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1 Forward and Backward Equations for Markov

chains

1.1. Introduction: Forward and backward equations are useful ways to
get answers to quantitative questions about Markov chains. The probabilities
u(k, t) = P (X(t) = k) satisfy forward equations that allows us to compute all
the numbers u(k, t + 1) once the all the numbers u(j, t) are known. This moves
us forward from time t to time t+1. The expected values f(k, t) = E[V (X(T )) |
X(t) = k] (for t < T ) satisfy a backward equation that allows us to calculate
the numbers f(k, t) once all the f(j, t + 1) are known. A duality relation allows
us to infer the forward equation from the backward equation, or conversely.
The transition matrix is the generator of both equations, though in different
ways. There are many related problems that have solutions involving forward
and backward equations. Two treated here are hitting probabilities and random
compound interest.

1.2. Forward equation, functional version: Let u(k, t) = P (X(t) = k). The
law of total probability gives

u(k, t + 1) = P (X(t + 1) = k)

=
∑

j

P (X(t + 1) = k | X(t) = j) · P (X(t) = j) .

Therefore
u(k, t + 1) =

∑
j

Pjku(j, t) . (1)

This is the forward equation for probabilities. It is also called the Kolmogorov
forward equation or the Chapman Kolmogorov equation. Once u(j, t) is known
for all j ∈ S, (1) gives u(k, t + 1) for any k. Thus, we can go forward in time
from t = 0 to t = 1, etc. and calculate all the numbers u(k, t).

Note that if we just wanted one number, say u(17, 49), still we would have
to calculate many related quantities, all the u(j, t) for t < 49. If the state space
is too large, this direct forward equation approach may be impractical.

1.3. Row and column vectors: If A is an n × m matrix, and B is an m × p
matrix, then AB is n×p. The matrices are compatible for multiplication because
the second dimension of A, the number of columns, matches the first dimension
of B, the number of rows. A matrix with just one column is a column vector.1

1The physicists’ more sophisticated idea that a vector is a physical quantity with certain
transformation properties is “inoperative” here.
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Just one row makes it a row vector. Matrix-vector multiplication is a special
case of matrix-matrix multiplication. We often denote genuine matrices (more
than one row and column) with capital letters and vectors, row or column, with
lower case. In particular, if u is an n dimensional row vector, a 1×n matrix, and
A is an n× n matrix, then uA is another n dimensional row vector. We do not
write Au for this because that would be incompatible. Matrix multiplication is
always associative. For example, if u is a row vector and A and B are square
matrices, then (uA)B = u(AB). We can compute the row vector uA then
multiply by B, or we can compute the n × n matrix AB then multiply by u.

If u is a row vector, we usually denote the k-th entry by uk instead of u1k.
Similarly, the k-th entry of column vector f is fk instead of fk1. If both u and f
have n components, then uf =

∑n
k=1 ukfk is a 1×1 matrix, i.e. a number. Thus,

treating row and column vectors as special kinds of matrices makes the product
of a row with a column vector natural, but not, for example, the product of two
column vectors.

1.4. Forward equation, matrix version: The probabilities u(k, t) form the
components of a row vector, u(t), with components uk(t) = u(k, t) (an abuse of
notation). The forward equation (1) may be expressed (check this)

u(t + 1) = u(t)P . (2)

Because matrix multiplication is associative, we have

u(t) = u(t − 1)P = u(t − 2)P 2 = · · · = u(0)P t . (3)

Tricks of matrix multiplication give information about the evolution of probabil-
ities. For example, we can write a formula for u(t) in terms of the eigenvectors
and eigenvalues of P . Also, we can save effort in computing u(t) for large t by
repeated squaring:

P → P 2 → (
P 2

)2
= P 4 → · · · → P 2k

using just k matrix multiplications. For example, this computes P 1024 using
just ten matrix multiplies, instead of a thousand.

