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The filtering/data assimilation and prediction of moisture coupled tropical
waves is a contemporary topic with significant implications for extended range
forecasting. The development of efficient algorithms to capture such waves is
limited by the unstable multiscale features of tropical convection which can
organize large scale circulations and the sparse observations of the moisture
coupled wave in both the horizontal and vertical. The approach proposed
here is to address these difficult issues of data assimilation and prediction )
through a suite of analog models which despite their simplicity capture key

features of the observational record and physical processes in moisture coupled

¢ analog models tere involve the multiclond ~—mxw a

convective parameterization based on three cloud types, congestus, deep, and

stratiform, above the boundary layer. Two test examples involving an MJO-
like turbulent traveling wave and the initiation of a conve‘%&hel-y—mpled—wm«»-
train are introduced to illustrate the approach. A suite of filters with judicious /.
model errors for data assimilation of sparse observations of tropical waves,
based on linear stochastic models in a moisture coupled eigenmode basis is
developed here and applied to the two test problems. Both the reduced filter
and 3D-VAR with a full moist background covariance matrix can recover
the unobserved troposphere humidity and precipitation rate; on the other
hand, 3D-VAR with a dry background covariance matrix fai
unobserved variables. T i reduced-fittering methods in recovering
the unobserved4ongestus and stratiform heating rates as well as the front to
rear tilt of the convectivelg' coupled waves exhibits a subtle dependence on the

sparse observation network and the observation time. Copyright (¢) 0000 Royal
Meteorological Society
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1. Introduction ‘

Observational data indicate that through the complex
interaction of heating and moist convection, tropical
atmosphere flows are organized on a hierarchy of scales
(Nakazawa 1988) ranging from cumulus clouds of a
few kilometers to mesoscale convective systems (Houze
2004) to equatorial synoptic-scale convectively coupled
Kelvin waves and two-day wlvcs (Kiladis et al. 2009) to
planetary-scale intraseasonal organized circulations such
as the Madden-Julian Oscillation (MJO, Zhang 2005).
These moisture coupled trop}ical waves like the MIJO
exert a substantial influence 0J1 intraseasonal prediction in
the tropics, sub-tropics, and midlatitudes (Moncrielt ez af.
2007). Despite the continued research efforts by the
climate community, the present coarse resolution GCM’s,
used for prediction of weather and climate, poorly
represent variability associated with tropical convection
(Lau and Waliser 2005; Zhang ROOS; Lin er a/. 20006). Given
the importance of moisture cot\plcd tropical waves for short
term climate and medium to long range weather prediction,
new strategies for the filtering or data assimilation and

prediction of moisture coupled tropical waves are needed

and this is the topic of the present paper.

The approach proposed ' here is to address the
issues of data assimilation  and prediction through a
suite of analog models which despite their simplicity

capture key features of the observational record and
physical processes in moisture coupled tropical waves.
This approach is analogous to the use of various

versions of the Lorenz-96 Todcl (Lorenz 1996; Wilks

2005, Majdaetal. 2005; |Abramov and Majda

2007,
Crommelin and Vanden-Eijnden 2008; Harlim and Majda
2008a, 2010a; Majda and Harlim 2012, and references
therein) to gain insight inlotasic issues for midlatitude
filtering, prediction, and parameterization. The viability of
this approach for moisture coupled tropical waves rests on
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recent advances in simplified modelling of convectively
coupled tropical waves and the MJO which predict key
physical features of these waves such as their phase
speed, dispersion relation, front to rear tilt (Kiladis ¢z al.
2005, 2009), and circulation in qualitative agreement
with observations (Khouider and Majda 2006ab, 2007,
2()()8@; Majda et al. 2007; Majda and Stechmann 2009a,b,
2011) through simplified moisture-coupled models. The
analog models emphasized here involve the multicloud
convective parameterization based on three cloud types
congestus, deep, and stratiform, above the boundary
layer (Khouider and Majda 2006ab, 2007, 2()()85_‘:;). The
convective closure of the multicloud model takes into
account the energy available for congestus and deep
convection and uses a nonlinear moisture switch that
allows for natural transitions between congestus and deep
convection as well as for stratiform downdrafts which
cool and dry the boundary layer. As a simplified two
vertical baroclinic mode model, the multicloud model

is very successful in capturing most of the spectrum

of convectively coupled waves 2009,
Khouider and Majda 2()()8“‘15 well as the nonlinear
organization of large scale envelopes mimicking across
scale interactions of the MJO and convectively coupled
waves (Khouiderand Majda 2007, 2008b). Furthermore,
the multicloud parameterization has been used in the
next generation NCAR-GCM (HOMME) and is very
successful in simulating the MJO and convectively
coupled equatorial waves, at a coarse resolution of 170km
in the idealized case of a uniform SST (aquaplanet)

setting (Khouidereral. 2011). A stochastic  version

of the multicloud model has been utilized recently as
a novel convective parameterization to improve the
physical variability of deficient deterministic convective
parameterizations  (Khouider er al.

2010, Frenkel ¢r al.

201 1h).
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Test models for filtering and prediction of moisture-coupled tropical waves 3

The filtering skill for lh4 recovery of troposphere
moisture, heating profiles, precipitation, and vertical tilts

for a turbulent MJO-like

in circulation and temperature from sparse noisy partial
observations is studied hereT

travelling wave (Majda eral. i()(ﬁ) and for the temporal
development of a convectively coupled wave train. A
suite of filters with judicious model errors, based on
linear stochastic models (Hz\rliim and Majda 2008a, 2010a;
Majda and Harlim 2012) in a ripoisture coupled eigenmode
basis is developed here and1 applied to the two test
problems as well as related 3D-VAR algorithms with a full
moist background covariance matrix or a dry background
covariance (Zagar ¢r al. 2004b,a). These results are the first
demonstration of the utility of the analog multicloud models
for gaining insight for data assimilation and prediction of
moisture coupled tropical waves.

In Section 2, the suite of simplified tropical models for

The plan for the remainderif the paper is the following.
filtering and prediction is re\:ﬁewed; section 3 illustrates
two simplified cases, an M.ld) analog wave (Majda er al.
2007) and the temporal development of a convectively
coupled tropical wave train ‘rvhich illustrate phenomena
in the models and also serve as examples for filtering
in subsequent sections of thi paper. The suite of filters
with judicious model errors for moisture coupled tropical
waves are introduced in Section 4. Filtering skill for
these algorithms applied to ithe MIJO analog wave and
the development of a convec‘ ively coupled wave train is
reported in Section 5. SectionL is a concluding discussion

and summary.

2. Test models with moisture coupled tropical waves

The test models proposed h%:re begin with two coupled
shallow water systems: a direct heating mode forced by
a bulk precipitation rate from deep penetrative clouds
(Neelin and Zeng 2000) andTa second vertical baroclinic

mode forced by the upper level heating (cooling) and
Copyright ©) 0000 Royal Meteorological Society
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lower level cooling (heating) of stratiform and congestus
clouds, respectively (Khouider and Majda 2006a). Below,
for simplicity in exposition, we present these equations
without explicit nonlinear advection effects and coupling
to barotropic winds. This allows us to emphasize moisture
coupled tropical waves here but we comment later in this
section about how nonlinear advection and barotropic winds
enrich the dynamics of the test models. Thus, the test

models begin with two equatorial shallow water equations

v, _ 1
% +U- VVj + /3yv]* - Gj = —CduOV]' - ZV]',
9 _
%+U~V01—divv1 = P+05, ()
a0 _ 1
3—:+U~V02—Zdivv2 = —H;+H.+S,.

