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Abstract The North Pacific exhibits patterns of low-frequency
variability on the intra-annual to decadal time scales, which
manifest themselves in both model data and the observa-
tional record, and prediction of such low-frequency modes
of variability is of great interest to the community. While
parametric models, such as stationary and non-stationary au-
toregressive models, possibly including external factors, may
perform well in a data-fitting setting, they may perform poorly
in a prediction setting. Ensemble analog forecasting, which
relies on the historical record to provide estimates of the
future based on past trajectories of those states similar to
the initial state of interest, provides a promising, nonpara-
metric approach to forecasting that makes no assumptions
on the underlying dynamics or its statistics. We apply such
forecasting to low-frequency modes of variability for the
North Pacific sea surface temperature and sea ice concentra-
tion fields extracted through Nonlinear Laplacian Spectral
Analysis. We find such methods may outperform paramet-
ric methods and simple persistence with increased predictive
skill.

1 Introduction

Predictability in general circulation models (GCMs) for the
North Pacific, from seasonal to decadal time scales, has been
the subject of many recent studies, (e.g., Tietsche et al (2014),
Blanchard-Wrigglesworth and Bitz (2014), Blanchard-Wrigglesworth
et al (2011a)), several of which focus on the role of the
initial state (e.g., Collins (2002), Blanchard-Wrigglesworth
et al (2011b), Branstator et al (2012), Day et al (2014)). The
North Pacific exhibits prominent examples of interannual to
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decadal variability, such as the Pacific Decadal Oscillation
(PDO; Mantua et al, 1997), and the more rapidly decorrelat-
ing North Pacific Gyre Oscillation (NPGO; Di Lorenzo et al,
2008), both of which have been the subject of much interest.
An important phenomenon of intra-annual variability in the
North Pacific is the reemergence of anomalies in both the sea
surface temperature (SST) fields (Alexander et al, 1999), as
well as in the sea ice concentration (SIC) field (Blanchard-
Wrigglesworth et al, 2011a), where regional anomalies in
these state variables vanish over a season, and reappear sev-
eral months later, as made evident by high time-lagged cor-
relations.

The North Pacific (along with the North Atlantic) is a re-
gion of relative strong low-frequency variability in the global
climate system (Branstator et al, 2012). Yet, in GCMs it
has been shown that this region shows relative lack of pre-
dictability (less than a decade; Collins, 2002), with the Com-
munity Climate System Model (CCSM) having particularly
weak persistence and low predictability in the North Pacific
among similiar GCMs (Branstator et al, 2012). The ocean
and sea ice systems show stronger low-frequency variabil-
ity than the atmosphere (Newman et al, 2003). The internal
variability exhibited in the North Pacific has also been char-
acterized as being in distinct climate regimes (e.g. Overland
et al (2006, 2008)), where the dynamics exhibit regime tran-
sitions and metastability. As a result, cluster based meth-
ods have been a popular approach to model regime behavior
in climate settings, such as in Franzke et al (2008, 2009),
where hidden Markov models were used to model atmo-
spheric flows.

A traditional modeling approach for the PDO has been
to fit an autoregressive process (Hasselmann, 1976; Frankig-
noul and Hasselmann, 1977), as well as models being ex-
ternally forced from the tropics through ENSO (Newman
et al, 2003). In Giannakis and Majda (2012b), autoregres-
sive models were successful in predicting temporal patterns
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corresponding to the PDO and NPGO when forced with
suitably modulated intermittent modes. Additional flexibil-
ity can be built into regression models by allowing nonsta-
tionary, i.e. time dependent coefficients, and a successful ex-
ample of this is the finite element method (FEM) clustering
procedure combined with multivariate autoregressive factor
(VARX) model framework (Horenko, 2010a,b). In this ap-
proach, the data is partitioned into a predetermined num-
ber of clusters, and model regression coefficients are es-
timated on each cluster, together with a cluster affiliation
function that indicates which model is used at a particular
time. This can further be adapted to account for external
factors (Horenko, 2011a). While FEM-VARX methods can
be effective at fitting the desired data, advancing the sys-
tem state in the future for a prediction is dependent on be-
ing able to successfully predict the unknown cluster affili-
ation function. Methods for using this framework in a pre-
diction setting have been used in Horenko (2011a,b). An-
other regression modeling approach was put forward in Ma-
jda and Harlim (2013), where physics constraints were im-
posed on multilevel nonlinear regression models, preventing
ad-hoc, finite-time blow-up, a pathological behavior previ-
ously shown to exist in such models without physics con-
straints in Majda and Yuan (2012). Appropriate nonlinear
regression models using this strategy have been shown to
have high skill for predicting the intermittent cloud patterns
of tropical intra-seasonal variability (Chen et al, 2014; Chen
and Majda, 2015b,a).

Parametric models may perform well for fitting, but of-
ten have poor performance in a prediction setting, partic-
ularly in systems that exhibit distinct dynamical regimes.
Nonparametric models can be advantageous in systems where
the underlying dynamical system is unknown or imperfect.
An early example of this is an analog forecast, first intro-
duced by Lorenz (1969), where one considers the histori-
cal record, and makes predictions based on examining state
variable trajectories in the past that are similiar to the cur-
rent state. Analog forecasting does not make any assump-
tions on the underlying dynamics, and cleverly avoids model
error when the underlying model is observations from na-
ture. This has since been applied to other climate predic-
tion scenarios, such as the Southern Oscillation Index (Dros-
dowsky, 1994), the Indian summer monsoon (Xavier and
Goswami, 2007), and wind forecasting (Alessandrini et al,
2015), where it was found to be particularly useful in fore-
casting rare events.

Key to the success of an analog forecasting method is
the ability to identify a good historical analog to the current
initial state. In climate applications, the choice of analog is
usually determined by minimizing Euclidean distance be-
tween snapshots of system states, with a single analog being
selected (Lorenz, 1969; Branstator et al, 2012). In Zhao and
Giannakis (2014), analog forecasting was extended upon in

two key ways. First, the state vectors considered were in
Takens lagged embedding space (Takens, 1981), which cap-
tures some of the dynamics of the system, rather than a snap-
shot in time. Second, instead of selecting a single analog de-
termined by Euclidean distance, weighted sums of analogs
were considered, where weights are determined by a ker-
nel function. In this context, a kernel is an exponentially de-
caying pairwise similarity measure, intuitively, playing the
role of a local covariance matrix. In Zhao and Giannakis
(2014), kernels were introduced in the context of Nonlin-
ear Spectral Analysis (NLSA; Giannakis and Majda, 2012c,
2013, 2014) for decomposing high-dimensional spatiotem-
poral data, leading naturally to a class of low-frequency ob-
servables for prediction through kernel eigenfunctions. In
Bushuk et al (2014), the kernel used in the NLSA algorithm
was adapted to be multivariate, allowing for multiple vari-
ables, possibly of different physical units, to be considered
jointly in the analysis.

