
Stochastic Calculus, Fall 2004 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2004/)

Assignment 5.

Given October 1, due October 21. Last revised, October 7.
Objective: Brownian Motion.

1. Suppose h(x) has h′(x) > 0 for all x so that there is at most one x for each y so that
y = h(x). Consider the process Yt = h(Xt), where Xt is standard Brownian motion.
Suppose the function h(x) is smooth. The answers to the questions below depend at
least on second derivatives of h.

a. With the notation ∆Yt = Yt+∆t − Yt, for a positive ∆t, calculate a(y) and b(y) so
that E[∆Yt | Ft] = a(Yt)∆t + O(∆t2) and E[∆Y 2

t | Ft] = b(Yt)∆t + O(∆t2).

b. With the notation f(Yt, t) = E[V (YT ) | Ft], find the backward equation satisfied
by f . (Assume T > t.)

c. Writing u(y, t) for the probability density of Yt, use the duality argument to find the
forward equation satisfied by u.

d. Write the forward and backward equations for the special case Yt = ecXt . Note (for
those who know) the similarity of the backward equation to the Black Scholes
partial differential equation.

2. Use a calculation similar to the one we used in class to show that YT = X4
T − 6

∫ T
0 X2

t dt
is a martingale. Here Xt is Brownian motion.

3. Show that Yt = cos(kXt)e
k2t/2 is a martingale.

a. Verify this directly by first calculating (as in problem 1) that

E[Yt+∆t | Ft] = Yt + O(∆t2) .

Then explain why this implies that Yt is a martingale exactly (Hint: To show that
E[Yt′ | Ft] = Yt, divide the time interval (t, t′) into n small pieces and let n →∞.

b. Verify that Yt is a martingale using the fact that a certain function satisfies the
backward equation. Note that, for any function V (x), Zt = E[V (XT ) | Ft] is a
martingale (the tower property). Functions like this Z satisfy backward equations.

c. Find a simple intuition that allows a supposed martingale to grow exponentially in
time.

4. Let Ax0,t be the event that a standard Brownian motion starting at x0 has Xt′ > 0 for all t′

between 0 and t. Here are two ways to verify the large time asymptotic approximation
P (Ax0,t) ≈ 1√

2π
2x0√

t
.
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a. Use the formula from “Images and reflections” to get

P (Ax0,t) =
∫ ∞

0
u(x, t)dx

≈ 1√
2πt

∫ ∞

0
e−x2/2t

(
exx0/t − e−xx0/t

)
dx .

The change of variables y = x/
√

t should make it clear how to approximate the
last integral for large t.

b. Use the same formula to get

−d

dt
P (Ax0,t) =

1√
2π

2x0

t3/2
e−x2

0/2t . (1)

Once we know that P (Ax0,t) → 0 as t → ∞, we can estimate its value by inte-
grating (1) from t to ∞ using the approximation econst/t ≈ 1 for large t. Note:
There are other hitting problems for which P (At) does not go to zero as t →∞.
This method would not work for them.
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