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Today’s focus
Annulus-shaped sheet, loaded by uniform tension at each boundary.

No wrinkling at larger radii; lots of wrinkling at smaller
radii, to avoid compression. Free boundary where
wrinkling starts.

Captures essential physics of the “drop on a sheet” (Huang et al, Science
2007) and the “stretched sheet” (Cerda & Mahadevan, PRL 2003)

Focus of Davidovitch et al (PNAS 2011) and Bella & Kohn (CPAM 2014).

Key question: understand length scale and character of the wrinkling.

Today’s presentation: “matching” upper & lower bounds on elastic energy.
(Arguments provide strong hints but little pointwise information.)

Not discussed today: recent work by Bella (ARMA, in press), providing
further insight on behavior near radius where wrinkling stops.

Wrinkling – Lecture 3



The big picture

Main result: excess energy is of order h. In other words, if

Eh = (membrane energy) + h2(bending energy) + (work done by loads)

then
E0 + C1h ≤ min Eh ≤ E0 + C2h

where E0 is the min of the relaxed problem. Really two assertions:

upper bound (requires a good ansatz, there’s a surprise)
lower bound (ansatz-free, provides interesting intuition)

Recent article with Peter Bella (Comm Pure Appl Math 67, 2014, 693-747):
fully nonlinear treatment (large strains & rotations, general stress-strain law).

Today’s discussion: von Karman version with Poisson’s ratio 0 (similar ideas
but easier & more transparent).
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Outline

To be discussed:

Mathematical formulation

The relaxed problem

The lower bound (ansatz-free, provides intuition)

The upper bound (surprisingly, doesn’t match pictures . . . )

sketching the essential ideas. Full details available on PCMI site
(approx 7 pages).
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Mathematical formulation

Eh = (membrane energy) + h2(bending energy) + (work done by loads)

membrane energy =

∫
A
|e(w) + 1

2∇u3 ⊗∇u3|2 dx

bending energy =

∫
A
|∇∇u3|2 dx

work done by loads =

∫
|x|=Rin

Tinw ·
x
|x | ds −

∫
|x|=Rout

Toutw ·
x
|x | ds

where A is the annulus. Parameters are Rin < Rout (geometry), Tin and Tout

(loads), and h (thickness).

Some restrictions are needed to make sure the annulus is wrinkled near Rin

but not near Rout. They turn out to be

RinTin < RoutTout and
Tin

Tout
> 2

R2
out

R2
in + R2

out
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Polar coordinates

The radial geometry suggests using polar coordinates, not only in space but
also for the elastic deformation. Writing wr and wθ for the radial and
tangential in-plane displacements, we have

membrane =

∫
A

∣∣∣∣∂r wr + 1
2 (∂r u3)2 ∗
∗ r−1(wr + ∂θwθ) + 1

2 r−2(∂θu3)2

∣∣∣∣2 r dr dθ

in which the off-diagonal terms are

∗ = 1
2

(
r−1∂θwr + ∂r wθ − r−1wθ + r−1∂r u3∂θu3

)
;

similarly

bending =

∫
A

(|∂rr u3|2 + 2r−2|∂rθu3|2 + r−4|∂θθu3|2) r dr dθ

and
loads = Tin

∫
r=Rin

wr r dθ − Tout

∫
r=Rout

wr r dθ.
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The relaxed problem

For relaxed problem, we expect “infinitesimal wrinkling” for r < L, and “biaxial
stretching” for r > L. Sheet has no reason to go out of plane or break radial
symmetry. So for relaxed problem, u3 = 0 and wθ = 0, and wr depends only
on r . Recalling from Lecture 2 that

relaxed membrane energy = (e(w) + 1
2∇u3 ⊗∇u3)2

+

we see that wr minimizes∫ Rout

Rin

(
(∂r wr )

2
+ + (r−1wr )

2
+

)
r dr + TinRinwr (Rin)− ToutRoutwr (Rout).

