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Abstract. We present a collection of methods for solving the incompressible Navier–Stokes
equations in the plane that are based on a pure stream function formulation. The advantages of this
approach are twofold: first, the velocity is automatically divergence free, and second, complicated
(nonlocal) boundary conditions for the vorticity are avoided. The disadvantage is that the solution of
a nonlinear fourth-order partial differential equation is required. By recasting this partial differential
equation as an integral equation, we avoid the ill-conditioning which hampers finite difference and
finite element methods in this environment. By using fast algorithms for the evaluation of volume
integrals, we are able to solve the equations using O(M) or O(M logM) operations, where M is the
number of points in the discretization of the domain.
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1. Introduction. At the present time, methods for solving large-scale problems
in incompressible fluid dynamics are based largely on finite difference or finite element
methods. While enormous advances have been made in these approaches over the past
few decades, a number of open questions remain. These include the discretization of
complex flow domains, the imposition of the incompressibility constraint, the selection
of boundary conditions, and the resolution of complex solution features away from
the boundary. An equally important issue is the development of good turbulence
models, but we concern ourselves in this paper with flows that can be fully resolved
and assume the Reynolds numbers Re ranges up to the order of one thousand. In
some sense, this paper is an extension of our previous work on fast algorithms for the
Stokes equations in complex geometries [10], for which the Reynolds number is zero.

Integral equation methods offer several advantages in this setting, namely, that
complex physical boundaries are easy to incorporate and that the ill-conditioning
associated with direct discretization of the governing partial differential equations is
avoided. Nevertheless, despite some previous work [24, 29], such an approach has been
deemed impractical as a general tool because of the apparent computational expense.
The reason is clear. For any problem other than the Stokes equations, unknowns are
distributed at all points of the domain. On an N ×N mesh, the integral formulation
leads to dense N2 ×N2 matrices.

We hope to demonstrate here that, in fact, integral equation methods provide a
sound basis for the investigation of both steady and unsteady flows over a fairly wide
range of Reynolds numbers. We express the Navier–Stokes equations as a nonlinear
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fourth-order partial differential equation satisfied by the stream function ψ, and solve
this equation in an iterative fashion. For steady flows, the integral representation
for ψ involves layer and volume potentials based on fundamental solutions for the
biharmonic equation (Stokes flow). For unsteady flows, a modified biharmonic Green’s
function is used. In order to focus our attention on the behavior of the integral
equation approach and the performance of various iteration schemes, we restrict our
attention to flow inside a circular cylinder. Complex domains will be considered at a
later date [11].

For highly viscous steady flows (Re < 5), a simple fixed-point iteration scheme
is very effective and requires only the solution of a sequence of forced biharmonic
boundary value problems. For higher Reynolds numbers (5 < Re < 3000), we have
chosen to use an inexact Newton method [7], which converges rapidly but requires
the solution of a more complicated, nonconstant coefficient, fourth-order partial dif-
ferential equation at each iteration. For unsteady flows, the equations of motion are
evolved in time using linearly implicit or implicit-explicit (IMEX) methods, which
require the solution of a modified biharmonic equation at each time step.

While flow past a circular cylinder represents a classical problem in both theo-
retical and computational fluid dynamics, relatively little attention has been given
to flow inside a cylinder. Most published studies appear to be based on the stream
function/vorticity formulation of the two-dimensional Navier–Stokes equations, which
requires boundary conditions for the vorticity. At low to moderate Reynolds numbers,
this results in either nonlocal boundary conditions or schemes with low-order accuracy
and poor stability properties [1]. Interesting previous studies include those of Kuwa-
hara and Imai [16], who use a finite difference method, Panikker and Lavan [25], who
use a hybrid finite difference/integral equation method, Dennis, Ng, and Nguyen [6],
who use a Fourier spectral method, Wang and Wu [30], who use an integrodifferential
equation, and Huang and Tang [14], who use a hybrid finite difference/pseudospectral
method. The approach most closely related to ours is that of Mills [22], who devel-
oped an integral equation method based on the biharmonic Green’s function for a
cylinder. This approach, however, does not extend to more complex flow domains,
where the exact Green’s function is unavailable. In the approach described below, the
stream function is expressed in terms of volume and boundary source distributions
using an easily computed Green’s function, so that no geometric restrictions on the
flow domain apply.

The paper is organized as follows: section 2 reviews the equations of motion for
incompressible, viscous flow and section 3 contains a discussion of the basic numerical
tools we will require. In sections 4 and 5, we incorporate these tools into fixed-point
and Newton iterations for the steady Navier–Stokes equations, and in section 6, we
describe methods for the unsteady problem. Numerical examples are presented in
section 7, and we end with a brief discussion.

