Quotient Spaces and Direct Sums.
In what follows, we take V' as a finite dimensional vector space over a field F'. Let W C V'
be a subspace. For x and y in V', define

r=ymod W if and only if y —x € W

It follows that the relation x = y mod W is an equivalence relation on V. Namely
(i) x = 2 mod W for any x € V. (reflexivity)

(i) If x = y mod W then y = x mod W (symmetry)

(iii) If x = y mod W and y = z mod W then z = z mod W (transitivity)

General theory shows that if we define the equivalence class T = {y|y = x}, then the following
properties hold.

(iv) The equivalence classes partition V. Namely, distinct equivalent classes are disjoint, and
their union is V.

(v) z =y mod W if and only if T = 7.

It is easily shown that T =z + W.

Item (v) shows that equivalence can be converted to equality, using equivalence classes.
Thus,T=7gifand onlyif t + W =y + W if and only if xr =y if and only if y —x € W.

The following algebraic properties of equivalence can easily be shown:
(vi) If x = y mod W and ¢ € F' then cx = ¢y mod W.
(vii) If x = y mod W and u = v mod W then x + u =y + v mod W.

Properties (v1) and (vii) can be stated as ” Equivalence is compatible with scalar multiplica-
tion and addition.” It allows us to define addition and scalar multiplication of the equivalence
classes in the following natural way.

(viii) T=tr;T+y=x+y

It is easy to verify that the equivalent classes of V mod W form a vector space using this
definition. This vector space is called the quotient space V/W. Paraphrasing,

V/W is the space of all cosets x + W, with x € V| with

(x4+W)+w+W)=(x+y)+Wand c(x+ W) =cx+W.

Note: The zero element of V/W is 0+ W or W.

Definition. Let W C V as before. Define the map p:V — V/W by the equation p(z) =
x 4+ W. Then p is called the canonical map of V' into the quotient space V/W.



It is an easy matter to show that
(1) p is linear.

(2) p is onto.

(3) The ker(p) = W.

Corollary. dim(V/W) = dim(V') — dim(W).
In fact, since the image of p is V/W and the kernel is W, we have dim(V/W) + dim(W) =
dim(V'), by the theorem on dimensions of range and kernel.

Theorem. Let L:V — U, and let W = ker(L). Then L(V) is isomorphic with V/W.

For the proof, consider the map 7:V/W — U according to the formula T'(x + W) = L(z).
It is well defined, since if # + W =y + W, we have x —y € W, so L(z —y) = 0 (since W is
the kernel of L) and so L(x) = L(y). The image of T is clearly L(V'), and the kernel of 7" is
clearly W, since T'(x + W) = 0 if and only if L(z) = 0 if and only if x € W or x + W is the
zero element of V/W. So T Is the required isomorphism of V/WW onto L(V).

Definition. Let W C V as before. We say the x1, x5, ...,z are linearly independent mod
k

W provided Z apvr = 0 mod W implies a; = 0 for 1 <i < k.

i=1

It is an easy matter to show that x1,xs, ..., x; are linearly independent mod W if and only
if 71,73, ..., Ty are linearly independent vectors of V/W.

Theorem: Let T7,73,...,T, be a basis of V/W and let wy,ws, ..., ws be a basis for W.
Then x4, ..., 2, wy,...,w, is a basis for V.

Proof: We already know that r + s = dim(V') by the theorem of dimensions. So it is
enough to show that these vectors are linearly independent. If 3° a;x; + >~ bjw; = 0, we have
> a;z; =0 mod W, so Y a;7; = 0 in V/W. Thus, each a; = 0. This implies Y bjw; = 0 and
so each b; = 0, proving the result.

