PDE for Finance, Spring 2011 – Homework 5 Distributed 4/4/11, due 4/18/11.

Problem 1 is a classic example (due to Merton) of optimal asset allocation. Problems 2-4 reinforce our discussion of optimal stopping and American options.

1) Consider the following asset-allocation problem. Two investment opportunities are available. One is risk-free, earning (constant) interest r. The other is lognormal, with (constant) drift μ and volatility σ , i.e. it satisfies $dp = \mu p ds + \sigma p dw$. You start at time t by investing wealth x. Your control is the weighting of your portofolio between these two assets, i.e.

 $\alpha(s)$ = fraction of wealth invested in the risky asset at time s

subject to $0 \le \alpha \le 1$. You never withdraw from or add to the portfolio, and you have a fixed horizon T. Your goal is to maximize the utility of your portfolio value at time T; in other words, your value function is

$$u(x,t) = \max_{\alpha(s)} E_{y(t)=x} \left[h(y(T)) \right]$$

where y(s) is the value of the portfolio at time s.

- (a) Find the HJB equation satisfied by u.
- (b) Find the solution and the optimal investment strategy if your utility is $h(y) = y^{\gamma}$ with $0 < \gamma < 1$.
- (c) Find the solution and the optimal investment strategy if your utility is $h(y) = \log y$.
- 2) Example 2 of the Section 6 notes discusses when to sell a stock. The goal proposed in the notes was to maximize the discounted wealth realized by the sale, i.e.

$$\max_{\tau} E_{y(0)=x} \left[e^{-r\tau} (x-a) \right]$$

A different goal would be to maximize the discounted *utility* of wealth realized by the sale, i.e.

$$\max_{x} E_{y(0)=x} \left[e^{-r\tau} h(x-a) \right]$$

where h is your utility.

- (a) Consider the utility $h(y) = y^{\gamma}$ with $0 < \gamma < 1$. (This is concave only for y > 0, but that's OK it would clearly be foolish to sell at a price that realizes a loss.) Find the value function and the optimal strategy.
- (b) The example in the notes corresponds to $\gamma = 1$. Using $\gamma < 1$ corresponds to introducing risk-averseness, and decreasing γ corresponds to increasing the risk-averseness. How is this reflected in the γ -dependence of the optimal strategy?
- 3) In Example 2 of the Section 6 notes we assumed $\mu < r$. Let's explore what happens when $\mu \ge r$. All other conventions of Example 2 remain in effect: the asset price satisfies $dy = \mu y dt + \sigma y dw$ and the value function is $u(x) = \max_{\tau} E_{u(0)=x}[e^{-r\tau}(y(\tau) a)]$.

- (a) Show that if $\mu > r$ then $u = \infty$.
- (b) Show that if $\mu = r$ then u(x) = x.
- 4) For a lognormal underlying with continuous dividend yield d, the risk-neutral process is $dy = (r d)ydt + \sigma ydw$. The value of a perpetual American call with strike K is thus

$$u(x) = \max_{\tau} E_{y(0)=x} \left[e^{-r\tau} (y(\tau) - K)_{+} \right]$$

where r is the risk-free rate.

- (a) How is this problem related to Example 2 of the Section 6 notes?
- (b) Find the value of this option, and the optimal exercise rule, for d > 0.
- (c) Show that as $d \to 0$ the value approaches u(x) = x.