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The distribution of matter and energy in the
Universe provides cosmologists with the
principal source of information on the evolution
of our planet, including its earliest stages. In
particular, the discovery of the uniformly

distributed background microwave radiation is the main
proof of the Big Bang model of the Universe’s origin (for
example, see refs 1, 2). In a somewhat loose but perhaps
appropriate analogy, structural biologists often speak of the
‘protein universe’, meaning the totality of all possible
proteins1–3. The total number of possible protein sequences
(that is, the size of the protein universe) is, for all practical
purposes, infinite. Assuming an average protein length of
200 amino acids, there can be 20200 different protein
sequences, a number that is much greater than, for example,
the number of electrons in our (physical) Universe.

Our current theoretical understanding of protein folding
is insufficient to estimate the total possible number of protein
structures, but it too is likely to be vast. Obviously, only a
minuscule fraction of the potential sequence space is 
populated by real protein sequences, but the number of
unique sequences encoded in actual genomes is likely to be
substantial. For example, assuming there are 10 million
species on Earth and the genome of each species consists of
5,000 genes (an intermediate number between prokaryotes
and eukaryotes), there are 521010 unique protein sequences.
Although this quantity is negligible compared to the vast
sequence space, it still is several orders of magnitude greater
than that contained in today’s databases. A question of funda-
mental and practical interest is how these sequences are 
distributed in the sequence and structure spaces.

The protein universe is an abstraction, however useful. In
reality, all proteins are, of course, encoded in genes, which
belong to particular genomes. Quantitative and qualitative
analysis of the projections of the protein universe on genomes
from a diverse range of organisms might reveal important
aspects of the evolution of both genomes and proteins.

Distribution of protein families and protein folds
That the population of the protein universe is not distrib-
uted randomly is obvious from the existence of homolo-
gous genes and proteins. However, to extract any useful

information from this distribution, it needs to be explored
in quantitative detail, which can be done only within the
framework of a hierarchical taxonomy of proteins. Mar-
garet Dayhoff ’s group introduced the notions of protein
family and superfamily in the 1960s as part of their effort to
understand protein evolution and simultaneously create a
well-organized protein database4,5 (later known as the 
Protein Identification Resource). A family was defined as a
group of (closely) related sequences, and superfamilies
encompassed two or more related families.

By the mid-1990s, a more elaborate and coherent 
taxonomy of protein domains had been developed, largely
through the efforts of Murzin and colleagues, who 
constructed the SCOP classification of protein structures,
and Thornton and colleagues, who produced the CATH
database dedicated to the same goal1,6–9. The top levels of the
hierarchy are defined by the three-dimensional structure,
whereas lower taxa are identified on the basis of sequence
similarity and functional considerations (Table 1). Exact
criteria of topological similarity, which is necessary and 
sufficient to assign two protein structures to the same fold,
or the level of sequence similarity that defines a superfamily
or a family, have yet to be determined in full. Nevertheless,
there is a wide agreement both on the general principles of
classification and on the taxonomic assignments of most
proteins6,8,10,11.

At this point, it is important to introduce the fundamen-
tal notion of protein domain, which is the foundation of at
least the top levels of the protein taxonomy. In structural
biology, a domain is defined as a distinct, compact and stable
protein structural unit that folds independently of other
such units12. Often, however, domains are characterized 
differently — as distinct regions of protein sequence that are
highly conserved in evolution. As the hierarchy of protein
classification evolved into a combination of structural- and
sequence-based approaches, the notions of structural and
‘homology’ domains also tended to blend into one concept.
The salient features of structural domains (that is, indepen-
dent folding and stability) conduce them to become distinct
evolutionary units, which exist as stand-alone proteins or as
parts of various domain architectures in multidomain 
proteins. There are exceptions to this generalization, one
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being where two structural domains comprise a seemingly insepara-
ble evolutionary unit (a ‘homology domain’). But whenever this 
situation is observed, stand-alone versions or new multidomain
architectures of the respective domains are usually discovered eventu-
ally; this is supported by numerous observations made in the context
of recent genome analyses (for example, see refs 13, 14).

