## MECHANICS - Problem Set 2, distributed $2 / 7 / 18$, due 2/21/2018

(1) The bending stiffness of xerox paper. Recall our discussion of "the xerox paper problem" from Lecture 2: consider a standard $8.5 \times 11$ sheet of paper, held at one edge so the tangent there is vertical. We showed that if $r(s)=(\cos \theta(s), \sin \theta(s), 0)$ describes its profile then

$$
A \theta^{\prime \prime}+f_{0} s \cos \theta(s)=0
$$

on $0<s<L$, with boundary conditions

$$
\theta^{\prime}(0)=0, \quad \theta(L)=-\pi / 2
$$

where $s=0$ corresponds to the free edge and $s=L$ corresponds to the edge being held. Here $\mathrm{L}=11$ inches is the length of the paper, $f_{0}$ is the gravitational constant (i.e. $\left(0,-f_{0}, 0\right)$ is the force per unit length due to gravity), and $A$ is the bending stiffness of the paper (i.e. the relation between bending moment and curvature is $m_{3}=A \theta^{\prime}$ ).

Clearly the profile depends only on the ratio $A / f_{0}$. Estimate the value of this ratio for a standard sheet of paper. There is more than one way to approach this. You could (but you don't have to) proceed as follows:
(a) Using Matlab, you can solve the ODE $\theta^{\prime \prime}+s \cos \theta(s)=0$ for $s>0$, with "initial condition" $\theta(0)=\theta_{0}, \theta^{\prime}(0)=0$, for various choices of $\theta_{0}>0$. It is clear from the equation that $\theta^{\prime \prime}<0$, so $\theta(s)$ decreases. Eventually - say, at $s=S\left(\theta_{0}\right)$ - it reaches $\theta(s)=-\pi / 2$.
(b) Our paper has a known length $L$. So consider

$$
\tilde{\theta}(\tilde{s})=\theta\left(\frac{S}{L} \tilde{s}\right)
$$

where $S=S\left(\theta_{0}\right)$. It has the desired boundary conditions

$$
\tilde{\theta}^{\prime}(0)=0, \quad \tilde{\theta}(L)=-\pi / 2
$$

and it solves the equation

$$
\left(\frac{L}{S}\right)^{3} \tilde{\theta}^{\prime \prime}+\tilde{s} \cos \tilde{\theta}(\tilde{s})=0
$$

Thus it solves our PDE with $A / f_{0}$ replaced by $(L / S)^{3}$. The profile of the sheet of paper with this choice of $A / f_{0}$ is obtained by integrating (using Matlab again) the ODE

$$
r_{s}=(\cos \tilde{\theta}(s), \sin \tilde{\theta}(s)), \quad 0 \leq s \leq L
$$

(c) Plot the profiles you get from part (b), for various values of $\theta_{0}$. About what should $\theta_{0}$ be to get something that resembles the profile of the xerox paper? What do you conclude about $A / f_{0}$ ? (I don't expect an exact answer, just a ballpark estimate.)
(2) A variational perspective on bifurcation of the elastica. Recall from the Lecture 2 notes that equilibrium configurations of the elastica (with length 1 and the physical constant $A$ set to 1 ) are critical points of the functional

$$
E[\theta]=\int_{0}^{1} \frac{1}{2} \theta_{s}^{2}+\lambda \cos \theta d s
$$

and that (to leading order) the bifurcation diagram is described by $\theta(s)=g \phi(s)$ with

$$
\begin{equation*}
\lambda-\lambda_{1}=\frac{\pi^{2}}{32} g^{2} \tag{1}
\end{equation*}
$$

where $\phi(s)=\sin \left(\frac{\pi}{2} s\right)$ and $\lambda_{1}=\pi^{2} / 4$. Give another "derivation" of (1) by (i) assuming that $\theta(s)=g \phi(s)$ for some $g$, (ii) estimating $E[\theta]$ as a function of $g$, using the approximation $\cos \theta \approx 1-\frac{1}{2} \theta^{2}+\frac{1}{24} \theta^{4}$, then (iii) considering the condition that $g$ be a critical point of the resulting expression. (I put "derivation" in quotes, because a proper explanation why it's sufficient to consider $\theta=g \phi$ requires the arguments of the Lecture 2 notes.)
(3) Bifurcation of an imperfect elastica. Consider an imperfect elastica, with (constant) intrinsic curvature $\delta$. This means the constitutive law is $m_{3}=A\left(\theta^{\prime}-\delta\right)$. We take the length to be 1 , and the boundary conditions to be the same as considered in Lecture 2: the left side $(s=0)$ is clamped in a horizontal position, while the right side $(s=1)$ is loaded horizontally. For simplicity we set $A=1$.
(a) Show that the associated boundary value problem is

$$
\theta^{\prime \prime}+\lambda \sin \theta=0, \quad \theta(0)=0, \theta^{\prime}(1)=\delta
$$

(b) Show that solutions of this boundary-value problem are critical points of

$$
E=\int_{0}^{1} \frac{1}{2}\left(\theta^{\prime}-\delta\right)^{2}+\lambda \cos \theta d s
$$

subject to boundary condition $\theta(0)=0$. (Note that I have not imposed $\theta^{\prime}(1)=\delta$; you must explain why a critical point satisfies this " natural boundary condition.")
(c) Consider the associated linear problem

$$
u^{\prime \prime}+\lambda_{0} u=f, \quad u(0)=0, u^{\prime}(1)=g
$$

with $\lambda_{0}=\pi^{2} / 4$. Show that for a solution to exist, the data must satisfy $\int_{0}^{1} f(s) \phi(s) d s=g$ with $\phi(s)=\sin \left(\frac{\pi}{2} s\right)$. [More is true: when this condition holds a solution exists, and is unique up to an additive multiple of $\phi(s)$. You'll need this in part (d); I'm not asking you to prove it, but if you've taken PDE then you should know how to give a proof.]
(d) Seek a formal solution for the configuration of the buckled structure by means of a perturbation expansion

$$
\begin{aligned}
\theta & =0+\epsilon \theta^{(1)}+\epsilon^{2} \theta^{(2)}+\ldots \\
\delta & =0+\epsilon \delta^{(1)}+\epsilon^{2} \delta^{(2)}+\ldots \\
\lambda & =\pi^{2} / 4+\epsilon \lambda^{(1)}+\epsilon^{2} \lambda^{(2)}+\ldots
\end{aligned}
$$

Reconcile your answer with your physical intuition about which way the elastica should buckle (depending on the sign of $\delta$ ).
(e) Liapunov-Schmidt reduction says that the equilibrium equation can be expressed in the form

$$
f(x, \mu ; \delta)=0
$$

with the notation

$$
\begin{aligned}
\theta & =x \phi+\tilde{\theta}, \quad \tilde{\theta} \perp \phi \\
\mu & =\lambda-\pi^{2} / 4
\end{aligned}
$$

Show that your answer to (d) is consistent with $f$ having a Taylor expansion near 0 of the form

$$
f(x, \mu ; \delta) \approx x^{3}+c_{1} \mu x+c_{2} \delta
$$

for suitable choices of the constants $c_{1}$ and $c_{2}$.
(f) Give a variational perspective on this problem, analogous to the one requested in Problem 2 for the case $\delta=0$.