1.5. Backward equation, functional version: Suppose we run the Markov
chain until time T then get a “reward”, V (X(T )). For t ≤ T , define the condi-
tional expectations

f(k, t) = E [V (X(T )) | X(t) = k] . (4)

This expression is used so often it often is abbreviated

f(k, t) = Ek,t[V (X(T ))] .

These satisfy a backward equation that follows from the law of total probability:

f(k, t) = E [V (X(T )) | X(t) = k]
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=
∑
j∈S

E [V (X(T )) | X(t) = k and X(t + 1) = j] · P (X(t + 1) = j | X(t) = k)

f(k, t) =
∑
j∈S

f(j, t + 1)Pkj . (5)

The Markov property is used to infer that

E[V (X(T )) | X(t) = k and X(t + 1) = j] = Ej,t+1[V (X(T ))] .

The dynamics (5) must be supplemented with the final condition

f(k, T ) = V (k) . (6)

Using these, we may compute all the numbers f(k, T − 1), then all the numbers
f(k, T − 2), etc.

1.6. Backward equation using modern conditional expectation: As usual, Ft

denotes the σ−algebra generated by X(0), . . ., X(t). Define F (t) = E[V (X(T )) |
Ft]. The left side is a random variable that is measurable in Ft, which means
that F (t) is a function of (X(0), . . . , X(t)). The Markov property implies that
F (t) actually is measurable with respect to Gt, the σ−algebra generated by X(t)
alone. This means that F (t) is a function of X(t) alone, which is to say that
there is a function f(k, t) so that F (t) = f(X(t), t), and

f(X(t), t) = E[V (X(T )) | Ft] = E[V (X(T )) | Gt] .

Since Gt is generated by the partition {k} = {X(t) = k}, this is the same def-
inition (4). Moreover, because Ft ⊆ Ft+1 and F (t + 1) = E[V (X(T )) | Ft+1],
the tower property gives

E[V (X(T )) | Ft] = E[F (t + 1) | Ft] ,

so that, again using the Markov property,

F (t) = E[F (t + 1) | Gt] . (7)

Note that this is a version of the tower property. On the event {X(t) = k}, the
right side above takes the value∑

j∈S
f(j, t + 1) · P (x(t + 1) = j | X(t) = k) .

Thus, (7) is the same as the backward equation (5). In the continuous time
versions to come, (7) will be very handy.

1.7. Backward equation, matrix version: We organize the numbers f(k, t)
into a column vector f(t) = (f(1, t), f(2, t), · · ·)t. It is barely an abuse to write
f(t) both for a function of k and a vector. After all, any computer programmer
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knows that a vector really is a function of the index. The backward equation
(5) then is equivalent to (check this)

f(t) = Pf(t + 1) . (8)

Again the associativity of matrix multiplication lets us write, for example,

f(t) = PT−tV ,

writing V for the vector of values of V .

1.8. Invariant expectation value: We combine the conditional expectations
(4) with the probabilities u(k, t) with the law of total probability to get, for any
t,

E[V (X(T ))] =
∑
k∈S

P (X(t) = k) · E[V (X(T )) | X(t) = k]

=
∑
k∈S

u(k, t)f(k, t)

= u(t)f(t) .

The last line is a natural example of an inner product between a row vector and a
column vector. Note that the product E[V (X(T ))] = u(t)f(t) does not depend
on t even though u(t) and f(t) are different for different t. For this invariance
to be possible, the forward evolution equation for u and the backward equation
for f must be related.

1.9. Relationship between the forward and backward equations: It often
is possible to derive the backward equation from the forward equation and
conversely using the invariance of u(t)f(t). For example, suppose we know
that f(t) = Pf(t + 1). Then u(t + 1)f(t + 1) = u(t)f(t) may be rewritten
u(t + 1)f(t + 1) = u(t)Pf(t + 1), which may be rearranged as (using rules of
matrix multiplication)

( u(t + 1) − u(t)P ) f(t + 1) = 0 .