There is no doubt that protein families and superfamilies are
monophyletic, that is, they derive from a common ancestor. In con-
trast, monophyly of protein folds, as opposed to folds originating by
convergence from unrelated ancestors, remains an issue of debate. It
seems that, for most folds (with the possible exception of some of the
most diverse ‘superfolds’), similarity goes beyond the topology of the
protein backbone. Often, the basic physicochemical interactions and
the associated structural and sequence motifs are conserved
throughout a fold (for example, the P-loop in the eponymous
ATP/GTPase fold15,16), or even across fold boundaries (for example,
the phosphate-binding loop in Rossmann-type nucleotide-binding
domains17). Perhaps more important, on numerous occasions, the
same activity and/or function is performed by two or more unrelated
folds in different organisms or in different cellular systems in the
same organism18,19. Taken together, these observations seem to argue
against convergence as the prevalent force in the evolution of protein
folds and suggest that most, if not all, protein folds are monophyletic.
However, the possibility of multiple, convergent origins still might be
considered for some common folds with a relatively simple, symmet-
ric topology, such as TIM barrels (named after the structure of the
glycolytic enzyme triosephosphate isomerase) or b-propellers.

Protein families consist of related ‘individuals’, each of which is a
set of orthologues, or proteins related by vertical descent (according
to the classification of homologues proposed by Walter Fitch20,21).
Clusters of orthologous groups of proteins (COGs) typically occupy
a unique functional niche, which remains the same in different, even
phylogenetically distant organisms, except for lineage-specific
expansions of proteins within a COG22,23. These expansions that
result from relatively recent duplications are prominent in genomes,
particularly in eukaryotes24–26. On many occasions, there is a 
plausible connection between the lineage-specific proliferation of a
particular family and specific adaptations characteristic of the given
group of organisms. The relationships between distinct COGs within
a family (as well as between families within a superfamily and, most
likely, between superfamilies within a fold) represent paralogy, that
is, origin from an ancestral duplication20,21,27. Paralogous COGs with-
in a family tend to have different biological functions, although, in
many cases, they have identical or similar biochemical activities.

Early sequence and structure databases were severely biased, 
primarily because of overrepresentation of sequences of well-charac-
terized proteins and gross under-representation of uncharacterized
ones. Growth of the databases, especially with the advent of high-
throughput genome sequencing, eliminated much of this sampling

bias. By mid-1990, it became clear that the distribution of protein
domains among folds, superfamilies and families was extremely
uneven — most taxa consisted of a small number of members and
only a few were highly abundant. Rigorous application of sampling
theory ruled out sampling bias as the principal contribution to the
observed distribution28,29.

As the sampled fraction of the protein universe increased, more
reliable estimates of the overall variety of proteins became feasible. In
contrast to the earlier assessments, which relied largely on the rate of
discovery of new protein families4,30,31, these studies used the
observed distributions of families among folds to extrapolate the
total numbers, taking the sampling process into account. Depending
on the assumptions and methods used, the estimates of the total
number of existing protein folds produced by different researchers
varied substantially, from ~650 to ~10,000 (refs 29, 32–37). But
examination of the distribution of folds by the number of protein
families (Fig. 1) indicates that, in one sense, the discrepancy between
these estimates might be of little consequence. This distribution con-
tains a small number of folds with a large number of families (mostly
well-known superfolds, such as P-loop NTPases, the Rossmann fold
or TIM barrels) and an increasing number of folds that consist of a
small number of families. By far the largest size class consists of the
‘unifolds’37, each including one family, often just one COG. Thus, it
seems certain that the great majority of protein families belong to
~1,000 common folds. What is still in dispute is the number of 
unifolds that encompass the rest of the proteins. Approximately one
half of the common folds are currently represented by at least one
experimentally determined structure, which means that coarse-
grain mapping of the protein universe is already at an advanced stage.