The equations in (1) are obtained by a Galerkin pro-
jection of the hydrostatic primitive equations with con-
stant buoyancy frequency onto the first two baro-
clinic modes. More details of their derivation are
found in (Neclin and Zeng 2000; Frierson eral. 2004,
Stechmann and Majda 2009). In (1), v; = (u;,v5)j=1,2
represent the first and second baroclinic velocities assuming
G(z) = V2cos(rz/Hr) and G(2z) = V2cos(2nz/Hr)
vertical profiles, respectively, while 6;,j =1,2 are the
corresponding potential temperature components with the
vertical profiles G’(z) = /2sin(rz/Hr) and 2G’(22) =
2v/2sin(27z/ Hr), respectively. Therefore, the total veloc-
ity field is approximated by

U + G(z)vi + G(22)va,

H 1
w o~ ——L [G'(z)div vi + =G'(2z)div VQ],
m 2
where V is the horizontal velocity and w is the

vertical velocity. The total potential temperature is given

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)



4 J. Harlim and A .J. Majda

approximately by
O~ 2+ G'(2)0; +2G'(22)02.

Here Hp ~ 16 km is the height of the tropical troposphere
with 0 < 2 < Hp and vjl = (—vj;,u;) while U is the
incompressible barotropic wind which is set to zero
hereafter, for the sake of simplicity. In (1), P > 0 models
the heating from deep convection while Hg, H. are the
stratiform and congestus heating rates. Conceptually, the
direct heating mode has a positive component and serves (o
heat the whole troposphere and is associated with a vertical
shear flow. The second baroclinic mode is heated by the
congestus clouds, H., from below and by the stratiform
clouds, Hy, from above and therefore cooled by H. from
above and by H, from below. It is associated with a jet shear
flow in the middle troposphere (Khouider and Majda 2006a,
2007, 2008ba). The terms S; and Sy are the radiative
cooling rates associated with the first and second baroclinic

modes respectively.

The system of equations in (1) is augmented by

|
an equation for the boundary layer equivalent potential
temperature, 0,, and another|for the vertically integrated

moisture content, .

e, 1
ot - E(E - lD)*
dq

+ U-Vq+div (vig+ aveq)

22 |
P+ —D.
+ Hy

ot (2)

+ Qdiv (vi+ 5\v2) D
In (2), hy = 500 m is the height of the moist boundary
layer while Q. A\, and & are parameters associated
with a prescribed moisture background and perturbation
vertical profiles. According to the first equation in (2),
0., changes in response to the downdrafts, D, and the
sea surface evaporation E\ Here the term downdraft

Copyright © 0000 Royal Meteorological Society
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refers to the subsiding air resulting from evaporative
cooling of congestus clouds and stratiform rain in the
middle of the troposphere which therefore results in the

moistening of the middle troposphere (increasing ¢) and

drying and cooling the bomwsg}w,@
f e
()CAfrom aloft. The troposphere moisture equation for ¢

is derived from the bulk water vapor budget equation by
imposing a moisture stratification-like background vertical
profile ¢, = Q(z) + ¢. A detailed pedagogical derivation
of this equation starting from the equations of bulk cloud
microphysics is presented in Khouider and Majda (2006b).
The approximate numerical values of A = 0.8 and & = 0.1,
follow directly from the derivation, while the coefficient
Q arises from the background moisture gradient. We
use the standard value Q ~ 0.9 (Neclin and Zeng 2000;

Fricrson er al. 2004).

In full generality, the parametrizations in (1) and (2)
automatically have conservation of an approximation to
vertically integrated moist static energy. Notice that, the
precipitation rate in (2), balances the vertical average of
the total convective heating rate in (1), therefore leading to
the conservation of the vertical average of the equivalent
potential temperature (6.) = (Q(z)) + ¢+ (©) + 1’11—70(¢,,
when the external forces, namely, the radiative cooling
rates, S, Sz, and the evaporative heating, F, are set to
zero. Also note that the sensible heating flux has been
ignored in (1) for simplicity since this is a relatively small

contribution in the tropics. Here and elsewhere in the text

(f)y = (1/Hrp) [ f(z)dz.

The equations in (1) and (2) for the prognostic variables
q.0ch, 05, v, j = 1,2 are written in non-dimensional units
where the equatorial Rossby deformation radius, L, ~
1,500 km is the length scale, the first baroclinic dry
gravity wave speed, ¢ &~ 50 ms™!, is the velocity scale,
T = L./c~ 8 h is the associated time scale, and the dry-
static stratification o = i‘% ~ 15 K is the temperature

Q.J. R. Meteorol. Soc. 00: 2=27 (0000)



Test models for filtering and prediction of moisture-coupled tropical waves 5

Table I. Bulk constants in two-layer mode model.

Hp =16 km height or the tropical troposphere.
Q=09 moisture stratification factor
A=08 baroclinic contribution to the moisture convergence associated with the moisture background
a=0.1 baroclinic contribution to the moisture (nonlinear) convergence associated with the moisture anomalies

Tw = 75 days
Tr = 50 days
Cq = 0.001
L. =~ 1500 km
T=1Le/c~8h
a~ 15K

Rayleigh-wind friction relaxation time
Newtonian cooling relazation time
boundary layer turbulent momentum friction
equatorial deformation radius, length scale
time scale
dry static stratification, temperature scale

N =0.01s7!
0y = 300 K
hy = 500 m

ag = 0.1

Brunt-Vaisala bouyancy frequency

reference temperature
boundary layer height

relative contribution of ¢, to the middle troposphere 0,

unit scale. The basic bulk parameters of the model are listed

in Table I for the readers convenience.

2.1.  The convective parameterization

The surface evaporative heating, F, in (2) obeys an
adjustment equation toward the boundary layer saturation

equivalent potential temperature, 07, ,

1 1
—F = _( Zb - ecb)s

» . 3)

with 7. is the evaporative time scale. Besides the second
baroclinic moisture advection in (2), the originality of the
multicloud model resides in the treatment of the deep
convective heating/precipitation, P, and the downdrafts, D,
as well as the introduction of the congestus heating, H.,
into the @ equation. The middle tropospheric equivalent

potential temperature anomaly is defined approximately by

¢ 3

Ocm =~ q+ T\/_(Ol + aals). 4)
Notice that the coefficient 2\/5/7r in (<) results from the
vertical average of the first baroclinic potential temperature,
V20, sin(rz/Hr), while the small value for as adds
a non-zero contribution from s to 0., to include its
contribution from the lower middle troposphere although

Copyright © 0000 Royal Meteorological Society
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2o oIV, 2N

(200064, 2(]()@ we use

serves as a measure for the moistness and dryness of

its vertical average is zero. Following Khouider and Mujda

a switch parameter A which

the middle troposphere. When the discrepancy between
the boundary layer and the middle troposphere equivalent
potential temperature is above some fixed threshold, 67,
the atmosphere is defined as dry. Moist parcels rising from
the boundary layer will have their moisture quickly diluted
by entrainment of dry air, hence losing buoyancy and stop
to convect. In this case, we set A = 1 which automatically
inhibits deep convection in the model (see below). When
this discrepancy is below some lower value, 07—, we have
a relatively moist atmosphere and we set A = A* < 1. The
function A is then interpolated (linearly) between these two

values. More precisely, we set

1 if Oeb - ()em >0t

A= A(()c‘b - ()e:m) + B ifo~ S eeb - eem S 0+ (5)

0 if agb - 99771 < 0.

The value of 0~ represents a threshold below which the
free troposphere is locally moist and “accepts” only deep

convection while the value of 07 defines complete dryness.

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)




6 J. Harlim and A.J. Majda

Therefore, the precipitation, P, and the downdrafts, D,

obey

P

1-A
P() Zmdl?:/\])o7

T 1A ©

while the stratiform and congestus heating rate, H, and H.,

solve the relaxation-type equations

OH 1
= —(asP — Hg 7
ot Ts(a a s) )
and
OH, 1 AN—A" D
— = —(aqq————— —H,), 8
ot Tl gy ~ e ®)

respectively. The dynamical equations in (1), (2), (7), and
(8) define the multicloud model. Notice that, as anticipated
above, when the middle troposphere is dry, A = 1, deep
convection is completely inhibited, even if Fy, i.e, CAPE
is positive, whereas congestus heating is favored. In the
absence of deep convection the downdrafts are interpreted
as the subsidence associated with the detrainment of
shallow clouds. In this sense the shallow clouds serve to
moisten and precondition the middle troposphere to sustain
deep convection by lowering A in the model via both
the increase of ¢ and the decrease of 0.,. The situation
is somewhat inverted during the deep convective episodes
when A = A*. Nevertheless, when this downdraft minimum
fraction is reached, the downdraft will increase because
of increasing stratiform heating, Hg, and the vanishing
congestus heating, f. (because of the factor A — A*
in Eq. (8)). Moreover, the dry atmosphere increases the
downdrafts, D, and promotes boundary layer clouds. This
o is \@7 reflected in the model. Other variants of the
equation in (8) for H. can be utilized where changes in H,.