2. The governing equations. We consider the incompressible Navier–Stokes
equations in the standard nondimensional form

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∆u ,(1)

∇ · u = 0 ,(2)

where u is the velocity vector, p is the pressure, and Re is the Reynolds number of
the flow. An additional quantity of interest is the vorticity ω = ∇× u. Equation (1)
represents a balance of viscous, inertial, and pressure forces, and (2) is the continuity
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equation; together they constitute a system of equations for the unknowns u and
p. For two-dimensional flow in polar coordinates, this system is represented more
compactly by introducing the scalar stream function Ψ(r, θ, t), where

ur =
1

r

∂Ψ

∂θ
, uθ = −∂Ψ

∂r
.

The continuity equation (2) is then satisfied automatically. Taking the curl of both
sides of (1), the Navier–Stokes equations reduce to a single fourth-order equation

∂∆Ψ

∂t
+ Jr[Ψ,∆Ψ] = − 1

Re
∆2Ψ ,

where Jr is the Jacobian defined by Jr[a, b] = 1
r (∂ra ∂θb− ∂θa ∂rb) and the Laplacian

operator ∆ in polar coordinates is

∆ ≡ ∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
.

The vorticity vector points in the direction normal to the (r, θ) plane and can be
represented by a scalar function

ω = −∆Ψ .

We will restrict our attention in this paper to flow in the interior of a unit disk,
with the velocity specified on the boundary r = 1. Standard boundary conditions are
then of the form

ur(1, θ, t) = f2(θ, t) , uθ(1, θ, t) = −f1(θ, t).

In terms of the stream function, these become

∇Ψ(1, θ, t) = (f1(θ, t) , f2(θ, t)),(3)

where

∇ ≡
(
∂

∂r
,

1

r

∂

∂θ

)
.

One cannot, however, assign an arbitrary velocity distribution on the boundary. In
order that mass be conserved, there must be zero net flux across the boundary of the
disk: ∫

u · n dS =

∫ 2π

0

ur(1, θ, t) dθ = 0 .(4)

In summary, for unsteady flows, we wish to solve the following:

∂∆Ψ

∂t
+ Jr[Ψ,∆Ψ] = − 1

Re
∆2Ψ for r < 1 ,

∇Ψ =
(
f1(θ, t) , f2(θ, t)

)
for r = 1 ,

Ψ = Ψ0(r, θ) at t = 0 .

(5)

For steady flows, the above reduces to

∆2Ψ +ReJr[Ψ,∆Ψ] = 0 for r < 1 ,

∇Ψ =
(
f1(θ) , f2(θ)

)
for r = 1 .

(6)
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3. Numerical preliminaries. The methods we will develop for the full Navier–
Stokes equations rely on solutions to the biharmonic and Poisson equations. In this
section, we briefly describe some of the tools we will use to solve these boundary value
problems in a disk.

3.1. Stokes flow. In creeping flow, Re → 0 and the Navier–Stokes equations
are approximated by the linear Stokes equations. In this limit, (5) reduces to the
biharmonic equation:

∆2Ψ = 0 for r < 1 ,

∇Ψ =
(
f1(θ) , f2(θ)

)
for r = 1 .

(7)

Using the classical complex variable theory discussed by Mikhlin and others [17,
21, 23, 26], we note that any plane biharmonic function Ψ(r, θ) can be expressed by
Goursat’s formula as

Ψ(r, θ) = Re(zφ(z) + χ(z)) ,(8)

where φ and χ are analytic functions of the complex variable z = reiθ, and Re(g)
denotes the real part of the complex-valued function g. The functions φ(z) and ψ(z) =
χ′(z) are known as Goursat functions. A simple calculation leads to Muskhelishvili’s
formula

eiθ
∂Ψ

∂r
+ ieiθ

1

r

∂Ψ

∂θ
= φ(z) + zφ′(z) + ψ(z) ,(9)

providing an expression for the velocity field. The vorticity and pressure can also be
expressed in terms of the Goursat functions by means of the relation

−ω + ip = 4φ′(z) .