Power laws and models of genome evolution
Mathematically, the distribution of protein folds by the number of
constituent families has been approximated by a power law, that is,
f(i) ~ i–g where f(i) is the frequency of folds that include exactly i fam-
ilies and g is a parameter that typically assumes values between 1 and
3 (ref. 34). More precisely, the fold–family distribution fits the 
so-called generalized Pareto function f(i) ~ (i&a)–g, where a is an
additional parameter, with the power law fitting asymptotically with
the increase of i (Fig. 1). Remarkably, the same function, up to the
parameters, fits the distribution of protein domain families by the
number of members in each analysed genome, as recently shown by
Kuznetsov38 and by ourselves39,40 (Fig. 2). These distributions, along
with the distributions of other genome-associated quantities (for
example, the number of pseudogenes per gene family), have been
previously approximated with power laws, first in the pioneering
work of Huynen and Van Nimwegen41 and subsequently in detailed
studies by Gerstein and colleagues42–44.
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Figure 1 Double-logarithmic plot of the distribution of protein folds by the number of
families. The sequences from the Structural Classification of Proteins (SCOP) 1.39
database were analysed as described in ref. 71. The best fit is defined by the equation
n41,165(i&1.1)–2.5. The red line shows the power-law asymptotic.

Table 1 Hierarchical classification of proteins

Category Example Definition, criteria or main features

Structural class a/b Overall composition of structural  
elements. No evolutionary relationship.

Fold TIM barrel Topology of the folded protein backbone. 
Monophyletic origin?

Superfamily Aldolase Recognizable sequence similarity (at least a 
conserved motif); conservation of basic 
biochemical properties. Monophyletic origin.

Family Class I aldolase Significant sequence similarity; conservation  
of biochemical activity.

Group of 2-keto-3-deoxy- Orthologous relationships within the given  
orthologues 6-phospho- set of species; conservation of the  
(COG) gluconate biochemical activity and, most often, also 

aldolase the biological function.

Lineage- PA3131 and Paralogues originating from a lineage-
specific PA3181 in specific duplication; possible functional 
expansion Pseudomonas specialization.

aeruginosa
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As demonstrated by Barabasi and colleagues and by several other
researchers, power laws describe the distribution of various quantities
in numerous biological, physical and social contexts; such distributions
can seem to be fundamentally different (for example, the number of
links between documents in the Internet, the population of towns and
the number of reactions in which a given metabolite is involved)45–50.
Zipf ’s law, which describes the frequency distribution of words in
texts51, and the Pareto principle, describing the distribution of people by
wealth52, are in this category. These distributions have specific mathe-
matical properties related to those of so-called scale-free networks, that
is, networks in which the frequency distribution of node degrees (the
number of nodes to which a given node is connected) follows a power
law47,48. In particular, the network of metabolic reactions in any organ-
ism is a scale-free network with a distinct hierarchical structure50,53 and
protein–protein interaction networks have similar properties54.

The wide spread of power distributions and scale-free networks in
nature and society suggests that similar laws might govern evolution
in a variety of diverse systems. The general pattern of network 
evolution that ensures scale-free behaviour is preferential attach-
ment, where the probability of a node acquiring a new connection is
proportional to the degree (the number of connections) of that node.
Metaphorically, this can be described as a situation in which ‘the rich
get richer’ or, from a selectionist perspective, ‘the fit get fitter’47.

Returning to protein domains, there seems to be at least three (not
necessarily exclusive) ways to explain the emergence of power laws
and related highly skewed distributions of the fold and family sizes in
the protein universe and in individual genomes. The ‘designability’
hypothesis, favoured by some structural biologists, postulates that
certain folds serve as attractors in the space of protein structures
because of their topological properties (for example, the highly

abundant TIM-barrel fold is a uniquely symmetrical construction).
As a result, many unrelated sequences tend to adopt the same few
folds. Interestingly, the simulated designability distributions
analysed by Wingreen and colleagues55,56 appear to be similar to the
empirical distributions of domain family sizes described by Gerstein
and co-workers42,44, Kuznetsov38 and ourselves39. However, given the
above argument against a convergent origin of most folds, 
designability does not seem to be a likely general explanation for the
observed preferential attachment or, more precisely, preferential
proliferation of domains in protein evolution. 

