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Abstract

We consider the variational problem of micromagnetics for soft, rela-
tively small thin films with no applied magnetic field. In terms of the film
thickness t, the diameter [ and the magnetic exchange length w, we study
the asymptotic behavior in the small-aspect-ratio limit ¢/l — 0, when ei-
ther (a) w?/12 > (t/1)|log(t/1)| or (b) w?/1% ~ (t/1)|log(t/l)|. Our analysis
builds on prior work by Gioia & James and Carbou. The limiting varia-
tional problem is much simpler than 3D micromagnetics; in particular it is
two-dimensional and local, with no small parameters. The contribution of
shape anisotropy reduces, in this limit, to a constant times the boundary

integral of (m - n)2.

1. Introduction

The main theoretical tool for studying magnetic microstructure is the
micromagnetic variational principle. It is a non-convex, nonlocal variational
problem whose relative minima represent the stable magnetization patterns
of a ferromagnetic body.

Our focus is on soft thin-film elements. Such ferromagnets — for example,
permalloy thin films 10 to 100 nanometers thick and 0.1 to 100 microns
in diameter — are relatively easy to manufacture. They are used in many
devices, and have been explored at length experimentally.

For sufficiently small thin films, numerical simulations are now routinely
used to explore the energy landscape. But simulations are simply experi-
ments. To understand and interpret them, it is natural to do analysis as
well.

For sufficiently large thin films, numerical simulation is impractical due
to the problem’s nonlocal character and the presence of multiple length
scales. Analysis is difficult too, but it is the only tool available.
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What kind of analysis? Since we are considering thin films, the natural
goal is a two-dimensional “asymptotic variational problem” — preferably one
that is local, with no small parameters. This paper identifies a parameter
range where such a limit exists, and examines it with full mathematical
rigor using the framework of I'-convergence. Our regime involves elements
small enough that “flux closure” is not achieved — in particular, m - n # 0
at the boundary. Our main achievement is to characterize the leading-order
magnetostatic energy. The answer turns out to be local and very simple —
a constant times [, (m - n)2.

To state our results and link them with prior work, we start by observ-
ing that the problem has three distinct parameters with the dimensions of
length:

t = the film thickness;
[ = the in-plane diameter; and

w = the exchange length of the ferromagnetic material.

(See Section 2 for more about micromagnetics, and Section 3 for elabora-
tion of the following discussion.) Therefore there are two nondimensional
parameters,

t
h = 1= aspect ratio, d= % = normalized exchange length,

and a variety of different thin-film regimes, depending on the relation be-
tween h and d as h — 0.

Gioia and James [10] considered the behavior when A — 0 with d held
fixed. They showed that the magnetostatic energy becomes, to leading order,
a penalization term for the out of plane component of the magnetization.
In the limit it simply imposes the constraint ms = 0. This was, to our
knowledge, the first rigorous analysis of a micromagnetic thin-film limit. The
limit of micromagnetic dynamics in the same regime (h — 0, d = constant)
was examined by Ammari et al. [4] and Carbou [5].

In the absence of crystalline anisotropy, and without an applied field, the
asymptotic problem of Gioia and James minimizes [ d?|Vm|*+m3 subject
to |m| = 1, where w is the 2D cross-section of the film. The minimum value
is 0, achieved by any constant m with m3 = 0. Carbou observed that this
degeneracy is broken by the next-order term in the magnetostatic energy
[6]. He showed, moreover, that when evaluated at constant magnetizations
it equals a constant times [y (m -n)%

A very different regime was considered recently by DeSimone, Kohn,
Miiller and Otto [8]. They studied the behavior when A — 0 and d — 0 with
d? < h/|logh|. This regime corresponds to a thin but relatively large film.
The asymptotic variational problem is nonlocal and degenerate, but convex;
moreover it uniquely determines the “magnetic charges” associated with
nonzero divm or m-n. In the absence of crystalline anisotropy and without

an applied field, the asymptotic problem minimizes || div mx.,||%,-1,> subject
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to mg = 0 and |m| < 1. The minimum value is 0, achieved for example
at m = 0. Thus, in the regime of [8] flux closure is always achieved, i.e.
divm =0 in w and m - n = 0 at Ow when there is no applied field.