Muskhelishvili’s formula (9) allows us to convert the problem of Stokes flow into
a problem in analytic function theory, namely, that of finding φ and ψ which satisfy
appropriate conditions on the boundary. Letting f(θ) = f1(θ) + if2(θ), we must
simply ensure that

φ(eiθ) + eiθ φ′(eiθ) + ψ(eiθ) = eiθf(θ) .(10)

The natural compatibility condition (4), written in complex notation, is

Im

∫ 2π

0

f(θ)dθ = 0 ,(11)

where Im g denotes the imaginary part of the complex-valued function g.
While integral equation methods for obtaining the Goursat functions exist for

general multiply connected domains [10], we describe a much simpler method for
the unit disk. We first observe that since φ(z) and ψ(z) are analytic, they can be
represented by Taylor series:

φ(z) =

∞∑
n=0

anz
n , χ(z) = b0 +

∞∑
n=2

bn−1

n
zn ,

φ′(z) =
∞∑
n=0

(n+ 1)an+1z
n , ψ(z) =

∞∑
n=1

bnz
n .

(12)
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If we assume that the complex velocity f is tabulated at 2N + 1 equispaced points
on the boundary, it can be approximated with spectral accuracy in terms of a Fourier
series

f(θ) ≈
N∑

n=−N
fne

inθ.(13)

The coefficients fn in this truncated series can be obtained with the fast Fourier
transform (FFT) using O(N logN) arithmetic operations. In order to determine the
desired coefficients an and bn in the Taylor series for φ and ψ, we substitute (12)
into (10) and (11) and equate coefficients. This yields the system of equations

an = fn−1 , 2 < n ≤ N,
a1 + a1 = f0 , a0 = f−1 − 2a2,

bn = f−n+1 − (n+ 2)an+2 , 1 < n ≤ N,
which can be solved recursively using O(N) operations. Once the Taylor coefficients
have been determined, one can easily use the FFT to tabulate the solution at each
point of a polar grid (ri, θj), where 0 < r1 < · · · < rNr < 1 and θj = 2π(j− 1)/(2N +
1), at a total cost of O(NrN logN) operations. With minor changes in notation,
the method described here is equivalent to the series solution methods discussed in
[5, 6, 14, 22, 28, 30].

3.2. A simple high-order Poisson solver. Consider now a Poisson equation
of the form

∆u = g(r, θ) for r < 1,

u = 0 for r = 1 .
(14)

Although standard solvers exist for this geometry, we briefly describe our approach,
which is of arbitrary order accuracy and which allows for adaptivity in the radial
direction. For this, we approximate u(r, θ) and g(r, θ) by the truncated Fourier ex-
pansions

u(r, θ) ≈
N∑

n=−N
un(r)einθ , g(r, θ) ≈

N∑
n=−N

gn(r)einθ ,

where un(r) and gn(r) are complex-valued functions. Substituting these expressions
into (14) leads to the following sequence of two-point boundary value problems:

u′′n +
1

r
u′n −

n2

r2
un = gn(r) for 0 < r < 1 ,

u′0(0) = 0
un(0) = 0 , n 6= 0

}
, un(1) = 0 .

(15)

For each Fourier mode n, we solve the equation (15) using an adaptive, high-order
solver described in [12, 18]. In this method, the interval [0, 1] is divided into Nsub

subintervals at user-specified nodes, and the solution on each subinterval is approx-
imated by a Chebyshev expansion of degree K, yielding Kth-order accuracy. If we
denote the number of radial grid points by Nr = KNsub, then the total number of
grid points in the disk is M = Nr(2N + 1) and the cost of the solution to the Poisson
equation is proportional to M logM .
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4. Steady flows at low Reynolds number. In order to solve the steady,
nonlinear Navier–Stokes equation (6), an iterative method is needed. The simplest
approach is to let the nonlinear term depend on the solution at the previous iteration
and solve a sequence of forced biharmonic problems until convergence is reached. In
short, given the current approximation Ψk, we solve

∆2Ψk+1 = −ReJr[Ψk,∆Ψk] for r < 1 ,

∇Ψk+1 =
(
f1(θ), f2(θ)

)
for r = 1 ,

(16)

to obtain the next iterate. For the initial guess, we take Ψ0(r, θ) to be the solution of
the Stokes problem

∆2Ψ0 = 0 for r < 1 ,

∇Ψ0 =
(
f1(θ), f2(θ)

)
for r = 1,

(17)

calculated by the method described in section 3. The iteration is continued until the
following convergence criterion is met:∥∥∇Ψk+1 −∇Ψk

∥∥
‖∇Ψk+1‖ < TOL .(18)

Letting bk(r, θ) ≡ −ReJr[Ψk,∆Ψk], we could choose to represent Ψk+1 as the
sum of the initial guess Ψ0 and the function

