
Quotient Spaces and Direct Sums.
In what follows, we take V as a finite dimensional vector space over a field F . Let W ⊆ V
be a subspace. For x and y in V , define

x ≡ y mod W if and only if y − x ∈ W

It follows that the relation x ≡ y mod W is an equivalence relation on V . Namely
(i) x ≡ x mod W for any x ∈ V . (reflexivity)
(ii) If x ≡ y mod W then y ≡ x mod W (symmetry)
(iii) If x ≡ y mod W and y ≡ z mod W then x ≡ z mod W (transitivity)

General theory shows that if we define the equivalence class x = {y|y ≡ x}, then the following
properties hold.
(iv) The equivalence classes partition V . Namely, distinct equivalent classes are disjoint, and
their union is V .
(v) x ≡ y mod W if and only if x = y.
It is easily shown that x = x + W .

Item (v) shows that equivalence can be converted to equality, using equivalence classes.
Thus, x = y if and only if x + W = y + W if and only if x ≡ y if and only if y − x ∈ W .

The following algebraic properties of equivalence can easily be shown:
(vi) If x ≡ y mod W and c ∈ F then cx ≡ cy mod W .
(vii) If x ≡ y mod W and u ≡ v mod W then x + u ≡ y + v mod W .

Properties (v1) and (vii) can be stated as ”Equivalence is compatible with scalar multiplica-
tion and addition.” It allows us to define addition and scalar multiplication of the equivalence
classes in the following natural way.

(viii) cx = cx; x + y = x + y

It is easy to verify that the equivalent classes of V mod W form a vector space using this
definition. This vector space is called the quotient space V/W . Paraphrasing,

V/W is the space of all cosets x + W , with x ∈ V , with

(x + W ) + (y + W ) = (x + y) + W and c(x + W ) = cx + W.

Note: The zero element of V/W is 0 + W or W .

Definition. Let W ⊆ V as before. Define the map p:V → V/W by the equation p(x) =
x + W . Then p is called the canonical map of V into the quotient space V/W .
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It is an easy matter to show that
(1) p is linear.
(2) p is onto.
(3) The ker(p) = W .

Corollary. dim(V/W ) = dim(V ) − dim(W ).
In fact, since the image of p is V/W and the kernel is W , we have dim(V/W ) + dim(W ) =
dim(V ), by the theorem on dimensions of range and kernel.

Theorem. Let L:V → U , and let W = ker(L). Then L(V ) is isomorphic with V/W .
For the proof, consider the map T :V/W → U according to the formula T (x + W ) = L(x).
It is well defined, since if x + W = y + W , we have x − y ∈ W , so L(x − y) = 0 (since W is
the kernel of L) and so L(x) = L(y). The image of T is clearly L(V ), and the kernel of T is
clearly W , since T (x + W ) = 0 if and only if L(x) = 0 if and only if x ∈ W or x + W is the
zero element of V/W . So T Is the required isomorphism of V/W onto L(V ).

Definition. Let W ⊆ V as before. We say the x1, x2, . . . , xk are linearly independent mod

W provided
k∑

i=1

akvk ≡ 0 mod W implies ai = 0 for 1 ≤ i ≤ k.

It is an easy matter to show that x1, x2, . . . , xk are linearly independent mod W if and only
if x1, x2, . . . , xk are linearly independent vectors of V/W .

Theorem: Let x1, x2, . . . , xr be a basis of V/W , and let w1, w2, . . . , ws be a basis for W .
Then x1, . . . , xr, w1, . . . , ws is a basis for V .
Proof: We already know that r + s = dim(V ) by the theorem of dimensions. So it is
enough to show that these vectors are linearly independent. If

∑
aixi +

∑
bjwj = 0, we have∑

aixi ≡ 0 mod W , so
∑

aixi = 0 in V/W . Thus, each ai = 0. This implies
∑

bjwj = 0 and
so each bi = 0, proving the result.