We expect ∂r wr > 0 (rays should be in tension). Accepting this, the EL eqn
(force balance) is

∂r (r∂r wr ) = r−1(wr )+

with 2∂r wr (Rin) = Tin and 2∂r wr (Rout) = Tout.
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The relaxed problem – cont’d

The behavior in the wrinkled region is quite explicit: since prin strains are
∂r wr > 0 and r−1wr , edge of wrinkled region (call it r = L) is where wr = 0.
Within the wrinkled region, EL eqn becomes ∂r (r∂r wr ) = 0, so

wr = C log(r/L) in the wrinkled region.

Notice that

compressive strain eliminated by wrinkling = r−1wr .

It grows linearly as r decreases from L.
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The lower bound – big picture
Lower bound says min Eh ≥ E0 + Ch. Proof must be ansatz-free. Think of
Eh − E0 as the excess energy due to positive h.

Step 1: Soln of h = 0 (“relaxed”) problem is infinitesimally wrinkled but planar.
So out-of-plane deformation costs membrane energy. Quantification: if
excess energy is less than δh, then (using only membrane effects),∫

A
|u3|2 ≤ Cδh

Step 2: The excess energy includes all the bending energy. So if u has
excess energy less than δh, then∫

A
|∇∇u3|2 ≤ δh−1.

Step 3: Use the interpolation inequality∫
A
|∇u3|2 ≤ C1(

∫
A
|u3|2)1/2(

∫
A
|∇∇u3|2)1/2 + C2

∫
A
|u3|2

to conclude that ∫
A
|∇u3|2 ≤ Cδ.

Conclusion thus far: if δ is small then the deformation is almost planar.
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The lower bound – big picture

Conclusion of Steps 1-3: if a deformation has excess energy Eh − E0 ≤ δh
then it is almost planar, in the sense that

∫
|∇u3|2 < Cδ.

Step 4: For the unrelaxed energy, a deformation that’s almost planar has
energy that’s much too large (greater than E0 by an order-one amount).

In fact: small excess energy⇒ close to relaxed solution. So circles assoc
r < L are shrunk (wr < 0). For unrelaxed energy, compression costs
membrane energy.

So δ can’t be small, i.e. Eh − E0 ≥ ch. Lower bound is proved.
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The lower bound – more on step 1
In radial coordinates, if w̃r is soln of relaxed problem, then the excess energy
of (wr ,wθ, u3) consists of its bending energy (which is positive) plus∫
A

(
unrelaxed membrane
energy of (wr ,wθ, u3)

)
−
∫
A

(
relaxed membrane
energy of (w̃r , 0, 0)

)
+

(
difference of
loading terms

)

Claim: This is equal to∫
A

(∂r w̃r )(∂r u3)2 + (r−1w̃r )+(r−1∂θu3)2 + sum of perfect squares.

The rest is easy: since ∂r w̃r > 0 (strictly) for all r , and w̃r > 0 (strictly) for
r > (L + Rout)/2,∫

A
(∂r u3)2 +

∫
r>(Rout+L)/2

(∂θu3)2 ≤ C excess energy.

Remembering that u3 is arbitrary up to a constant (so it should be chosen
with mean 0), we get (using a Poincare-type inequality along each ray) that∫

A
u2

3 ≤ C excess energy

as asserted by Step 1.
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About the claim

unrelaxed membrane
energy of (wr ,wθ, u3)

=

∣∣∣∣∂r wr + 1
2 (∂r u3)2 ∗
∗ r−1(wr + ∂θwθ) + 1

2 (r−1∂θu3)2

∣∣∣∣2
relaxed membrane
energy of (w̃r , 0, 0)

=

∣∣∣∣∂r w̃r 0
0 (r−1w̃r )+

∣∣∣∣2

Analogous to our claim, but more familiar: Consider minimizer φ̃ of∫
Ω
|∇φ|2 +

∫
∂Ω
φf . For any α and φ, the analogue of our “excess energy” is

excess =

(∫
Ω

|∇φ+ α|2 +

∫
∂Ω

φf
)
−
(∫

Ω

|∇φ̃|2 +

∫
∂Ω

φ̃f
)