The aim of this study is to develop low dimensional,
data-driven models for prediction of dominant low-frequency
climate variability patterns in the North Pacific, combining
the approaches laid out in Zhao and Giannakis (2014) and
Bushuk et al (2014). We invoke a prediction approach that
is purely statistical, making use only of the available histori-
cal record, possibly corrupted by model error, and the initial
state itself. The approach utilizes out-of-sample extension
methods (Coifman and Lafon, 2006b; Rabin and Coifman,
2012) to define our target observable beyond a designated
training period. There are some key differences between this
study and that of Zhao and Giannakis (2014). First, we con-
sider multivariate data, including SIC, which is intrinsically
noisier than SST, given that SIC is a thresholded variable
and experiences high variability in the marginal ice zone.
We also make use of observational data, which is a rela-
tively short time series compared to GCM model data. In
addition to considering kernel eigenfunctions as our target
observable, which we will see is well-suited for prediction,
we also consider integrated sea ice anomalies, a more chal-
lenging observable uninfluenced by the data analysis algo-
rithm. We compare performance of these kernel ensemble
analog forecasting techniques to some parametric forecast
models (specifically, autoregressive and FEM-VARX mod-
els), and find the former to have higher predictive skill than
the latter, which often can not even outperform the simple
persistence forecast.

The rest of the paper is outlined as follows. In Section 2,
we discuss the mathematical methods used to perform ker-
nel ensemble analog forecasting predictions, and also dis-
cuss alternative parametric forecasting methods. In Section
3 we describe the data sets used for our experiments, and in
Section 4 we present our results. Discussion and concluding
remarks are in Section 5.
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2 Methods

Our forecasting approach is motivated by using kernels, a
pairwise measure of similarity for the state vectors of inter-
est. A simple example of such an object is a Gaussian kernel:

w(xi,x j) = e−
‖xi−x j‖

2

σ0 , (1)

where x is a state variable of interest, and σ0 is a scale pa-
rameter that controls the locality of the kernel. The kernels
are then used to generate a weighted ensemble of analog
forecasts, making use of an available historical record, rather
than relying on a single analog. To extend the observable we
wish to predict beyond the historical period into the future,
we make use of out-of-sample extension techniques. These
techniques allow one to extend a function (observable) to a
new point y by looking at values of the function at known
points xi close to y, where closeness will be determined by
the kernels. An important part of any prediction problem is
to choose a target observable that is both physically mean-
ingful and exhibits high predictability. As demonstrated in
Zhao and Giannakis (2014), defining a kernel on the desired
space naturally leads to a preferred class of observables that
exhibit time-scale separation and good predictability.

2.1 Nonlinear Laplacian spectral analysis

Nonlinear dynamical systems generally give rise to datasets
with low-dimensional nonlinear geometric structures (e.g.,
attractors). We therefore turn to a data analysis technique,
NLSA, that allows us to extract spatio-temporal patterns from
data from a high-dimensional non-linear dynamical system,
such as a coupled global climate system (Giannakis and Ma-
jda, 2012a,c, 2013, 2014). The standard NLSA algorithm
is a nonlinear manifold generalization of singular spectrum
analysis (SSA) (Ghil et al, 2002), where the covariance op-
erator is replaced by a discrete Laplace-Beltrami operator
to account for non-linear geometry on the underlying data
manifold. The eigenfunctions of this operator then form a
convenient orthonormal basis on the data manifold. A key
advantage of NLSA is there is no pre-processing of the data
needed, such as band-pass filtering or seasonal partitioning.

2.1.1 Time-lagged embedding

An important first step in the NLSA algorithm is to perform
a time-lagged embedding of the spatio-temporal data as a
method of inducing time-scale separation in the extracted
modes. An analog forecast method is driven by the initial
data, and to incorporate some of the system’s dynamics into
account in selecting an analog, instead of using a snapshot
in time of the state as our initial condition, time-lagged em-
bedding helps make the data more Markovian.

Let z(ti) ∈ R
d be a time series sampled uniformly with

time step δ t, on a grid of size d, with i = 1, . . . ,N samples.
We construct a lag-embedding of the data set with a window
of length q, and consider the lag-embedded time series

x(ti) =
(
z(ti),z(ti−1), . . . ,z(ti−(q−1))

)
∈ R

dq.

The data now lies in R
m, with m = dq the dimension of the

lagged embedded space, and n = N − q+ 1 number of sam-
ples in lagged embedded space (also called Takens embed-
ding space, or delay coordinate space). It has been shown
that time-lagged embedding recovers the topology of the at-
tractor of the underlying dynamical system that has been
lost through partial observations (Takens, 1981; Sauer et al,
1991). In particular, the embedding affects the non-linear ge-
ometry of the underlying data manifold M , in such a way to
allow for dynamically stable patterns with time scale sepa-
ration (Berry et al, 2013), a desirable property that will lead
to observables with high predictability.

2.1.2 Discrete Laplacian

The next step is to define a kernel on the data manifold M .
Rather than using a simple Gaussian as in Equation (1), the
NLSA kernel makes use of phase velocities ξi = ‖x(ti)−
x(ti−1)‖, which forms a vector field on the data manifold
and provides additional important dynamic information. The
NLSA kernel we use is

K (x(ti),x(t j)) = exp
(
−
‖x(ti)− x(t j)‖

2

εξiξ j

)
. (2)

With this kernel K and associated matrix Ki j =K (x(ti),x(t j)),
we solve the Laplacian eigenvalue problem to acquire an
eigenfunction basis {φi} on the data-manifold M . To do
this, we construct the discrete graph Laplacian by following
the diffusion maps approach of Coifman and Lafon (2006a),
and forming the following matrices:

Qi =
n

∑
j=1

Ki j, K̃i j =
Ki j

Qα
i Qα

j
,

Di =
n

∑
j=1

K̃i j, Pi j =
K̃i j

Di
, Li j = I −Pi j.