If this is true for enough linearly independent vectors f(t + 1), then the vector
u(t+1)−u(t)P must be zero, which is the matrix version of the forward equation
(2). A theoretically minded reader can verify that enough f vectors are produced
if the transition matrix is nonsingular and we choose a linearly independent
family of “reward” vectors, V . In the same way, the backward evolution of f is
a consequence of invariance and the forward evolution of u.

We now have two ways to evaluate E[V (X(T ))]: (i) start with given u(0),
compute u(T ) = u(0)PT , evaluate u(T )V , or (ii) start with given V = f(T ),
compute f(0) = PT V , then evaluate u(0)f(0). The former might be preferable,
for example, if we had a number a number of different reward functions to
evaluate. We could compute u(T ) once then evalute u(T )V for all our V vectors.
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1.10. Duality: In it’s simplest form, duality is the relationship between a
matrix and its transpose. The set of column vectors with n components is a
vector space of dimension n. The set of n component row vectors is the dual
space, which has the same dimension but may be considered to be a different
space. We can combine an element of a vector space with an element of its dual
to get a number: row vector u multiplied by column vector f yields the number
uf . Any linear transformation on the vector space of column vectors is repre-
sented by an n×n matrix, P . This matrix also defines a linear transformation,
the dual transformation, on the dual space of row vectors, given by u → uP .
This is the sense in which the forward and backward equations are dual to each
other.

Some people prefer not to use row vectors and instead think of organizing
the probabilities u(k, t) into a column vector that is the transpose of what
we called u(t). For them, the forward equation would be written u(t + 1) =
P tu(t) (note the notational problem: the t in P t means “transpose” while the
t in u(t) and f(t) refers to time.). The invariance relation for them would be
ut(t + 1)f(t + 1) = ut(t)f(t). The transpose of a matrix is often called its dual.

1.11. Hitting probabilities, backwards: The hitting probability for state 1
up to time T is

P (X(t) = 1 for some t ∈ [0, T ]) . (9)

Here and below we write [a, b] for all the integers between a and b, including
a and/or b if they are integers. Hitting probabilities can be computed using
forward or backward equations, often by modifying P and adding boundary
conditions. For one backward equation approach, define

f(k, t) = P (X(t′) = 1 for some t′ ∈ [t, T ] | X(t) = k) . (10)

Clearly,
f(1, t) = 1 for all t, (11)

and
f(k, T ) = 0 for k �= 1. (12)

Moreover, if k �= 1, the law of total probabilities yields a backward relation

f(k, t) =
∑
j∈S

Pkjf(j, t + 1) . (13)

The difference between this and the plain backward equation (5) is that the
relation (13) holds only for interior states k �= 1, while the boundary condition
(11) supplies the values of f(1, t). The sum on the right of (13) includes the
term corresponding to state j = 1.

1.12. Hitting probabilities, forward: We also can compute the hitting proba-
bilities (9) using a forward equation approach. Define the survival probabilities

u(k, t) = P (X(t) = k and X(t′) �= 1 for t′ ∈ [0, t]) . (14)
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These satisfy the obvious boundary condition

u(1, t) = 0 , (15)

and initial condition
u(k, 0) = 1 for k �= 1. (16)

The forward equation is (as the reader should check)

u(k, t + 1) =
∑
j∈S

u(j, t)Pjk . (17)

We may include or exclude the term with j = 1 on the right because u(1, t) = 0.
Of course, (17) applies only at interior states k �= 1. The overall probability
of survival up to time T is

∑
k∈S u(k, T ) and the hitting probability is the

complementary 1 − ∑
k∈S u(k, T ).

The matrix vector formulation of this involves the row vector

ũ(t) = (u(2, t), u(3, t), . . .)

and the matrix P̃ formed from P by removing the first row and column. The
evolution equation (17) and boundary condition (15) are both expressed by the
matrix equation

ũ(t + 1) = ũ(t)P̃ .