%)
respond to low-level CAPE (Khouider and Majda 2008b).

Vs

Copyright © 0000 Royal Meteorological Society

Prepared using qjrms4.cls

The quantities Py and Dg represent respectively the
maximum allowable deep convective heating/precipitation
and downdrafts, independent of the value of the switch
function A. Notice that conceptually the model is not
bound to any type of convective parametrization. A Betts-
Miller relaxation type parametrization as well as a CAPE
parametrization can be used to setup a closure for F.
Recall that a Betts-Miller type parametrization consists of
relaxing the moisture ¢ (and/or the temperature) toward
a fixed vertical profile, ¢, (typically a tropical sounding
or a moist adiabat) over some convective relaxation time
Teone (Betts and Miller 1986). A CAPE parametrization, on
the other hand, is based on the kinetic energy available
for deep convection which is directly converted into
upward motion whenever deep convection is triggered.
Recall also that CAPE is computed as the vertical
integral of the buoyancy of the rising moist parcel which
is proportional to the difference between the boundary
layer and the environmental saturation equivalent potential
temperatures, e, — 0%, (Emanuel  1994). Furthermore,
0., anomalies are often approximated by some linear
function of the tropospheric dry potential temperature (e.g.

Majda and Shefter 2001). Here we let

_+_
Py = a10c, + a2(q — ¢) — ao(01 + v202)

)
TCO?L'U
where f* = max(f,0) and ¢ is a threshold constant
value measuring a significant fraction of the tropospheric
saturation and 7..,,, a1, a2, ag are parameters specified
below. In particular the coefficient ag, which is ﬂvﬁﬁm
related to the inverse buoyancy relaxation time of
Fuchs and Raymond (2002), is an important parameter
to vary. The parameter 5, which couples 0, to Fy is
also varied to assess the effects of the lower troposphere
temperature variation on the parametrizations; a relatively

warm lower troposphere will promote evaporation and

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)



Test models for filtering and prediction of moisture-coupled tropical waves 7

detrainment of cumulus clouds. Thus, it should result in a major challenges for contemporary data assimilation and
weakening of the deep convection. prediction W

The downdrafts are closed by presented in Section 3.

Two detailed analog examples are

.
Do = "2[P+ palHy = Ho)| (0 = 0u), (10)

. : . . s descri i ctail i ider ¢ Majda (200¢
where myg is a scaling of the downdraft mass flux and As described in detail in Khouider and Majda (2006b)

Pis . S . . the multicloud model¥also include the quasi-equilibriur
is a prescribed precipitation/deep convective heating at n

. ) \
. . R . models (Neelin and Zeng 2000, Friersoneral. 2004 \
radiative convective equilibrium. Here s is a parameter ¢ \

\
P . o ) Pauluis ¢f a/. 2008) which mimic the Betts-Miller and )
allowing for stratiform and congestus mass flux anomalies
(Majda and Shefter 2001; Majda ef af. 2004). Finally lhg%mhubcrl parameterizations of GCM'’s ﬁ )
radiative cooling rates, Sy, S {n (1) are given by a simple limiting regime) Such models arise formally by kcepmg

. . the firsT baroclinic mode in (1), retaining the moisture
Newtonian cooling model

equation in (2) with D =0, setting A =1 in (6), and

0 Ll using Py in (9) with @y = 0 while ignoring all remaining
= —QRg,; 0, 7=12 (rn

TR boundary layer and cloud equations. There are many

interesting exact solutions of the nonlinear dynamics

0 . ¢ . . . -
where QF .,j = 1,2 are the radiative cooling rates at . . . r
Rj © with moisture switches in th-é-"reglmc, large scale

radiative convective equilibrium (RCE). This is a spatially o X ) ) .

precipitation fronts, which served as interesting  test
homogeneous steady state solution where the convective X . . . . .

problems for filtering with nonlinear switches and moisture
heating is balanced by the radiative cooling. The basic - ) i

coupled waves (Frierson ¢f af. 2004; Pauluis ez al. 2008;
constants in the model convective parametrization and the ) . o

Stechmann and Majda  2006);  the behavior of finite
typical values utilized here are given in Table II. The .

ensemble Kalman filters (Evensen 1994; Anderson 2001,
physical features incorporated in the multi-cloud model are - .

Bishop eral. 2001, Huntetal. 2007) and particle filters
discussed in detail in (Khouider and Majda 20064, 2007, )

’ (van Leeuwen 20105 Anderson 2010) are particularly

2008ba). . L . . . .

interesting in this context with moisture coupled switches

and exact solutions. However, rigorous mathematical
2.2. Moisture coupled phenomena in the test models
theory establishes that these quasi-equilibrium models
As already noted in the introduction, the dynamic have no instabilities or positive Lyapunov exponents
multicloud models in (1), (2), (7), (8) capture a (Majdaand Souganidis 2010), unlike realistic tropical
number of observational features of equatorial convectively convection and the full multicloud models. More realism
coupled waves and the MJO. These phenomena occur in the quasi-equilibrium tropical models can be achieved
in multi-wave dynamical models with strong moisture by allowing active barotropic dynamics and coupled
coupling through (2), nonlinear on-off switches like (5), nonlinear advection which allows for tropical-extratropical
(9), (10) and nonlinear saturation of moisture coupled wave interactions (Lin ¢7 a/. 2000; Majda and Bicllo 2003;
instabilities (Khouider and Majda 20064, 2007, 2008ba;  Biello and Majda 2004). Examples with these features are
Khouidereral. 2011). All of these feastures present developed by Khouider and Majda (2005a,b).

Copyright © 0000 Royal Meteorological Society Q.J. R. Meteorol. Soc. 00: 2-27 (0000)
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8 J. Harlim and A.J. Majda

Table II. Parameters in the convective parametrization. The parameters in the middle panel will be chosen differently for the MJO-analogue case in
Section 3.1 and the temporal development of a convectively coupled wave train in Section 3.2. The parameters in the lower panel are determined at the

RCE state.

0%, — 0ep = 10K

Discrepancy between boundary layer 6. at its saturated value and at the RCE state

6% =10,20K temperature threshold used to define the switch function A
AB linear fitting constant interpolating the switch function A
as=0.25 Stratiform heating adjustment coefficient
¥2=0.1 Relative contribution of 5 to convective parametrization
Q%‘l =1Kday™! second baroclinic radiative cooling rate
A* Lower threshold of the switch function A
b2 Relative contribution of stratiform and congestus mass flux anomalies to the downdrafts
Qe Congestus heating adjustment coefficient
Ts Stratiform heating adjustment time
Te Congestus heating adjustment time
ao Inverse buoyancy time scale of convective parametrization
ay Relative contribution of . to convective parametrization
a Relative contribution of ¢ to convective parametrization
Teony Deep convection adjustment time
Och — Ocm discrepancy between boundary and middle troposphere potential temperature at RCE value
Te~8h Evaporation time scale in the boundary layer
Q%J second baroclinic radiative cooling rate
q threshold beyond which condensation takes place in Betts-Miller scheme
mo Scaling of downdraft mass flux