Here α is a real parameter, typically with value 0, 1
2 , 1. We

note in the large data limit, as n → ∞ and ε → 0, this dis-
crete Laplacian converges to the Laplace-Beltrami operator
on M for a Riemannian metric that depends on the kernel
(Coifman and Lafon, 2006a). We can therefore think of the
kernel as biasing the geometry of the data to reveal a class of
features, and the NLSA kernel does this in such a way as to
extract dynamically stable modes with time scale separation.
We then solve the eigenvalue problem

Lφi = λiφi. (3)
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The resulting Laplacian eigenfunctions φi = (φ1i, . . . ,φni)
T

form an orthonormal basis on the data manifold M with
respect to the weighted inner product:

〈φi,φ j〉=
n

∑
k=1

Dkφkiφk j = δi j.

As well as forming a convenient orthonormal basis, the
eigenfunctions φi give us a natural class of observables with
good time-scale separation and high predictability. These
eigenfunctions φi are time series, nonlinear analogs to prin-
cipal components, and can be used to recreate spatio-temporal
modes, similar to extended empirical orthogonal functions
(EOFs) (Giannakis and Majda, 2012b,c, 2013). However,
unlike EOFs, the eigenfunctions φi do not measure variance,
but rather measure oscillations or roughness in the abstract
space M , the underlying data manifold. The eigenvalues λi
measure the Dirichlet energy of the corresponding eigen-
functions, which has the interpretation of being squared wave
numbers on this manifold (Giannakis and Majda, 2014). We
now use the leading low-frequency kernel eigenfunctions as
our target observables for prediction.

2.1.3 Multiple components

As described in Bushuk et al (2014), the above NLSA al-
gorithm can be modified to incorporate more than one time
series. Let z(1), z(2) be two signals, sampled uniformly with
time step δ t, on (possibly different) d1,d2 grid points. Af-
ter lag-embedding each variable with embedding windows
q1,q2 to its appropriate embedding space, so z(1)(ti)∈R

d1 �→

x(1)(ti)∈R
d1q1 and z(2)(ti)∈R

d2 �→ x(2)(ti)∈R
d2q2 , we con-

struct the kernel function K by scaling the physical variables
x(1),x(2) to be dimensionless by

Ki j = exp

⎛
⎝−

‖x(1)(ti)− x(1)(t j)‖
2

εξ (1)
i ξ (1)

j

−
‖x(2)(ti)− x(2)(t j)‖

2

εξ (2)
i ξ (2)

j

⎞
⎠ .

(4)

This can then be extended to any number of variables,
regardless of physical units, and allows for analysis in cou-
pled systems, such as the ocean and sea ice components of
a climate model. An alternative approach to Equation (4) in
extending the NLSA kernel to multiple variables with dif-
ferent physical units is to first normalize each variable to
unit variance. However a drawback of this approach is that
information about relative variability is lost as the ratios of
the variances are set equal, rather than letting the dynam-
ics of the system control the variance ratios of the different
variables (Bushuk et al, 2014) as in Equation (4).

2.2 Out-of-sample extension

Now that we have established our class of target observ-
ables, namely the eigenfunctions φi in Equation (3), we need
a method for extending these observables into the future
to form our predictions, for which we draw upon out-of-
sample extension techniques. To be precise, let f be a func-
tion defined on a set M = {x1, . . . ,xn},xi ∈ R

m; f may be
vector-valued, but in our case is scalar. We wish to make
a prediction of f by extending the function to be defined
on a point outside of the training set M, by performing an
out-of-sample extension, which we call f̄ . There are some
desireable qualities we wish to have in such an extension,
namely that f̄ is in some way well-behaved and smooth on
our space, and is in consistent as the number of in-samples
increases. Below we discuss two such methods of out-of-
sample extension, the geometric harmonics, based on the
Nyström method, and Laplacian pyramids.

2.2.1 Geometric harmonics

The first approach for out-of-sample extension is based on
the Nyström method (Nyström, 1930), recently adapted to
machine learning applications (Coifman and Lafon, 2006b),
and is based on representing a function f on M in terms of an
eigenfunction basis obtained from a spectral decomposition
of a kernel. While we use the NLSA kernel (Equation 2),
other kernels could be used, another natural choice being
a Gaussian kernel. For a general kernel w : Rm ×R

m → R,
consider its row-sum normalized counterpart:

W (yi,x j) =
w(yi,x j)

∑ j w(yi,x j)
.

These kernels have the convenient interpretation of forming
discrete probability distributions in the second argument, de-
pendent on the first argument, so W (y,x) = py(x), which will
be a useful perspective later in our analog forecasting in Sec-
tion 2.3. We then solve the eigenvalue problem

λlϕl(xi) =
n

∑
j=1

W (xi,x j)ϕl(x j).

We note the spectral decomposition of W yields a set of real
eigenvalues λl and an orthonormal set of eigenfunctions ϕl
that form a basis for L2(M) (Coifman and Lafon, 2006b),
and we can thus represent our function f in terms of this
basis:

f (xi) =
n

∑
j=1

〈ϕ j , f 〉ϕ j(xi). (5)

Let y ∈ R
m,y /∈ M be an out-of-sample, or test data, point,

to which we wish to extend the function f . If λl �= 0, the
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eigenfunction ϕl can be extended to any y ∈ R
m by

ϕ̄l(y) =
1
λl

n

∑
j=1

W (y,x j)ϕl(x j). (6)

This definition ensures that the out-of-sample extension is
consistent when restricted to M, meaning ϕ̄l(y) = ϕl(y) for
y ∈ M. Combining Equations (5) and (6) allows f to be as-
signed for any y ∈R

m by evaluating the eigenfunctions ϕl at
y and using the projection of f onto these eigenfunctions as
weights:

f̄ (y) =
n

∑
j=1

〈ϕ j, f 〉ϕ̄ j(y). (7)

Equation (7) is called the Nyström extension, and in Coif-
man and Lafon (2006b) the extended eigenfunctions in Equa-
tion (6) are called geometric harmonics. We note this scheme
becomes ill conditioned since λl → 0 as l → ∞ (Coifman
and Lafon, 2006b), so in practice there is a truncation of
the sum at some level l, usually determined by the decay of
the eigenvalues. With the interpretation of the eigenvalues λ
as wavenumbers on the underlying data manifold, this trun-
cation represents removing features from the data that are
highly oscillatory in this space.