Ψ̃k+1(r, θ) =

∫ ∫
D

bk(r′, θ′) G̃B(r, θ; r′, θ′) dr′dθ′ ,(19)

where G̃B(r, θ; r′, θ′) is a biharmonic Green’s function satisfying ∇G̃B(1, θ; r′, θ′) = 0.
This Green’s function is available analytically in the case of a disk [9] and the above
procedure is precisely that suggested by Mills [22]. Unfortunately, this approach
cannot be applied to general regions. In order for our method to be extensible, we use
a two-step procedure. First, we compute a “particular solution” ΨP which satisfies
the partial differential equation in (16), but ignores the boundary conditions. We
then add a function ΨH which satisfies the homogeneous Stokes equation and which
is designed to correct the boundary conditions. In this representation,

Ψk+1(r, θ) = ΨP (r, θ) + ΨH(r, θ),

we have chosen to obtain a particular solution ΨP in terms of the solution to two
iterated Poisson equations. We let

∆ωP = −bk for r < 1

ωP = 0 for r = 1

 ,


∆ΨP = −ωP for r < 1

ΨP = 0 for r = 1

 .(20)

Once ΨP is known, we define ΨH as the solution to

∆2ΨH = 0 for r < 1 ,

∇ΨH =
(
f1(θ) , f2(θ)

)−∇ΨP for r = 1 .
(21)

The problems (20) and (21) can be solved by the methods of section 3. Thus, the
work required to obtain each new fixed-point iterate Ψk+1 is of the order O(M logM),
where M is the total number of grid points in the discretization.
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5. Steady flows at higher Reynolds number. As the Reynolds number in-
creases, the simple fixed-point iteration scheme discussed in the previous section con-
verges more and more slowly and eventually diverges. Improvements in the conver-
gence rate can be obtained by the introduction of relaxation factors [6, 16, 22], but
in order to handle advection-dominated flows, a more robust scheme is needed. An
obvious candidate is Newton’s method, which guarantees quadratic convergence for
approximations sufficiently close to the desired solution. It has been used in vast
numbers of studies of the Navier–Stokes equations, and we mention only a few: Forn-
berg [8] and Huang and Tang [14] consider flows outside and inside the unit disk, and
Eisenstat and Walker [7] consider the driven cavity problem. All three of these papers
use finite difference methods in either stream function-vorticity or pure stream func-
tion formulations. The computational cost of each Newton iteration is significantly
greater than for the fixed-point scheme, but this increase in cost is offset by a dra-
matic reduction in the number of iterations required at Reynolds numbers as low as
Re = 5.

In this section, we develop a Newton iteration based on solving the fourth-order
stream function equation (6) using an integral equation formulation. As in the fixed-
point case, we begin with an initial guess Ψ0(r, θ) which solves the Stokes equations
satisfying the boundary condition (3). Given the current guess Ψk, each new iterate
is obtained by computing the Newton update δ(r, θ):

Ψk+1(r, θ) = Ψk(r, θ) + δ(r, θ).

Substituting the above expression into (6) and linearizing about the current solution,
it is easy to show that δ must satisfy the equation

∆2δ −ReJr[∆δ,Ψk] +ReJr[δ,∆Ψk] = sk(r, θ) for r < 1 ,

∇δ = (0, 0) for r = 1 ,
(22)

where sk is the residual from the previous iteration

sk ≡ −∆2Ψk −ReJr[Ψk,∆Ψk].

The iteration is continued until the convergence criterion (18) is met.
Equation (22) is a fourth-order, nonconstant coefficient, partial differential equa-

tion. On a uniform N ×N mesh, the condition number of the linear system resulting
from a finite difference discretization is proportional to N4, resulting in significant loss
of precision and posing serious convergence problems for standard iterative methods,
especially in complex geometries.

We choose to seek δ in the form

δ(r, θ) = δP (r, θ) + δH(r, θ) ,(23)

where

δP (r, θ) =

∫ ∫
D

ρ(r′, θ′)GB(r, θ; r′, θ′) r′dr′dθ′ ,(24)

GB(r, θ; r′, θ′) is some biharmonic Green’s function, ρ(r, θ) is an unknown volume
density, and δH(r, θ) satisfies the homogeneous biharmonic equation with boundary
conditions

∇δH(1, θ) = −∇δP (1, θ) .
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While a variety of biharmonic Green’s functions can be used in the representation (24),
we will use the Green’s function which satisfies the homogeneous boundary conditions
GB(1, θ; r′, θ′) = ∆GB(1, θ; r′, θ′) = 0.