The present paper considers a regime that’s intermediate between those
of [5,10] and [8]. Our main focus is the case when h — 0 and d* = ah|log h|
with 0 < @ < oo. (We also consider the case d? > h|logh|, which corre-
sponds to @ = oo and includes the Gioia-James regime.) If the material
parameter w and the aspect ratio h are held fixed, then our focus is upon
elements somewhat larger than the ones considered by Gioia & James but
much smaller than those of DeSimone et al. Our limit problem minimizes

1
a/|Vm|2+%/a (m - n)2

subject to m3 = 0 and |m| = 1. Unlike the setting of Gioia-James and
Carbou, the optimal m is not constant. But the magnetostatic energy is still
asymptotically a constant times |, 5 (M- n)?. In particular, the asymptotic
problem is local and relatively simple. The boundary integral expresses the
effect of “shape anisotropy” in this regime.

Other intermediate regimes are possible. Ours is distinguished by the
fact that it prohibits walls and vortices. Other limits which permit interior
or boundary vortices are being considered by Kurzke [12] and Moser [13];
see Section 3 for a unifying discussion.

Our analysis is fully rigorous. Following the lead of Gioia & James,
we work in rescaled variables, formulating the 3D variational problems on a
fixed cylinder (independent of h and d). The asymptotic variational problem
is obtained as a I'-limit. Our analysis of the magnetostatic term draws from
the argument of Carbou. We must work more, however, because m is not
assumed to be constant, or even smooth. Can the magnetostatic energy
associated with nonzero m-n be somehow reduced by making m vary rapidly
in a boundary layer near dw? The answer is no — but this is a consequence
of our analysis rather than a hypothesis.

The paper is organized as follows. Section 2 introduces the variational
problem of micromagnetics. Section 3 explains heuristically our choice of
regime, and discusses its relation to those studied by DeSimone et al, Gioia
& James, Kurzke, and Moser. Section 4 is the mathematical core of the
paper: Section 4.1 states our main results, which assert I'-convergence of
the (rescaled) 3D micromagnetic problems to a suitable 2D problem; Section
4.2 studies the asymptotics of the magnetostatic energy; and Section 4.3
applies that analysis to prove our main results. The Appendices present
material that is well-known but difficult to find in the literature: Appendix A
supports Section 4.2 by proving some estimates, while Appendix B supports
Section 3 by examining the magnetostatic energy when m is independent
of the thickness.
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2. Basic micromagnetics

The micromagnetic variational principle uses classical physics to explain
the magnetization distribution in a ferromagnetic sample. Its local minima
are the stable (hence observable) magnetization distributions. First devel-
oped in the 1930’s by Brown and Landau & Lifshitz, micromagnetics has
been shown to capture the remarkable multiscale complexity of magnetic
behavior.

After a suitable normalization, the micromagnetic energy has the form

m) = u? [ 9P +Q [ otm)+ [ (vuP=2 [ heom ()

The four terms are known as the exchange, anisotropy, magnetostatic, and
external (or Zeeman) energies respectively. The domain 2 C R? is the
region occupied by the ferromagnet; m: 2 — R3 is the normalized magne-
tization, constrained by

|lm(z)] =1 forze 2 (2)

and understood to equal 0 outside §2; and h..; is the external, applied field.
The function u, defined on all R3, is defined by

div(Vu+m) =0 in R3, (3)

in the sense of distributions. Thus the magnetostatic energy is nonlocal in m.
Its physical interpretation involves the long-range interaction of magnetic
dipoles; mathematically it can be viewed as a penalization favoring divm =
0, since Vu is the Helmholtz projection of m onto gradients. It can be
expressed as an integral over 2 alone, since

/ |Vu|2 /m Vu—/ Ring - M,

hind =—Vu

where

is the magnetic field induced by m. The nonlocal character of this term
makes it onerous to evaluate, and a major stumbling block to numerical
simulation.