2.2.2 Laplacian pyramid

The geometric harmonics method is well suited for observ-
ables that have a tight bandwidth in the eigenfunction ba-
sis (particularly the eigenfunctions themselves), but for ob-
servables that may require high levels of eigenfunctions in
their representation, the above mentioned ill-conditioning
may hamper this method. An alternative to geometric har-
monics is the Laplacian pyramid (Rabin and Coifman, 2012),
which invokes a multiscale decomposition of the original
function f in its out-of-sample extension approach.

A family of kernels defined at different scales is needed,
and for clarity of exposition we will use a family of Gaus-
sian kernels wl (and their row-normalized counterparts Wl)
at scales l:

wl(xi,x j) = e
−

‖xi−x j‖
2

σ0/2l , (8)

That is, l = 0 represents the widest kernel width, and in-
creasing l gives finer kernels resolving more localized struc-
tures.

For a function f : M → R, the Laplacian pyramid rep-
resentation of f approximates f in a multiscale manner by
f ≈ s0 + s1 + s2 + · · · , where the first level s0 is defined by

s0(xk) =
n

∑
i=1

W0(xi,xk) f (xi),

and we then evaluate the difference:

d1 = f − s0.

We then iteratively define the lth level decomposition sl:

sl(xk) =
n

∑
i=1

Wl(xi,xk)dl(xi), dl = f −
l−1

∑
i=0

si.

Iteration is continued until some prescribed error tolerance
‖ f −∑k sk‖< ε is met.

Next we extend f to a new point y ∈R
m,y /∈ D by

s̄0(y) =
n

∑
i=1

W0(xi,y) f (xi), s̄l(y) =
n

∑
i=1

Wl(xi,y)dl(xi),

for l ≥ 1, and assign f the value

f̄ (y) = ∑
k

s̄k(y). (9)

That is, we have formed a multiscale representation of f
using weighted averages of f for nearby inputs, where the
weights are given by the scale of the kernel function. Since
the kernel function can accept any inputs from R

m, we can
define these weights for other points outside M, and thus de-
fine f by using weighted values of f on M (known), where
now the weights are given by the proximity of the out-of-
sample y /∈ M to input points xi ∈ M. The parameter choices
of the initial scale σ0 and error tolerance ε set the scale and
cut-off of the dyadic decomposition of f in the Laplacian
pyramid scheme. We choose σ0 to be the median of the pair-
wise distances of our training data, and the error tolerance ε
to be scaled by the norm of the observable over the training
data, for example 10−6‖ f‖. In our applications below, we
use a multiscale family of NLSA kernels based on Equation
(4) rather than the above family of Gaussian kernels.

2.3 Kernel ensemble analog forecasting

The core idea of traditional analog forecasting is to iden-
tify a suitable analog to one’s current initial state from a
historical record, and then make a prediction based on the
trajectory of that analog in the historical record. The analog
forecasting approach laid out in Zhao and Giannakis (2014),
which we use here, varies in a few important regards. First,
the initial system state, as well as the historical record (train-
ing data), is in Takens embedding space, so that an analog is
not determined by a snapshot in time alone, but the current
state with some history (a ‘video’). Second, rather than us-
ing Euclidean distance, as in traditional analog forecasting,
the distances we use are based on a defined kernel function,
which reflects a non-Euclidean geometry on the underlying
data manifold. The choice of geometry is influenced by the
lagged embedding and choice of kernel, which we have done
in a way that gives us time scale separation in the resulting
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eigenfunctions φ , yielding high predictability. Third, rather
than identify and use a single analog in the historical record,
weighted sums of analogs are used, with weights determined
by the kernel function.

For this last point, it is useful to view analog forecasting
in the context of an expectation over an empirical probability
distribution. For example, a traditional analog forecast of a
new initial state y at some time τ in the future, based on
selected analog x j = x(t j), can be written as

f (y,τ) = EpySτ f =
n

∑
i=1

py(xi) f (x(ti + τ)) = f (x(t j + τ)) ,

where py = δi j is the Dirac delta function, and Sτ f (xi) =
f (x(ti + τ)) is the operator that shifts the timestamp of xi
by τ . To make use of more than one analog and move to
an ensemble, we let py be a more general discrete empir-
ical distribution, dependent on the initial condition y, with
probabilities (weights) determined by our kernel function.
Writing in this way, we simply need to define the empiri-
cal probability distribution py to form our ensemble analog
forecast.

For the geometric harmonics method, we projected f
onto an eigenfunction basis φi (truncated at some level l)
and performed an out-of-sample extension on each eigen-
function basis function, i.e.

f̄ (y) =
l

∑
i=1

〈φi, f 〉φ̄i(y).

Or, to write this in terms of an expectation over an empirical
probability measure:

f̄ (y) = Epy f =
l

∑
i=1

〈φi, f 〉Epy φi(y),

where

Epyφi =
1
λi

n

∑
j=1

W (y,x j)φi(x(t j)).

We then define our prediction for lead time τ via geometric
harmonics by

f (y,τ) = EpySτ f =
l

∑
i=1

〈φi, f 〉Epy Sτφi,

where

EpySτφi =
1
λi

n

∑
j=1

W (y,x j)φi(x(t j + τ)).

Similarly, the τ shifted ensemble analog forecast via Lapla-
cian pyramids is then

f (y,τ) = Epy,0Sτ f +
l

∑
i=1

Epy,iSτdi,

where py,i(x) = Wi(y,x) corresponds to the probability dis-
tribution from the kernel at scale i.

Thus we have a method for forming a weighted ensem-
ble of predictions, that is non-parametric and data-driven
through the use of a historical record (training data), which
itself has been subject to analysis that reflects the dynamics
of the high-dimensional system in the non-linear geometry
on the underlying abstract data manifold M , and produces a
natural preferred class of observables to target for prediction
through the kernel eigenfunctions.

