MECHANICS - Problem Set 4, assigned 3/29/18, due 4/18/18

These problems are concerned with linear elasticity. Problem 1 asks you to explain why an isotropic Hooke's law is described by just two constants. Problems 2 and 3 explore Korn's inequality. Problem 4 gives an example of an elasticity problem with an explicit separation-of-variables solution. Problems 5-8 examine some important reductions and special cases of linear elasticity.

1. Elastic symmetries. A linearly elastic material is symmetric under a rotation R if its Hookes' law satisfies $\alpha\left(R^{T} e R\right)=R^{T} \alpha(e) R$. Show, by a direct argument, that if this holds for any $R \in S O(3)$ then $\alpha e=2 \mu e+\lambda(\operatorname{tr} e) I$ for some constants λ, μ. (Hint: start by showing that $\sigma=\alpha e$ must be simultaneously diagonal with e.) What about the case of "cubic symmetry", when α is only symmetric under 90 deg rotations (i.e. under any R which permutes the coordinate axes)?
2. Korn's inequality for periodic deformations. Korn's inequality for periodic deformations says

$$
\int_{Q}|\nabla u|^{2} d x \leq C \int_{Q}|e(u)|^{2} d x
$$

when $u: R^{n} \rightarrow R^{n}$ is periodic in each variable with period 1 and $Q=[0,1]^{n}$ is the unit cell. Give a proof using the Fourier representation of u. What is the best possible value of the constant C ? Why is there no condition about $\int \nabla u$ being symmetric?
3. Korn's inequality for beams. Let $\Omega_{h} \subset R^{2}$ be the long, thin domain $\{0<x<$ $1,-h / 2<y<h / 2\}$ where $h \ll 1$. Korn's second inequality for this domain says

$$
\int_{\Omega_{h}}|\nabla u|^{2} d x \leq C(h) \int_{\Omega_{h}}|e(u)|^{2} d x \quad \text { provided } \int_{\Omega_{h}} \nabla u \text { is symmetric. }
$$

(a) Show that $C(h)$ must be at least of order h^{-2}, by considering deformations of the form $u(x, y)=\left(-y \phi_{x}, \phi\right)$ where $\phi=\phi(x)$.
(b) Show that the inequality is true with $C_{h} \sim h^{-2}$. You may assume (for simplicity, this is not really necessary) that $1 / h$ is an integer. Hint: divide Ω_{h} into $1 / h$ squares of side h. Korn's inequality (for squares) controls $\nabla u-\left(\begin{array}{cc}0 & \omega_{j} \\ -\omega_{j} & 0\end{array}\right)$ on the jth square in terms of the strain on that square, for some $\omega_{j} \in R$. Use Korn's inequality again (this time for rectangles of eccentricity 2) to control $\omega_{j}-\omega_{j-1}$ in terms of the strain on the $(\mathrm{j}-1)$ st and jth squares. Then apply a discrete version of Poincare's inequality in one space dimension to control the variation of ω_{j} with j.
(c) How do you think these results would extend to a thin plate-like domain $\{0<$ $x<1,0<y<1,-h / 2<z<h / 2\}$ in R^{3} ? (Just discuss how the 3D problem is similar or different; I'm not asking for a complete solution.)
4. Separation of variables. Let Ω be a "ball with a hole removed":

$$
\Omega=\left\{x: \rho^{2}<|x|^{2}<1\right\} .
$$

Suppose it is filled with an isotropic, homogeneous, linearly elastic material with Lamé moduli λ and μ, and constant pressure P is applied at the outer boundary $|x|=1$. The inner boundary $|x|=\rho$ is traction-free. Find the displacement $u(x)$ and the associated stress $\sigma(x)$ using separation of variables.
5. The torsion problem. Let D be a domain in the $x-y$ plane, and consider a long cylinder with cross-section D. Imagine twisting the cylinder at its ends. The lateral boundaries are traction-free, and gravity is ignored. The linearized version of such a deformation is achieved by

$$
u(x, y, z)=\tau(-y z, x z, \phi(x, y))
$$

for $\tau \in R$ and $\phi: D \rightarrow R$.
(a) Find the associated stress and strain, assuming an isotropic and homogeneous Hooke's law. Show that u solves the equations of elastostatics with tractionfree boundary condition $\sigma \cdot n=0$ at the lateral boundaries (and a suitable displacement boundary condition at the ends) if and only if $\Delta \phi=0$ in D and $\partial \phi / \partial n=(y,-x) \cdot n$ at ∂D.
(b) Verify that the consistency condition $\int_{\partial D}(y,-x) \cdot n=0$ is satisfied [thus ϕ exists and is unique up to an additive constant].
(c) Show that the elastic energy per unit length is $\tau^{2} T$ where $T=\mu \int_{D}\left(\phi_{x}-y\right)^{2}+$ $\left(\phi_{y}+x\right)^{2} d x d y$. This T is called the torsional rigidity of the cylinder.
[Comment: This example is more than just a special solution: "Saint Venant's principle" says that no matter how you twist the ends of a cylinder, far from the ends the deformation will approach the special solution described above.]
6. Antiplane shear. Consider once again a cylinder with cross-section D, but consider a uniform body load in the z direction (gravity), and suppose the lateral boundaries are clamped. Show that these conditions are consistent with the displacement $u=$ $(0,0, \phi(x, y))$ with $\Delta \phi=1$ in D and $\phi=0$ at ∂D.
7. Bending of a thin plate. Consider now a thin, constant-thickness plate whose midplane occupies a region D in the $x-y$ plane. The upper and lower surfaces are $z=$ $\pm h / 2$, so the thickness is h. Consider a deformation of the form $u=\left(-z \phi_{x},-z \phi_{y}, \phi+\right.$ $\left.\frac{\alpha}{2} z^{2} \Delta \phi\right)$. Find the associated strain and stress, keeping only terms of order h. Show that for the faces to be traction-free (to this order) we need $\alpha=\lambda /(\lambda+2 \mu)$. Do the z - integrations in the basic variational principle, to obtain a new variational principle for $\phi(x, y)$. Notice that it involves second derivatives of ϕ, so the associated PDE is a fourth-order equation!
8. Plane stress. Consider the same thin plate, but rather than bending it we suppose it is loaded within its plane. The top and bottom are traction-free, so $\sigma_{i 3}=0$ there. If the plate is thin enough we may expect that σ is independent of z. This does not imply that u_{i} are independent of z, but we can nevertheless consider $\bar{u}_{i}(x, y)=$ the average of u_{i} with respect to z. Show that \bar{u}_{1}, \bar{u}_{2} solve the system of " 2 D elasticity" with a suitable choice of elastic constants.