To explain a bit more, we comment on each term separately:

— The anisotropy energy ¢(m) favors special directions of the magnetiza-
tion. Its coefficient @ is a nondimensional material parameter controlling
the relative importance of anisotropy versus magnetostatic energy. Mag-
netic thin-film devices are usually made from “soft” materials, i.e. those
for which @ is small and crystalline anisotropy plays a minor role. Our
focus is on this case.
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— The magnetostatic energy |Vu|? favors divm = 0 in 2 and m-n = 0
at 012, where n is the unit normal to 9f2. In thin-film limits this term
always produces a constraint mz = 0. It may or may not also force
m -n = 0 at the film edge, depending on the choice of scaling regime.

— The exchange energy |Vm|? penalizes spatial variation of m. Its coeffi-
cient w is typically on the order of 10 nanometers. In extremely small
magnets this term dominates, making the magnetization approximately
constant.

— The external (Zeeman) energy favors magnetization parallel to an exter-
nally applied field. This term is very important in practice, since a thin-
film element is “switched” by applying a suitable in-plane magnetic field.
The relevant applied fields are, of course, those large enough to have an
effect but small enough to interact with other terms. Thus A..; should
be scaled so that the Zeeman energy interacts with the leading-order
behavior of exchange and/or magnetostatic energy.

For more information on micromagnetics see [1], [11].

We shall for simplicity take @@ = 0 and hez; = 0. It is trivial, however, to
include a little anisotropy and an appropriately-scaled Zeeman term, since
I'-convergence is insensitive to compact perturbations of the functional.

It is convenient to nondimensionalize lengths by replacing (z,y, z) with
(«',y,2") = (z/ly/l,z/1), m'(«',y,2") = m(z,y,z2), and v (z',y,7') =
[='u(z,y,2). Dropping the primes, and taking @ = hey = 0, we have
€ = IBE with

B(m) =& | vm + [ vt ()

Here 25, = w x (0,h), where w C R? is the rescaled cross-section (with
diameter one); d = w/l; h = t/l; m = (my, mg2, m3) satisfies |m| =1 on 24
and is extended by 0 off (2;; and up solves

—Ay =divm in R3. (5)

This nondimensionalization does not of course change the essential problem.
Nor does the simplification @ = h¢yt = 0. The functional (4) is still a non-
convex, non-local variational problem, with all the difficulties of the full
micromagnetic model.

3. Heuristics and scalings

This section explains our choice of scaling, and places it into the context
of other related work.

The main issue is the asymptotic behavior of the magnetostatic term.
To explain it, we assume — for this section only — that m = (my, mg, m3)
is independent of the thickness variable z, and that it does not change
significantly as h and d vary. (Our rigorous analysis, presented in Section 4,
makes no such assumptions.)
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Let m be defined on 2, = w x (0,h), as in (4)—(5), extended by 0 off
2. We denote the in-plane component of the magnetization by

m' = (m1, mz),

and for any function f(z) we denote its Fourier transform by

fo) = [ f@ye mien.

If m is independent of z, the associated Vu can be determined by separation
of variables, or equivalently by using the 3D Fourier transform. One finds
that

Ry R () BN T AT

rz |7l
where n = (11,72) and

_ 1 —exp(—2mh|n|)

We note for later reference that the inverse Fourier transform of I h is

1 1 1
Fh(x):ﬁ<m_\/ﬁ)' (8)

Formulas (6)—(8) are well-known and may be found in [2], [9]. For complete-
ness of the presentation the calculation is sketched in Appendix B, following
[9].

Since I, — 1 as h — 0, the second term of (6) is asymptotically

2
Eirans = h/ mg.
w

The first term of (6) represents the energy due to lack of flux-closure, i.e.
due to a nonzero in-plane divergence div, m in w and/or a nonzero normal
component m - n at Ow. It is important to separate these two sources, be-
cause their energies scale differently. Since 1 — Iy — whn as h — 0, the
contribution due to nonzero (but smooth) div, m is asymptotically