Note that P̃ is not a stochastic matrix because some of the row sums are less
than one: ∑

j �=1

Pkj < 1 if Pk1 > 0 .

1.13. Absorbing boundaries: Absorbing boundaries are another way to think
about hitting and survival probabilities. The absorbing boundary Markov chain
is the same as the original chain (same transition probabilities) as long as the
state is not one of the boundary states. In the absorbing chain, the state never
again changes after it visits an absorbing boundary point. If P is the transition
matrix of the absorbing chain and P is the original transition matrix, this means
that P jk = Pjk if j is not a boundary state, while P jk = 0 if j is a boundary
state and k �= j. The probabilities u(k, t) for the absorbing chain are the same
as the survival probabilities (14) for the original chain.

1.14. Running cost: Suppose we have a running cost functtion, W (x), and
we want to calculate

f = E

[
T∑

t=0

W (X(t))

]
. (18)

Sums like this are called path dependent because their value depends on the
whole path, not just the final value X(T ). We can calculate (18) with the
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forward equation using

f =
T∑

t=0

E [W (X(t))]

=
T∑

t=0

u(t)W . (19)

Here W is the column vector with components Wk = W (k). We compute the
probabilities that are the components of the u(t) using the standard forward
equation (2) and sum the products (19).

One backward equation approach uses the quantities

f(k, t) = Ek,t

[
T∑

t′=t

W (X(t′))

]
. (20)

These satisfy (check this):

f(t) = Pf(t + 1) + W . (21)

Starting with f(T ) = W , we work backwards with (21) until we reach the
desired f(0).

1.15. Multiplicitive functionals: For some reason, a function of a function is
often called a functional. The path, X(t), is a function of t, so a function, F (X),
that depends on the whole path is often called a functional. Some applications
call for finding the expected value of a multiplicative functional:

f = E

[
T∏

t=0

V (X(t))

]
. (22)

For example, X(t) could represent the state of a financial market and V (k) =
1 + r(k) the interest rate for state k. Then (22) would be the expected total
interest. We also can write V (k) = eW (k), so that∏

V (X(t)) = exp
[∑

W (X(t))
]

= eZ ,

with Z =
∑

W (x(t)). This dos not solve the problem of evaluating (22) because
E [ez] �= eE(Z).

The backward equation approach uses the intermediate quantities

f(k, t) = Ek,t

[
T∏

t′=t

V (X(t′))

]
.

The t′ = t term in the product has V (X(t)) = V (k). The final condition is
f(k, T ) = V (k). The backward evolution equation is derived more or less as
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before:

f(k, t) = Ek,t

[
V (k)

∏
t′>t

V (X(t′))

]

= V (k)Ek,t

[
T∏

t′=t+1

V (X(t′))

]
= V (k)Ek,t [f(X(t + 1), t + 1)] (the tower property)

f(k, t) = V (k)
(
Pf(t + 1)

)
(k) . (23)

In the last line on the right, f(t + 1) is teh column vector with components
f(k, t+1) and Pf(t+1) is teh matrix vector product. We write

(
Pf(t+1)

)
(k)

for the kth component of the column vector Pf(t + 1). We could express the
whole thing in matrix terms using diag(V ), the diagonal matrix with V (k) in
the (k, k) position:

f(t) = diag(V )Pf(t + 1) .

A version of (23) for Brownian motion is called the Feynman-Kac formula.