2.4 Autoregressive modeling

We wish to compare our ensemble analog prediction meth-
ods to more traditional parametric methods, namely autore-
gressive models of the North Pacific variability (Frankignoul
and Hasselmann, 1977), of the form

x(t + 1) = μ(t)+A(t)x(t)+σ(t)ε(t)

where x(t) is our signal, μ(t) is the external forcing (pos-
sibly 0), A(t) is the autoregressive term, and σ(t) is the
noise term, each to be estimated from the training data, and
ε(t) is a Gaussian process. In the stationary case, the model
coefficients μ(t) = μ , A(t) = A, σ(t) = σ are constant in
time, and can be evaluated in an optimal way through ordi-
nary least squares. In a non-stationary case, we will invoke
the FEM-VARX framework of Horenko (2010b) by cluster-
ing the training data into K clusters, and evaluating coef-
ficients Ak, σk, k = 1, . . . ,K for each cluster (see Horenko
(2010a,b) for more details on this algorithm). From the algo-
rithm we obtain a cluster identification function Γ (t), such
that Γ (ti) = k indicates at time ti the model coefficients are
A(ti) = Ak, σ(ti) = σk. In addition to choosing the number
of clusters K, the method also has a persistence parameter
C that governs the number of allowable switches between
clusters that must be chosen prior to calculating model co-
efficients. These parameters are usually chosen to be opti-
mal in the sense of the Akaike Information Criterion (AIC)
(Horenko, 2010b; Metzner et al, 2012), an information the-
oretic based measure for model selection which penalizes
overfitting by large number of parameters.

As mentioned earlier, while non-stationary autoregres-
sive models may perform better than stationary models in
fitting, an inherent difficulty in a prediction setting is the ad-
vancement of the model coefficients A(t),σ(t) beyond the
training period, which in the above framework amounts to
solely advancing the cluster affiliation function Γ (t). If we
call πk(t) the probability of the model being at cluster k at
time t, we can view Γ (t) as determining a Markov switching
process on the cluster member probabilities

π(t) = (π1(t), . . . ,πK(t)),
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which over the training period will be 1 in one entry, and 0
elsewhere at any given time. We can estimate the transition
probability matrix T of that Markov process by using the op-
timal cluster affiliation sequence Γ (t) from the FEM-VARX
framework (here optimal is for the training period). Assum-
ing the Markov hypothesis, we can estimate the stationary
probability transition matrix directly from Γ (t) by:

Ti j =
Ni j

∑K
k=1 Nik

,

where Ni j is the number of direct transitions from state i
to state j (Horenko, 2011a; Franzke et al, 2009). This esti-
mated transition probability matrix T can be used to model
the Markov switching process in the following ways.

2.4.1 Generating predictions of cluster affiliation

The first method we employ is to advance the cluster mem-
ber probabilities π(t) using the estimated probability transi-
tion matrix T by the deterministic equation (Franzke et al,
2009):

π(t0 + τ) = π(t0)T τ

where π(t0) = (π1(t0),π2(t0)) is the initial cluster affiliation,
which is determined by which cluster center the initial point
x(t0) is closest to, and πi(t0) is either 0 or 1.

The second method we employ is to use the estimated
transition matrix T to generate a realization of the Markov
switching process ΓR, and use this to determine the model
cluster at any given time, maintaining strict model affilia-
tion. Thus πk(t) = 1 is ΓR(t) = k, and 0 otherwise.

2.5 Error metrics

To gauge the fidelity of our predictions, we will evaluate the
average root-mean-square error (RMSE) and pattern corre-
lation (PC) of our predictions y against the ground truth x,
where points in our test data set (of length n′) are used as in-
tial conditions for our predictions. As a benchmark, we will
compare each prediction approach to a simple persistence
forecast y(τ) = y(0). The error metrics are calculated as

rms2(τ) =
1
n′

n′

∑
j=1

(y(t j + τ)− x(t j + τ))2 ,

pc(τ) =
1
n′

n′

∑
j=1

(y(t j + τ)− ỹ(τ)) (x(t j + τ)− x̃(τ))
σy(τ)σx(τ)

,

where

ỹ(τ) =
1
n′

n′

∑
j=1

y(t j + τ), x̃(t) =
1
n′

n′

∑
j=1

x(t j + τ),

σ2
y (τ) =

1
n′

n′

∑
j=1

(y(t j + τ)− ỹ(τ))2,

σ2
x (τ) =

1
n′

n′

∑
j=1

(x(t j + τ)− x̃(τ))2.

An important note is that for data-driven observables, such
as NLSA eigenfunctions or EOF principal components, there
is no underlying ground truth when predicting into the fu-
ture. As such a ground truth for comparison needs to be de-
fined when evaluating the error metrics, for which one can
use the out-of-sample extended function f̄ (y(t j + τ)) as de-
fined in Equations (7) and (9).

3 Datasets

3.1 CCSM model output

We use model data from the Community Climate System
Model (CCSM), versions 3 and 4, for monthly SIC and SST
data, restricted to the North Pacific, which we define as 20◦–
65◦N, 120◦E–110◦W. CCSM3 model data is used from a
900 year control run (experiment b30.004) (Collins et al,
2006). The sea ice component is the Community Sea Ice
Model (CSIM; Holland et al, 2006) and the ocean compo-
nent is the Parallel Ocean Program (POP), both of which are
sampled on the same nominal 1◦ grid. CCSM4 model data
is used from a 900 year control run (experiment b40.1850),
which uses the Community Ice CodE 4 model for sea ice
(CICE4; Hunke and Lipscomb, 2008) and the POP2 model
for the ocean component (Smith et al, 2010), also on a com-
mon nominal 1◦ grid. Specific differences and improvements
between the two model versions can be found in Gent et al
(2011).

