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Abstract. We consider two standard models of surface-energy-driven coars-

ening: a constant-mobility Cahn-Hilliard equation, whose large-time behavior
corresponds to Mullins-Sekerka dynamics; and a degenerate-mobility Cahn-

Hilliard equation, whose large-time behavior corresponds to motion by surface

di�usion. Arguments based on scaling suggest that the typical length scale
should behave as `(t) � t1=3 in the �rst case and `(t) � t1=4 in the second. We

prove a weak, one-sided version of this assertion | showing, roughly speak-
ing, that no solution can coarsen faster than the expected rate. Our result

constrains the behavior in a time-averaged sense rather than pointwise in time,

and it constrains not the physical length scale but rather the perimeter per unit
volume. The argument is simple and robust, combining the basic dissipation

relations with an interpolation inequality and an ODE argument.

Key words and phrases: coarsening, Cahn-Hilliard, Mullins-Sekerka, sur-

face di�usion

1 Introduction

We prove rigorous upper bounds on the coarsening rates for two standard models
of surface-energy-driven interfacial dynamics. The sharp-interface versions of these
models are the Mullins-Sekerka law (MS) and motion by surface di�usion (SD). Both
evolutions preserve volume and decrease surface energy. The di�erence between
them lies in the mechanism of rearrangement: MS corresponds to di�usion through
the bulk, while SD corresponds to di�usion along the interfacial layer.

We prefer to work with di�use-interface versions of these models. Therefore rather
than analyze the sharp-interface MS and SD laws, we shall consider two Cahn-
Hilliard equations | one with constant mobility, the other with degenerate mobility
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| whose large-time regimes are described by MS and SD respectively. We prefer
the Cahn-Hilliard models because they make sense even when the geometry becomes
singular, for example due to a topological transition such as pinch-o�. The Cahn-
Hilliard viewpoint is also attractive because it can be derived from a stochastic Ising
model, and because it provides a uni�ed description of spinodal decomposition and
coarsening.

Our focus is the large-time coarsening behavior, i.e. the growth of the characteristic
length scale `(t) as t!1. The expected behavior is

`(t) � t1=3 for Mullins-Sekerka, `(t) � t1=4 for surface di�usion. (1)

To explain why, recall that both MS and SD are scale-invariant: solutions of MS
are preserved by x ! �x, t ! �3t, while those of SD are preserved by x ! �x,
t! �4t. Thus if there is any universal law for ` it must be given by (1).

In truth, much more than (1) is conjectured: solutions with random initial data are
believed to be statistically self-similar. Such behavior has been con�rmed by nu-
merical and physical experiments, but we know no rigorous results in this direction.

The proposed coarsening law (1) can be decomposed into two rather di�erent asser-
tions:

(a) an upper bound for `(t), saying that microstructure cannot coarsen faster than
the similarity rate; and

(b) a lower bound for `(t), saying that microstructure must coarsen at least at the
similarity rate.

Assertion (b) is subtle: it may be true generically, or with probability one | but
viewed as a universal statement it is clearly false, since there are con�gurations that
do not coarsen at all (e.g. parallel planar layers). We have nothing new to say about
it.

Assertion (a) is however di�erent and easier, because it should be true universally.
Therefore it can be approached using deterministic methods. That is the goal of the
present paper. Our main achievement is a (very) weak version of (a). It constrains
the behavior in a time-averaged sense rather than pointwise in time, and it constrains
not the physical length scale but rather the surface energy per unit volume.

Our approach is relatively simple and robust. We outline it here using the language
of the sharp-interface models, though the proofs presented later are for the Cahn-
Hilliard equations. The argument makes use of interfacial energy density

E(t) = interfacial area per unit volume;

which has the dimensions of 1/length, and the physical scale

L(t) = a suitable negative norm of the order parameter
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which has dimensions of length. They are related by a sort of interpolation inequality
| a basic fact of analysis, having nothing to do with the dynamics | which says

EL � C (2)

for some positive universal constant C. Of course the interfacial area decreases, in
other words

_E � 0; (3)

since the motion is surface-energy-driven. In addition | this is the heart of the
matter | we also have di�erential inequalities

( _L)2 � C (� _E) for MS

( _L)2 � C E (� _E) for SD
(4)

as consequences of the basic energy-dissipating structure of the dynamics. Our
upper bound on the time-averaged coarsening rate follows from these relations by
an elementary ODE argument. The main conclusion is

1
T

R T
0 E2 dt � C 1

T

R T
0 (t

� 1
3 )2 for MS

1
T

R T
0 E3 dt � C 1

T

R T
0 (t

� 1
4 )3 for SD

for T � 1. This is a time-averaged version of the (unproved) pointwise statement

E�1 � Ct1=3 for MS
E�1 � Ct1=4 for SD,

which is in turn a one-sided version of (1) with ` = E�1.