1.16. Branching processes: One forward equation approach to (22) leads to
a different interpretation of the answer. Let B(k, t) be the event {X(t) = k}
and I(k, t) the indicator function of B(k, t). That is I(k, t, X) = 1 if X ∈
B(k, t) (i.e. X(t) = k), and I(k, t, X) = 0 otherwise. It is in keeping with the
probabilists’ habbit of leaving out the arguents of functions when the argument
is the underlying random outcome. We have u(k, t) = E[I(k, t)]. The forward
equation for the quantities

g(k, t) = E

[
I(k, t)

t∏
t′=0

V (X(t′))

]
(24)

is (see homework):
g(k, t) = V (k)

(
g(t − 1)P

)
(k) . (25)

This is also the forward equation for a branching process with branching
factors V (k). At time t, the branching process has N(k, t) particles, or walkers,
at state k. The numbers N(k, t) are random. A time step of the branching
process has two parts. First, each particle takes one step of the Markov chain.
A particle at state j goes to state k with probability Pjk. All steps for all
particles are independent. Then, each particle at state k does a branching or
birth/death step in which the particle is replaced by a random number of particles
with expected number V (k). For example, if V (k) = 1/2, we could delete the
particle (death) with probability half. If V (k) = 2.8, we could keep the existing
particle, one new one, then add a third with probability .8. All particles are
treated independently. If there are m particles in state k before the birth/death
step, the expected number after the birth/death step is V (k)m. The expected
number of particles, g(k, t) = E[N(k, t)], satisfies (25).
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When V (k) = 1 for all k there need be no birth or death. There will be
just one particle, the path X(t). The number of particles at state k at time t,
N(k, t), will be zero if X(t) �= k or one if X(t) = k. In fact, N(k, t) = I(k, t)(X).
The expected values will be g(k, t) = E[N(k, t)] = E[I(k, t)] = u(k, t).

The branching process representation of (22) is possible when V (k) ≥ 0 for
all k. Monte Carlo methods based on branching processes are more accurate
than direct Monte Carlo in many cases.

2 Lattices, trees, and random walk

2.1. Introduction: Random walk on a lattice is an important example
where the abstract theory of Markov chains is used. It is the simplest model of
something randomly moving through space with none of the subtlty of Brownian
motion, though random walk on a lattice is a useful approximation to Brownian
motion, and vice versa. The forward and backward equations take a specific
simple form for lattice random walk and it is often possible to calculate or
approximate the solutions by hand. Boundary conditions will be applied at the
boundaries of lattices, hence the name.

We pursue forward and backward equations for several reasons. First, they
often are the best way to calculate expectations and hitting probabilities. Sec-
ond, many theoretical qualitative properties of specific Markov chains are un-
derstood using backward or forward equatins. Third, they help explain and
motivate the partial differential equations that arise as backward and forward
equations for diffusion processes.

2.2. Simple random walk: The state space for simple random walk is the
integers, positive and negative. At each time, the walker has three choices:
(A) move up one, (B) do not move, (C) move down one. The probabilities are
P (A) = P (k → k + 1) = a, P (B) = P (X(t + 1) = X(t)) = b, and P (X(t + 1) =
X(t)−1) = c. Naturally, we need a, b, and c to be non-negative and a+b+c = 1.
The transation matrix2 has b on the diagonal (Pkk = b for all k), a on the super-
diagonal (Pk,k+1 = a for all k), and c on the sub diagonal. All other matrix
elements Pjk are zero.

This Markov chain is homogeneous or translation invariant: The probalities
of moving up or down are independent of X(t). A translation by k is a shift of
everything by k (I do not know why this is called “translation”). Translation
invariance means, for example, that the probability of going from m to l in s
steps is the same as the probability of going from m + k to l + k in s steps:
P (X(t+s) = l | X(t) = m) = P (X(t+s) = l+k | X(t) = m+k). It is common
to simplify general discussions by choosing k so that X(0) = 0. Mathematicians
often say “without loss of generality” or “w.l.o.g.” when doing so.

2This “matrix” is infinite when the state space is infinite. Matrix multiplication is still
defined. For example, the k component of uP is given by (uP )k =

∑
j
ujPjk. This possibly

infinite sum has only three nonzero terms when P is tridiagonal.
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Often, particularly when discussing multidimensional random walk, we use
x, y, etc. instead of j, k, etc. to denote lattice points (states of the Markov
chain). Probabilists often use lower case Latin letters for general possible values
of a random variable, while using the capital letter for the random variable
itself. Thus, we might write Pxy = P (X(t + 1) = x | X(t) = y). As an execise
in definition unwrapping, review Lecture 1 and check that this is the same as
PX(t),x = P (X(t + 1) = x | Ft).