NLSA was performed on these data sets, both in sin-
gle and multiple component settings, with the same embed-
ding window of q1 = q2 = q = 24 months for each variable,
kernel scale ε = 2, and kernel normalization α = 0. A 24
month embedding window was chosen to allow for dynam-
ical memory beyond the seasonal cycle, as is used in other
NLSA studies (e.g., Giannakis and Majda (2012b, 2013);
Bushuk et al (2014)). There are 6648 grid points for SST and
3743 for SIC in this region for these models, and with an em-
bedding window of q= 24, this means our lagged embedded
data lies in R

m with m = 159,552 for SST and m = 89,832
for SIC. For the purposes of a perfect model experiment,
where the same model run is used for both the training and
test data, we split the CCSM4 control run into two 400 year
sets; years 100 – 499 for the training data set, and years 500
– 899 for out-of-sample test points. After embedding, this
leaves us with n = n′ = 4777 samples in each data set. In
our model error experiment, we train on 800 years of the
CCSM3 control run, and use 800 years of CCSM4 for test
data, giving us n = n′ = 9577 data points.
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In addition to low-frequency kernel eigenfunctions as
observables, we also consider North Pacific integrated sea
ice extent anomalies as a target for prediction in Section 4.2.
This observable exhibits faster variability, on an intra-annual
time-scale, and as such we reduce the embedding window
from 24 months to 6 months for our kernel evaluation. Using
the CCSM4 model training data, we define monthly anoma-
lies by calculating a climatology fc of monthly mean sea ice
extent. Let v j be gridpoints in our domain of interest (North
Pacific), c the mean SIC, a the grid cell area, and then the
sea ice extent anomaly hat will be our target observable is
defined as

f (ti) = ∑
j

c(v j, ti)a(v j)− fc(ti). (10)

3.2 Observational data

For observational data, we turn to the Met Office Hadley
Centre’s HadISST data set (Rayner et al, 2003), and use
monthly data for SIC and SST, from years 1979–2012, sam-
pled on a 1◦ latitude-longitude grid. We assign ice covered
grid points an SST value of −1.8◦C, and have removed a
trend from the data by calculating a linear trend for each
month. There are 4161 spatial grid points for SST, for a
lagged embedded dimension of m = 99,864, and 3919 grid
points for SIC, yielding m = 94,056. For direct comparison
with this observational data set, the above CCSM model data
sets have been interpolated from the native POP grid 1◦ grid
to a common 1◦ latitude-longitude grid. After embedding,
we are left with n′ = 381 observation test data points.

4 Results

4.1 Low-frequency NLSA modes

The eigenfunctions that arise from NLSA typically fall into
one of three categories: i) periodic modes, which capture the
seasonal cycle and its higher harmonics; ii) low-frequency
modes, characterized by a red power spectrum and a slowly
decaying autocorrelation function; and iii) intermittent modes,
which have the structure of periodic modes modulated with a
low-frequency envelope. The intermittent modes are dynam-
ically important (Giannakis and Majda, 2012a), shifting be-
tween periods of high activity and quiessence, but carry lit-
tle variance, and are thus typically missed or mixed between
modes in classical SSA. Examples of each of these eigen-
functions arising from a CCSM4 data set with SIC and SST
variables are shown in Figure 1, for years 100–499 of the
pre-industrial control run. The corresponding out-of-sample
extension eigenfunctions, defined through the Nyström method,
are shown in Figure 2, and are computed using years 500–
899 of the same CCSM4 pre-industrial control run as test

(out-of-sample) data. We use the notation φS
L1

, φ I
L1

, or φSI
L1

,
to indicate if the NLSA mode is from SIC, SST, or joint
SST and SIC variables, respectively.
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Fig. 1 Select NLSA eigenfunctions for CCSM4 North Pacific SST and
SIC data. φ1, φ3 are periodic (annual and semi-annual) modes, charac-
terized by a peak in the power spectrum and oscillatory autocorrelation
function; φ9, φ14 are the two leading low-frequency modes, character-
ized by a red power spectrum and slowly decaying montone autocor-
relation function; φ10, φ15 are intermittent modes, characterized by a
broad peak in the power spectrum and decaying oscillatory autocorre-
lation function.

We perform our prediction schemes for five year time
leads by applying the kernel ensemble analog forecast meth-
ods discussed in Section 2.3 to the leading two low-frequency
modes φSI

L1
, φSI

L2
from NLSA on North Pacific, shown in Fig-

ure 1. The leading low-frequency modes extracted through
NLSA can be though of as analogs to the well known PDO
and NPGO modes, even in the multivariate setting. We have
high correlations between the leading multivariate and uni-
variate low-frequency NLSA modes, with corr (φSI

L1
,φ I

L1
) =

−0.9907 for our analog of the NPGO mode, and corr (φSI
L2
,φS

L1
)=

0.8415 for our analog of the PDO mode.
As a benchmark, we compare against the simple con-

stant persistence forecast y(t) = y(0), which can perform
reasonably well given the long decorrelation time of these
low-frequency modes, and in fact beats paramteric autore-
gressive models as we will see below. We define the ground
truth itself to be the out-of-sample eigenfunction calculated
by Equation (7), so by construction, our predictions by the
geometric harmonics method are exact at time lag τ = 0,
whereas predictions using Laplacian pyramids will have re-
construction errors at time lag τ = 0.



Data-driven prediction strategies for low-frequency patterns of North Pacific climate variability 9

Snapshot of Time Series

φ 1

−2

0

2

Power Spectral Density

1E−4

1E−2

1E0

1E2

Autocorrelation Function

φ 1

φ 3

−2

0

2

1E−4

1E−2

1E0

1E2

φ 3

φ 10

−2

0

2

1E−4

1E−2

1E0

1E2

φ 10

φ 15

−2

0

2

1E−4

1E−2

1E0

1E2

φ 15

φ 9

−2

0

2

1E−4

1E−2

1E0

1E2

φ 9

time t (y)

φ 14

0 10 20 30 40

−2

0

2

frequency ν (y−1)
1E−2 1E−1 1E0 1E1

1E−4

1E−2

1E0

1E2

time t (m)

φ 14

0 12 24 36 48

Fig. 2 Out-of-sample extension eigenfunctions, computed via Equa-
tion (7), for CCSM North Pacific SST and SIC data, associated with
the same select (in-sample) eigenfunctions shown in Figure 1.

