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Today’s focus

Annulus-shaped sheet, loaded by uniform tension at each boundary.

No wrinkling at larger radii; lots of wrinkling at smaller
radii, to avoid compression. Free boundary where
wrinkling starts.

Captures essential physics of the “drop on a sheet” (Huang et al, Science
2007) and the “stretched sheet” (Cerda & Mahadevan, PRL 2003)

ZiN

Focus of Davidovitch et al (PNAS 2011) and Bella & Kohn (CPAM 2014).
Key question: understand length scale and character of the wrinkling.

Today’s presentation: “matching” upper & lower bounds on elastic energy.
(Arguments provide strong hints but little pointwise information.)

Not discussed today: recent work by Bella (ARMA, in press), providing
further insight on behavior near radius where wrinkling stops.
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The big picture

Main result: excess energy is of order h. In other words, if
E» = (membrane energy) + h*(bending energy) + (work done by loads)

then
Eo + C1h§ min Ep, <& + Cah

where & is the min of the relaxed problem. Really two assertions:

@ upper bound (requires a good ansatz, there’s a surprise)
@ lower bound (ansatz-free, provides interesting intuition)

Recent article with Peter Bella (Comm Pure Appl Math 67, 2014, 693-747):
fully nonlinear treatment (large strains & rotations, general stress-strain law).

Today’s discussion: von Karman version with Poisson’s ratio 0 (similar ideas
but easier & more transparent).
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To be discussed:

@ Mathematical formulation
@ The relaxed problem
@ The lower bound (ansatz-free, provides intuition)

@ The upper bound (surprisingly, doesn’t match pictures ...)

sketching the essential ideas. Full details available on PCMI site
(approx 7 pages).
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Mathematical formulation

Ey = (membrane energy) + h*(bending energy) + (work done by loads)

membrane energy = / le(w) + 1Vus ® Vus|* dx
A

bending energy

/ Vsl dx
A

X
/ Tinw-—ds—/ Touw -
IX|=Fn x| IX|=Rou Ixl |

where A is the annulus. Parameters are Ry, < R (geometry), Ti, and Tou
(loads), and h (thickness).

work done by loads

Some restrictions are needed to make sure the annulus is wrinkled near R,
but not near R,. They turn out to be

Ty Rl
out RZ + ng[
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Polar coordinates

The radial geometry suggests using polar coordinates, not only in space but
also for the elastic deformation. Writing w, and w; for the radial and
tangential in-plane displacements, we have

2

Orwr + 5(9rts)? rdrdo

*
membrane =
/ * r= " (wr + Oowe) + ; 2(Dous)?

A

in which the off-diagonal terms are
x=1 (r”&e W+ OrWo — 1~ Wy + r*16,u389u3) ;
similarly
bending = /A(|8,,u3|2 +2r7218,pus|? + r*|deous|?) r dr do

and
loads = Tin/ w,rdo — Tom/ w, rde.
= 7Roul
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The relaxed problem

For relaxed problem, we expect “infinitesimal wrinkling” for r < L, and “biaxial
stretching” for r > L. Sheet has no reason to go out of plane or break radial
symmetry. So for relaxed problem, us = 0 and wy = 0, and w; depends only
on r. Recalling from Lecture 2 that

relaxed membrane energy = (e(w) + Vus ® V)i

we see that w, minimizes

Rout
/ ((8rWr)i + (r71 Wr)i) rdf + TinHinWr(Hin) - ToutHOulWr(Houl)-
R

in

We expect 9, w, > 0 (rays should be in tension). Accepting this, the EL egn
(force balance) is
A (roewr) = r ' (wr)+

W|th 2(9, W((Rin) = 7-jn and 28{‘ Wr(Hou[) = lout-
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The relaxed problem — contd

The behavior in the wrinkled region is quite explicit: since prin strains are
dw; > 0 and r~'w;, edge of wrinkled region (call it r = L) is where w;, = 0.
Within the wrinkled region, EL eqn becomes 0,(ro;w:) = 0, so

w; = Clog(r/L) in the wrinkled region.
Notice that

compressive strain eliminated by wrinkling = r~'w;.

It grows linearly as r decreases from L.

Wrinkling — Lecture 3



@ Mathematical formulation
@ The relaxed problem
@ The lower bound (ansatz-free, provides intuition)

@ The upper bound (surprisingly, doesn’t match pictures ...)
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The lower bound — big picture

Lower bound says min E, > & + Ch. Proof must be ansatz-free. Think of
En — & as the excess energy due to positive h.