We emphasize that bounding the coarsening rate from above is quite di�erent from
bounding it from below. Our upper bound is a matter of kinematics, while a lower
bound would be a matter of geometry. Indeed, a system cannot coarsen too quickly,
no matter how large its curvature, due to the kinematic restrictions (2)-(4); it can
however coarsen slowly if its curvature is small. The situation is roughly analogous to
the blowup of semilinear heat equations, where local-in-time existence theory gives
a lower bound on the blowup rate but faster blowup is possible, see e.g. [16, 19].
Another analogy is to di�usion-enhanced convection of active scalars, where kine-
matic considerations lead to upper but not lower bounds for the e�ective di�usivity,
see e.g. [8].

We need a scheme for spatial averaging, to de�ne the quantities E and L, and to
prove the fundamental relations (2)-(4). Our choice is to consider solutions that
are spatially periodic. This does not signi�cantly compromise the physics, since the
size of the period cell and the complexity of the initial data are unrestricted. The
constants in our estimates are of course independent of the period cell.

We shall focus on the case of a \critical mixture," i.e. the two phases are assumed
to have equal volume fractions. This simpli�es the notation somewhat, and it is
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physically natural when the mixture originates from spinodal decomposition. The
restriction of equal volume fractions is, however, merely a convenience, not a math-
ematical necessity. Similar results hold, with similar proofs, at any volume fraction.

Our rigorous analysis is restricted to the di�use-interface (Cahn-Hilliard) setting.
However, a similar analysis can be given for \reasonable" solutions of the sharp-
interface evolution laws | for example, solutions which are classical at all but
�nitely many times, and continuous across the singular times.

The paper is organized as follows. Section 2 provides physical and mathematical
background concerning the Cahn-Hilliard and sharp-interface models. Section 3
states our rigorous results on the coarsening rate, and Section 4 presents the proofs.
Section 5 concludes with a brief discussion.

2 Background

We have been discussing four evolutions: the sharp-interface MS and SD laws, and
the di�use-interface Cahn-Hilliard equations associated with them. There is, how-
ever, a natural unity to the story: all four evolutions arise as limits of a single
equation, with a clear link to stochastic Ising models. Sections 2.1 and 2.2 present
this unifying viewpoint, and explain how it leads to our two Cahn-Hilliard models
| with constant vs. degenerate mobility | in the shallow-quench vs. deep-quench
regimes. Section 2.3 discusses the large-time behavior of these Cahn-Hilliard mod-
els, explaining their connection with the sharp-interface MS and SD laws. Finally
Section 2.4 discusses the scale-invariance of the sharp-interface laws, and the asso-
ciated conjectures about their coarsening behavior. None of this material is strictly
necessary to understand our rigorous analysis: the impatient reader can skip straight
to Section 3.

2.1 A unifying Cahn-Hilliard model: variable quench

Our starting point is the following Cahn-Hilliard-type model. The free energy is
given by

E = �
Z (

�

2

�
jrmj2 + (1�m2)

�
+

1

2
((1+m) log(1+m) + (1�m) log(1�m))

)
dx;

(5)
where m 2 (�1; 1). Here c = 1

2
(1+m) 2 (0; 1) stands for the relative concentration

of, say, the �rst species. We have normalized the total free energy by the volume of
the system, denoting the average by �

R
. The �rst term in (5) is of enthalpic, the sec-

ond term of entropic origin; � is the inverse temperature. The relative concentration
evolves to reduce E while preserving the volume of each phase:

@m

@t
�r �

 
(1�m2)r

@E

@m

!
= 0; (6)
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which leads to the equation

@m

@t
�r2m + �r �

�
(1�m2)r(m+r2m)

�
= 0: (7)

We will be interested in the case of a \critical mixture", in other words one with

�
Z
mdx = 0: (8)

This model (7) is a natural starting point, because it has a �rm microscopic founda-
tion: it is a local version of the macroscopic limit of an Ising model with long-range
Kac potential and Kawasaki dynamics; see [15] or the review article [14, Theorem
6.1]. In particular, the speci�c form of the mobility 1 �m2 in (6), which vanishes
at the two extreme values m = �1, is natural.

It is well-known and easy to verify that for � > 1, (5) has two bulk equilibrium
values, m+ 2 (0; 1) and m� = �m+. They behave as

m+ �

8<
:

(3 (� � 1))
1
2 for 0 < � � 1� 1

1� 2 exp(�2 �) for � � 1

9=
; :

Hence one is lead to consider two regimes, the \shallow quench" 0 < �� 1� 1 and
the \deep quench" � � 1.

2.2 Shallow and deep quench regimes: constant vs. degen-

erate mobility

In the shallow quench regime, it is natural to rescale time, space, concentration and
energy according to

t =
�

2
��1

�2
t̂; x =

�
2

��1

� 1
2 x̂;

m = (3 (� � 1))
1
2 m̂; E =

3

2
(� � 1)2 Ê + const.

As � ! 1 the bulk equilibrium values become

m̂� = �1

and equations (5) and (6) become (formally, to leading order)

Ê = �
Z 1

2

�
jrm̂j2 + (1� m̂2)2

�
dx̂ (9)

and
@m̂

@t̂
� r̂2 @Ê

@m̂
= 0;
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yielding the Cahn-Hilliard equation with constant mobility

@m̂

@t̂
+ r̂2

�
r̂2m̂ + 2 (1� m̂2) m̂

�
= 0: (10)

This is the Cahn-Hilliard equation associated with MS dynamics, as we shall explain
presently.