4.1.1 Perfect model

We first consider the perfect model setting, where the same
dynamics generate the training data and test (forecast) data.
This should give us a measure of the potential predictability
of the methods. Snapshots of sample prediction trajectories
along with the associated ground truth out-of-sample eigen-
function are shown in Figure 3. In Figure 4, we see that for
the leading low-frequency mode φSI

L1
(our NPGO analog),

the ensemble based predictions perform only marginally bet-
ter than persistence in the PC metric, but have improved
RMSE scores over longer timescales. However with the sec-
ond mode φSI

L2
(our PDO analog), we see a more noticeable

gain in predictive skill with the ensemble analog methods
over persistence. If we take 0.6 as a PC threshold (Collins,
2002), below which we no longer consider the model to have
predictive skill, we see an increase of about 8 months in pre-
dictive skill with the ensemble analog methods over persis-
tence, with skillful forecasts up to 20 months lead time. We
note these low-frequency modes extracted from multivariate
data exhibit similiar predictability (as measured by when the
PC falls below the 0.6 threshold) than their univariate coun-
terparts (φS

L1
or φ I

L1
, results not shown).

4.1.2 Model error

To incorporate model error into our prediction experiment,
we train on the CCSM3 model data, serving as our ‘model’,
and then use CCSM4 model data as our test data, serving the
role of our ‘nature’, and the difference in the fidelity of the
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Fig. 3 Sample snapshot trajectories of ensemble analog prediction re-
sults via geometric harmonics (GH, blue, solid) and Laplacian pyramid
(LP, blue, dashed), for the leading two low-frequency modes, in perfect
model setting using CCSM4 data. The ground truth (T, black) is itself
an out-of-sample extension eigenfunction, as shown in Figure 2.
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Fig. 4 Kernel ensemble analog prediction results via geometric har-
monics and Laplacian pyramid for the leading two low-frequency
modes, in perfect model setting using CCSM4 data. Both out-of-
sample extension methods outperform the persistence forecast (P) in
both error metrics, particularly for in the φ SI

L2
(PDO) mode.

two model versions represents general model error. In this
experiment, our ground truth is an out-of-sample eigenfunc-
tion trained on CCSM3 data, and extended using CCSM4
test data. For the leading φSI

L1
(NPGO) mode, we see again

marginal increased predictive performance in the ensemble
analog predictions over persistence at short time scales in
PC in Figure 5, but at medium to long time scales this im-
provement has been lost (though after the score has fallen
below the 0.6 threshold). This could be due to the increased
fidelity of the CCSM4 sea ice model component over the
CCSM3 counterpart, where using the less sophisticated model
data for training leaves us a bit handicapped in trying to pre-
dict the more sophisticated model data (Gent et al, 2011;
Holland et al, 2012). The improvement in the predictive skill
of φSI

L2
(PDO) mode over persistence is less pronounced in

the presence of model error than it was in the perfect model
case shown in Figure 4. Nevertheless, the kernel ensemble
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analog forecasts still provide a substantial improvement of
skill compared to the persistence forecast, extending the PC
= 0.6 threshold to 20 months.
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Fig. 5 Kernel ensemble analog forecasting prediction results for the
leading two low-frequency modes, with model error. CCSM3 model
data is used for the in-sample data, and CCSM4 model data is used as
the out-of-sample data. While the predictions still outperform persis-
tence in the error metrics, there is less gain in predictive skill over as
compared to the perfect model case.

We can further examine the model error scenario by us-
ing the actual obervational data set as our nature, and CCSM4
as our model (Figure 6). Given the short observational record
used, far fewer prediction realizations are generated, adding
to the noisiness of the error metrics. The loss of predictabil-
ity is apparent, especially in the φSI

L2
mode, where the kernel

ensemble analog forecasts fail to beat persistence, and drop
below 0.6 in PC by 10 months, half as long as the perfect
model case.

4.1.3 Comparison with Autoregressive Models

We compare the ensemble analog predictions to standard
stationary autoregressive models, as well as non-stationary
models using the FEM-VARX framework of Horenko (2010b)
discussed in Section 2.4, for the low-frequency modes φSI

L1
,

φSI
L2

generated from CCSM4 model (Figure 7) and the HadISST
observation (8) training data. For both sets of low-frequency
modes, K = 2 clusters was judged to be optimal by the AIC
as mentioned in Section 2.4–see Horenko (2010b); Metzner
et al (2012) for more details. The coefficients for each clus-
ter are nearly the same (autoregressive coefficent close to 1,
similar noise coefficients), apart from the constant forcing
coefficient μi of almost equal magnitude and opposite sign,
suggesting two distinct regime behaviors. In the stationary
case, the external forcing coefficient μ is very close to 0.
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Fig. 6 Ensemble analog prediction results for the leading two low-
frequency modes, with model error. CCSM4 model data is used for the
in-sample data, and HadISST observational data is used as the out-of-
sample data. Here the method produces little advantage over persis-
tence, given the model error between model and nature, and actually
fails to beat persistence for the φ SI

L2
(PDO) mode.

In the top left panel of Figures 7 and 8, we display snap-
shots of the leading low-frequency mode φSI

L1
(NPGO) tra-

jectory reconstruction during the training period, for the sta-
tionary (blue, solid), and non-stationary (red, dashed) mod-
els, along with the cluster switching function associated with
the non-stationary model. In both the CCSM4 model and
HadISST data sets, the non-stationary model snapshot is a
better representation of the truth (black, solid), and the ben-
efit over the stationary model is more clearly seen in the
CCSM4 model data, Figure 7, which has the benefit of a
400 year training period, as opposed to the shorter 16 year
training period with the observational data set.

In the prediction setting, however, the non-stationary mod-
els, which are reliant on an advancement of the unknown
cluster affiliation function Γ (t) beyond the training period,
as discussed in Section 2.4, fail to outperform their station-
ary counterparts in the RMSE and PC metrics (bottom pan-
els of Figures 7 and 8). In fact, none of the proposed re-
gression prediction models are able to outperform the sim-
ple persistence forecast in these experiments. As a measure
of potential predition skill for the non-stationary models,
whereby we mean that if perfect knowledge of the underly-
ing optimal cluster switching function Γ (t) could be known
over the test period, we have run the experiment of replacing
the test data period with the training data set, and find ex-
ceedingly strong predictive performance, with PC between
0.7 and 0.8 for all time lags tested, up to 60 months. Simi-
lar qualitative results for the second leading low-frequency
mode φSI

L2
(PDO) for each data set were found (not shown).