Direct Sums. Let 1V, and V5 be vector spaces over the same field F. The direct sum
V =V; @ Vs is the vector space defined as follows.
1. The elements of V' are the ordered couples (vy,vy) where v; € V; for i = 1, 2.
2. Addition and scalar multiplication are defined component-wise:
(’Ul, Ug) + (wl,wg) = (’01 + Wi, V2 + wg).
a(vl, ’Ug) = (CL’Ul, CL’UQ)

It is a simple matter to verify that V; @ V5 is a vector space using these definitions. Both V;
and V5 are naturally isomorphic to subspaces of V = V] @ V5. The subspace of all elements
Vi = {(v1,0)]v; € Vi} is clearly isomorphic to V; using the isomorphism v; ~— (vy,0).
Similarly, V5 is naturally isomorphic to the subspace V; of all elements (0, v,) with vy € V.

The process naturally extends to the direct sum Vi & Vo & --- @ Vi of k vector spaces



Vi, 1<i<k

The above is an external construction of a direct sum. More typically direct sums can
sometimes be found internally. Namely, suppose V is a vector space, and V; C V are
subspaces for 1 < ¢ < k. Suppose further that

V=Vi+-+V

and
0=wv1+v9+4 -+ v for v; € V; implies v; = 0,for 1 <7 < k

Then V is isomorphic to Vi & --- ® V.

For a proof, define V! =V; & --- &V, and consider the map T:V' — V defined by
T(’Ul,...,Uk) =v;+-+ g

These two conditions show that this map is onto, and 1-1. Linearity is straight-forward.
Following the text, we shall write V' = V; & --- & V}, in this situation. Note that the two
conditions generalize the notion of a basis. In fact, if vy,..., v, are n vectors in a space V/,
and we define V; = span({v;}), it is clear that V' is the direct sum of the V; if and only if the
v; form a basis of V.

When V =V, ® --- ® V,, and each V; is finite dimensional, it can be easily verified that
dim(V) = > dim(V;) and a basis of V is the union of bases of V.

A reason for considering direct sums is that the analysis of a structure is often simplified
by analyzing substructures that are used a building blocks of that structure. This becomes
clear when we discuss linear transformations on a vector space V.

Invariant subspaces.

Let T:V — V. A subspace U C V is called T-invariant, provided T(U) C U. Analysis of T
will be simplified if a basis 7 of U is chosen, and then expanded to a full basis § of V. The
matrix [T is then seen to have the simpler form

(05)

where A is and m x m matrix (m is the dimension of U) and B is an (n—m) x (n —m) matrix
(n is the dimension of V.) Here A = [T'|U],. (T'|U is the map 7 restricted to U and regarded
a transformation of U.) We used this idea in the discussion of the Cayley Hamilton theorem,
and in the analysis of eigenspaces. It is easy to show that the characteristic polynomial of
T|U divides the characteristic polynomial of 7.

Now suppose, for T:V — V', that there are subspaces U and W, such that V =U @& W and
T is U-invariant and W-invariant. Then we say that 7" is (U, W)-invariant. In this case, if
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a basis ¢ of W is adjoined to a basis v of U to form a basis # of V, the matrix [T]z has the

form
A O
O B

Here A = [T'|U], and B = [T|W]s;. We have broken up the transformation into simpler parts
- simpler because the dimensions of U and W are smaller than the dimension of V. This
process can continue until there are no longer any pairs of subspaces which are invariant
under 7'. This will lead to subspaces Uy, ..., U, whose direct sum is V' and which are all T’
invariant. It leads to a basis of V' and a matrix of T" given by

A O ... O
O A ... O

. (1)
O 0 ... 4

The extreme case is a diagonalizable transformation. Here, each U; is 1 dimensional and
each matrix A; is a scalar (a 1 X 1 matrix).

This decomposition of a transformation can be done externally. Let Vi,..., V. be vector
spaces, and let T; be a transformation of V; for 1 < i < k. Let V=V ®--- ® V.. We
define the direct sum T'=T) @ - - - @ T}, of these transformation by defining T'(vy,...,vx) =
(Tvy, ..., Tvg). The matrix of T" with respect to the obvious basis for V' will then be of the
form (1).