The deep quench regime is even more obvious: One rescales time and energy ac-
cording to

t =
1

�
t̂; E = � Ê + const,

and obtains formally from (5) and (6) to leading order

Ê = �
Z 1

2

�
jrmj2 + (1�m2)

�
dx

resp.
@m

@t̂
�r �

"
(1�m2)r

@Ê

@m

#
= 0;

yielding the Cahn-Hilliard equation with degenerate mobility

@m

@t̂
+r �

h
(1�m2)r

�
r2m+m

�i
= 0: (11)

This is the Cahn-Hilliard equation associated with SD dynamics, as we shall explain
below. The preceding argument, deriving (11) as the deep-quench limit of (7), has
been made rigorous by Elliott & Garcke [9].

Our attention in the remainder of this paper will be restricted to the two Cahn-
Hilliard equations (10) and (11). We shall of course drop the hats. We remark
that these Cahn-Hilliard equations, being fourth-order, have no maximum principle.
However, solutions of (11) preserve the constraint �1 � m � 1, as a consequence
of the degenerate mobility 1 � m2, which vanishes at the bulk equilibrium values
m = �1 [9].

2.3 The interfacial regime

Experimental observation and numerical simulation shows the following scenario (see
e.g. [11, 12, 28]). Consider as initial data the uniform critical mixture m = 0, which
is an unstable equilibrium of E, perturbed by some stationary random uctuations
of amplitude o(1) and correlation length o(1). The linearization selects a most
unstable wavelength, which in our non-dimensionalization is O(1); uctuations of
this wavelength grow fastest.

After this exponential growth regime, nonlinear e�ects kick in: m approximately
saturates at its bulk equilibrium values �1 in most of the sample. The order param-
eter m attains its bulk equilibrium value 1 in a convoluted region of characteristic
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length scale ` � 1. Likewise, there is a region where m attains the other bulk
equilibrium value. These regions represent distinct \phases," and their geometry
is highly connected (a \bicontinuous" phase distribution). Each phase has volume
fraction 1=2, since the evolution preserves the constraint �

R
m = 0. The phases are

separated by a transition layer of width O(1). The pro�le of m across the transition
layer is approximately in equilibrium. Based on the explicit form of the equilibrium
pro�le, one obtains for the energy E per unit volume

E �

8<
:

4
3
interfacial area density in the constant mobility case

�
2
interfacial area density in the degenerate mobility case

9=
; (12)

As the system matures it enters the \interfacial regime," characterized by small
energy per unit volume and large characteristic length scale:

E � 1 and ` � 1: (13)

In this regime the evolution is essentially geometric, since the interface is sharp on
the scale ` of the regions it separates. Motion is driven by the reduction of the
total interfacial area, limited by di�usion through the bulk for the case of constant
mobility resp. along the interface for the case of degenerate mobility. It leads to
a coarsening of the phase distribution, that is, to an increase of its characteristic
length scale `.

The geometric evolution associated with our constant-mobility Cahn-Hilliard equa-
tion (10) is the Mullins-Sekerka law, which prescribes the normal velocity V of the
evolving interface � as follows. First, let p be the chemical potential de�ned by

�r2p = 0 outside �; p =
1

3
H on �;

where H denotes the mean curvature. Then V is given by

V = [
@p

@�
] on �; (14)

where [ @p
@�
] denotes the jump in the normal derivative @p

@�
of p across �. The fact that

large-time Cahn-Hilliard coarsening is described by the Mullins-Sekerka regime was
shown by Pego [27] using a formal, asymptotic-expansion-based argument (see [2]
for the multicomponent case). A rigorous proof of this result was given by Alikakos,
Bates & Chen, provided the limiting Mullins-Sekerka law has a smooth solution [1].
A rigorous result not requiring any regularity hypotheses, using a very weak notion
of solution of the Mullins-Sekerka law, was given by Chen [4].

The geometric evolution associated with our degenerate-mobility Cahn-Hilliard equa-
tion (11) is motion by surface di�usion. It prescribes the normal velocity V of the
evolving interface � by

V = �
�2

16
r2

sH on �; (15)
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where r2
s denotes the surface Laplacian on �. This was shown by Cahn, Elliott

& Novick-Cohen [3] using a formal, asymptotic-expansion-based argument (see also
[13] for the multi component case). There is, to our knowledge, as yet no rigorous
version of this result.

The literature on Cahn-Hilliard equations, sharp-interface limits, and related topics
is vast; additional information and references can be found in the review [10].

2.4 Scaling

The sharp-interface models are important for their scale-invariance: solutions are
preserved under the scaling

x = � x̂; t = �3 t̂ for Mullins-Sekerka
x = � x̂; t = �4 t̂ for surface di�usion

(16)

as an easy consequence of the de�nitions (14) and (15). Solutions of the Cahn-
Hilliard equations are, therefore, approximately scale-invariant in the interfacial
regime.