Substituting (23) into (22) yields the equation that determines the volume density
ρ:

ρ+K(∆δP , δP ) +K(∆δH , δH) = sk for r < 1 ,
∇δP +∇δH = (0, 0) for r = 1 ,

(25)

where K(a, b) = −ReJr[a,Ψk] +ReJr[b,∆Ψk]. While somewhat unwieldy if written
out in full, K(∆δP , δP ) + K(∆δH , δH) is an expression involving integral operators
with weakly singular kernels and the unknown density ρ. Thus, equation (25) is a
Fredholm equation of the second kind. Note that δH is defined implicitly in terms of
ρ through the relation ∇δH(1, θ) = −∇δP (1, θ).

If we let ωP ≡ ∆δP , then clearly{
∆ωP = ρ for r < 1

ωP = 0 for r = 1

}
,

{
∆δP = ωP for r < 1

δP = 0 for r = 1

}
.(26)

Thus, given a volume density ρ, we can compute ωP and then δP using our Poisson
solver. Our Stokes solver can then be used to obtain δH .

We discretize ρ using the same polar grid as before,

(ri, θj), 1 ≤ i ≤ Nr, 1 ≤ j ≤ 2N + 1,

associating an unknown density value ρij with each location. Equation (25) then
becomes a dense, finite-dimensional linear system for these values. By contrast with
a finite difference or finite element formulation, this linear system has a bounded
condition number as Nr, N →∞. The representation (23) can, in fact, be interpreted
as preconditioning the partial differential equation (22) with the biharmonic equation.
(Eisenstat and Walker [7] use such a preconditioner explicitly in the finite difference
context.) As a result, the discrete version of (25) can be solved in a straightforward
manner using the generalized minimum residual method (GMRES) [27]. The bulk
of the work at each GMRES iteration is the “matrix-vector product.” From the
preceding discussion, it is clear that, given the vector of density values ~ρ = {ρij},
each iteration requires the solution of two Poisson equations (26) to obtain δP [~ρ]
and ωP [~ρ] and the solution of one biharmonic equation to compute δH . Thus, each
iteration for the linearized problem (25) requires more or less the same amount of
work as a single fixed-point iteration for the nonlinear problem (16).

An iterative technique, such as GMRES, is equipped with a parameter tol which
specifies the precision to which equation (25) is solved. In a classical Newton method,
tol would normally remain fixed throughout the (outer) Newton iteration at some
value smaller than the (outer) Newton tolerance TOL. However, it is pointless to
solve (25) to high precision when the iterate Ψk is far from the exact solution. Inex-
act Newton methods are obtained by allowing tol to vary with each outer iteration,
becoming more and more stringent as the iterates converge to the desired solution
[7]. It can be shown that quadratic convergence is retained. An obvious choice is to
define the tolerance for the kth iterate by

tolk = max
(
ε1TOL , ε2‖sk(r, θ)‖) ,(27)
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where ε1, ε2 are small constants. In our experience, the condition (27) with ε1 = 10−2

and ε2 = 10−1 reduces the total amount of work by a factor of 2 when compared
with the strategy tolk = ε1 · TOL. The gains in performance, of course, depend on
the detailed behavior of the Newton iteration. The more steps required before rapid
convergence sets in, the greater the speedup obtained from strategies such as (27).

6. Implicit methods for unsteady flows. We turn now to the solution of
the unsteady Navier–Stokes equations expressed in the form (5) which contains both
diffusive and convective terms. At moderate values of Re, “linearly implicit” or IMEX
schemes are generally used for marching in time. In such schemes, the diffusive
term (1/Re) ∆2Ψ is treated implicitly, while the convective term Jr[Ψ,∆Ψ] is treated
explicitly. At each time step, one must solve a linear elliptic equation, but one avoids
the severe diffusive stability requirements imposed on a fully explicit scheme. The
remaining stability constraint is dictated by a CFL condition, which in turn depends
on the velocity field. At sufficiently high Reynolds numbers, this CFL condition can
be dominant, but we are interested in problems where diffusion plays an important
role and for which explicit methods are ineffective.

Ascher, Ruuth, and Wetton [2] present a systematic approach, based on stabil-
ity arguments, for selecting and developing suitable IMEX schemes for a range of
Reynolds numbers and a variety of spatial discretizations. Regardless of the details
of the particular choice of IMEX scheme, time discretization of (5) yields the linear
partial differential equation:

∆ΨN+1 − α∆2ΨN+1 = b(ΨN ,ΨN−1, . . .) for r < 1 ,

∇ΨN+1 =
(
f1(t, θ), f2(t, θ)

)
for r = 1 ,

Ψ0 = Ψ0(r, θ) at t = 0 ,

(28)

where t = (N + 1)∆t is the current time. The simplest such scheme is the first-order
backward Euler method, which is of the form (28) with

α =
∆t

Re
, b = ∆ΨN + ∆t Jr[Ψ

N ,∆ΨN ] .

