Stochastic Calculus, Fall 2004 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2004/)

Assignment 5.

Given October 1, due October 21. Last revised, October 7. **Objective:** Brownian Motion.

- 1. Suppose h(x) has h'(x) > 0 for all x so that there is at most one x for each y so that y = h(x). Consider the process $Y_t = h(X_t)$, where X_t is standard Brownian motion. Suppose the function h(x) is smooth. The answers to the questions below depend at least on second derivatives of h.
 - **a.** With the notation $\Delta Y_t = Y_{t+\Delta t} Y_t$, for a positive Δt , calculate a(y) and b(y) so that $E[\Delta Y_t \mid \mathcal{F}_t] = a(Y_t)\Delta t + O(\Delta t^2)$ and $E[\Delta Y_t^2 \mid \mathcal{F}_t] = b(Y_t)\Delta t + O(\Delta t^2)$.
 - **b.** With the notation $f(Y_t, t) = E[V(Y_T) | \mathcal{F}_t]$, find the backward equation satisfied by f. (Assume T > t.)
 - c. Writing u(y,t) for the probability density of Y_t , use the duality argument to find the forward equation satisfied by u.
 - **d.** Write the forward and backward equations for the special case $Y_t = e^{cX_t}$. Note (for those who know) the similarity of the backward equation to the Black Scholes partial differential equation.
- 2. Use a calculation similar to the one we used in class to show that $Y_T = X_T^4 6 \int_0^T X_t^2 dt$ is a martingale. Here X_t is Brownian motion.
- **3.** Show that $Y_t = \cos(kX_t)e^{k^2t/2}$ is a martingale.
 - **a.** Verify this directly by first calculating (as in problem 1) that

$$E[Y_{t+\Delta t} \mid \mathcal{F}_t] = Y_t + O(\Delta t^2)$$

Then explain why this implies that Y_t is a martingale exactly (Hint: To show that $E[Y_{t'} | \mathcal{F}_t] = Y_t$, divide the time interval (t, t') into n small pieces and let $n \to \infty$.

- **b.** Verify that Y_t is a martingale using the fact that a certain function satisfies the backward equation. Note that, for any function V(x), $Z_t = E[V(X_T) | \mathcal{F}_t]$ is a martingale (the tower property). Functions like this Z satisfy backward equations.
- **c.** Find a simple intuition that allows a supposed martingale to grow exponentially in time.
- 4. Let $A_{x_0,t}$ be the event that a standard Brownian motion starting at x_0 has $X_{t'} > 0$ for all t' between 0 and t. Here are two ways to verify the large time asymptotic approximation $P(A_{x_0,t}) \approx \frac{1}{\sqrt{2\pi}} \frac{2x_0}{\sqrt{t}}$.

a. Use the formula from "Images and reflections" to get

$$P(A_{x_0,t}) = \int_0^\infty u(x,t) dx$$

$$\approx \frac{1}{\sqrt{2\pi t}} \int_0^\infty e^{-x^2/2t} \left(e^{xx_0/t} - e^{-xx_0/t} \right) dx .$$

The change of variables $y = x/\sqrt{t}$ should make it clear how to approximate the last integral for large t.

b. Use the same formula to get

$$\frac{-d}{dt}P(A_{x_0,t}) = \frac{1}{\sqrt{2\pi}} \frac{2x_0}{t^{3/2}} e^{-x_0^2/2t} .$$
(1)

Once we know that $P(A_{x_0,t}) \to 0$ as $t \to \infty$, we can estimate its value by integrating (1) from t to ∞ using the approximation $e^{const/t} \approx 1$ for large t. Note: There are other hitting problems for which $P(A_t)$ does not go to zero as $t \to \infty$. This method would not work for them.