Step 1: Soln of h = 0 (“relaxed”) problem is infinitesimally wrinkled but planar.
So out-of-plane deformation costs membrane energy. Quantification: if
excess energy is less than dh, then (using only membrane effepts),

/ \wsl? < Csh 3%
A
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The lower bound — big picture

Lower bound says min E, > & + Ch. Proof must be ansatz-free. Think of
En — & as the excess energy due to positive h.

Step 1: Soln of h = 0 (“relaxed”) problem is infinitesimally wrinkled but planar.
So out-of-plane deformation costs membrane energy. Quantification: if
excess energy is less than dh, then (using only membrane effepts),

/ \wsl? < Csh 3%
A

Step 2: The excess energy includes all the bending energy. So if u has
excess energy less than dh, then

/ |VVusf> < 6h".
A
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The lower bound — big picture

Lower bound says min E, > & + Ch. Proof must be ansatz-free. Think of
En — & as the excess energy due to positive h.

Step 1: Soln of h = 0 (“relaxed”) problem is infinitesimally wrinkled but planar.
So out-of-plane deformation costs membrane energy. Quantification: if
excess energy is less than dh, then (using only membrane effepts),

/ \wsl? < Csh 3%
A

Step 2: The excess energy includes all the bending energy. So if u has
excess energy less than dh, then

/ |VVusf> < 6h".
A

Step 3: Use the interpolation inequality

/ Vsl < Ci( / lus 2)'7( / VYR 2+ / Jus ?
A A A A

to conclude that
/ Vus|? < Co.
A

Conclusion thus far: if ¢ is small then the deformation is almost planar.
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The lower bound — big picture

Conclusion of Steps 1-3: if a deformation has excess energy E, — & < dh
then it is almost planar, in the sense that [ |Vus|? < C3.

Step 4: For the unrelaxed energy, a deformation that’s almost planar has
energy that’s much too large (greater than & by an order-one amount).

In fact: small excess energy = close to relaxed solution. So circles assoc
r < L are shrunk (w; < 0). For unrelaxed energy, compression costs
membrane energy.

So ¢ can’t be small, i.e. E, — & > ch. Lower bound is proved.
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The lower bound — more on step 1

In radial coordinates, if w; is soln of relaxed problem, then the excess energy
of (wr, we, us) consists of its bending energy (which is positive) plus

unrelaxed membrane \ relaxed membrane n difference of
4\ energy of (wr, we, Us) 4\ energy of (#,0,0) loading terms

Claim: This is equal to

/ (OrWr)(Oruz)® + (r~ ")+ (r~ " Beus)?® + sum of perfect squares.

A
The rest is easy: since 9, W, > 0 (strictly) for all r, and w, > 0 (strictly) for
r>(L+ Row)/2,
/ (Orus)? +/ (Dsu3)? < C excess energy.
A

r>(RoutL)/2

Remembering that us is arbitrary up to a constant (so it should be chosen
with mean 0), we get (using a Poincare-type inequality along each ray) that

/ U3 < Cexcess energy
A

as asserted by Step 1.
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About the claim

arWr + %(8,‘”3)2 *
* r=" (W + Ooweo) + 3(r~"0pus)?

unrelaxed membrane

energy of (w;, wy, Us)

Oy W, o P

0 (r'w).:

relaxed membrane
energy of (W, 0,0)
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About the claim

OrWr + %(8rU3)2 *
* r=" (W + Ooweo) + 3(r~"0pus)?

unrelaxed membrane

energy of (w;, wy, Us)

Oy W, o P

0 (r'w),

relaxed membrane
energy of (W, 0,0)

Analogous to our claim, but more familiar: Consider minimizer ¢ of
Jo [Vo|2 + Joq ¢f. For any a and ¢, the analogue of our “excess energy” is

e (et ) (153 )

Wrinkling — Lecture 3



About the claim

OrWr + %(8rU3)2 *
* r=" (W + Ooweo) + 3(r~"0pus)?

unrelaxed membrane
energy of (w;, wy, Us)

Oy W, o P

0 (r'w),

relaxed membrane

energy of (W, 0,0)

Analogous to our claim, but more familiar: Consider minimizer ¢ of
Jo [Vo|2 + Joq ¢f. For any a and ¢, the analogue of our “excess energy” is

e (et ) (153 )

To estimate it, observe that
IV +al? IV + V(6 — &) +af
VO] +2(V, V(6 — 8)) +2(V,a) + [V(¢ — ¢) + af.
Since [,2(V$, V(¢ — @) + [,o(¢ — $)f = 0, we get

excess:/ﬂZ(Vd;,a)+|V(¢>*¢~>)+a|2
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@ Mathematical formulation
@ The relaxed problem
@ The lower bound (ansatz-free, provides intuition)

@ The upper bound (surprisingly, doesn’t match pictures ...)
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The upper bound — first pass

Upper bound asserts existence of (w;, wg, us) st En < & + Ch, in other words
for which excess energy is of order h.
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The upper bound — first pass

Upper bound asserts existence of (w;, wg, us) st En < & + Ch, in other words
for which excess energy is of order h.