A second-order method shown in [2] to be suitable for low to moderate values of the
Reynolds number is the extrapolated Gear method (EXG), for which

α =
2∆t

3Re
, b =

4

3
∆ΨN − 1

3
∆ΨN−1 +

4

3
∆t JNr −

2

3
∆t JN−1

r ,(29)

where JNr = Jr[Ψ
N ,∆ΨN ]. At higher Reynolds number, a less diffusive scheme is

often used, such as Crank–Nicolson/leap frog (CNLF), for which

α =
∆t

Re
, b = ∆ΨN−1 + 2∆t JNr +

∆t

Re
∆2ΨN−1 .

In order to solve the modified biharmonic equation (28) by means of integral
equations, we first represent the solution at each time step as

ΨN+1(r, θ) = ΨP (r, θ) + ΨH(r, θ) ,

where
ωP − α∆ωP = −b for r < 1

ωP = 0 for r = 1

 ,


∆ΨP = −ωP for r < 1

ΨP = 0 for r = 1

 ,(30)
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and ΨH satisfies

∆ΨH − α∆2ΨH = 0 for r < 1 ,

∇ΨH =
(
f1(t, θ) , f2(t, θ)

)−∇ΨP for r = 1 .
(31)

The Poisson solver discussed in section 3 is easily adapted to solve the equa-
tions (30) to determine ωP . Slightly more complicated is the equation (31), for which
the general solution in a disk can be expressed as

ΨH =
∞∑

n=−∞

[
AnIn

(
r√
α

)
+Bnr

|n|
]
einθ ,

where In are the modified Bessel functions of the first kind. The coefficients An and
Bn are found from the boundary conditions. To carry this out, let (g1(θ), g2(θ)) =(
f1(t, θ), f2(t, θ)

)−∇ΨP (t, 1, θ), which is represented in complex notation as g(θ) =
g1(θ) + ig2(θ). We approximate this by the truncated Fourier series

g(θ) ≈
N∑

n=−N
gne

inθ .

Matching coefficients of einθ yields

A0 =

√
αg0

I1(1/
√
α)

, An =

√
αgn

In+1(1/
√
α)

, An = A−n , 1 < n ≤ N,

Bn =
1

2n

[
An√
α
In+1

(
1√
α

)
− gn

]
, Bn = B−n , −N < n ≤ −1 .

Clearly, the amount of work required at each time step is of the order O(M logM)
for a polar grid with M discretization points.

7. Numerical results. The algorithms described above have been implemented
in Fortran. Here, we illustrate their performance on a variety of interior-flow examples.
All timings cited are for a Sun SPARC-20 workstation.

Example 1: An inflow-outflow problem. We first consider a setting in which fluid
is injected radially over one portion of the disk boundary and ejected radially over
another. This type of flow is occasionally used as a model for the ventilation of
confined spaces (see [22] and the references therein), and the boundary conditions are
typically of the form

ur(1, θ) =


1/ε′ , α− ε′ < θ < α+ ε′,
0 , α+ ε′ < θ < β − ε,
−1/ε , β − ε < θ < β + ε,
0 , β + ε < θ < 2π + α− ε′,

uθ(1, θ) = 0 .(32)

While it is clear that this velocity distribution satisfies the zero net flux condition (4),
the boundary condition is discontinuous. In order to simplify the problem and re-
tain high-order convergence from the Fourier discretization of ur(1, θ), we mollify the
velocity distribution (32) and use

ur(1, θ) =
4√
πε


e−4(θ−α)2/ε2 , α− 6ε < θ < α+ 6ε,
0 , α+ 6ε < θ < β − 6ε,

−e−4(θ−β)2/ε2 , β − 6ε < θ < β + 6ε,
0 , β + 6ε < θ < 2π + α− 6ε .

(33)
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Fig. 1. Velocity boundary conditions for the inflow–outflow problem of Example 1.

Fig. 2. Streamlines of the solution to the inflow–outflow problem of Example 1 at various
Reynolds numbers. The inflow region is centered at θ = π, the outflow region is centered at θ = π/8,
and the length of both segments is π/16. The computational grid was uniform with Nsub = 40,
K = 4, and N = 150.
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Table 1
Comparison of the fixed-point and inexact Newton methods for solving the inflow–outflow prob-

lem of Example 1. In these calculations, Nsub = 40, K = 4, and N = 150. The fixed-point iteration
diverges for Re > 3.