A straightforward selectionist interpretation holds that certain
biochemical activities (for example, nucleoside 58-triphosphate
hydrolysis), being particularly common and important in cellular
biochemistry, are in greater demand than other, highly specialized
ones, which leads to preferential proliferation of the respective pro-
tein families. Again, the weakness of this argument is that the same
activity is often embodied in two or more distinct domains, which
tend to differ substantially in abundance18. 

Finally, domain birth and death models developed by Gerstein
and co-workers42, Rzhetsky and Gomez57 and ourselves39, which 
originate from the classic analysis of Yule58, completely disregard the
protein identity, but give rise to equilibrium distributions of domain
family sizes that show an excellent fit to the observed ones. These
models typically include the elementary processes of family growth
via domain birth (duplication), domain death as a result of inactiva-
tion and loss, and innovation or emergence of a new family (for
example, through extensive modification of a member of an existing
family, horizontal gene transfer or even origin of a new protein from
non-coding sequence) (Fig. 3).

We recently explored the behaviour of these birth, death and 
innovation models (BDIMs) in detail, both analytically and by com-
puter simulation; this analysis seems to lead to non-trivial conclusions
on genome evolution39. First, it was shown that, using BDIMs, an equi-
librium distribution of domain family sizes is reached exponentially
fast during evolution from any initial conditions. Specifically,
äfi(t)1fiä~e–kt, where fi(t) is the frequency of a given family at time t and
fi is the equilibrium frequency. Thus, any perturbation in genome 
evolution, which involves changes in the parameters of birth, death or
innovation, rapidly relaxes to a new stationary state. Accordingly, the
mode of evolution depicted by BDIMs is most compatible with the
punctuated equilibrium notion of genome evolution59. By this model,
long periods of stasis are punctuated by relatively brief bursts of evolu-
tionary activity, which involve rapid proliferation and elimination of
gene families as well as ‘invention’ and acquisition of new ones.

Second, BDIMs result in different shapes of equilibrium 
distributions of family sizes depending on how precisely the birth
rate is balanced by the death rate. The power law appears as an asymp-
totic in a certain, specific subclass of BDIM, in which the death rate
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Figure 3 A general scheme of a birth, death and innovation model of genome evolution.
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Figure 2 Double-logarithmic plots of the size distribution of protein domain families 
in genomes. a, The hyperthermophilic bacterium Thermotoga maritima;
n42,972(i&0.8)–3.0. b, The nematode worm Caenorhabditis elegans;
n42,395(i&1.5)–1.9. The domains were identified using the Conserved Domain
Database (CDD) collection of position-specific scoring matrices and the reversed
position-specific (RPS)-BLAST program77. Data are from ref. 39; the red line shows the
power-law asymptotic
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approaches the birth rate for large families, but is considerably
greater than the birth rate for small families. These models accurately
describe the distributions of domain family size for all analysed
genomes, whereas straightforward approximation with a power law
does not fit the data nearly as well (Fig. 2).

Finally, analysis of BDIMs shows that the innovation rate, which is
required to offset the stochastic loss of low-copy families, has to be
relatively high and, at least in small, prokaryotic genomes, compara-
ble to the overall intra-genomic duplication (birth) rate. This sup-
ports, from a somewhat unexpected angle, the key role of horizontal
gene transfer in prokaryotic evolution that has been suggested by
numerous observations made during genome comparisons60–64.

The evolutionary models described here ignore completely the
individuality of gene families and the selective forces that make some
of them expendable and others indispensable. Despite this obvious
over-simplification, BDIMs accurately reproduce the observed fami-
ly size distributions, suggesting that genome evolution might be
largely a stochastic process, which is only modulated by selection.

Paradoxes of multidomain networks
Protein domains often combine to form multidomain architectures.
Analysis of such architectures can be extremely helpful for predicting
functions of uncharacterized domains and proteins in a ‘guilt by 
association’ approach (also called the ‘Rosetta Stone’ principle), which
is based on the assumption that physical fusion of two domains implies a
functional link65–68. Indeed, multidomain proteins have critical roles in
all living cells, as they provide effective links between different function-
al systems. Because of this ability, complex multidomain architectures
are particularly characteristic of various signalling systems. 