Of course we do not expect the phase geometry to be pointwise scale invariant.
But for a critical mixture (one with �

R
m = 0), numerical simulations suggest that

solutions in the interfacial regime are statistically self-similar (see e.g. [11, 12, 28]).
Such behavior imposes itself after an initial transient, and persists as long as the
length scale ` of the phase distribution is much smaller than the system size | after
which �nite-size e�ects take over. Conceptually, statistical self-similarity means
that the (suitably de�ned, random) solution is invariant under the scaling (16).
Practically, we can replace statistical averaging by spatial averaging to derive the
following very measurable consequence: the two-point correlation function c(t; r)
should have the form

c(t; r) = ĉ(
r

`
) where ` = t�; (17)

for some universal pro�le ĉ(r), with � = 1=3 in the constant-mobility (MS) setting,
and � = 1=4 in the degenerate-mobility (SD) setting. Such self-similarity is indeed
seen experimentally; for example it is a robust feature of many experiments in
the spinodal decomposition of polymer melts, where the Fourier transform of the
correlation function (the \structure factor") can be measured with high precision
[18, 20].

To our knowledge, there is no convincing theoretical explanation for the observed
statistical self-similarity. The closest thing we know to such an explanation is the
mean-�eld theory of Ostwald ripening. This amounts to the constant-mobility Cahn
Hilliard model (or the Mullins-Sekerka law) applied to a strongly o�-critical mixture
(volume fraction of one phase close to zero, i.e. �

R
mdx + 1 � 1). In this setting,

the minority phase m � 1 breaks into many nearly spherical droplets of varying
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radius. The Lifshitz-Slyozov-Wagner mean �eld theory [21, 31] gives an evolution
equation for the number density f(t; R) dR of droplets of radius R at time t. This
evolution equation has been given a rigorous justi�cation [24, 25]. It admits self-
similar solutions, which can be viewed as \statistically self-similar" con�gurations at
the level of the distribution of radii. Surprisingly, however, the large-time behavior
is not necessarily self-similar within this simple mean{�eld theory [26].

The conjecture (17), asserting self-similarity of the correlation functions, seems in-
tractable. We therefore concentrate on the subsidiary, presumably easier conjecture
that

` � t�

with � determined by scaling. Let us work out the plausible range of validity of this
statement. Assume t = 0 corresponds to a �xed time where we are already in the
interfacial regime, that is

E0 := E(t = 0) � 1; `0 := `(t = 0) � 1: (18)

In view of the scale invariance (16), we expect

` �

(
(t + `30)

1
3 � t

1
3 for t� `30 constant mobility

(t + `40)
1
4 � t

1
3 for t� `40 degenerate mobility

)
:

Because of (12), we expect that

E � `�1;

so the preceding relation becomes

E �

(
t�

1
3 for t� `30 constant mobility

t�
1
4 for t� `40 degenerate mobility

)
:

Thus, taking into account the hypothesis (18), we expect

E �

(
t�

1
3 for t� `30 � 1� E0 constant mobility

t�
1
4 for t� `40 � 1� E0 degenerate mobility

)
: (19)

The main result of this paper is a one-sided, time-averaged version of (19).

3 The main result

The last two sections mixed rigorous statements with many heuristic arguments and
conjectures. From here on, however, our treatment is fully rigorous. We consider
solutions of the \constant-mobility" Cahn-Hilliard equation

@m

@t
+r2

�
r2m + 2 (1�m2)m

�
= 0 constant mobility, Eqn. (10)



10 R. V. KOHN and F. OTTO

with associated energy

E = �
Z 1

2

�
jrmj2 + (1�m2)2

�
dx;

and solutions of the \degenerate-mobility" Cahn-Hilliard equation

@m

@t
+r �

h
(1�m2)r

�
r2m +m

�i
= 0 degenerate mobility, Eqn. (11)

with associated energy

E = �
Z 1

2

�
jrmj2 + (1�m2)

�
dx:

We restrict our attention for simplicity to the case of a critical mixture, i.e. to
solutions with

�
Z
mdx = 0 critical mixture, Eqn. (8):

The initial value problem for the constant-mobility Cahn-Hilliard equation is well-
posed and solutions are smooth. Less is known about the degenerate-mobility: weak
solutions are known to exist [9] but uniqueness remains open. Our arguments are
valid for the weak solutions constructed in [9].

We always use periodic boundary conditions for the PDE's, and �
R
denotes averaging

over the period cell. The size � of the period cell is e�ectively the system size; the
interesting case is � � 1. We always work with averages, so the system size �
never enters our analysis. In particular, our upper bounds on the coarsening rate
are independent of system size.

As a speci�c solution coarsens, its length scale must eventually approach the system
size. When this happens �nite-size e�ects will slow and eventually stop the coarsen-
ing. This behavior does not falsify our results, since we discuss only upper bounds
on the coarsening rate.