Fixed point Inexact newton
Re # Iterations CPU time # Iterations CPU time
0.5 5 73 4 175
1.0 6 87 5 219
1.5 7 102 15 392
2.0 9 131 15 392
2.5 11 160 15 392
3.0 19 258 29 625
3.5 — — 31 654
4.0 — — 49 947
5.0 — — 53 1006
7.5 — — 128 2367

In Figure 1, the velocity profile is shown for ε = ε′ = π/32, α = π/8, and β = π.

Figure 2 shows the solution at several values of the Reynolds number. Our results
appear to be in good agreement with those calculated in [6, 14, 22]. Of particular
note are the calculations of Huang and Tang [14], who were able to carry out this
computation for Reynolds numbers up to 1000 using an adaptive method developed
specifically for this application. We have limited our calculations to a grid with 160
points in the radial direction and 301 points in the azimuthal direction, which is
sufficient to resolve flows with Reynolds numbers up to 7.5.

Table 1 compares the number of iterations and total CPU time required for both
the fixed-point scheme and the inexact Newton method, using a tolerance TOL =
10−6. To accelerate convergence, we use a continuation method with respect to Re.
In other words, as we increase the Reynolds number, the solution obtained with the
preceding value of Re is used as the initial guess, rather than the Stokes flow solution
(Re = 0). The number of iterations indicated in the table for Newton’s method refers
to the total number of inner GMRES iterations. No more than 10 outer Newton
iterations are needed for each stage.

Example 2: Batchelor’s constant-vorticity theorem. An interesting class of prob-
lems, called moving-wall problems, consist of steady flows inside a disk generated by
tangential motion of part or all of the boundary:

ur(1, θ) = 0 , uθ(1, θ) = −f1(θ) .(34)

If f1(θ) is constant, the steady solution is that of rigid-body rotation. As a simple
model for recirculating flows in physical cavities at high Reynolds number, Batchelor
[3] has suggested letting f1(θ) be constant over a portion of the arc and zero elsewhere.
In order to test our approach in a slightly simpler setting, we let f1(θ) vary smoothly.
In the present example, we consider the internal flow generated by

ur(1, θ) = 0 , uθ(1, θ) = −1

2
(1 + cos θ) ,

a problem solved by Kuwahara and Imai [16], for Re ≤ 1024, and by Mills [22], for
Re ≤ 64.
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Fig. 3. Solutions to the moving-wall problem of Example 2 at several values of the Reynolds
number. The left-hand plots show streamlines of the solution, while the right-hand plots show con-
tours of vorticity. In these calculations, Nsub = 30, K = 8, and N = 16.

This example serves as a nice illustration of the behavior of steady closed flows
as Re → ∞. In this limit, the region in which viscous forces dominate shrinks to a
layer on the boundary and, as described by Batchelor’s constant-vorticity theorem,
the vorticity is uniform in a connected region of small viscous forces. The value of this
“core” vorticity can be computed from a boundary layer solution [4, 15, 31]. Without
entering into details, the idea is that the region with constant vorticity is behaving like
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Fig. 4. Vorticity distribution along the x axis at several values of the Reynolds number for the
moving-wall problem of Example 2. The horizontal dashed line represents the value of the vorticity
at the core as predicted by Batchelor’s theorem.

Fig. 5. Vorticity distribution along the diameter x = y of the unit disk at several values of
the Reynolds number for the moving-wall problem of Example 3. The horizontal line represents the
value of the vorticity at the two cores as predicted by Batchelor’s theorem.
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Fig. 6. Solutions to the moving-wall problem of Example 3 at several values of the Reynolds
number. The left-hand plots show streamlines of the solution and the right-hand plots show contours
of vorticity. In these calculations, Nsub = 40, K = 4, and N = 64.

a rigid-body rotation, uθ = ω0/2, where ω0 is the core vorticity. Thus, one can equate
integrals of the velocity along the physical boundary with integrals of the velocity just
inside the boundary layer:

∫ 2π

0

u2
θ(1, θ) dθ =

∫ 2π

0

u2
θ(1− δ, θ) dθ,
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Table 2
Performance of the inexact Newton method for the moving-boundary problem of Example 3.

In the first column, we list the Reynolds number. In the second column, we list the number of
Newton iterations required to solve the steady-state Navier–Stokes equations, using the solution at
the preceding Reynolds number as the initial guess. In the third column, we list the total number of
GMRES iterations needed at each Reynolds number, and in the fourth column, we list the amount
of CPU time expended.

