
MECHANICS – Problem Set 4, assigned 3/29/18, due 4/18/18

These problems are concerned with linear elasticity. Problem 1 asks you to explain why an
isotropic Hooke’s law is described by just two constants. Problems 2 and 3 explore Korn’s
inequality. Problem 4 gives an example of an elasticity problem with an explicit separation-
of-variables solution. Problems 5-8 examine some important reductions and special cases
of linear elasticity.

1. Elastic symmetries. A linearly elastic material is symmetric under a rotation R if
its Hookes’ law satisfies α(RT eR) = RTα(e)R. Show, by a direct argument, that if
this holds for any R ∈ SO(3) then αe = 2µe+λ(tr e)I for some constants λ, µ. (Hint:
start by showing that σ = αe must be simultaneously diagonal with e.) What about
the case of “cubic symmetry”, when α is only symmetric under 90 deg rotations (i.e.
under any R which permutes the coordinate axes)?

2. Korn’s inequality for periodic deformations. Korn’s inequality for periodic
deformations says ∫

Q
|∇u|2 dx ≤ C

∫
Q
|e(u)|2 dx

when u : Rn → Rn is periodic in each variable with period 1 and Q = [0, 1]n is the
unit cell. Give a proof using the Fourier representation of u. What is the best possible
value of the constant C? Why is there no condition about

∫
∇u being symmetric?

3. Korn’s inequality for beams. Let Ωh ⊂ R2 be the long, thin domain {0 < x <
1, −h/2 < y < h/2} where h� 1. Korn’s second inequality for this domain says∫

Ωh

|∇u|2 dx ≤ C(h)

∫
Ωh

|e(u)|2 dx provided
∫

Ωh
∇u is symmetric.

(a) Show that C(h) must be at least of order h−2, by considering deformations of
the form u(x, y) = (−yφx, φ) where φ = φ(x).

(b) Show that the inequality is true with Ch ∼ h−2. You may assume (for simplicity,
this is not really necessary) that 1/h is an integer. Hint: divide Ωh into 1/h

squares of side h. Korn’s inequality (for squares) controls ∇u−
(

0 ωj
−ωj 0

)
on

the jth square in terms of the strain on that square, for some ωj ∈ R. Use Korn’s
inequality again (this time for rectangles of eccentricity 2) to control ωj−ωj−1 in
terms of the strain on the (j-1)st and jth squares. Then apply a discrete version
of Poincare’s inequality in one space dimension to control the variation of ωj
with j.

(c) How do you think these results would extend to a thin plate-like domain {0 <
x < 1, 0 < y < 1, −h/2 < z < h/2} in R3? (Just discuss how the 3D problem is
similar or different; I’m not asking for a complete solution.)

4. Separation of variables. Let Ω be a “ball with a hole removed”:

Ω = {x : ρ2 < |x|2 < 1} .
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Suppose it is filled with an isotropic, homogeneous, linearly elastic material with Lamé
moduli λ and µ, and constant pressure P is applied at the outer boundary |x| = 1.
The inner boundary |x| = ρ is traction-free. Find the displacement u(x) and the
associated stress σ(x) using separation of variables.

5. The torsion problem. Let D be a domain in the x− y plane, and consider a long
cylinder with cross-section D. Imagine twisting the cylinder at its ends. The lateral
boundaries are traction-free, and gravity is ignored. The linearized version of such a
deformation is achieved by

u(x, y, z) = τ(−yz, xz, φ(x, y))

for τ ∈ R and φ : D → R.

(a) Find the associated stress and strain, assuming an isotropic and homogeneous
Hooke’s law. Show that u solves the equations of elastostatics with traction-
free boundary condition σ · n = 0 at the lateral boundaries (and a suitable
displacement boundary condition at the ends) if and only if ∆φ = 0 in D and
∂φ/∂n = (y,−x) · n at ∂D.

(b) Verify that the consistency condition
∫
∂D(y,−x) ·n = 0 is satisfied [ thus φ exists

and is unique up to an additive constant].

(c) Show that the elastic energy per unit length is τ2T where T = µ
∫
D(φx − y)2 +

(φy + x)2 dxdy. This T is called the torsional rigidity of the cylinder.

[Comment: This example is more than just a special solution: “Saint Venant’s prin-
ciple” says that no matter how you twist the ends of a cylinder, far from the ends the
deformation will approach the special solution described above.]

6. Antiplane shear. Consider once again a cylinder with cross-section D, but consider
a uniform body load in the z direction (gravity), and suppose the lateral boundaries
are clamped. Show that these conditions are consistent with the displacement u =
(0, 0, φ(x, y)) with ∆φ = 1 in D and φ = 0 at ∂D.

7. Bending of a thin plate. Consider now a thin, constant-thickness plate whose
midplane occupies a region D in the x−y plane. The upper and lower surfaces are z =
±h/2, so the thickness is h. Consider a deformation of the form u = (−zφx,−zφy, φ+
α
2 z

2∆φ). Find the associated strain and stress, keeping only terms of order h. Show
that for the faces to be traction-free (to this order) we need α = λ/(λ+ 2µ). Do the
z- integrations in the basic variational principle, to obtain a new variational principle
for φ(x, y). Notice that it involves second derivatives of φ, so the associated PDE is a
fourth-order equation!

8. Plane stress. Consider the same thin plate, but rather than bending it we suppose
it is loaded within its plane. The top and bottom are traction-free, so σi3 = 0 there.
If the plate is thin enough we may expect that σ is independent of z. This does not
imply that ui are independent of z, but we can nevertheless consider ūi(x, y) =the
average of ui with respect to z. Show that ū1, ū2 solve the system of “2D elasticity”
with a suitable choice of elastic constants.
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