Our analysis uses two di�erent measures of the length scale of the microstructure.
One is the interfacial energy density; we explained in Section 2.3 that E itself is a
good proxy for this. The other is the physical scale | the quantity ` in our heuristic
discussions. The convenient de�nition of this quantity is the following:

De�nition 1 For any spatially-periodic m(x) with mean value zero, its physical
scale L = L[m] is

L := �
Z
jr�1mj dx := sup

�
�
Z
m� dx j periodic � with sup jr�j � 1

�
: (20)

The notation �
R
jr�1mj dx is purely formal: it is not the L1 norm of some function

r�1m. Rather, it reminds us that L[m] is dual to the W 1;1 norm on �. (To extend
our analysis to o�-critical mixtures, i.e. to permit �

R
m 6= 0, one must restrict � in

(20) to have mean value 0.)

We now state our main results. For maximum clarity we state a special case of our
result as Theorem 1, then the general case as Theorem 2.
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Theorem 1 If the initial energy is E0 and the initial length scale is L0 then we
have

�
Z T

0
E2dt

>
� �

Z T

0
(t�

1
3 )2dt for T � L3

0 � 1� E0 constant mobility

�
Z T

0
E3dt

>
� �

Z T

0
(t�

1
4 )3dt for T � L4

0 � 1� E0 degenerate mobility.

Remark 1 The detailed statement of Theorem 1 is this: There exists a (possibly
large but controlled) universal constant C <1 (depending only on the space dimen-
sion N) such that

1

T

Z T

0
E2dt �

1

C
T� 2

3 provided T � C L3
0 and E0 �

1

C

for the constant mobility case and a similar statement in the degenerate mobility
case. Here and throughout, the symbols

>
�, � resp.

<
� and � bear precisely this

meaning. The symbol � means both
>
� and

<
�.

Theorem 1 asserts that E
>
� t�1=3 in a suitable time-averaged sense for the case

of constant mobility, and E
>
� t�1=4 in a di�erent time-averaged sense for the case

of degenerate mobility. It is natural to ask whether similar bounds hold for other
norms of E, and with E replaced by E�L�(1��). The answer is yes: the method used
to prove Theorem 1 actually shows the following stronger result.

Theorem 2 For any 0 � � � 1, suppose r satis�es

r < 3; �r > 1 and (1� �)r < 2 in the case of constant mobility (21)

r < 4; �r > 2 and (1� �)r < 2 in the case of degenerate mobility. (22)

Then we have

�
Z T

0
E�rL�(1��)rdt

>
� �

Z T

0
(t�

1
3 )rdt for T � L3

0 � 1� E0 constant mobility

�
Z T

0
E�rL�(1��)rdt

>
� �

Z T

0
(t�

1
4 )rdt for T � L4

0 � 1� E0 degenerate mobility.

The values of r and � permitted by (21) and (22) are shown in Figure 1 resp. 2. Notice
that when � = 1, (21) permits any 1 < r < 3 and (22) permits any 2 < r < 4. Also
notice that the minimum possible � permitted by (21) is 1=3, while the minimum
permitted by (22) is 1=2. The conclusion of the theorem is strongest when � and r
are smallest, i.e. for values close to the curve �r = 1 (constant mobility) resp. �r = 2
(degenerate mobility). Indeed, focusing for simplicity on the constant mobility case,
if the estimate holds for a given r0 < 3 then it holds for all r between r0 and 3 by
an application of Jensen's inequality; and if the estimate holds for a given �0 < 1
then it holds for all � > �0 by an application of Lemma 1 below.
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Fig. 1: constant mobility Fig. 2: degenerate mobility

4 The proof

Theorems 1 and 2 are immediate consequences of three basic lemmas. We state
them in Section 4.1, then prove each in turn in Sections 4.2-4.4.

4.1 Ingredients

The �rst basic lemma relates L and E using just their de�nitions | making no use of
the Cahn-Hilliard dynamics. As motivation, we observe that L scales like length. In
the interfacial regime E � 1, according to (12), E is essentially the interfacial area
density, which scales like inverse length. So it is tempting to suggest that E L � 1.
This is true for suÆciently simple geometries with a single length scale. In general,
however, there is only an inequality:

Lemma 1 (Interpolation)

E L
>
� 1 for E � 1:

We call this an \interpolation" lemma because it is closely related to the following
relation, asserted for spatially periodic f with mean value 0:

�
Z
jf j dx

<
�
�
�
Z
jrf j dx

�1=2 �
�
Z
jr�1f j dx

�1=2
: (23)

The proof is similar to (but easier than) the one given below for Lemma 1. We
obtain a geometric statement by choosing f to take only the values �1, so that
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�
R
jf j dx = 1 and �

R
jrf j dx is twice the interfacial area density. Thus (23) contains

a sharp-interface version of Lemma 1.

We note in passing that interpolation inequalities similar to (23) | interpolating
between the BV norm �

R
jrf j dx and a suitable negative norm | were central to our

recent work with Choksi on domain branching in uniaxial ferromagnets [5]. Inequal-
ities of this type have also emerged from recent work on nonlinear approximation
theory [6, 7].