By = h2”(divp m)SmOOth||§{—1/2

(up to a constant, which can be absorbed into the definition of the H —1/2
norm). The contribution of nonzero m-n is different, because the associated
contribution to div,m is singular — a measure concentrated on dw. We
know from Carbou [5] that when m is uniform this term is asymptotically a
constant times the boundary integral of (m-n)2. We shall show in Section 4
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that the same result holds more generally: the contribution of nonzero m-n
is asymptotically
1
E = —h?|logh m-n)2.
bdry o | g | aw( )
The exchange energy is local, hence easy to handle: when m is independent
of z it becomes

Eexeh = d2h/ |Vm|?.
Thus the energy (4) is formally
E = Eexenh + Eouik + Evdry + Ftrans 9)
= &h [ [T 4 12 (v )t 1 (10)
w

1
+ L h210ghl (m-n)2+h/m§.
27 Ow w

Our focus in this paper is on two slightly different regimes. In the first,
Eyrans and Eeyon become constraints, Eyqry is the leading-order term, and
FEpuk is negligible. In the second, Firans becomes a constraint, Feyxen and
Eyq;y interact as leading-order terms, and Eyuik is negligible. Specifically:

— The regime d?h >> h?|logh| includes the case considered by Gioia &
James and Carbou. It corresponds to extremely small elements, of thick-
ness around lnm and diameter around 10nm. The minimum energy is
of order h?|loghl|, and the optimal (constant) magnetization solves the
asymptotic variational problem

min /Bw(m ). (11)

|m|=1, m3z=0
m=constant

Usually (11) selects a unique optimal direction for m (up to sign). This
effect is sometimes called “shape anisotropy.” When w is sufficiently
symmetric, however — for example when it is a square — the functional
(11) is degenerate, assigning the same value to every constant magneti-
zation. In experiments, there is still a preferred direction — this effect is
called “configurational anisotropy,” see e.g. [6]. The conventional view
is that one must look for higher-order corrections to the leading-order
term (11). An alternative view — more correct, in our opinion — is that
the experiments are better modeled by (12).

— The regime d?h = ah?|log h| with 0 < o < 0o corresponds to somewhat
larger elements, for example with thickness around 3 —5nm and diameter
around 30 — 50nm. The minumum energy is again of order h?|logh|,
but now the optimal magnetization solves the asymptotic variational
problem

min a/ |Vm|2+2i/ (m - n)2. (12)
w Oow

|m|=1, m3g=0 s
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In a square, numerical simulation suggests that the energy-minimizer is
always a leaf state. When « is large, it appears that the leaf states are
the only relative minima of (12). When « is small, however, there are
additional local minima known as buckle states (see Figure 1).

R VRN
e y N
e % N
7

_—— —

Fig. 1. Sketch of the leaf state (left) and buckle state (right).

Since Fpuik and Figry scale differently by a factor of |logh|, a thin-film
limit cannot keep both as leading-order terms. Our regimes keep Ejgry, SO
they necessarily drop Enyuk. Recent work by Roger Moser [13] explores the
different regime d? = h. In this case Eypgry joins Firans as a constraint, and
the asymptotic problem is formally to minimize

/ |Vm|2 + ||(din m)smooth”%{—uz (13)
w

subject to mg =0, |m| =1 in w and m-n = 0 at Ow. This formal limit is not
quite right, however. Indeed, when w is simply-connected it is impossible for
m to satisfy the constraints and have finite exchange energy. What actually
happens is that the magnetization develops a vortex in the interior of w
[13].

Recent work by Kurzke [12] considers the limit of (12) as & — 0. This is
different from Moser’s regime, because it does not involve Ei,px; formally,
at least, it represents the case h < d? < h|log h|. Naively, the asymptotic
problem would appear to be

[ 1om (14)

subject to m3 =0, |m| =1 in w and m-n = 0 at Jw. As in the case of (13),
this naive limit is not quite right, because there is no admissible m with
finite energy. What actually happens is that the magnetization develops
“boundary vortices” along dw [12]. (The analysis of (12) in the oo — 0 limit
is certainly an interesting problem. We are not certain, however, that it
represents the limit of micromagnetics when h — 0 with h < d? < h|log h/,
since our estimates justifying (12) are not uniform in this limit.)
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The regime considered by DeSimone et al [8] is quite different from any
of these. Defined by d? < h/|log hl, it has the property that Eexn is negli-
gible, while i ans and Eygr, become constraints. Therefore the asymptotic
problem involves only FEy k.