There seems to be a connection between the propensity of protein
domains to form multidomain architectures and the organismic
complexity. Specifically, in many orthologous sets of eukaryotic 
proteins, such as chromatin-associated transcription factors, a 
distinct trend, which we dubbed ‘domain accretion’, can be traced
towards increased complexity of domain architectures in more com-
plex organisms69. Because proteins form complex networks, even a
modest increase in the number of domains in interacting partners
could translate into numerous new interactions, which probably
contributes to the solution of the apparent paradox of ‘too few’ genes
in complex organisms70.

Given the involvement of multidomain proteins in a variety of 
cellular functions, we might expect that natural selection should
favour their formation to the extent that multidomain architectures
would be over-represented with respect to single-domain proteins,
especially in complex eukaryotes. However, quantitative analysis
does not seem to support this conclusion. Instead, the distribution of
proteins by the number of different domains (with multiple occur-
rences of the same domain in a given protein excluded from the
analysis) shows an excellent fit to an exponent71 (Fig. 4a). This type of
distribution is compatible with a random recombination (joining
and breaking) model of evolution of multidomain architectures. 

Notably, however, the slopes of the curves in Fig. 4a differ signifi-
cantly for archaea, bacteria and eukaryotes, indicating that the frac-
tion of multidomain proteins or, in terms of the random model, the
likelihood of domain joining increases in the order: archaea < bacte-
ria <eukaryotes. The under-representation of multidomain proteins
in archaea compared to the other two primary kingdoms of life 
might be related to the low stability of large proteins in the 
hyperthermophilic habitats of most archaeal species. The excess of
multidomain proteins in eukaryotes is not unexpected given the
observations on domain accretion; furthermore, the right tail of the
eukaryotic distribution shows a deviation from the exponent caused
by the presence of several proteins with a large number of domains
(Fig. 4a). When repeats of the same domain in a single polypeptide
chain are added to the mix, the distribution changes and is best
approximated by a generalized Pareto function (Fig. 4b). In light of
the above, this finding does not seem unexpected: evolution of
repeats is likely to follow a BDIM scenario, with tandem duplication
and elimination as the main underlying processes, rather than a ran-
dom joining–breaking model, which seems to apply to combinations
of different domains.
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Figure 4 Distributions of the number of domains in proteins from the three primary
kingdoms of life. a, Repeats of the same domain in a single polypeptide excluded. The
plot is in semi-logarithmic scale. b, Repeats of the same domain in a single
polypeptide included. The plot is in double logarithmic scale. The data and methods
used for generating this plot were the same as in Fig. 2. Eukaryotes: Hs, Homo
sapiens; Dm, Drosophila melanogaster; At, Arabidopsis thaliana. Bacteria: Agrtu,
Agrobacterium tumefaciens; Bacsu, Bacillus subtilis; Escco, Escherichia coli. 
Archaea: Arcfu, Archaeoglobus fulgidus; Metth, Methanothermobacter
thermoautotrophicus; Sulso, Sulpholobus solfataricus.
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Figure 5 Double-logarithmic plot of the distribution of protein domains by the number
of links in multidomain proteins. The number of links is the number of different
domains with which the given domain combines in multidomain proteins. The
combined data from seven analysed bacterial genomes, three archaeal genomes and
six eukaryotic genomes were the same as in Fig. 2, except that several domains that
showed artificially high numbers of connections because of their biased amino acid
composition were removed manually. The best fit is given by the equation
n446,815(i&4.0)–2.9.
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The above analysis does not tell us anything about the propensity of
individual domains to form multidomain architectures, and these
propensities differ widely. In an already familiar pattern, the distribu-
tion of the number of multidomain architectures in which a domain is
involved roughly follows a power law, as demonstrated by Wuchty72

and by Teichmann and co-workers73. More precisely, this distribution
is described by a generalized Pareto function that we have already
encountered in other contexts (Fig. 5). Thus, a small number of
domains are hubs of multidomain connections that hold together 
cellular interaction networks. Although evolution of multidomain
proteins containing different domains seems to occur primarily via
random processes of joining and breaking (Fig. 4a), the fit (to form
functionally advantageous multidomain architectures) still get fitter.

