
bootstrap current necessary for good performance of a compact stellarator

will materialize. For an application to DEMO the QAS stellarator has the
distinct advantage that the geometry and in particular the aspect ratio

are close to those of ITER.
We have described how the TRAN Monte Carlo code estimates energy

confinement time by performing independent test particle computations

of ion and electron confinement times and imposing quasineutrality by
choosing the radial electric field to make them agree. The dependence of

the guiding center orbit equations on the magnetic spectrum explains why
QAS stellarators perform well as candidates for construcion of a fusion

reactor. The configuration specified in Table 1 has a very accurate qua-
sisymmetry with 3D contributions below half a percent of the magnetic

field strength. At this remarkably low level of asymmetry in a device
with the aspect ratio A = 2.5 problems arise with quasineutrality that we
overcome by introducing additional 3D mirror terms ∆01 and B01 to drive

the radial electric field. This concept applies also to the ITER tokamak.
The numerical calculations suggest that QAS stellarators have adequate

thermal confinement for a fusion power plant, but significant difficulties
remain about the prompt loss of alpha particles in both tokamaks and

stellarators.
Computations justifying the scientific assertions made in this conclud-

ing section of our paper have been published in a recent series of articles

by the first author in the Proc. Natl. Acad. Sci. USA.
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