It can be confusing to think about so many regimes at once. Figure 2
summarizes their regions of validity, for a fixed (sufficiently small) value of
the aspect ratio h. The axis variable is d* = (w/l)?, so points at the far
right correspond to the smallest elements, and points at the far left to the
largest ones.

Gioa—-James
DeSimone et al Moser Kurzke? this paper Carbou
d 2. (w/l)2
h/|logh| h hllogh|
small w large w
or or
large | small |

Fig. 2. The various regimes, at fixed aspect ratio h.

As the preceding discussion makes clear, we take the view that h is
negligible relative to h|logh|. This is impeccable mathematics but dubious
physics, since for soft thin films of practical interest & is rarely smaller than
10, Thus for realistic values of h our asymptotic problem (12) should
probably be modified by adding FEyx; we doubt this would change its qual-
itative behavior. A similar modification of (11) is unnecessary, since the
admissible magnetizations are constant.

4. The main result

In this section we are going to prove the results announced above. We
2 2

show that under the scalings m — o0 and m — « the full micro-
magnetic energy functional reduces to relatively simple 2D variational prob-
lems where the magnetostatic energy becomes an integral over the boundary.
The limiting magnetization m is

— independent of the thickness variable z;

— has no out of plane component mg;

— keeps the constraint |m| = 1.

The proof uses the ideas from the previous section but is more subtle due
to the fact that magnetization m may depend on thickness.

4.1. The mathematical problem

Let us state with mathematical precision the problem we will solve.
Consider the one parameter family of micromagnetic energy functionals

d? 1
E - - 2 2 1
n(mn) H2[Tog h /Q |Vmp|* + 2l logh /3 |Vup|®, (15)
h R
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where 2, = w x (0,h) (w C R?), [mp| = 1 and uy, satisfies the following
equation
—Auyp, = div(mpx(2,))  in R®. (16)

Now if we rescale the domain in 2z direction, we obtain

- d? _ 1 0mp 1
En(mn) = 3moahl /Q ('Vlm”|2 125, )2> R [log b Jas [Vunf
(17)
where mp(z,y,2) = m(z,y,hz) for z € (0,1), V' = (%,%) and 2 =
w X (0,1). Note that magnetostatic energy is written as in (15). This is
the functional we are going to consider. We will prove the following two

theorems

Theorem 1. Suppose h|+z;h| — 00 as h — 0. Then we have:

—if Ep(mp) < C then ™y — m strongly in H'(£2;5%) (maybe for a
subsequence), m =const and ms = 0;

E, =T B, in H'(2;8%),

where

£ [, (m-n)? if m=const and mz =0
— 2w JOw
Ey(m) { 00 otherwise . (18)

Theorem 2. Suppose h|+2gh| — « then we have:

—if Ep(p) < C then mp — m weakly in H'(£2; S%) (maybe for a subse-
quence),
m = m(z,y) and mz = 0;

E, =T By, in H.(92;5%),

where

o) = {

[,elVm|? + & [, (m-n)? if m=m(z,y) and mg=0
00 otherwise.
(19)

Theorem 1 insludes the result derived by Carbou [5] under hypothesis that
magnetization is constant. Qur analysis does not require any assumptions
on my,. The proofs of these theorems use (a) the explicit form of the mag-
netostatic energy, expressed in terms of convolution operators; (b) standard
estimates for convolution operators. In particular we will use of the following
inequalities
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Lemma 1 (Generalized Young’s inequality). Assume 2 C R" is a
bounded set, f,g € L*(2) and K € L}, ,(R™). Then

/g /g F@e@EK (@ —9) < Kl I f 2 lalz (20)

for some fized ball B C R™.

Lemma 2. Assume w C R?, f € L?(w) and g € L?(dw) then

/aw/w % < Cllfllz2()llgllz2 (ow)-

See appendix A for proofs.
Before proving the actual I'- convergence results we want to simplify the
magnetostatic energy.

4.2. Calculation of magnetostatic energy.

Here we provide a rigorous explanation of the heuristic formula (9) for
the magnetostatic energy used before. We essentially follow the ideas of
Carbou [5].