Re Newton GMRES Time
iterations iterations

100 4 42 310.0
200 4 85 626.6
300 4 131 974.1
400 4 180 1349.4
500 4 231 1737.8
600 4 270 2037.7
700 4 307 2325.9
800 3 191 1417.0
900 4 414 3248.8

1000 4 440 3421.6

where δ is the width of the boundary layer. The first integral is known from the
boundary condition uθ(1, θ) = − 1

2 (1 + cos θ), and we use the approximation uθ(1 −
δ, θ) ≈ ω0/2 to determine the unknown value of the core vorticity. A straightforward
calculation yields the asymptotic result

lim
Re→∞

|ω0| =
√

3/2.

Figure 3 demonstrates this convergence to a core of constant vorticity quite clearly.
Figure 4 plots the vorticity distribution along the x axis of the cylinder for several
values of Re, and shows that the vorticity away from the boundary layer is converging
to a uniform distribution at the predicted value.

The steady equations were solved using the fixed-point scheme until Re ≈ 20.
For higher Reynolds numbers, we used the inexact Newton method. Detailed timing
results are presented for the next, somewhat more complicated, example.

Example 3: A moving-wall problem with multiple cell formation. In the preceding
example, the boundary motion results in a single cell of constant vorticity as Re→∞.
By changing the boundary conditions, it is possible to get more than one cell within
the cylinder, each having a different core vorticity as Re→∞. Here, we consider the
motion generated by

ur(1, θ) = 0 , uθ(1, θ) = − cos θ sin θ .

The azimuthal velocity changes sign four times on the boundary, and as can be seen in
Figure 6, the cylinder breaks up into four quadrants each enclosed by the streamline
Ψ = 0. Figure 5 shows the vorticity distribution along the diameter of the cylinder
x = y at increasing values of Re. The vorticity does tend toward a core value which is
extracted numerically to be approximately 1.4. Detailed timing information is given
in Table 2.

Note that the number of Newton iterations remains more or less constant as the
Reynolds number increases, but that the total number of GMRES iterations required
grows linearly. This is a reflection of the fact that the partial differential equation (22)
which is solved at each Newton step becomes more and more advection dominated,
while our current preconditioner is based on Stokes flow. Improved iterative strategies
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Fig. 7. Solutions to the washing machine problem of Example 4 at two different Re. The upper
plots show the particle distribution at t = 0; the middle plots show their positions after one cycle
(t = 2); and the bottom plots are the positions after 400 cycles. In these calculations, Nsub = 20,
K = 8, N = 16, and ∆t = 0.1.

will have to be incorporated if higher Reynolds numbers are to be reached in a practical
setting.

Example 4: A washing machine. For the final example, we consider an unsteady
flow in which a fluid, initially at rest, is subject to a periodic rotation of the boundary:

ur(1, θ, t) = 0 , uθ(1, θ, t) = −signum[sin(πt)] .

We use the extrapolated Gear method (29) as an evolution scheme and visualize the
flow by tracking “particles” which move passively with the fluid according to
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dx

dt
= u .

The results of this simulation are shown in Figure 7. Note that at Re = 1, the
particles return more or less to their initial configuration even after 400 cycles. This
is a consequence of the nearly negligible inertial effects. For Re = 100, the particles
near the boundary do not return to their starting positions even after one cycle, and
this distortion moves slowly inward as the number of cycles progresses.

8. Discussion. We have presented a class of integral equation methods for the
solution of the steady and unsteady incompressible Navier–Stokes equations in two
space dimensions. These methods eliminate the need to enforce the divergence-free
condition on the velocity field at each step, as in projection methods, or generating
boundary conditions for the vorticity, as in stream function/vorticity methods. Al-
though our methods rely, in a fundamental way, on fast solvers for the steady and
unsteady Stokes equations, our numerical results appear quite promising for Reynolds
numbers as large as Re = 3000.

In the present paper, the Navier–Stokes equations are solved by fast direct meth-
ods specifically designed for a disk, but we believe that the integral equation viewpoint
will be of benefit in a more general setting. Fast, iterative methods based on poten-
tial theory are already available for the Poisson equation and the homogeneous Stokes
equations in arbitrary multiply connected domains [10, 19, 20]. With these tools, it
is a straightforward matter to extend our steady-state algorithms to complex geome-
tries [11]. For the unsteady problem, we also need a method to solve the homogeneous
modified biharmonic equation (31) in general regions. As Re→∞ and ∆t→ 0, this
is a singularly perturbed fourth-order partial differential equation. There is a suit-
able potential theory for this problem [13], but we are not aware of any existing fast
algorithms to make this potential theory practical. This is a topic of current research.
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