First idea (unsuccessfull) idea is to wrinkle on scale h'/2. For such wrinkles
the bending term will be of order H* - (h~'/2)? ~ h. Ansatz:

wr = W

Us 2v2rh'/?(—rit,)'? cos(8/h'/?) forr <L
with us = 0 for r > L. The tangential displacement wy should be chosen st

r w4+ 1 9gwe + 3(r ' 9eus)® =0 pointwise

which is possible since

2m
;/ (r~"0pus)? dO + 27r~ ', = 0.
0
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The upper bound — first pass

Upper bound asserts existence of (w;, wg, us) st En < & + Ch, in other words
for which excess energy is of order h.

First idea (unsuccessfull) idea is to wrinkle on scale h'/2. For such wrinkles
the bending term will be of order h? - (h~'/2)? ~ h. Ansatz:
wr = W
2v2rh'2(—rit:)' /2 cos(6/h'/?) forr <L
with us = 0 for r > L. The tangential displacement wy should be chosen st

us

r w4+ 1 9gwe + 3(r ' 9eus)® =0 pointwise

which is possible since

2m
;/ (r~"0pus)? dO + 27r~ ', = 0.
0

This doesn’t work: excess energy is of order h|log h|. In fact, ansatz has
|&rus| ~ h'/2|L — r|~"/2 and

excess energy > C/ (Orws)? > C hlL—r|""dr
A

r<lL
which diverges. Truncation at r ~ L — h still leaves excess h|log h|.
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The upper bound — second pass

A better ansatz uses wrinkling on scale £(r) ~ h'/?(L —r)'/2 near r = L.
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The upper bound — second pass

A better ansatz uses wrinkling on scale /(r) ~ h'/?(L — r)"/? near r = L.

How is this possible? Wrinkles can refine dyadically. In Euclidean setting,
consider wrinkles wrt y, with [ |9, us|* dy = 1&°(x). Refinement from scale
2) at x = xp to scale \ at x = x; is achieved by taking

us = a(x) {f(x) cos (ﬂy) +g(x )i cos <277TY)}

with 72 +92 =1,f=1for x < xp, and g = 1 for x > x;. Notice that
|Oxus| ~ |ax| X + a\/(x1 — Xo). Since change in local scale £(x) satisfies
AL/AX ~ X/(X1 — Xo), this scheme achieves

|Oxus| ~ |ax|¢ + allx]|.
Radial case is similar.
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The upper bound — second pass

A better ansatz uses wrinkling on scale /(r) ~ h'/?(L — r)"/? near r = L.

How is this possible? Wrinkles can refine dyadically. In Euclidean setting,
consider wrinkles wrt y, with [ |9, us|* dy = 1&°(x). Refinement from scale
2) at x = xp to scale \ at x = x; is achieved by taking

us = a(x) {f(x) cos (ﬂy) +g(x )i cos <277TY)}

with 72 +92 =1,f=1for x < xp, and g = 1 for x > x;. Notice that
|Oxus| ~ |ax| X + a\/(x1 — Xo). Since change in local scale £(x) satisfies
AL/AX ~ X/(X1 — Xo), this scheme achieves

|Oxus| ~ |ax|¢ + allx]|.

Radial case is similar.

Does it work? Returning to linear setting, we need f02“ |80 Us|? d to vanish

linearly near r = L. Use radial analogue of the above, with a(r) ~ /L —r.
Choosing ¢ ~ h'/2\/L —r gives a(r)|¢'(r)| + |& (r)|¢(r) ~ h'/2, so that

excess energy ~ |0rus|® ~ h

rnear L

as desired.
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Stepping back

@ The annulus example seems to capture the essential physics of
the drop-on-sheet and stretched-sheet experiments.

@ lts greater symmetry permits exact soln of relaxed problem.

@ Ansatz-free lower bound combines

- strict convexity of relaxed problem in tensile regime
- an interpolation inequality (bending term enters here).

@ Matching upper bound seems to require refinement of wrinkles.

- Why do we not see this? Well, | log h| is almost a constant.
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Stepping back — contd

@ Is the minimizer similar to our refinement-of-wrinkles ansatz?
- Our arguments estimate the energy, but say little about ptwise
character of minimizer.
- Actual behavior near r = L is probably rather different!
- For latest progress, see P. Bella, Transition between planar and
wrinkled regions in a uniaxially stretched thin elastic film (preprint).
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Image credits

Images are from:

E. Cerda and L. Mahadevan, Phys Rev Lett 90 (2003)
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