First we prove the following result.

Lemma 3. Let mp = %foh mp(z, 2)dz and let Uy, be a solution of (16) with
my, replaced by my. Then the following inequality holds:

1 9 C O o
- — 1
h2[log h| ‘/R Ve / = Tiogh (h2|| Iz2(a) + )

(21)
Proof. Using linearity of (16) and integration by parts we obtain

/ |Vup — V'Eh|2 < / |mp, — T?Lh|2.
R3 25

By Poincaré’s inequality applied only for z variable we have

/ |mh—’ﬁlh|2 §0h2/ |amh|2.
2n

Therefore, combining the last two inequalities and using the triangle ineqal-
ity we obtain

(forwar) = (f war)

Using integration by parts we obtain

1 1
2 2
([, 1) < lmallaacay ana ([ 1902)" < Imnlzzcany. (29
R3 R3

8mh

< Chll— = llezqan)- (22)
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Combining (22) and (23), and using the fact that |mp| < |mp| =1 we have

‘/ |Vuh|2 /
R3

Rescaling domain (25, to {2 we finally have

‘/ |Vuh|2 —/
R3 R3

The conclusion of lemma follows.

3, 0mp
2 S0h2||W||L2(Qh)'

omy,
2l < Ohl| =2 .
< Ch|| 5% lz2(2)

In view of lemma 3 we need to estimate only [gs |Vin|?.

/3 |Vian)|* = — Vi, - mp, (24)
R n

= / up divmp, — / ﬁh(ﬁlh . n).
2 X073

Solving the equation for u; we also have

dnin(z) = /Q Y vy - /8 Y mnen)).  (25)

. 1T =l o 12—l

Plugging the expression (25) for @y into formula (24) we obtain

47T/R3 Van|2 = /Q /Q ﬁdivmh(y) div n(z) (26)
w ] e M@ @)
- 2/% /9 ﬁdivﬁmh(y)(mh-n)(m).

Below we are going to describe three terms in (26) as “bulk-bulk term”,
“boundary-boundary term”, and “bulk-boundary term”. We will expand
these terms using the fact that my, is independent of thickness variable and
then estimate them. Below we use the following notation:

z,y € w are in-plane variables, s,t € [0, h] are thickness variables.

Bulk-bulk term.
Bulk-bulk term is equal to

SIS

Here div, m, denotes a plane divergence.
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Bulk-boundary term.
Bulk-boundary term is equal to

s [TV @

Boundary-boundary term.
Expanding and reorganizing the boundary-boundary term we find it
equal to

¢= 4”h/ / (n - €3) (@) Th(z — ) (mn - e3)(v)

e L[ e )

Notice that

I ) 1 1 1
h(T—y) = = -
Y= 2mh \ e — ] V0z —y? + h?
is the same as in (8).
Now we want to estimate |A| and |B|. All the estimates we produce

below involve m instead of m. Using the Generalized Young’s Inequality
(lemma 1) and the fact that

| divy, mp(z)| < || divp W (z)||22(0,1) (30)
we have
< [ [ 1dm e m)
- wJw |‘T - yl

< CR?||divy, mh”%z(w) < CR?| div, ﬁlh”f‘ﬁ(n)- (31)
Using lemma 2, (30) and the fact that |myp, - n| < 1 we obtain

|B| §2h2/a /divpmh|(;)_(ﬁ;|h'n)(y)

< CR?|| divp Mo || 22 (w) |k - 1| £2(0w)
< Ch(1 + || divy a2 () (32)

The first term in C (call it Cy) may be written using Fourier transforms
and the second (call it C2) will be estimated later.

Cy — arh / |3, 2(m) Fr(Im]),
R2



14 ROBERT V. KOHN AND VALERIY V. SLASTIKOV

where 3 , is Fourier transform of (1, - e3), I'y(z) is defined in (8) and I},
is its Fourier transform, given by (7) . It is obvious that I (|n|) > 0.