2.3. Gaussian approximation, drift, and volatility: We can write X(t + 1) =
X(t) + Y (t), where P (Y (t) = 1) = a, P (Y (t) = 0) = b, and P (Y (t) = −1) = c.
The random variables Y (t) are independent of each other because of the Markov
property and homogeniety. Assuming (without loss of generality) that X(0) = 0,
we have

X(t) =
t−1∑
s=0

Y (s) , (26)

which expresses X(t) as a sum of iid (independent and identically distributed)
random variables. The central limit theorem then tells us that for large t, X(t)
is approximately Gaussian with mean µt and variance σ2t, where µ = E[Y (t)] =
a− b and σ2 = var[Y (t)] = a+ c− (a− c)2. These are called drift and volatility3

respectively. The mean and variance of X(t) grow linearly in time with rate µ
and σ2 respectively. Figure 1 shows some probability distributions for simple
random walk.

2.4. Trees: Simple random walk can be thought of as a sequence of decisions.
At each time you decide: up(A), stay(B), or down(C). A more general sequence
of decisions is a decision tree. In a general decision tree, making choice A at
time 0 then B at time one would have a different result than choosing first B
then A. After t decisions, there could be 3t different decision paths and results.

The simple random walk decision tree is recombining, which means that
many different decision paths lead to the same X(t) For example, start (w.l.o.g)
with X(0) = 0, the paths ABB, CAA, BBA, etc. all lead to X(3) = 1. A
recombining tree is much smaller than a general decision tree. For simple ran-
dom walk, after t steps there are 2t + 1 possible states, instead of up to 3t. For
t = 10, this is 21 instead of about 60 thousand.

2.5. Urn models: Urn models illustrate several features of more general
random walks. Unlike simple random walk, urn models are mean reverting and
have steady state probabilities that determine their large time behavior. We will
come back to them when we discuss scaling in future lectures.

The simple urn contains n balls that are identical except for their color.
There are k red balls and n − k green ones. At each state, someone chooses
one of the balls at random with each ball equally likely to be chosen. He or she
replaces the chosen ball with a fresh ball that is red with probability p and green

3People use the term volatility in two distinct ways. In the Black Scholes theory, volatility
means something else.
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Figure 1: The probability distributions after T = 8 (top) and T = 60 (bottom)
steps for simple random walk. The smooth curve and circles represent the cen-
tral limit theorem Gaussian approximation. The plots have different probability
and k scales. Values not shown have very small probability.
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with probability 1 − p. All choices are independent. The number of red balls
decreases by one if he or she removes a red ball and returns a green one. This
happens with probabilty (k/n) · (1 − p). Similarly, the k → k + 1 probability is
((n− k)/n) · p. In formal terms, the state space is the integers from 0 to n and
the transition probabilities are

Pk,k−1 =
k(1 − p)

n
, Pkk =

(2p − 1)k + (p − 1)n
n

, Pk,k+1 =
(n − k)p

n
,

Pjk = 0 otherwise.

If these formulas are right, then Pk,k−1 + Pkk + Pk,k+1 = 1.

2.6. Urn model steady state: For the simple urn model, the probabilities
u(k, t) = P (X(t) = k) converge to steady state probabilities, v(k), as t → ∞.
This is illustrated in Figure (2). The steady state probabilities are

v(k) =
(

n

k

)
pk(1 − p)n−k .