3. Examples of moisture coupled tropical waves in the

test model

In_this section, we describe two concrete examples F
solutions will be used as the truth for generating syn-
thetic observations (as we will describe in Section 4).
The two specific examples include an MJO-like trav-
eling wave (Majdaeral/. 2007) and % Oiniliation of a
convectively coupled wave train that mimics the solu-
tions of explicit simulations witfiLCloud Resolving Model
(Grabowski and Moncrieff 2001). Following the basic setup
in Khouider and Majda (2006a, 2007), we consider the
multicloud model in (1),(2),(7),(8) on a periodic equatorial
ring without rotation, # = 0, without barotropic wind, U =
0, and with a uniform background sea surface temperature
given by constant 0%, . With this setup, the wind velocity in

(1),(2) has only the zonal wind component, v; = u;.
Copyright © 0000 Royal Meteorological Society
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3.1.  An MJO-like turbulent traveling wave

In our first example, we consider the parameter regime for (V]
intraseasonal MJO-like turbulent traveling wave. Following
Majda er al. (2007), we set the bulk parameters in Table I,
Q=1, A=06, Cq =105, 7y = 150 days, 7 = 50
days and the convective parameters in Table II, Opp —
Opm = 12K, a0 = 12,a; = 0.1, a9 = 0.9, 1o = 0.5, ac =
0.5, A* = 0.2. The intraseasonal timescale is generated
through 7.y = 12 hours which is consistent with the
current observational estimates for large-scale consumption
of CAPEand 74 = 7, = 7 days which is also consistent with
the current observational record for low-level moistening

and congestus cloud development in the MJO.

The linear stability analysis for this parameter regime h

been studied in detail in Majda er a/. (2007). Here, we

some of the important fcaturcﬂ‘o\rlw
)

the unstable wavenumbers 2 and 3 Rave growth rates ©

roughly (30 days)~! and phase speed of 6.9 and 5.8 ms™!

s

respectively. These unstable modes have westward, tilted

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)
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5200 " <=
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25100»<<&\ (@ﬁz(& g
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50000 5 10 15 20 25

x (1000 km)

30 35

Figure 1. Contour plot of the deep convective heating P(x,t) from a
numerical simulation of the multicloud model with parameter values in
Section 3.1, Tables 1, and I1. Heating values of greater than 2 K day ! are
shaded in grey while greater than 10 K day ~! are shaded in black.

vertical structure for heating, velocity, and temperature,

ar first and second baroclinic mode contributions

and low-level co otential temperature leading and

within the deep convection. In Figure [, we show the
contour plot of the precipitation P (which is exactly the
deep heating rate for this model) at the statistical steady
state from a numerical simulation between 5000-5200 days.
main feature here is an eastward moving wavenumber-

with phase speed 6.1 ms™, wirfehesrEmament
: i . Within the envelope

of this wave are intense westward moving small scale
fluctuations. These fluctuations occur irregularly and there
are often long breaks between intense deep convective

events. All of these features are observed in the MJO (Zhang

2003).

3.2, Initiation of a convectively coupled wave train

In this second example, we consider the three cloud model
with enhanced congestus heating (Khouider and Majda
2008b) with slightly different parameterization than the
above. In particular, the total precipitation, P, is different
from the deep convection heating rate, /{4, and is defined as

Copyright © 0000 Royal Meteorological Society
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follows,

F = %(HﬁﬁsHﬁéCHc), (12)
Moy B st od conaaas raim.
The key feature in this new parameterization is attributed
to the asymmetric heating rate contribution in the upper and
lower level atmosphere with nonzero &, and €., respectively.

This new feature replaces @M the first baroclinic heating
equation in (1) with

3()1 0“1

= H, sH H.+ Sy,
ot ox 1+ & Ho +§ Tt

(13)
The moisture equation in (2) remains unchanged except that
now we remove the scale factor 2—‘? in frontof P sinceitis
already included in (12).

The new congestus parameterization uses exactly the
same switch function A in (5) with middle-troposphere
equivalent potential temperature approximation in (4). The
major changes replace the precipitation, P, in (6) with

Hq = (1-A)Qq,

(14

with bulk energy available for deep convection given by

~ +
Qg = {Q + [a10cp + a2q — ap(0y + 72()2)]} . (15)

TC(NLU
In (15), parameter @ is the bulk convective heating
determined at the RCE state. The downdraft in (6) is also

replaced with

mo [ ~ +

D=7 Q@+ 2 (Hy = H)| " (0 = 0um). (16)
Compared to (6), this new parameterization assigns A* = 0
for the deep convection heating rate and ignores the factor

A in the original downdraft equation. The corresponding

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)
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dynamical equations for the stratiform and congestus

heating are

OH, 1
— = —(adsHyq— Hy), 17
o . (asHy ) (7
OH. 1
G = o (@chQe— Ho), (18)
where
- / N
Q.= {Q + - [Ocb — ag(61 + 7202)]} (19)

denotes a “bulk energy” for congestus heating.

In our numerical experiment, we use the same parameter
values as in Khouider and Majda (2008b). The bulk
constants in Table I are not changed. The convective
parameters in Table Il are used with A* = 0, po = 0.25,
a.=0.1, 7¢=3 h, 7. =1 h, ap =5, a; = ay = 0.5,
Teonw = 2 h, and 0. — 0., = 14 K. The additional new
parameters for the enhanced congestus parameterization
include the coefficients representing contributions of
stratiform and congestus clouds to the first baroclinic
heating, & = 0.5 and &. = 1.25, respectively; inverse
convective buoyancy time scale associated with congestus
clouds, af, = 2; the bulk convective heating ) that is
determined at RCE. Interested readers should consult
Khouider and Majda (2008b) for the detailsof the linear

stability analysis. \

the initiation of a

convectively coupled wave train to mimic the" two-
dimensional explicit Cloud Resolving Model solutions
in Grabowskiand Moncrieft (2001). In  particular, we

[
integrate the model with a $ingle T

of-the=gEiRaii) as the initial condition (see the space-
time plot of the first two-baroclinic velocities, potential
temperatures, congestus and deep heating rates, moisture,
Wipilalion in Figure 2). Note that this setup is exactly

opyright (©) 0000 Royal Meteorological Society
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the regime analyzed in Frenkel ez af. (201 1a) in which they
focused on understanding the effect of diurnal cycle and we
neglect the diurnal cycle here. Notice there are fast moving
waves (see ¢, Hg, and P in Figure 2) during the first 2
days moving away from the 20,000 km mark. After about
8-10 days, additional waves appear; this wave initiation is
partly due to the convectively coupled wave interactions
with faster moving gravity waves. After about 100 days,

these waves mature to a wave train of six individual

STV
eastward moving waves with a \QIM of approximately

/t___,,\\_‘

145 ms™! (see Figure 3). Such wave structure and wave
train organization rcscmble/?@ the structure found in
the explicit simulations with&loud resolving model by
Grabowski and Moncrieft (2001). Moreover, the maturcd
waves have a total convective heating pattern (with
backward and upward tilt in the wind and temperature
fields, upper-tropospheric warm temperature anomalies

slightly leading the region of the upward motion, which

,"' e \I—/,,,
is in phase ocrhc heating anomalies, with low level

convergence) that is very similar to convectively coupled
Kelvin waves observed in nature (Wheeler and Kiladis
1999; Wheeler ef af. 2000; Straub and Kiladis 2002).

4. AlgorithmAfor filtering moisture coupled waves

from sparse observations

In this section, we first describe the sparse observation
networks and then discuss in details the reduced stochastic
filtering algorithms.