Using lemma 3 and the above estimates we conclude that for asymptotic
regime h — 0 the magnetostatic energy is

1 2 1 = 2 ~
. . .
PTiog ] R3|wh| Hogil o, s PO ()

12“1/ IOg‘L /3(4) /8(‘) / / x S )t( )
: ( ) <|:l p ILH 2 2” | 2 ) (EE)

As we see from the formula for the full micromagnetic energy (17) the last

term in the above expression does not matter if h|+;h| stays bounded away

from 0. Since I, (|n|) — 1 for a.e n € R? and I'’,(|n|) is bounded, the second
term asymptotically gives us the constraint mg = 0. So the only term we
don’t know anything about yet is Cy (the second term of (29)). Let us prove
the following lemma.

Lemma 4. Assume 0w is sufficiently smooth, my — m weakly in H'(w)
then we have

s h2|logh| /aw /aw/ / n\;}fmiw m"s _”153) :2/6w(m.n)2.

Proof. To simplify notation we set fx(z) = (M - n)(x), then rescaling in s
and ¢ variables we have

|108h|///aw aw\/|x—y|(2fi;t(2)s—t)
_|1°gh|///awf’%(x) aw\/|x—y|2j-h2 (s —1t)?

fn(@)) fn(2)
|logh|/ / /Bw Bw \/|$—y|2+h2(s—t) (34)

Let’s call the integrals in the RHS of (34) I; and I2, respectively and work
on them separately. Using the fact that |fr| < 1 we can estimate I5 in the
following way

T2 < |logh| / / /Bw o0 \/|x|]ﬁly|g +h2(s)l nEl (35)

Now we use Holder’s inequality and the fact that

1ol 3 oy < Cllmnlar ey +1) < C
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to obtain

1 fa) = f@I2\? _ C
IZS|1ogh|</aw/aw ey )S|1ogh|' (36)

To deal with the integral I; we define the following kernel

1 1 1
o= || e o

The integral I; now becomes

1 vt 1
i [ e
! [loghl Jo Jo Jaw #() ow v/ |z — y[2 + h2(s — t)?

1
= — f2(x Kp(x—y). (38
|10gh| Ow h( ) ow h( ) ( )
It’s not very difficult to verify that
L[ Kue—y) =2 (39)
rZT =Y
|10gh| ow

uniformly in x € dw, see [5].
Using this fact we obtain

I —>2/ (m - n)>.
Ow

Lemma, is proved.

Now, using lemma 4, we may obtain the asymptotic expression for mag-
netostatic energy which we will use to show I'-convergence of the micro-
magnetic energy.

4.3. I' -convergence.
In this subsection we are going to prove the I'- convergence stated as
theorems 1 and 2 in Subsection 4.1. Let us recall the definition of the mi-

cromagnetic energy we are considering here (for simplicity of notation we
drop all tildas)

d2 1 6mh 1
B _ o2, L 2 / 2
h(mh) = Hoghl /Q ('V mal”+ 77 () ) 1o Tog Al Juo |V V0l

Consider first the scaling h|+2gh| — 00:
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Proof of theorem 1. Let us prove the first statement. Using lemma 3 and
(6) we know that

Ep(mn) = (M%ng + 0(1)) /Q (|V'mh|2 + }3—2(%)2)
+h/nz W (1 - fh(lnl)) +h/m w2 () (D). (40)

If energy is bounded Ep(mp) < C, since 0 < I, <1 and h|+2gh| — 00 we
obtain the following inequalities

- ||th||L2(92 < o(1);
— Jgz ImsnPTh(Inl) < Chlloghl.

Therefore mp, — m and m = const, |m| = 1. It is easy to see that
Jaz |Man|?Th(nl) = Jge |Ms|? and this implies My = 0. But since m =
const we have ms = mgz = 0. The first part of the theorem 1 is proved.

Let us show the second statement. Take any m € H'(2; S?). Using (33)
we see that for any my, € H'(£2; 5?)