Direct Sums. Let V1 and V2 be vector spaces over the same field F . The direct sum
V = V1 ⊕ V2 is the vector space defined as follows.
1. The elements of V are the ordered couples (v1, v2) where vi ∈ Vi for i = 1, 2.
2. Addition and scalar multiplication are defined component-wise:

(v1, v2) + (w1, w2) = (v1 + w1, v2 + w2).
a(v1, v2) = (av1, av2)

It is a simple matter to verify that V1 ⊕ V2 is a vector space using these definitions. Both V1

and V2 are naturally isomorphic to subspaces of V = V1 ⊕ V2. The subspace of all elements
V1 = {(v1, 0)|v1 ∈ V1} is clearly isomorphic to V1 using the isomorphism v1 7→ (v1, 0).
Similarly, V2 is naturally isomorphic to the subspace V2 of all elements (0, v2) with v2 ∈ V2.

The process naturally extends to the direct sum V1 ⊕ V2 ⊕ · · · ⊕ Vk of k vector spaces
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Vi, 1 ≤ i ≤ k.

The above is an external construction of a direct sum. More typically direct sums can
sometimes be found internally. Namely, suppose V is a vector space, and Vi ⊆ V are
subspaces for 1 ≤ i ≤ k. Suppose further that

V = V1 + · · · + Vk

and
0 = v1 + v2 + · · ·+ vk for vi ∈ Vi implies vi = 0, for 1 ≤ i ≤ k

Then V is isomorphic to V1 ⊕ · · · ⊕ Vk.

For a proof, define V ′ = V1 ⊕ · · · ⊕ Vk, and consider the map T :V ′ → V defined by

T (v1, . . . , vk) = v1 + · · ·+ vk

These two conditions show that this map is onto, and 1-1. Linearity is straight-forward.
Following the text, we shall write V = V1 ⊕ · · · ⊕ Vk in this situation. Note that the two
conditions generalize the notion of a basis. In fact, if v1, . . . , vn are n vectors in a space V ,
and we define Vi = span({vi}), it is clear that V is the direct sum of the Vi if and only if the
vi form a basis of V .

When V = V1 ⊕ · · · ⊕ Vk, and each Vi is finite dimensional, it can be easily verified that
dim(V ) =

∑

i

dim(Vi) and a basis of V is the union of bases of Vi.

A reason for considering direct sums is that the analysis of a structure is often simplified
by analyzing substructures that are used a building blocks of that structure. This becomes
clear when we discuss linear transformations on a vector space V .

Invariant subspaces.
Let T :V → V . A subspace U ⊆ V is called T -invariant, provided T (U) ⊆ U . Analysis of T
will be simplified if a basis γ of U is chosen, and then expanded to a full basis β of V . The
matrix [T ]β is then seen to have the simpler form

(
A C
O B

)

where A is and m×m matrix (m is the dimension of U) and B is an (n−m)×(n−m) matrix
(n is the dimension of V .) Here A = [T |U ]γ . (T |U is the map T restricted to U and regarded
a transformation of U .) We used this idea in the discussion of the Cayley Hamilton theorem,
and in the analysis of eigenspaces. It is easy to show that the characteristic polynomial of
T |U divides the characteristic polynomial of T .

Now suppose, for T :V → V , that there are subspaces U and W , such that V = U ⊕ W and
T is U -invariant and W -invariant. Then we say that T is (U, W )-invariant. In this case, if
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a basis δ of W is adjoined to a basis γ of U to form a basis β of V , the matrix [T ]β has the
form (

A O
O B

)

Here A = [T |U ]γ and B = [T |W ]δ. We have broken up the transformation into simpler parts
- simpler because the dimensions of U and W are smaller than the dimension of V . This
process can continue until there are no longer any pairs of subspaces which are invariant
under T . This will lead to subspaces U1, . . . , Uk whose direct sum is V and which are all T
invariant. It leads to a basis of V and a matrix of T given by




A1 O . . . O
O A2 . . . O

. . . . . .
. . . . . .

O O . . . Ak




(1)

The extreme case is a diagonalizable transformation. Here, each Ui is 1 dimensional and
each matrix Ai is a scalar (a 1 × 1 matrix).

This decomposition of a transformation can be done externally. Let V1, . . . , Vk be vector
spaces, and let Ti be a transformation of Vi for 1 ≤ i ≤ k. Let V = V1 ⊕ · · · ⊕ Vk. We
define the direct sum T = T1 ⊕ · · · ⊕ Tk of these transformation by defining T (v1, . . . , vk) =
(Tv1, . . . , T vk). The matrix of T with respect to the obvious basis for V will then be of the
form (1).
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