4.1.  Sparse observation networks

In the present paper, we consider horizontally sparse
observations at every 2,000 km. This means we only have
M = 20 observations at x; = jh,h = 27/40,000 km in
a non-dimensionalized unit assuming that the equatorial
belt circumference is 40,000 km. For compact notation,

we define W, = (uy,u2,01,02,00,q, Hs, H.)": we use

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)
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time (days)

time (days)

time (days)

time (days)

20 30
X (1000 km)

10
X (1000 km)

Figure 2. Initiation of a convectively c‘bupled wave train: the space-time
plot here is constructed with coarse spatial and temporal resolutions at
every 2000 km and 24h (This coarse data set is sampled from solutions
with higher resolutions at every 40 km and 3 hours). The contour intervals
are 0.25 ms~ ! for the zonal wind, 0.025 K for the potential temperature
and humidity, and 0.05 K day ! for the heating rates and precipitation.
Solid black (dash grey) contours denote positive (negative) values for
wy, w2, 01,02,q. Solid black (dash grey) contours denote heating rates
greater (smaller) than | K day =1 for Hg, Hy, P.
|

subscripts j and m to specify that each component in ¥ is
evaluated at grid pointz; and discrete time £, respectively.
\

We define a general observation model

Gy’

jm — G\I’J"m + GOj,m, ‘ O’j’m ~ N(O. Ro), (20)
where G is an observation opérator that maps the model
state to the observation state space and o ,, are eight-
dimensional independent Gaussian white noises with mean
zero and diagonal covariance matrix R°. Vertically, we
consider four observation networks with specific G:

Copyright © 0000 Royal Meteorological Society
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Figure 3. Moving average of the vertical structure in a reference frame of
14.5 ms~ ! from time period of 500-1000 days. The contour intervals are
0.07 K for the potential temperature, 0.54 K day ~! for the total convective
heating, and 0.35 ms ™! for the horizontal velocity. Solid (dashes) contours
denote positive (negative) values.

SO (Surface Observations): Here, we consider observing
the wind, potential temperature at a surface height z; = 100
m, and the equivalent boundary layer potential temperature
Oc,. The corresponding observation operator is a 3x8

matrix G with nonzero components

Gl,l = G(Zs),Gl‘g = (;(233),
Gos = G'(z4),Gaq = 2G"(22), (21)
G.’S.S - 17

where GG, ¢ are the vertical baroclinic profiles defined in

Section 2.
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SO+MT (Surface Observations + Middle Troposphere
Temperature): This observation network includes temper-
ature at middle-troposphere height z,, = 8 km in addition
to SO. The corresponding observation operator is a 4x8

matrix G with nonzero components

G4,3 - G/(Zm), G4,4 - 2("/(23771)» (22)

in addition to (21).

SO+MTYV (Surface Observations + Middle Troposphere
Temperature & Velocity): This observation network
includes velocity at middle-troposphere height z,, = 8 km
in addition to SO+MT. The| corresponding observation

operator is a 5x8 matrix G with nonzero components

Gﬁ,l = (;(3771)7 G,") 2 = 2(;(2:rrl,>-

)

(23)

in addition to (21) and (22).

CO (Complete Observations): This vertically complete
observation network is defined with G = I for diagnostic

C por (305‘2..5)

purposc@ A‘S e

4.2. Filtering Algorithms

In this paper, we consider the simplest version of

our reduced stochastic filters, the

(MSM,

Mean Stochastic

Model Harlim and|Majda  2008a,  2010a,b;
Majda and Harlim 2012). The|new feature in the present
context is that we have multiple variables W; as opposed
to a scalar field and therefore we need to design the
MSM in an appropriate coordinate expansion to avoid
parameterizing various coupling terms.

Majda (20082), our design of the

filter prior model is the standard approach

for modeling lurbulc/n\t fluctuations (Majda er al. 1999;

Majda and Timofeyev 2004; DelSole 2004; Majda er al.
Copyright © 0000 Royal Meteorological Society
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2008), that is: We introduce model errors through
linearizing the nonlinear models about a frozen constant
state and replacing the truncated nonlinearity with a
dissipation and spatially correlated noise (white in time)
to mimic rapid energy transfer between different scales. In
the present context, we consider the linearized multicloud

model about the RCE,

o),
dt

(24)
where W’ denotes the perturbation field about the RCE
and P denotes the linearized differential operator of

the multicloud model at RCE. A comprehensive study

‘of the linear stability analysis of (24) involves solving

cigenvalues of an 8 x 8 dispersion matrix, w(k),ygas @

reported in Majda ¢7 a/. (2007) for the MJO-like wave and
in Khouider and Majda (2008b); Frenkel ef af. (201 1a) for

the multicloud model with enhanced congestus heating.

Consider a numerical discretization for (24) with spatial
mesh size of Az = 2000 km such that the model state space
is essentially similar to the observation state space. With this

approximation, the PDE in (24) becomes

(I\ilk
dt

= iw(k)¥y, |k < M/2 =10, (25)

where {‘i’k}'klg/\l/g are the discrete Fourier components of
{\Il/] }i=1,...,a. Now consider an eigenvalue decomposition,
iw(k)Zy = Zi Ay, where Ay is a diagonal matrix of the
cigenvalues and Zj is a matrix whose columns are the

corresponding eigenvectors. Then we can write (25) as a

diagonal system,

dd k

— AP,
dt B

k| < M/2 = 10, (26)

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)
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with the following transformation

(27

4.2.1. The MSM-Filter

The Mean Stochastic Model is defined through the
|

following stochastic differential system,

A%, = {(—rk ERTONT yar fk]dz, +SdWi,  (28)
for [k| < M/2. In (28), T,[Q, and % arc diagonal
matrices with diagonal components obtained through
regression fitting to the climatological statistics while
the forcing term is proportional to the climatological
mean field, f;, = (L' — i) ($1); here, the angle bracket
() denotes an average. Notiec that the realizability of
this stochastic model (referred as MSM-1 Majda er al.
2010; Harliny and Majda 2010b; Majda and Harlim 2012) is
guaranteed since I', is always}positivc definite as opposed
to the alternative approach which sets €, = —iAy, (Penland

1989; DelSole 2000).

The discrete-time Kalman filtering problem with the
MSM as the prior model is defined for each horizontal

wavenumber k as follows

‘ilk,m = fk‘(At)‘i’k,m—] + Bk,m + MNk,m > (29)

G\Ilz,m - GlI’k,m + G(Afl,-,,m,-, (30)
where the observation model in (30) is the discrete Fourier
component of the canonical observation model in (20) with
Gaussian noises, 7k, ~ N(0, R°/M). The discrete filter

Copyright © 0000 Royal Meteorological Society
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model in (29) has coefficients

Fi(t)

3D
'(I - fk‘(”m))(_rk + iQk)Alfk‘a (32)

Z). exp <(—Fk - iQ/\.)t) Z;].

gkom =

and unbiased Gaussian noises 7 ,,, with covariance matrix

1 ! — ‘ *
Qi = ZST (- AA0PIZE 6Y)
These coefficients are obtained by evaluating the analytical
solutions of the stochastic differential system in (28) at
observation time interval At = t,,41 — t,, and applying

the transformation in (27).

The MSM-filter in (29)-(30) is computationally very
cheap since it only involves M/2+ 1 independent 8 x
8 Kalman filtering problems, ignoring cross-correlations
between different horizontal wavenumbers. Such a diagonal
approximation may seem to be counterintuitive since
it generates severe model errors but we have shown
that it provides high filtering skill beyond the perfect

4

. . . 8 S. :
model simulations in various context” including the

regularly spaced sparse observations (MHarlim and Majda
2008b), irregularly spaced sparse observations (Harlim
2011), strongly chaotic nonlinear dynamical systems
(Harlim and Majda 20084, 2010a), and midlatitudq P

dynamics (Harlin and Majda 2010b). d

Applying the Kalman filter formula on each wavenumber

in (29)-(30) provides the following background (or prior)

mean and error covariance estimates,

\ilzli"m - fk(A{) I {li,m-l + Zk,m 34)

R"lj"m - fA(At> (}i,m,vlfk(At)* + QA‘~ (35)

Q.J. R. Meteorol. Soc. 00: 2=27 (0000)



14 J. Harlim and A .J. Majda

and analysis (or posterior) mean and error covariance

estimates
Z’,m = \illli,m o K’\f-TYB(G‘i’z,rn - G‘i’lli'.m,)
Z,m = (I - Kk.7nG)R’[Z~mp (36)
Kim = Rp,,G(GR;,, +R°/M)G")™",

where Ky, ,,, is the Kalman gain matrix.