_ d? o2, 1 Omnpg
Ep(mp) = (m +0(1)) /Q (|V mp|” + ﬁ(w) >
1 ]. =~ 2 al
+ 320+ oy L P Euind. - (41)

Suppose m3 = 0 and m = const. Then we may construct a sequence by
taking mp, = m. Plugging this sequence in (41) and taking the limit as
h — 0 we have

1 1
—Cop— — )2
- C0= 5 6wl(m n)|

Eh (mh) =
Now for any sequence my — m in H'(§2;5?) using lemma 4 and the first
statement of the theorem we obviously have

liminf Ep(mp) > Eq1(m).

Theorem 1 is proved.
. . d2 .
Now we consider the scaling Allogh] — &

Proof of theorem 2. Proof of the first statement is analogous to that of
theorem 1. Here we obtain that if En(my) < C then mp — m weakly in
H'(£2) and m is independent of thickness variable z, |m| = 1, and m3 = 0.

Let us show the second statement. Take any m € H!(§2;52). Suppose
m3 = 0 and m = m(z,y). Then we may construct a sequence by taking
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myp, = m. Plugging this sequence in (41) and taking the limit as h — 0 we
have

2

Erm) = (i iog

1
+o(1)) / V'mif? 4+ 1=Co
2

1
sa [ [wmf o [ menp
Ow

For any sequence my, — m weakly in H'(£2; S?) using lemma 4 and the first
part of the theorem we have

liminf Ep(mp) > Ea(m).

Theorem 2 is proved.

5. Appendix A
Here we are going to prove some inequalities used in the paper.
Proof of lemma 1. We have
/Q /Q f(@)g(y)K(z—y) = / . f@)xa(@)g(y)xa(y)K(z—y)xs(z—y),

where xp is a characteristic function of a large enough ball B C R". If we
denote f = f(z)xa(z), § = 9(z)xa(z) K = K(z)xp(z) then

‘/R/Rf )iy fcx_)‘
‘/ / >‘S/ I/ 2)||(z ~v)|
/ (/ |(w)|2) (/R"|g(3:—y)|2>

= KllLx )l fllzz@)llgllzz(2)-  (42)

Lemma is proved.

Proof of lemma 2. For any y € w we define the following function

o= [ 2

w |.’I7—y|

We obviously have the following estimate

lAllz2(w) < Cllfllz2(w)-
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Moreover it’s easy to see that Vzh € L2 (w) and may be estimated by
1
IV2hllz2(w) < Cllfllz2(w)-

Therefore h € H?(w) and using Sobolev inclusion theorem we know that
H?(w) C L?(8w). Hence we have

Rl 2200y < C|R| < CllfllL2(w)-
)

1
H2(w

By definition of h, Holder inequality and above arguments we have

[ [HEE0 [ atnt) < Cllfl ol

Lemma, is proved.

6. Appendix B

For the reader’s convenience, we derive the form of the magnetostatic
energy in terms of Fourier transforms of m. The presentation here follows
[9] but of course the calculation is much older, see [2].

We define n - dimensional Fourier transforms as

fn) = f(z)exp(—i2nz - n)dz.
R~

. —— 2
/ |Vu|2:/ |vu|2:/ In-mXa "
R3 R3 R3 Ul

Now
— . — . sin h
mxo, = / m(z) exp(—i27z - ) = MXw exp(—mngh)ﬂ.
0y T3
Hence
.2
= o _ sin”(msmh) |2
ImXa, -1l = oy X -
_ sin®(n3mh)

w22 (Im'xe - 01> + Imiaxwns|? + 2Re[(m' x. - 7' )M3Xwns)),
3

and we obtain

.2

— sin®(nsmh)
VUZZ/ m'x -n'|2/—
w/R3| = Jpa e r ™3 (03 + |7'1?)

.2

. sin”(mnzh)
+/ M3 Xw 2/ ——
o "Xl e T )
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Now we calculate the following integrals

. 2 !
sin®(nsmh) 1 — exp(—27h|7’|) I
= h = hFh 17 5
[ 7w e 2l )
/ sin’(ngwh) 1= Tn(n')
r T203(n3 + 17']?) |n'|2

Finally we have

10.

11.

12.

13.

—~ 1—Ih(n/ —— 2n
/ |Vu|2 = h/ |m! X - 17'|27, 2(77) + h/ |m3xw|2fh(n').
R3 R2 Ll R?2
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