The network of multidomain connections for a moderately linked
hub, the BRCT (BRCA1 C-terminal) domain, which is an important
adaptor in eukaryotic cell-cycle checkpoints and DNA repair74,75, is
shown in Fig. 6. Notably, some of the domains linked to BRCT, such as
RING (involved in ubiquitin-dependent cascades) and FHA (impli-
cated in various signal-transduction pathways) are important hubs
themselves. Table 2 shows the top multidomain connectors for 
bacteria, archaea and eukaryotes. Remarkably, the lists for the two
prokaryotic kingdoms have five domains in common, whereas the
eukaryotic list is completely different. Not unexpectedly, however, all
three sets are dominated by domains that are involved in various
forms of signal transduction and regulation of enzymatic activity.

Perspectives
The protein universe is extremely unevenly populated, with most
proteins concentrated in a relatively small number of major clusters,
the common folds and superfolds. This highly skewed distribution of
proteins among folds should enable structural genomics research
programmes to complete a preliminary tour of the most important
part of the protein universe within the next few years76, although
many rare folds are likely to remain uncharacterized for much longer.

Projection of the structure of the protein universe on genomes
and quantitative analysis of the outcome seems to result in some
unexpected insights into general principles of genome evolution.
Remarkably, the size distributions of folds for the explored part of the
protein universe and of domain families for all analysed genomes, as
well as the distribution of the number of domain connections in 
multidomain architectures, are all described by the same type of
mathematical functions, in which the power law appears as an
asymptotic. This suggests that extremely general mechanisms of 

evolution, apparently based on the preferential attachment (prolifer-
ation) principle, are at work in all these contexts. 

With respect to domain families, these principles have already
been detailed in plausible, even if oversimplified, models of genome
evolution based on the elementary processes of birth, death 
and innovation. Similar models could potentially be developed for
other situations, such as the connections between domains in 
multidomain networks, as well as networks of protein–protein inter-
actions and metabolic reactions. Evolutionary modelling certainly
needs to be made more realistic by including additional parameters,
particularly those associated with purifying and positive selection. It
seems reasonable to hope that further quantitative analysis of the
structure of the protein universe and its projections on diverse
genomes ushers a qualitatively new understanding of the evolution of
life in a not so remote future. ■■
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Table 2 Top multidomain connections in eukaryotes, bacteria and archaea 

Eukaryotes Bacteria Archaea
NC Domain NC Domain NC Domain

133 Ser/Thr protein 28 AAA ATPase 18 AAA ATPase
kinase

69 PH 23 Receiver 9 His-kinase-type 
domain ATPase

63 Ankyrin repeat 20 His-kinase-type 9 CBS
ATPase

60 RRM 18 GAF 9 D-Ala-D-Ala ligase

58 Immunoglobulin 15 CBS 9 4Fe-4S ferredoxin

55 PHD finger 15 PAS 8 DEXD helicase

55 PDZ 14 His-kinase  8 PAS
phosphoacceptor

54 SH3 14 HAMP 8 PAC

54 RING finger 14 FMO-like 8 FMO-like

52 C2 14 ACT 7 Receiver

Abbreviations and acronyms: NC, Number of connections; PH, plekstrin homology domain;
RRM, RNA-recognition motif; PHD, plant homeodomain (-associated finger); 
PDZ, postsynaptic density protein-95/discs large/zo-1 domain; SH3 Src homology 3 domain;
FMO, flavin-dependent monooxygenase;  GAF, CBS, PAS, PAC, HAMP, ACT are 
small-molecule-binding domains involved in various forms  of signal transduction and allosteric
regulation of enzymatic activity.
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Figure 6 A fragment of the network of multidomain connections. All the connections of
the BRCT (BRCA1 C-terminal) domain and those between its partners are shown; the
number of outgoing connections is also indicated for all domains other than BRCT.
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