
Derivative Securities, Fall 2012 – Homework 4. Distributed 10/24, due 11/7.
Corrective footnote added to Problem 7 is new as of 11/7. Problem 5a corrected 11/7. Typo
in comment after Problem 4 corrected 11/11.

Problems 1–5 reinforce our discussion of SDE’s and the Ito calculus. Problem 6 makes
use of the Black-Scholes PDE. Problem 7 reinforces the material in the Section 7 notes on
pricing path-dependent options.

(1) Let s solve the SDE ds = µs dt+ σs dw, where µ and σ are constant. Find the SDE
solved by

(a) y = As, where A is constant

(b) y =
√
s

(c) y = cos(s)

(d) y = s3t2.

(2) We continue to assume that s solves ds = µs dt+σs dw, with µ and σ constant. Find
a function f such that f(s(t)) is a martingale (that is, such that the SDE describing
f(s(t)) has no dt term).

(3) This problem should help you understand Ito’s formula. If w is Brownian motion,
then Ito’s formula tells us that z = w2 satisfies the stochastic differential equation
dz = 2wdw + dt. Let’s see this directly:

(a) Suppose a = t0 < t1 < . . . < tN−1 < tN = b. Show that w2(ti+1) − w2(ti) =
2w(ti)(w(ti+1)− w(ti)) + (w(ti+1)− w(ti))2, whence

w2(b)− w2(a) = 2
N−1∑
i=0

w(ti)(w(ti+1)− w(ti)) +
N−1∑
i=0

(w(ti+1)− w(ti))2

(b) Let’s assume for simplicity that ti+1−ti = (b−a)/N . Find the mean and variance
of S =

∑N−1
i=0 (w(ti+1)− w(ti))2.

(c) Conclude by taking N →∞ that

w2(b)− w2(a) = 2
∫ b

a
w dw + (b− a).

(4) Here’s a cute application of the Ito calculus. Let w(t) be Brownian motion (with
w(0) = 0), and consider

βk(t) = E[wk(t)].

Show using Ito’s formula that for k = 2, 3, . . .,

βk(t) =
1
2
k(k − 1)

∫ t

0
βk−2(s) ds.

Deduce that E[w4(t)] = 3t2. What is E[w6(t)]?
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[Comment: the moments of w can also be calculated from its distribution function,
since w(t) is Gaussian with mean 0 and variance1 t. But the method in this problem
is easier, and good practice with Ito’s lemma.]

(5) Consider the solution of

ds = r(t)s dt+ σ(t)s dw, s(0) = s0. (1)

where r(t) and σ(t) are deterministic functions of time.

(a) Show that2 log s(t) is a Gaussian random variable, with mean
log s(0) +

∫ t
0 [r(s)− 1

2σ
2(s)] ds and variance

∫ t
0 σ

2(s) ds.

(b) Show that s(T ) = s0 exp
(
[r − 1

2σ
2]T + σ

√
TZ

)
where Z is a standard Gaussian,

r =
1
T

∫ T

0
r(s) ds and σ2 =

1
T

∫ T

0
σ2(s) ds.

[Comment: The price of a non-dividend-paying stock has the form (1) under the
risk-neutral measure. A forward price also satisfies an equation of this form, with
r(t) ≡ 0. According to this problem, when r(t) and σ(t) are nonconstant but depend
deterministically on time, we can value options by using the standard Black-Scholes
formulas with r and σ replaced by r and σ.]

(6) In HW3 we considered a derivative whose payoff was sn(T ) at maturity, where s(t)
has lognormal dynamics with constant volatility σ, and where the risk-free rate is r
(also constant). We showed there that the derivative has value

sn(t) exp
(
[12σ

2n(n− 1) + r(n− 1)](T − t)
)

at time t. Let’s give a different derivation of the same result, using the Black-Scholes
PDE.

(a) Substitute V (s, t) = h(t)sn into the Black-Scholes PDE. What ODE must h(t)
solve? What is the appropriate final-time condition?

(b) Verify that h(t) = exp
(
[12σ

2n(n− 1) + r(n− 1)](T − t)
)

solves the ODE you
found in (a), with the appropriate final-time condition.

(7) This problem asks you to value some path-dependent options using one of the meth-
ods discussed in the Section 7 notes. Use the 3-period forward and stock price trees
shown in the figure, with branching probabilities equal to 1/2. [The trees were es-
tablished as follows: assume each period is a year; the current stock price is 100;
there is a continuous dividend rate of q = 5%; the risk-free rate is r = 7%; and the
volatility is σ = 25%. This suggests a multiplicative forward tree with “up factor”
u = exp(−1

2(.25)2 + .25) = 1.2445. Since we have set the branching probabilities to

1typo here corrected 11/11
2The original version said “log s(t) is a Gaussian random variable. Show that its mean is

∫ t
0

[r(s) −
1
2
σ2(s)] ds.” That expression for the mean is wrong, for lack of the additive term log s(0).
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1/2, the “down factor” must be d = 2 − u = .7555. The stock tree is determined by
the forward tree, st = Fte

−(r−q)(T−t).]3

(a) Value an American call with strike 90 and maturity 3 years.

(b) Value a call with strike 95 on the average year-end stock price. (This option’s
payoff at time T = 3 is max{(s1 + s2 + s3)/3− 95, 0}.)

(c) Value a down and out barrier call with barrier 85 and strike 95. (This option
is worthless if s1, s2, or s3 is below 85; otherwise its payoff at time T = 3 is
(s3 − 95)+.)

3Unfortunately, I made a copying error in reporting the forward price tree, which makes two trees in
the figure inconsistent. In period 2, where my forward price tree says 98.83, the number produced by the
procedure just described is 99.83. The stock price tree is correct (ie it is what the procedure gives), since
99.83 ∗ e−.02 = 97.86. By the way, the crucial structural property for a stock price tree when the dividend
rate q is nonzero and the branching probabilities are 1/2 is snow = e−(r−q)δt[ 1

2
sup + 1

2
sdown]; this assures that

the stock is correctly priced by the tree. Our procedure for getting the stock price tree from the forward
price tree guarantees that the stock price tree has this property. A previous “correction” – asserting that
the stock price tree should say 96.87 where the figure says 97.86 – was simply wrong [with this change, the
tree would not price the stock correctly]. But solutions that use a correct method to price the options will
be counted correct regardless of which stock price tree you used.
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