4.2.2. The complete 3D-VAR

¢

For diagnostic purpose’iwe also consider a 3D-VAR version
in the MSM framework above. That is, we simply set the
background error covariance matrix to be independent of

time,
— b 1 2p—lmx
Bi = Allm Ry, = -Z 2 0 7y, 37)

t—oo 2

and repeat the mean prior and posterior updates in (3-4), (36)

with a constant Kalman gain matrix,
K; = B;,G*(G(By + R°/M)G*)™".

We called this approach the complete 3D-VAR because
the forward model ;)arameler§ in (31), (32), (33) and
the background covariance matrix in (37) are determined
from complete solug’ons of the multicloud model§ in (1),
including the m,s\'m-and heatingﬂvariables from (2), (7),
(8). This formulation is significantly different 1'ron%icr
approach with variational lechniquei(Zagzn' etal. 2004b )
in which the background covariance matrix is parameterized
in an eigenmode basis coxlstrqctcd from gry equatorial
waveguide. |

Copyright © 0000 Royal Meteorological Society
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4.2.3. The “dry and cold” 3D-VAR

To mimic the approach in (Zagaretal. 2004ba), we
consider only using the wind and temperature data,
wy,un, 01,02, 00, to construct the “dry and cold” eigen-
mode basis and background covariance matrix By.. Tech-
nically, we still use the MSM model in (28) but replace the

transformation in (27) with

‘i)dc o Z—l I ]
k — #g k- (38)

In this sense, the parameters 'y, €2, and Xy in (28) are
fitted to climatological statistics of <i>§f‘ based on only the
wind and temperature variables. Repeating the 3D-VAR
algorithm described above in this setup provides an honest
“dry and cold” version analogous to the earlier approach in
Zagar et al. (2004b).

Besides the eigenmode basis difference, we should note
that the “dry and cold” 3D-VAR here is computationally
much cheaper than that in Zagar et al. (200-4ba) since
we perform both the prior and posterior updates in
the diagonalized Fourier basis with reduced stochastic
filters through (34)-(36) as opposed to their approach that
propagates the nonlinear dry shallow water equations in
@ physical space and applies the analysis step in the
spectral diagonal basis. On each data assimilation step,
their approach requires back-and-forth transformations in
between the physical and spectral spaces with a rotational
transformation matrix that is quite often ill-conditioned as

reported in Zagar et al. (200-4b).

S. Filtering skill for moisture coupled tropical waves

In this section, we report the numerical results of
implementing the filtering algorithms in Section 4.2 to
assimilate the synthetic sparse observation networks defined

in Section 4.1 on the two examples discussed in Section 3.

Q.J. R.Meteorol. Soc. 00: 2-27 (0000)
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@

In the numerical simulation® below, consider

A

the precise observations case with R° =0 and small

we

observation noises with positive definite covariance matrix

R? > 0. In the latter case, we choose the noise variances

to be less than-b peak_of the energy spectrum and
A the peak
of the energy spectrum in variable u; is roughly 10~ and
the smallest average signal amplitude (in Fourier domain)
is about 107~°, and we choose the first diagonal component
of the noise covariance matrix to be R¢; /M =2 x 107°

(here, M is the normalization factor from the discrete

Fourier transform).

5.1. MJO-like turbulent traveling wave

Our goal here is to check the filtering skill in recovering

(Section 3.1) with lh(w«lrd model in (28) vsseh
parameters, (3])-(33),;{ re specified from a timeseries of

2000 days at the climatological state.

First, we compare the moving average of wuy, us ., 01, 02,
Oct q, Hy, H., P obtained from the true solutions of the
test model in Section 3.1 and lnc posterior mean estimates
in (36). The l:éving average is taken in a reference frame at

6.1 ms~! from time period of 750-1000 days‘zmd—wmﬁbrto

I ¢

strnctge®. [n Figures <4-8, we show the moving average
from assimilations with observation time interval of 24
hours for complete observations (CO) with R = 0, and
for all observation networks discussed in Section 4.1,
CO, SO+MTV, SO+MT, SO with small observation noise
covariance, R? > 0. For observation network CO without
observation errors, R° =0 (see Figure <), the three
schemes, MSM-filter, Complete 3D-VAR and “cold and
dry” 3D-VAR, are identical and they perfectly recover the

W structure except for slight overestimation on

the stratiform heating and precipitation.

0000 Royal Meteorological Society
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In the presence of observation noise, we find that all
the three schemes are able to recover u; and 6., with

any observation network. When middle-troposphere wind

observation is absent (see SO+MT and SO in Figures 7, 8),

the estimate for uy slightly degrz
wrong//The MSM-filter overestimates 0> roughly by 0.1
K even with surface and middle-troposphere potential

temperature observations;fthis poor estimation is attributed

ancan cslimal,é(on the zeroth horizontal mode)
of 0. Both the MSM-filter and the Complete 3D-VAR are
able to recover the @a‘al&é@m structure of the moisture :
¢ with any observation ngj_\_mzl%mm—
L

MSM-filter with SO):On the other hand, the “cold and dry”
3D-VAR cannot produce g accurately even with observation
network CO and simply prcdiclgkdry atmosphere (with zero
moisture profile) when the moisture is unobserved. All the
three filters are not able to reproduce the stratiform an

congestus heating profiles when they are not observed.

Except for the surface observation (SO) network, both th
MSM-filter and Complete 3D-VAR are able to reasonabl
recover the precipitation rate (P) which in this model is
exactly the deep convection heating rate; here, the “cold
and dry” 3D-VAR precipitation estimate is very inaccurate
(see Figures 5-7). For the surface observation (SO) network
(see Figure 8), the overestimation on the precipitation can
be explained as follows. From the precipitation budget
in (Y), it is obvious that the contributions of 0.5, ¢,
and 0y to the convective parameterization are small (with
scale factors a; = 0.1, a0 = 0.5, agvy2 = 1.2, respectively)

relative to € (with scale f:

wet (with large precipitation estimates as seen in
Figure 8) is attributed to the slight undereslimalion% the
first baroclinic potential temperature, 0. The Complc/tta 3D-
VAR underestimates ¢/, by as much as 0.5 K; this yields
spatially uniform precipitation rate of about 2.3 K day~*.

The MSM-filter underestimates ¢; by as much as 1.5 K

Q.J. R. Meteorol. Soc. 00: 2=27 (0000)



16

and its corresponding precipitation estimate is about 20 K

day~*.
4 2 015
37’ ﬂ : 01}
2¥ u{\ i ; ; 005
= f = 0 \ \
2 1| / 2 ¢ 0 i 8
E ] £ = 1
SIINRS R RTEIRY
»VI \ " xé & 01 s
-2} h 015
_al _al 02 B
0 20 20 0 2o 40 0 20 40
o7y 14 2
A IAA AN
065
? _— :
A N | X}
€ os'i (? < 1 <€ $
< ! t m“’ d‘ o
0ss! L }4;! k 1 } ¥
| § olb -3
| ¥ v b
% 20 40 & 20 40 o 20 40
07 013, 4
06 012 P 35 T
05 011 ‘ % 5\
= = ~ 25 ei\
g 04 "g g o1 3 §
<z < g 2 i
1mo;z [\; o009 4 \ 5‘5 :% L:b
0 0.08 | ‘t{
LW I
01~ o 007 05 k: %
ot 0.06 o o
0 20 40 0 20 40 0 20 40

x (1000 km) X (1000 km) x (1000 km)

Figure 4. MJO-like waves with At = 24 hours, R? = 0 and complete
observations (CO): Moving average is in a reference frame at 6.1 ms™!
of the model variables. True (grey dashes), posterior mean state of the
complete 3D-VAR (circles), MSM-filter (squares), and the the “dry and
cold” 3D-VAR (diamonds). [

vertical structure

N

of the total potential temperature ©, the velocity vector

In Figures 9-12, we show the detail

field (V, w), the total convective heating, and horizontal
velocity from the MJO-like wave in Section 3.1 and the
Complete 3D-VAR estimates with observation networks
SO+MTV, SO+MT‘, and SO, respectively. In particular,
the vertical tilted structure in the potential temperature is
recovered with any of these three observation networks;
similar recovery (not shown) is also obtained with the
MSM-filter; the “cold and dry” 3D-VAR also recovers
this tilted structure except with observation network SO.
On the other hand, the tilted structure in the horizontal

velocity with low level convergence that is in phase with
Copyright © 0000 Royal Meteorological Society
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Figure 5. MJO-like waves with At = 24 hours, R® > 0 and complete
observations (CO): Moving average is in a reference frame at 6.1 ms ™!
of the model variables. True (grey dashes), posterior mean state of the
complete 3D-VAR (circles), MSM-filter (squares), and the “dry and cold™
3D-VAR (diamonds).

the deep convective heating is not recovered whenever the
middle-troposphere wind observation is absent. Notice also
that the deep convective heating is recovered except with
observation network SO; similar recovery (not shown) is
also attained with the MSM-filter but not with the “cold and

dry” 3D-VAR.