The second basic lemma restricts the rate at which L can change. In our Cahn-
Hilliard models, the free energy E is dissipated by friction. The following lemma
says that a change of the length scale L has to overcome signi�cant friction, and is
therefore accompanied by a signi�cant reduction of the free energy E.

Lemma 2 (Dissipation)

( _L)2
<
� � _E constant mobility

( _L)2
<
� E (� _E) degenerate mobility

The third basic lemma is a pure ODE result, reaping the bene�ts of the other two.

Lemma 3 (ODE)
If 0 � � � 1 and r > 0 satisfy (21), then E L

>
� 1 and ( _L)2

<
� � _E imply

�
Z T

0
E�rL�(1��)r dt

>
� T� r

3 for T � L3
0: (24)

If 0 � � � 1 and r > 0 satisfy (22), then E L
>
� 1 and ( _L)2

<
� E (� _E) imply

�
Z T

0
E�rL�(1��)r dt

>
� T� r

4 for T � L4
0: (25)

4.2 Proof of Lemma 1

We present the proof for the case of constant mobility. The argument for the case
of degenerate mobility is similar (actually slightly easier, since when the mobility is
degenerate we have �1 � m � 1).

The �rst ingredient is the well-known Modica-Mortola [22] inequality. De�ning

W (m) :=
Z m

0
j1� t2j dt; (26)

we have
@W

@m
= j1�m2j;

so

�
Z
jr(W (m))j dx = �

Z
jrmj

@W

@m
dx � �

Z 1

2

 
jrmj2 + (

@W

@m
)2
!
dx = E: (27)
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The second ingredient is the interpolation estimate

�
Z
m2 dx

<
�

�
�
Z
jr(W (m))j dx�

Z
jr�1mj dx

�1
2

+ E (28)

with �
R
jr�1mj dx = L de�ned by (20). The proof of (28) makes use of a smooth

molli�er ' which is radially symmetric, non negative, and supported in the unit ball
with

R
IRN ' = 1. Let the subscript " denote the convolution with the kernel

1

"N
'(
�

"
):

We split the L2-norm according to

�
Z
m2 dx

<
� �
Z
(m�m")

2 dx +�
Z
m2

" dx: (29)

For the �rst term in (29), we observe that

(m1 �m2)
2 <
� jW (m1)�W (m2)j

as an easy consequence of the de�nition (26). Therefore

�
Z
(m�m")

2 dx � sup
jhj�"

�
Z
(m(x)�m(x + h))2 dx

<
� sup

jhj�"
�
Z
jW (m(x))�W (m(x + h))j dx

<
� " �

Z
jr(W (m))j dx: (30)

For the second term in (29), we must deal separately with large and small jm"j-
values:

�
Z
m2

" dx = �
Z
(m2

" �minfm2
"; 4g) dx+�

Z
minfm2

"; 4g dx: (31)

(The case of degenerate mobility is easier at this point, since sup jm"j � 1.) To
estimate the �rst term in (31) we observe that since m2 � minfm2; 4g is non-zero
only for jmj > 2, we have the following pointwise estimate by the energy density

m2 �minfm2; 4g
<
�

1

2
(1�m2)2: (32)

Furthermore, m2�minfm2; 4g is convex inm. Hence we obtain by Jensen's inequal-
ity

�
Z
(m2

" �minfm2
"; 4g) dx � �

Z
(m2 �minfm2; 4g) dx

(32)
<
� �

Z 1

2
(1�m2)2 dx � E: (33)
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To estimate the second term in (31), we observe that

�
Z
minfm2

"; 4gdx
<
� �
Z
jm"j dx: (34)

Since the convolution operator is symmetric in the L2 norm and

sup jr�"j
<
�

1

"
sup j�j for any function �;

a duality argument gives

�
Z
jm"j dx

<
�

1

"
�
Z
jr�1mj dx: (35)

Combining (30), (33), (34) and (35), we conclude that

�
Z
m2 dx

<
� " �

Z
jr(W (m))j dx+

1

"
�
Z
jr�1mj dx+ E:

Optimization over " gives the desired interpolation inequality (28).

The �nal ingredient is the elementary estimate

1��
Z
m2 dx = �

Z
(1�m2) dx �

�
�
Z
(1�m2)2 dx

�1=2
<
� E1=2:

Together with (27) and (28), we obtain as desired

1
<
� (E L)1=2 + E + E1=2;

which yields Lemma 1 for E � 1.

4.3 Proof of Lemma 2

In the constant mobility setting, the PDE (10) can be written as

@m

@t
+r � J = 0 where J := �r

@E

@m
; (36)

and its solutions are known to be classical. Therefore the rate of change of E is

� _E = ��
Z @E

@m
mt dx = �

Z
jJ j2 dx: (37)

Concerning the rate of change of L, we claim that for any t1 < t2,

jL(t2)� L(t1)j �
Z t2

t1
�
Z
jJ j dx dt: (38)

Indeed, let ��(x) be an optimal test function in the de�nition of (20) of L(t2); thus

L(t2) = �
Z
m(x; t2) ��(x) dx
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and �� is periodic and Lipschitz continuous with jr��j � 1. Using �� as a test
function in the de�nition of L(t1) gives

L(t2)� L(t1) � �
Z
(m(x; t2)�m(x; t1)) �� dx

=
Z t2

t1
�
Z @m

@t
�� dx dt

(36)
=

Z t2

t1
�
Z
J � r�� dx dt

�
Z t2

t1
�
Z
jJ j dx dt:

The opposite inequality

L(t1)� L(t2) �
Z t2

t1
�
Z
jJ j dx dt

is proved similarly, choosing �� to be optimal for the de�nition of L(t1). Thus (38)
holds.

