Stochastic Calculus, Fall 2004 (http://www.math.nyu.edu/faculty/goodman/teaching/StochCalc2004/)

Assignment 9.

Given December 9, due December 23. Last revised, December 91.

Instructions: Please answer these questions without discussing them with others or looking up the answers in books.

- 1. Let S be a finite state space for a Markov chain. Let $\xi(t) \in S$ be the state of the chain at time t. The chain is *nondegenerate* if there is an n with $P_{jk}^n \neq 0$ for all $j \in S$ and $k \in S$. Here the P_{jk} are the $j \to k$ transition probabilities and P_{jk}^n is the (j,k) entry of P^n , which is the n step $j \to k$ transition probability. For any nondegenerate Markov chain with a finite state space, the *Perron Frobeneus theorem* gives the following information. There is a row vector, π , with $\sum_{k \in S} \pi(k) = 1$ and $\pi(k) > 0$ for all $k \in S$ (a probability vector) so that $||P^t \mathbf{1}\pi|| \leq Ce^{-\alpha t}$. Here $\mathbf{1}$ is the column vector of all ones and $\alpha > 0$. In the problems below, assume that the transition matrix P represents a nondegenerate Markov chain.
 - (a) Show that if $P(\xi(t) = k) = \pi(k)$ for all $k \in S$, then $P(\xi(t+1) = k) = \pi(k)$ for all $k \in S$. In this sense, π represents the *steady state* or *invariant* probability distribution.
 - (b) Show that P has one eigenvalue equal to one, which is simple, and that every other eigenvalue has $|\lambda| < 1$.
 - (c) Let $u(k,t) = P(\xi(t) = k)$. Show that $u(k,t) \to \pi(k)$ as $t \to \infty$. No matter what probability distribution the Markov chain starts with, the probability distribution converges to the unique steady state distribution.
 - (d) Suppose we have a function f(k) defined for $k \in S$ and that $E_{\pi}[f(\xi)] = 0$. Let f be the column vector with entries f(k) and \hat{f} the row vector with entries $\hat{f}(k) = f(k)\pi(k)$. Show that

$$\operatorname{cov}_{\pi}(f(\xi(0)), f(\xi(t))) = E_{\pi}[f(\xi(0)), f(\xi(t))] = \widehat{f}P^{t}f$$
.

(e) Show that if A is a square matrix with ||A|| < 1, then

$$\sum_{t=0}^{\infty} A^t = (I - A)^{-1} \; .$$

This is a generalization of the geometric sequence formula $\sum_{t=0}^{\infty} a^t = 1/(1-a)$ if |a| < 1, and the proof/derivation can be almost the same, once the series is shown to converge.

(f) Show that if $E_{\pi}[f(\xi)] = 0$, then $\sum_{t=0}^{\infty} P^t f = g$ with g - Pg = f and $E_{\pi}[g(\xi)] = 0$. If the series converges, the argument above should apply. (g) Show that

$$C = \sum_{t=0}^{\infty} \operatorname{cov}_{\pi}[f(\xi(0)), f(\xi(t))] = \widehat{f}g ,$$

where g is as above.

(h) Let $X(T) = \sum_{t=0}^{T} f(\xi(t))$. Show that $\operatorname{var}(X(T)) \approx DT$ for large T, where

$$D = \operatorname{var}_{\pi}[f(\xi)] + 2\sum_{t=1}^{\infty} \operatorname{cov}_{\pi}[f(\xi(0)), f(\xi(t))]$$

This is a version of the Einstein Kubo formula. To be precise, $\frac{1}{T} \operatorname{var}(X(T)) \to D$ as $T \to \infty$. Even more precisely, $|\operatorname{var}(X(T)) - DT|$ is bounded as $T \to \infty$. Prove whichever of these you prefer.

- (i) Suppose P represents a Markov chain with invariant probability distribution π and we want to know $\mu = E_{\pi}[f(\xi)]$. Show that $\hat{\mu}_T = \frac{1}{T} \sum_{t=0}^{T} f(\xi(t))$ converges to μ as $T \to \infty$ in the sense that $E[(\hat{\mu}_T - \mu)^2] \to 0$ as $T \to \infty$. Show that this convergence does not depend on u(k, 0), the initial probability distribution. It is not terribly hard (though not required in this assignment) to show that $\hat{\mu}_T \to \mu$ as $T \to \infty$ almost surely. This is the basis of *Markov chain Monte Carlo*, which uses Markov chains to sample probability distributions, π , that cannot be sampled in any simpler way.
- (j) Consider the Markov chain with state space $-L \leq k \leq L$ having 2L + 1 states. The one step transition probabilities are $\frac{1}{3}$ for any $k \to k-1$, $k \to k$ or $k \to k+1$ transitions that do not take the state out of the state space. Transitions that would go out of S are *rejected*, so that, for example, $P(L \to L) = \frac{2}{3}$. Take f(k) = k and calculate π and D. Hint: the general solution to the equations (g - Pg)(k) = k is a cubic polynomial in k.
- 2. A Brownian bridge is a Brownian motion, X(t), with X(0) = X(T) = 0. Find an SDE satisfied by the Brownian bridge. Hint: Calculate $E_{x,t}[\Delta X \mid X(T) = 0]$, which is something about a multivariate normal.
- 3. Suppose stock prices $S_1(t), \ldots, S_n(t)$ satisfy the SDEs $dS_k(t) = \mu_k S_k dt + \sigma_k S_k dW_k(t)$, where the $W_k(t)$ are *correlated* standard Brownian motions woth correlation coefficients $\rho_{jk} = \operatorname{corr}(W_j(t), W_k(t)).$
 - (a) Write a formula for $S_1(t), \ldots, S_n(t)$ in terms of *independent* Brownian motions $B_1(t), \ldots, B_n(t)$. You may use the Cholesky decomposition $LL^t = \rho$.
 - (b) Write a formula for u(s,t), the joint density function of $S(t) \in \mathbb{R}^n$. This is the *n* dimensional correlated lognormal density.
 - (c) Write the partial differential equation one could solve to determine $E[\max(S_1(T), S_2(T))]$ with $S_1(0) = s_1$ and $S_2(0) = s_2$ and $\rho_{12} \neq 0$
- 4. Suppose $dS(t) = a(S(t), t)dt + \sigma(S(t), t)S(t)dB(t)$. Write a formula for $\int_0^T S(t)dS(t)$ that involves only Riemann integrals and evaluations.