We also find that both the Complete 3D-VAR and MSM-
ﬁller‘are able to reconstruct the detail precipitation structure
in Figure | except when assimilated with observation
network SO (results are not shown). The “cold and dry” 3D-
VAR reproduces the eastward MJO-like signal but fails to
capture the westward intermittent moist fluctuations within
the MJO envelope as shown in Figure 1.

: < . :
We also m@y repeat the numerical experiments
N

above with different observation time intervals ranging from

Q.J. R. Meteorol. Soc. 00: 2=27 (0000)
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Figure 6. MJO-like waves with At = 24 hours, R? > 0 and surface
observations plus middle-troposphere potential temperature and velocity
(SO+MTV): Moving average is in a reference frame at 6.1 ms~— ! of the
model variables. True (grey dashes), posterior mean state of the complete
3D-VAR (circles), MSM-filter (squares)‘, and the “dry and cold” 3D-VAR
(diamonds).

6 to 96 hours with the Comqlele 3D-VAR and MSM-
filter. Particularly noteworthy is that the posterior estimates
have roughly similar RMS errors for the observed variables
independent of the observation times; for the unobserved
variables, the RMS errors for Ihiﬁ shorter observation times
are larger than those for the Ion%er observation times’. This
tter result can be understood as follows. The dynamical
perator Fy in (31) is y marginally stable (with
largest eigenvalue 0.9899) for At =06 hours and is
strictly stable (with largest eigén\'alue 0.8836) for longer
At = 72 hours. The observabilhty condition, which is a
necessary condition for accurate ‘ﬁltcred solutions when the

ynamical operator is marginallmble/i\k/lujda and Harlim

2012), is practically violated here; our test with SO+MT

observation network suggests that the observability matrix

17

05! 8l
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07 025

B =
3
g g
-3 - o
Al ,;
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20 40
x (1000 km) X (1000 km) X (1000 km)
Figure 7. MJO-like waves with At = 24 hours, R® > 0 and surface

observations plus middle-troposphere potential temperature (SO+MT):
Moving average is in a reference frame at 6.1 ms ~ ! of the model variables.
True (grey dashes), posterior mean state of the complete 3D-VAR (circles),
MSM-filter (squares), and the “*dry and cold™ 3D-VAR (diamonds).

is ill-conditioned with det ([GT (Gfk)T]> ~ 10729, This
explains why the longer observatlon times roduce more
accurate filtered 0Iul|0ns Wﬁ(’%

Initiation of a convectively coupled wave train

Here, our goal is to check the filtering skill in recovering

5.2.

the transient behavior of initiation of a convectively coupled

wave train (Section 3.2) with the M
in (28) yelh
timeseries at the climatological state
500-1000 days.

In Figures 13-16, we report the space-time
the filtered estimates a(ﬁl’oﬂ""gfwi—i;—e@g—SO days from
the Complete 3D—VAR'\with observation time At = 24

hours, observation noise variance R° > 0, and observation

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)



18 J. Harlim and A.J. Majda

2 i "™ 05 Potential temperature contours

u, (mfs)

0, (K)

Total convective heating contours

: : : : - : :
15{ . /,\ N 1
. SN Lo AN —
< - N B |
~10F f ( ‘ / . \ ) } |
€ R\ | . / ‘
~ | 40\ / \ R\ " J
5 Y \ N /] \
AN Sae SN/ .
N \ e \
025 25’ 0 | 1 1 L 1 1 I |
- : 0 5 10 15 20 25 30 35 40
PR ol Tyl
0 5%&5&%‘3&_) Contours of horizontal velocity
. . 7 \v T T SR
5 R \=rpin
X ¥ 015 g AR —
3 °© & 10 . -
01 \\ /' v 5 . \ ' N\ N “
4 A ) i . N\ \ NN - SO \\\\ \\\
0 005 3 0 Sl 2 ARATARR R A ) (\\.\ \ J
0 20 40 0 [ 20 40 0 20 40 v 5 5 = =
X (1000 km) X (1000 km) X (1000 km) .

Figure 8. MJO-like waves with At = 24 hours, R® > 0 and surface
observations (SO): Moving average is in a reference frame at 6.1 ms !
of the model variables. True (grey dashes), posterior mean state of the
complete 3D-VAR (circles), MSM-filter (squares), and the “dry and cold”
3D-VAR (diamonds).

Figure 9. The true vertical profile of the MJO-like waves computed with
moving average is in a reference frame at 6.1 ms~*. The contour intervals
are 0.07 K for the potential temperature, 0.29 K day~! for the total
convective heating, and I ms™ ! for the horizontal velocity. Solid (dashes)
contours denote positive (negative) values.

networks SOMTV, SOMT, aAd SO. By eye-sight, we can  wave train of six waves as shown in Figure 3. In Figures 17-
see that the emerging pallcrn‘ in Figure 2 is recovered for 24, we plot these two performance measures as functions of

all variables except for the deep convection heating rate  observation times for observation networks CO, SO+MTV,

with {fcomplete observation network! This poor estimate  SO+MT, and SO, respectively. In each panel, we compare
is attributed to an overestimation of ¢ (which sets the four numerical experiments including the MSM-filter with
iseasc, RC = 0 (grey dashes) and R? ith circle
5es
< T e s = ’c._’nh: N
oL o markcrs)@e Complete 3D-VAR with R? = 0 (black solid

e e b))
AR ILL N .
On the othéf hand, even if the  line) and R° > 0 (black dashes with square markers).

4

pattern of H, is always captured with networks SO+MTV, From the average RMS errors (see Figures 17, 19, 21,
|

SO+MT, SO, its accuracy is questionable as we will see 23),we find that the filtering skillfof the MSM-filterand the  ~
below. Complete 3D-VAR arc%?ﬂ"crenlal all except for the wind 'f ° )
' To be more precise, we quantify the filter skill with variables when the middle-troposphere wind is not observed

the average RMS error and pattern correlation (between and R° > 0; there, the RMS errors of the Complete

the posterior mean estimate and the truth) at the initiation  3D-VAR are smaller than those of the MSM-Filter (see

period of time 0-75 days beforc these waves lock into a  Figures 21, 23) but their pattern correlations are identical

Copyright © 0000 Royaﬂ Meteorological Society Q.J. R. Meteorol. Soc. 00: 2-27 (0000)
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Figure 10. The vertical profile from Complete 3D-VAR estimate with
observation network SO+MTV and R? > 0, and At = 24 hours. The
contour details are similar to those in Fig 9.

(see Figures 22, 24). When observations are complete (CO)
and R° = 0, both the MSM-filter and Complete 3D-VAR
are able to recover the truth (with negligible errors and
pattern correlation one).

The average RMS errors for simulations with R >
0 (dashes with markers) for variables 0,05, q, H. decay
as functions of observation time even with compl
he larger errors with

observation network (see Figure 7).

shorter ob ion times here are attributed to the violation

1ajda and Harlim 2012) which

of practical controllability
is also a necessary condition for optimal filtering when
the system is marginally stable (here Fj; has maximum
eigenvalue close to %ﬁ%ﬁobserve%imilar
czor decaying patterr}\ sTuiction of observation time with
SO+MTV, SO+MT, and SO for the unobserved variables ¢,

H., Hy, and P even when the observed wind and potential

Copyright © 0000 Royal Meteorological Society
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Figure 11. The vertical profile from Complete 3D-VAR estimate with
observation network SO+MT and R° > 0, and At = 24 hours. The
contour details are similag

in Fig 0.

temperatures have no errors (R? = 0). Here, the larger
errors in the unobserved variables for shorter observation
times are attributed to the violation of practical observability

as explained in Section 5.1.