The conclusion of Lemma 2 follows easily from (37) and (38). Indeed, from the
latter we see that L is an absolutely continuous function of t and

j _Lj � �
Z
jJ j dx: (39)

Applying Cauchy-Schwarz inequality and using (37) we conclude that

j _Lj �
�
�
Z
jJ j2 dx

�1=2

=
�
� _E

�1=2

which is the assertion of the Lemma in the constant mobility setting.

The proof in the degenerate mobility setting is very similar. The PDE in this case
is (11), which can be written as

@m

@t
+r � J = 0 where J := �(1�m2)r

@E

@m
: (40)

For a classical solution, (40) implies

� _E = �
Z 1

1�m2
jJ j2 dx: (41)

The variation of L is still estimated by (39), and the Cauchy-Schwarz inequality
gives

�
Z
jJ j dx �

�
�
Z 1

1�m2
jJ j2 dx�

Z
(1�m2) dx

� 1
2

: (42)

We also have

E � �
Z 1

2
(1�m2) dx: (43)
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Combining inequalities (39), (41), (42) and (43) we conclude that

( _L)2 � �2E _E; (44)

which is the assertion of Lemma 2 in the degenerate mobility setting.

It is not known whether the degenerate-mobility Cahn-Hilliard equation (40) has a
global-in-time classical solution. However Elliott & Garcke proved the existence of a
global-in-time weak solution in [9], and the argument just presented extends to the
weak solutions constructed by those authors. Indeed, their solutions are obtained
by a limiting procedure involving Cahn-Hilliard equations similar to (40), but with
a �nite quench (so the energy is (5) with � > 0) and regularized mobility. The
regularized equations have classical solutions and support estimates analogous to
(41)-(43). There is suÆcient compactness to pass to the limit in L and E, and the
analogues of (41) give in the limit the energy inequality

� _E � �
Z 1

1�m2
jJ j2 dx

(the situation is analogous to Leray-Hopf weak solutions of the Navier-Stokes equa-
tions). This is, fortunately, all we really needed from (41): passing to the limit in
the regularized version of

j _Lj �
�
�
Z 1

1�m2
jJ j2 dx�

Z
(1�m2) dx

�1
2

;

and noting that �2E _E = �dE2=dt we conclude that for the limiting weak solution
L is absolutely continuous, �dE2=dt is a bounded measure, and

( _L)2 � �2dE2=dt:

This is the sense in which the dissipation relation holds for weak solutions.

4.4 Proof of Lemma 3

We begin with some remarks, showing that Lemma 3 takes more or less optimal
advantage of its hypotheses. Let us focus for simplicity on the case of constant
mobility.

Remark 2 We shall prove a weak form of the statement E
>
� t�1=3, but we cannot

expect to prove any form of the analogous-looking statement L
<
� t1=3.

Indeed, the hypotheses E L
>
� 1 and ( _L)2

<
� � _E are consistent with the choice

L := t� and E := t��

provided
0 � � � � and � � 1� 2�: (45)
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These inequalities imply that � � 1=3, consistent with the expected result E
>
� t�1=3.

However they permit � to take any value between 0 and 1=2. Thus our approach
cannot give an upper bound on L better than L

<
� t1=2.

Remark 3 Extending the preceding comment: we can expect to prove a weak form
of the statement E�L�(1��)

>
� t�1=3 only for 1=3 � � � 1.

Indeed, it is easy to see that

0 � � � � and � � 1� 2� imply �� + (1� �)� � 1=3

only if 1=3 � � � 1.

Remark 4 Our tools are not suÆcient to prove a pointwise version of the statement
E

>
� t�1=3.

Indeed, for any 0 < E1 � 1, consider the functions

E(t) := 1� E2
1 t and L(t) := 1 + E1 t:

They satisfy the restrictions _E � 0 and ( _L)2
<
� � _E trivially, and they also satisfy

E L
>
� 1 on the �nite time horizon

t � t1 :=
1� E1

E2
1

�
1

E2
1

:

Since

E(t1) = E1;

this example rules out any pointwise lower bound of the form

E(t)
>
� t� with  <

1

2
:

We now begin the proof of Lemma 3. We present the argument just for the case of
degenerate mobility; the other case, when the mobility is constant, is entirely similar.
We may assume E(t) and L(t) are di�erentiable since the hypotheses E L

>
� 1 and

( _L)2
<
� �d(E2)=dt are preserved under molli�cation.

