MECHANICS — Problem Set 3, distributed 2/21/18, due 3/21/18. I'm allowing longer
than usual, since this problem set is relatively long and 3/14 is spring break.

These problems provide practice with basic concepts of 3D nonlinear elasticity, and explore various
reductions including (i) incompressible fluid dynamics, (ii) elastic membranes, and (iii) balloons.

(1) A homogeneous elastic fluid is a hyperelastic material with an energy function W (F') = h(det F).
Show that the Cauchy stress is then 7 = —p(p)I, where p(p) = —h'(pr/p). [Here pg is the density
in Lagrangian, assumed constant, and p is the density in Eulerian variables.] Show that in this case
the equations of elastodynamics are precisely the compressible Euler equations

p@;ww) = ~Vplp) + f

op 0
E"‘Z%(Pvz) =0.
[Note: to calculate OW/0F;, when W (F') = h(det F') you’ll to use Cramer’s Rule, which says that

et ) — (det F)(FT)~1]

(2) Consider a hyperelastic material, whose Piola-Kirchhoff stress tensor is given by P, = W /OF..
Show that if W is frame-indifferent (i.e. if W(F) = W (RF') for all orientation-preserving rotations
R) then the associated Cauchy stress 7 satisfies 7(RF) = R7(F)RT.

(3) Consider a homogeneous, isotropic, hyperelastic material with energy function W (F') = (11, I2, I3),
where Iy, I3, I3 are the elementary symmetric functions of B = FFT (Iy = tr B, I = %[(tr B)? —
tr(B?)], I3 = det B). Show that the associated Cauchy stress has the form 7 = ¢oI + ¢1 B + ¢ B>
with

_ GO
¢[) = 28713 det F’
_ -1, % 1
o1 = 28[1 (det F) +2812(trB)(detF)
_ 1
G5 = ~20(detF)7! .

(4) Rubber can be modelled as a homogeneous, isotropic, incompressible hyperelastic material. The
energy function for such a material has the form W (F') = (I3, I2), since all deformations must
satisfy the constraint det F = 1. Its Cauchy stress has the form 7 = —pI + ¢1B + ¢2B?, where
@1, ¢2 have the form derived in Problem 3. Let’s explore how W can be determined experimentally,
using relatively simple experiments on thin membranes.

Consider a sheet (in reference coordinates) of length 2A, width 2B, and thickness 2h, with
A, B > h. Consider deformations of the form

xi:)\iXi, i:1,2,3,

which can be maintained by edge tractions alone (i.e. for which the the faces X3 = +h are traction-
free). Show that

I = M4y ——
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and that the Cauchy stress is
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Conclude that g—}ﬁ and % satisfy
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Thus by measuring the dependence of 71 and 792 on A1 and Ay one can determine the function .

(5) Consider a spherical rubber balloon (such as you might buy in a toy store). To a reasonable
approximation we may:

e consider the reference domain to be a thin spherical annulus Q = {z : rg—e < |X| <ro+e€};
e consider the air pressure in the balloon to be a constant p;
e ignore the atmospheric pressure outside the balloon;

e consider experiments that are volume-controlled (fixing the volume of the interior of the
balloon) or pressure-controlled (fixing the air pressure in the balloon).

From common experience, it is difficult to start blowing up a balloon, but then it gets easier, though
eventually as the balloon gets large the blowing gets hard again (unless it bursts). This suggests a
pressure-volume relation of the type shown in figure 1 below.

(a) Assume the rubber is hyperelastic and incompressible. Show that variational principle as-
sociated with a pressure-controlled experiment involves the energy E = [, W(F) dX —
p(volume inside balloon). (In other words, check that this gives the correct equilibrium and
boundary conditions.) What variational principle is associated with a volume-controlled ex-
periment?

(b) Consider the limit € — 0 and assume the deformation is uniform expansion (i.e. the sphere
X = 19 is mapped by z(X) = AX to a sphere of radius Arg). Suppose W has the form
(A1, Ao, A3) where A1, Az, and A3 are the principal stretches (eigenvalues of (FTF)'/2). Show
that when restricted to the case of “uniform expansion” the pressure-controlled variational
principle takes the form E(\) = ¢1 F(\) — capA? with

F(\) = &\ A7),

What are the constants ¢; and co?



RE gsuRE

e

Vvoluniz

i |

UERGj

b\/rf

\/aLunE

-Qi wreg 3

= ERGj

\/\/ kel

voLunE

.ﬁ:C e Z

PRESSVRE

[ B3

VeLun £ .

(c) Two commonly-used constitutive laws for rubber are the neo-Hookean energy

(A1, A2, A3) = a(A] + A3+ A5 —3)

with a > 0, and the Mooney-Rivlin energy
®(A1, A2, As) = a(Af + A5 + A3

with @ > 0 and K > 0 (typically 4 < K < 8). Are these laws consistent with the nonmonotone
pressure-volume relation shown in figure 17

(d) Let’s think about the 1D energy E()), using the non-monotonicity of the pressure-volume
relation (as shown in Figure 1) but not using any special formula for F' (such as those in part
b). Evidently, certain values of the pressure p are consistent with 3 different volumes rather
than just one. For such p, F must have “double-well” structure, as shown in Figure 2. Show
that the two wells have exactly the same depth precisely when p = pg satisfies the “equal

area rule” sketched in Figure 3.

(e) In real pressure-controlled experiments, as p crosses the value pg, the balloon size changes
(relatively suddenly) so that the volume occupies the deeper well (the energetically preferred

—3)+ (a/K) A\ 2+ A2 4+ 252 = 3)

state). How can this be reconciled with our 1D model?



