
MECHANICS – Problem Set 2, distributed 2/7/18, due 2/21/2018

(1) The bending stiffness of xerox paper. Recall our discussion of “the xerox paper
problem” from Lecture 2: consider a standard 8.5 × 11 sheet of paper, held at one
edge so the tangent there is vertical. We showed that if r(s) = (cos θ(s), sin θ(s), 0)
describes its profile then

Aθ′′ + f0s cos θ(s) = 0

on 0 < s < L, with boundary conditions

θ′(0) = 0, θ(L) = −π/2,

where s = 0 corresponds to the free edge and s = L corresponds to the edge being
held. Here L = 11 inches is the length of the paper, f0 is the gravitational constant
(i.e. (0,−f0, 0) is the force per unit length due to gravity), and A is the bending
stiffness of the paper (i.e. the relation between bending moment and curvature is
m3 = Aθ′).

Clearly the profile depends only on the ratio A/f0. Estimate the value of this ratio for
a standard sheet of paper. There is more than one way to approach this. You could
(but you don’t have to) proceed as follows:

(a) Using Matlab, you can solve the ODE θ′′ + s cos θ(s) = 0 for s > 0, with “initial
condition” θ(0) = θ0, θ

′(0) = 0, for various choices of θ0 > 0. It is clear from
the equation that θ′′ < 0, so θ(s) decreases. Eventually – say, at s = S(θ0) – it
reaches θ(s) = −π/2.

(b) Our paper has a known length L. So consider

θ̃(s̃) = θ

(
S

L
s̃

)
where S = S(θ0). It has the desired boundary conditions

θ̃′(0) = 0, θ̃(L) = −π/2,

and it solves the equation (
L

S

)3

θ̃′′ + s̃ cos θ̃(s̃) = 0.

Thus it solves our PDE with A/f0 replaced by (L/S)3. The profile of the sheet
of paper with this choice of A/f0 is obtained by integrating (using Matlab again)
the ODE

rs = (cos θ̃(s), sin θ̃(s)), 0 ≤ s ≤ L.

(c) Plot the profiles you get from part (b), for various values of θ0. About what
should θ0 be to get something that resembles the profile of the xerox paper?
What do you conclude about A/f0? (I don’t expect an exact answer, just a
ballpark estimate.)

1



(2) A variational perspective on bifurcation of the elastica. Recall from the
Lecture 2 notes that equilibrium configurations of the elastica (with length 1 and the
physical constant A set to 1) are critical points of the functional

E[θ] =
∫ 1

0

1
2
θ2
s + λ cos θ ds,

and that (to leading order) the bifurcation diagram is described by θ(s) = gφ(s) with

λ− λ1 =
π2

32
g2 (1)

where φ(s) = sin
(
π
2 s
)

and λ1 = π2/4. Give another “derivation” of (1) by (i) assum-
ing that θ(s) = gφ(s) for some g, (ii) estimating E[θ] as a function of g, using the
approximation cos θ ≈ 1 − 1

2θ
2 + 1

24θ
4, then (iii) considering the condition that g be

a critical point of the resulting expression. (I put “derivation” in quotes, because a
proper explanation why it’s sufficient to consider θ = gφ requires the arguments of
the Lecture 2 notes.)

(3) Bifurcation of an imperfect elastica. Consider an imperfect elastica, with (con-
stant) intrinsic curvature δ. This means the constitutive law is m3 = A(θ′ − δ). We
take the length to be 1, and the boundary conditions to be the same as considered
in Lecture 2: the left side (s = 0) is clamped in a horizontal position, while the right
side (s = 1) is loaded horizontally. For simplicity we set A = 1.

(a) Show that the associated boundary value problem is

θ′′ + λ sin θ = 0, θ(0) = 0, θ′(1) = δ.

(b) Show that solutions of this boundary-value problem are critical points of

E =
∫ 1

0

1
2(θ′ − δ)2 + λ cos θ ds

subject to boundary condition θ(0) = 0. (Note that I have not imposed θ′(1) = δ;
you must explain why a critical point satisfies this ”natural boundary condition.”)

(c) Consider the associated linear problem

u′′ + λ0u = f, u(0) = 0, u′(1) = g

with λ0 = π2/4. Show that for a solution to exist, the data must satisfy∫ 1
0 f(s)φ(s) ds = g with φ(s) = sin(π2 s). [More is true: when this condition

holds a solution exists, and is unique up to an additive multiple of φ(s). You’ll
need this in part (d); I’m not asking you to prove it, but if you’ve taken PDE
then you should know how to give a proof.]

(d) Seek a formal solution for the configuration of the buckled structure by means
of a perturbation expansion

θ = 0 + εθ(1) + ε2θ(2) + . . .

δ = 0 + εδ(1) + ε2δ(2) + . . .

λ = π2/4 + ελ(1) + ε2λ(2) + . . .
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Reconcile your answer with your physical intuition about which way the elastica
should buckle (depending on the sign of δ).

(e) Liapunov-Schmidt reduction says that the equilibrium equation can be expressed
in the form

f(x, µ; δ) = 0

with the notation

θ = xφ+ θ̃, θ̃⊥φ
µ = λ− π2/4.

Show that your answer to (d) is consistent with f having a Taylor expansion
near 0 of the form

f(x, µ; δ) ≈ x3 + c1µx+ c2δ

for suitable choices of the constants c1 and c2.

(f) Give a variational perspective on this problem, analogous to the one requested
in Problem 2 for the case δ = 0.
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