The di�erential inequality ( _L)2
<
� E(� _E) implies that E is a monotone function of

time, and L is an absolutely continuous function of E. Therefore L can be viewed
as a function of E, and the di�erential inequality can be rewritten as

 
dL

de

!2

( _E)2
<
� Ej _Ej:
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Here we use the lower case e for the energy as an independent variable to distinguish
it from E = E(t). Division by Ej _Ej � 0 gives

1

E

 
dL

de

!2

j _Ej
<
� 1: (46)

(The division is inadmissible if _E = 0, but the conclusion (46) is trivial in that case,
so this conclusion is valid for all t > 0.) Multiplying by any function f(E(t)) and
integrating in time gives

Z T

0
f(E(t))dt

>
�
Z E(0)

E(T )

f(e)

e

 
dL

de

!2

de:

Taking f = e�rL�(1��)r and writing E0 = E(0), ET = E(T ), we reach the conclusion
that Z T

0
E�r(t)L�(1��)r(t)dt

>
�

Z E0

ET
e�r�1L�(1��)r

 
dL

de

!2

de (47)

for all T > 0.

Now we must estimate the right hand side of (47). Consider the change of variables

ê = 1
2��r

e2��r; and L̂ = 1

1�
(1��)r

2

L1�
(1��)r

2 :

Our hypotheses
� r > 2; (1� �) r < 2 (48)

assure that ê!1 and L̂!1 as e! 0 and L!1 respectively. They also imply

� > 1=2; (49)

which will be needed below. Since 
dL

de

!2

de =

 
dL̂

dê

!2  
dL

dL̂

!2  
dê

de

!
dê

we have Z E0

ET
e�r�1L�(1��)r

 
dL

de

!2

de =
Z ÊT

Ê0

 
dL̂

dê

!2

dê:

The right hand side is bounded below by the minimum over all functions L̂(ê) with
the same end conditions

L̂(Ê0) =
1

1� (1��)r
2

(L(0))1�
(1��)r

2 ; L̂(ÊT ) =
1

1� (1��)r
2

(L(T ))1�
(1��)r

2 :

To simplify notation we denote these end conditions by L̂0 and L̂T respectively. The
extremal L̂ is of course linear in ê, so we have

Z T

0
E�r(t)L�(1��)(t)dt

>
�

�
L̂T � L̂0

�2
ÊT � Ê0

: (50)
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When T is such that
L(T ) � 2L(0)

the right side of (50) is easy to control: we have

L̂T � L̂0
>
� L̂T and ÊT � Ê0 � ÊT

so Z T

0
E�rL�(1��)r dt

>
�

L̂2
T

ÊT

= L
2�(1��)r
T E�r�2

T :

Rewriting the right hand side as

L
2�(1��)r
T E�r�2

T = [E�
TL

�(1��)
T ]r�4 [LTET ]

4��2

we conclude, using EL
>
� 1 and (49), that

Z T

0
E�rL�(1��)r dt

>
� [E�

TL
�(1��)
T ]r�4 provided L(T ) � 2L(0): (51)

Introducing

h(T ) :=
Z T

0
E�rL�(1��)rdt;

we can rewrite (51) as h
>
� (h0)(r�4)=r, so we have shown that

hr=(4�r)(T )h0(T )
>
� 1 provided L(T ) � 2L(0): (52)

Here, we have used r < 4.

The preceding method doesn't work when L(T ) < 2L(0), but for such T we can
estimate h0(T ) = E�r(T )L�(1��)r(T ) by di�erent, more elementary means. Indeed,
for such T we have

E(T )
>
� L�1(T )

>
� L�10 ;

which implies
E�(T )L�(1��)(T )

>
� L�10 :

Thus
h0(T )

>
� L�r0 if L(T ) < 2L0. (53)

Combining (52) and (53) we conclude, using r < 4, that

d

dt

�
h+ L4�r

0

� 4
4�r �

�
h(t) + L4�r

0

� r

4�r h0(t)
>
� 1 for all t > 0:

Integration in time gives

h(T ) + L4�r
0

>
� T

4�r
4 for all T > 0:

Restricting attention to T � L4
0, this becomes

Z T

0
E�rL�(1��)rdt = h(T )

>
� T

4�r
4 for T � L4

0;

which is precisely the conclusion of Lemma 3.
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5 Discussion

We explained in Section 1 that upper bounds on coarsening rates are di�erent from
lower bounds, because upper bounds are kinematic and universal, while lower bounds
are geometry-dependent. Our rigorous results demonstrate the merit of this view-
point, by using simple dissipation and interpolation relations to prove weak, time-
averaged upper bounds.

It would be nice to prove more. We suppose E and L should satisfy pointwise-in-
time bounds. But proving this seems to require a new idea, if not an entirely new
method.

This paper addresses just two of the many energy-driven coarsening models in mate-
rials science. Other examples include the coarsening of mounds in epitaxial growth
(see e.g. [23, 29, 30]) and the coarsening of defect structures in soft condensed mat-
ter (see e.g. [17]). We wonder whether the viewpoint and methods of this paper
might be applicable to such problems.
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