To estimate it, observe that

|∇φ+ α|2 = |∇φ̃+∇(φ− φ̃) + α|2

= |∇φ̃|2 + 2〈∇φ̃,∇(φ− φ̃)〉+ 2〈∇φ̃, α〉+ |∇(φ− φ̃) + α|2.
Since

∫
Ω

2〈∇φ̃,∇(φ− φ̃)〉+
∫
∂Ω

(φ− φ̃)f = 0, we get

excess =

∫
Ω

2〈∇φ̃, α〉+ |∇(φ− φ̃) + α|2
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The upper bound – first pass
Upper bound asserts existence of (wr ,wθ, u3) st Eh ≤ E0 + Ch, in other words
for which excess energy is of order h.

First idea (unsuccessful!) idea is to wrinkle on scale h1/2. For such wrinkles
the bending term will be of order h2 · (h−1/2)2 ∼ h. Ansatz:

wr = w̃r

u3 = 2
√

2πh1/2(−r w̃r )
1/2 cos(θ/h1/2) for r < L

with u3 = 0 for r > L. The tangential displacement wθ should be chosen st

r−1wr + r−1∂θwθ + 1
2 (r−1∂θu3)2 = 0 pointwise

which is possible since

1
2

∫ 2π

0
(r−1∂θu3)2 dθ + 2πr−1w̃r = 0.

This doesn’t work: excess energy is of order h| log h|. In fact, ansatz has
|∂r u3| ∼ h1/2|L− r |−1/2 and

excess energy ≥ C
∫
A

(∂r u3)2 ≥ C
∫

r<L
h|L− r |−1 dr

which diverges. Truncation at r ∼ L− h still leaves excess h| log h|.
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The upper bound – second pass
A better ansatz uses wrinkling on scale `(r) ∼ h1/2(L− r)1/2 near r = L.

How is this possible? Wrinkles can refine dyadically. In Euclidean setting,
consider wrinkles wrt y , with

∫
|∂y u3|2 dy = 1

2 a2(x). Refinement from scale
2λ at x = x0 to scale λ at x = x1 is achieved by taking

u3 = a(x)

[
f (x)

λ

π
cos

(πy
λ

)
+ g(x)

λ

2π
cos

(
2πy
λ

)]
with f 2 + g2 = 1, f ≡ 1 for x < x0, and g ≡ 1 for x > x1. Notice that
|∂x u3| ∼ |ax |λ+ aλ/(x1 − x0). Since change in local scale `(x) satisfies
∆`/∆x ∼ λ/(x1 − x0), this scheme achieves

|∂x u3| ∼ |ax |`+ a|`x |.

Radial case is similar.

Does it work? Returning to linear setting, we need
∫ 2π

0 |∂θu3|2 dθ to vanish
linearly near r = L. Use radial analogue of the above, with a(r) ∼

√
L− r .

Choosing ` ∼ h1/2√L− r gives a(r)|`′(r)|+ |a′(r)|`(r) ∼ h1/2, so that

excess energy ∼
∫

r near L
|∂r u3|2 ∼ h

as desired.
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Stepping back

The annulus example seems to capture the essential physics of
the drop-on-sheet and stretched-sheet experiments.

Its greater symmetry permits exact soln of relaxed problem.

Ansatz-free lower bound combines

- strict convexity of relaxed problem in tensile regime
- an interpolation inequality (bending term enters here).

Matching upper bound seems to require refinement of wrinkles.

- Why do we not see this? Well, | log h| is almost a constant.
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Stepping back – cont’d

Is the minimizer similar to our refinement-of-wrinkles ansatz?

- Our arguments estimate the energy, but say little about ptwise
character of minimizer.

- Actual behavior near r = L is probably rather different!
- For latest progress, see P. Bella, Transition between planar and

wrinkled regions in a uniaxially stretched thin elastic film (preprint).
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