The steady state probabilities have the property that if u(k, t) = v(k) for all
k, then u(k, t + 1) = v(k) also for all k. This is statistical steady state because
the probabilities have reached steady state values though the states themselves
keep changing, as in Figure (3). In matrix vector notation, we can form the
row vector, v, with entries v(k). Then v is a statistical steady state if vP = v.
It is no coincedence that v(k) is the probability of getting k red balls in n
independent trials with probability p for each trial. The steady state expected
number of red balls is

Ev[X ] = np ,

where the notation Ev[] refers to expectation in probability distribution v.

2.7. Urn model mean reversion: If we let m(t) be the expected value if X(t),
then a calculation using the transition probabilities gives the relation

m(t + 1) = m(t) +
1
n

(np − m(t)) . (27)

This relation shows not only that m(t) = np is a steady state value (m(t) = np
implies m(t +1) = np), but also that m(t) → np as t → ∞ (if r(t) = m(t)−np,
then r(t + 1) = αr(t) with |α| =

∣∣1 − 1
n

∣∣ < 1).
Another way of expression mean reversion will be useful in discussing stochas-

tic differential equations later. Because the urn Model is a Markov chain,

E [X(t + 1) | Ft] = E [X(t + 1) | X(t)]

Again using the transition probabilities, we get

E [X(t + 1) | Ft] = X(t) +
1
n

(np − X(t)) . (28)
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Figure 2: The probability distributions for the simple urn model plotted every
T time steps. The first curve is blue, low, and flat. The last one is red and most
peaked in the center. The computation starts with each state being equally
likely. Over time, states near the edges become less likely.
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Figure 3: A Monte-Carlo sampling of 11 paths from the simple urn model. At
time t = 0 (the left edge), the paths are evenly spaced within the state space.
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If X(t) > np, we have

E[∆X(t)] = E[X(t + 1) − X(t)] − 1
n

(np − X(t)) ,

is negative. If X(t) < np, it is positive.

2.8. Boundaries: The terms boundary, interior, region, etc. as used in the
general discussion of Markov chain hitting probabilities come from applications
in lattice Markov chains such as simple random walk. For example, the region
x > β has boundary x = β. The quantities

u(x, t) = P (X(t) = x and X(s) > β for 0 ≤ s ≤ t)

satisfy the forward equation (just (1) in this special case)

u(x, t + 1) = au(x − 1, t) + bu(x, t) + cu(x + 1, t)

for x > β together with the absorbing boundary condition u(β, t) = 0. We could
create a finite state space Markov chain by considering a region β < x < γ with
simple random walk in the interior together with absorbing boundaries at x = β
and x = γ. Absorbing boundary conditions are also called Dirichlet boundary
conditions.

Another way to create a finite state space Markov chain is to put reflecting
boundaries at x = β and x = γ. This chain has the same transition probabilities
as ordinary random walk in the interior (β < x < γ). However, transitions from
β to β − 1 are disallowed and replaced by transitions from β to β + 1. This
means changing the transition probabilities starting from x = β to

P (β → β−1) = Pβ,β−1 = 0 , P (β → β) = Pββ = b , P (β → β+1) = Pβ,β+1 = a+c .

The transition rules at x = γ are similarly changed to block γ → γ + 1 transi-
tions. There is some freedom in defining the reflection rules at the boundaries.
We could, for example, make P (β → β) = b + c and P (β → β + 1) = a, which
changes the blocked transition to standing still rather than moving right. We
return to this point in discussing oblique reflection in multidimensional random
walks and diffusions.

2.9. Multidimensional lattice: The unit square lattice in d dimensions is the
set of d−tuples of integers (the set of integers is called Z):

x = (x1, . . . , xd) with xj ∈ Z for 1 ≤ j ≤ d .

The scaled square lattice, with lattice spacing h > 0, is the set of points hx =
(hx1, . . . , hxd), where x are integer lattice points. In the present discussion, the
scaling is irrelevent, so we use the unit lattice. We say that latice points x and
y are neighbors if

|xj − yj| ≤ 1 for all coordinates j = 1, . . . , d .
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