When R? > 0, the RMS errors of the deep convection
heating rate H, are roughly I K day~! (see Figure 17)
with observation network CO but the pattern correlations
(PC) are roughly zero (the PC curves are below 0.5 in
Figure 18). The PC confirms the inability to recover Hy as
shown in Figure 13. Both filtering schemes with the other
observation networks (SO+MTV, SO+MT, SO) recover the
structure of Hy (with PC of roughly 0.6 from Figures 20,
22,24) but their errors are very large (as much as 10 K from

Figures 19, 21, 23). The failure to even capture the deep

convection pattern with CO is attributed to overestimation

Q.J. R. Meteorol. Soc. 00: 2-27 (0000)
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Figure 12. The vertical profile from Complete 3D-VAR estimate with
observation network SO and R? > 0, and At = 24 hours. The contour
details are similar to those in Fig 9.

Oy

of 0, as explained before WCOmrasling the dclai}\space-

time structure of 0 in Figures 2 an ¢ RMS

LA ‘ :
errors show such fadare tendency rger error with
CO compared to those with the other networks, but they
don’tinform us whether the potential temperature estimates

are warmer or colder than the truth which is important for

accurate precipitation estimation.

Finally, notice that with networks SO+MTV, SO+MT,
and SO, the RMS errors of the unobserved variables for
assimilation with R? = 0 are larger than those with R® >

7}1C7 I’L[,P

0 for example, see the errors f [
in Figure ZS.AThese larger errors with R? = 0 are due

ill-conditioned Kalman gain matrix in (36) with sparse
observation networks with operator, G € R%*% S < 8.
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Figure 13. Space-time plot from the Complete 3D-VAR estimate with
observation network CO and R° > 0, and At = 24 hours. The contour
intervals are 0.25 ms ™! for the zonal wind, the temperature, 0.025 K for
the potential temperature and humidity, and 0.05 K day ! for the heating
rates and precipitation. Solid black (dash grey) contours denote positive
(negative) values for uy,ug, 071,02, q. Solid black (dash grey) contours
denote heating rates greater (smaller) than 1 K day'1 for He, Hy, P.

6. Summary and concluding discussion

In  this  paper, we use multicloud  models

(Khouider and Majda 2006a, 2007; Majda eral. 2007,

Khouider and Majda  2008b) the models for

test

as

filtering moist tropical convectio t :
aim to establish guidelines for(fulure design of filtering
schemes in assimilating and predicting tropical atmospheric

dynamics. We view the multicloud model, wheeh Convective

paralncterizationﬁf\ﬁcludcs three cloud types, congestus,
deep, and stratiform, above the boundary layer, as a
candidate for the simplest toy model for b’}zﬁm¥
(analogous to the Lorenz 96 for the midlatitude weather
dynamics) for the following reasons: It is very successful in 1

capturing most of the spectrum of the convectively coupled

Q.J. R. Meteorol. Soc. 00: 2=27 (0000)
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Figure 14. Space-time plot from the Complete 3D-VAR estimate with
observation network SO+MTV and R? > 0, and At = 24 hours. The
contour intervals are 0.25 ms™! for the zonal wind, the temperature,
0.025 K for the potential temperature and humidity, and 0.05 K day !
for the congestus heating rate, and 0.25 K day ! for the deep convective
heating and precipitation. Solid black (dash grey) contours denote positive
(negative) values for uy,u2, 01,02, q. Solid black (dash grey) contours
denote heating rates greater (smaller) than | K day~! for H, Hy, P.

0

waves (Kiladis er al. 2009; Khouider and Majda 2‘)()(3:1’) as
well as the nonlinear organization of large scale envelopes
mimicking across scale interactions of the MJO (our first
example in Section 3.1) and convectively coupled waves
(our second example in Section 3.2). More importantly, this
model also captures the vertical profile with front and rear
tilting, the phase speed, and dispersion relations that match
the observational recordd (Kiladis er a/. 2003, 2009).

Here, we demonstrate the filtering skill with a suite
of reduced stochastic filters with model errors, based on
linear stochastic models (Harlim and Majda 2008a, 2010a;
Majda and Harlim 2012) in capturing the intraseasonal
MIJO-like wave (Majdaeral. 2007) and the transient
initiation of a convectively coupled wave train that

Copyright © 0000 Royal Meteorological Society
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Figure 15. Space-time plot from the Complete 3D-VAR estimate with
observation network SO+MT and R° > 0, and At = 24 e
contour details are similar to those in Fig |

resembles the results from ¢ A
Cloud Resolving Model (Grabowski and Moncrieff 2001).
From these numerical experiments, we find the following
facts: (1) The key factor for accurate precipitation
cstimatesis an accurate estimation of the first baroclinic
N
potential temperature. Our test problems suggests that
. L °9
slight overestimation in ¢ produces dry atmosphere

with no rain at all and slight underestimation in 0,

producesa'wel atmosphere with fwakiby high precipitation
rate; (2) Our simple reduced stochastic filters are able
to recover moisture and precipitation field proﬁlef(cvcn
when online observations of these variables are not
available) provided that the filter forward prior model is
designed in a moisture coupled eigenmode basis. This
result suggests that the future design of tropical data

assimilation algorilhmsshould account ‘moisture coupled

Q.J. R. Meteorol. Soc. 00: 2=27 (0000)
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Figure 17. RMS errors as functions of observation time interval for
observation network CO. MSM-filter (grey), Complete 3D-VAR (black),
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Figure 16. Space-time plot from the Complete 3D-VAR estimate with § ;‘ B i: 1 Le(m®
observation network SO and R? > 0, and At = 24 hours. The contour [ T SR S—
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We hope that the encouraging results in this paper can  Figure 18. Pattern correlations as functions of observation time interval for

observation network CO. MSM-filter (grey), Complete 3D-VAR (black),
are interested in @ tropical R° = 0 (solid line and dashes without any markers), R > O (dashes
with square/circle markers).

convince researchers
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data assimilation to investigate: (1) The potential of

improving the estimate accuracy with more sophisticated
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Figure 21. RMS errors as functions of observation time interval for
observation network SO+MT. MSM-filter (grey), Complete 3D-VAR
(black), R® = O (solid line and dashes without any markers), R°® > 0
(dashes with square/circle markers).
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Figure 22. Pattern correlations as functions of observation time interval
for observation network SO+MT. MSM-filter (grey), Complete 3D-VAR
(black), R° = O (solid line and dashes without any markers), R°® > 0
(dashes with square/circle markers).
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Figure 23. RMS errors as functions of observation time interval for
observation network SO. MSM-filter (grey), Complete 3D-VAR (black),
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filtering schemes through the test models here; this includes
testing with the ensemble Kalman filters (Evensen 1994
Anderson 2001; Bishop eral. 2001; Hunteral. 2007),
particle filters with small ensemble sizes (van l.ecuwen
20105 Anderson 2010), and other reduced stochastic filters
(Gershgorineral. 2010bua; Majda and Harlim 2012) or
the Gaussian closure filter (Branickiera/. 2011) with
stochastic parameterizations that account*model errors
“on-the-fly”; (2) Exploring the filtering skill for other
parameter regimes in the multicloud models with more
realistic sea surface temperature profile, active barotropic
dynamics and coupled nonlinear advection which allows
for tropical-extratropical wave interactions (Lin ez a/. 2000;
Majda and Bicllo 2003; Bicllo and Majda 2004); (3) Using
the test models to design appropriate filters to cope with
various observation networks with irregularly spaced sparse

observations (Harlim 201 1) and satellite measurements.
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