This suggests that the Markov hypothesis, the basis for the
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predictions of Γ (t), is not accurate, and other methods in-
corporating more memory are needed.
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Fig. 7 Top left: Snapshot of the true CCSM4 φ SI
L1

(NPGO) trajectory
(black) with reconstructed stationary (blue) and non-stationary K = 2
(red) FEM-VARX model trajectories, along with corresponding model
affiliation function Γ (t) for non-stationary case. Top right: Sample tra-
jectories for various prediction methods: P2 = stationary, using FEM-
VARX model coefficients from initial cluster; K1 = stationary autore-
gressive; M1, M2 = FEM-VARX with predictions as described in Sec-
tion 2.4.1, where M1 is deterministic evolution of the cluster affiliation
π(t), and M2 uses realizations of π generated from the estimated prob-
ability transition matrix T . Bottom panels: RMSE and PC as a function
of lead time for various prediction methods, including P1 = persistence
as a benchmark. The dashed black line is for potential predictive skill of
non-stationary FEM-VARX, where predictions were ran over the train-
ing period using the known optimal model affiliation function Γ (t).

4.2 Sea ice anomalies

The targeted observables hereto considered for prediction
have been data driven, and as such influenced by the data
analysis algorithm. Hence there is no objective ground truth
available when predicting these modes beyond the training
period on which the data analysis was performed, and while
in this case the NLSA algorithm was used, other data analy-
sis methods such as EOFs would suffer the same drawback.
We wish to test our prediction method on an observable that
is objective, in the sense that it can be computed indepen-
dently of the data analysis algorithm, for which we turn
to integrated sea ice extent anomalies, as defined in Equa-
tion (10). We can clearly compute the time series of sea ice
anomalies from the out-of-sample set directly (relative to the
training set climatology), which will be our ground truth,
and use the Laplacian pyramid approach to generate our
out-of-sample extension predictions. This observable does
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Fig. 8 Top left: Snapshot of the true HadISST φ SI
L1

(NPGO) trajectory
(black) with stationary (blue) and non-stationary K = 2 (red) FEM-
VARX model trajectories, along with the corresponding model affilia-
tion function Γ (t) for non-stationary case. Top right: Sample trajecto-
ries for various prediction methods–see Figure 7 for details of methods.
Bottom panels: RMSE and PC as a function of lead time for various
prediction methods. The dashed black line is for potential predictive
skill of non-stationary FEM-VARX, where predictions were ran over
the training period using the known optimal model affiliation function
Γ (t).

not have a tight expansion in the eigenfunction basis, so
the geometric harmonics method of extension will be ill-
conditioned, and thus not considered. We note that in this
approach, there are reconstruction errors at time lag τ = 0, so
at very short time scales we cannot outperform persistence.
We consider a range of truncation levels for the number of
ensemble members used, which are nearest neighbors to the
out-of-sample data point, as determined by the kernel func-
tion. Using all available neighbors will likely overly smooth
and average out features in forward trajectories, while us-
ing too few neighbors will place to much weight on particu-
lar trajectories. Indeed we find good performance using 100
(out of total possible 4791). The top left panel of Figure 9
shows a snapshot of the true sea ice extent anomalies, re-
spectively, together with a reconstructed out-of-sample ex-
tension using the Laplacian pyramid. To be clear this is not
a prediction trajectory, but rather each point in the out-of-
sample extension is calculated using Equation (9); that is,
each point is a time-lead τ = 0 reconstruction.

The top right panel shows sample snapshots of predic-
tion trajectories, restricting the ensemble size to the nearest
10, 100, and then all nearest neighbors. Notice in particular
predictions match the truth when the anomalies are close to
0, but then may subsequently progress in the opposite sign
as the truth. As our prediction metrics are averaged over ini-
tial conditions spanning all months, the difficulty the pre-
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Fig. 9 Top left: True sea ice cover anomalies plotted with the cor-
responding Laplacian pyramid out-of-sample extention function. The
other panels show prediction results using Laplacian pyramids for total
North Pacific sea ice cover anomalies in CCSM4 data. The number of
nearest neighbors (nN) used to form the ensemble was varied, and we
find the best performance when the ensemble is restricted to the nearest
100 neighbors, corresponding to about 2% of the total sample size.

dictions have in projecting from a state of near 0 anomaly
significantly hampers the ability for long-range predictabil-
ity of this observable.

In the bottom two panels of Figure 9 we have the aver-
aged error metrics, and see year to year correlations mani-
festing as a dip/bump in RMSE and PC in the persistence
forecast that occurs after 12 months. After the first month
lag time, the kernel ensemble analog forecasts overcome the
reconstruction error and beat persistence in both RMSE and
PC, and give about a 2 month increase in prediction skill (as
measured by when the PC drops below 0.6) over persistence.
We see the best performance restricting the ensemble size to
100 nearest neighbors (about 2% of the total sample size)
in both the RMSE and PC metrics, though this is marginal
before the error metrics drop below the 0.6 threshold.

Pushing the prediction strategy to an even more difficult
problem, in Figure 10 we try to predict observational sea ice
extent anomalies using CCSM4 model data as training data.
In this scenario, without knowledge of the test data clima-
tology, the observation sea ice extent anomalies are defined
using the CCSM4 climatology. In the top panel of Figure 10
we see the strong bias as a result, where the observational
record has less sea ice than the CCSM model climatology,
which has been taken from a pre-industrial control run. This
strongly hampers the ability to accurately predict observa-
tional sea ice extent anomalies using CCSM4 model ensem-
ble analogs, and as a result the only predictive skill we see
is from the annual cycle.
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Fig. 10 Prediction results for total observed (HadISST data) North Pa-
cific sea ice volume anomalies, using CCSM4 as training data. The ice
cover function is out-of-sample extended via Laplacian pyramid, using
100 nearest neighbors.

5 Discussion

We have examined a recently proposed prediction strategy
employing a kernel ensemble analog forecasting scheme mak-
ing use of out-of-sample extension techniques. These non-
parametric, data-driven methods make no assumptions on
the underlying governing dynamics or statistics. We have
used these methods in conjunction with NLSA to extract
low-frequency modes of variability from North Pacific SST
and SIC data sets, both from models and observations. We
find that for these low-frequency modes, the analog fore-
casting performs at least as well, and in many cases bet-
ter than, the simple constant persistence forecast. Predictive
skill, as measured by PC exceeding 0.6, can be increased by
up to 3 to 6 months for low-frequency modes of variability
in the North Pacific. This is a strong advantage over tradi-
tional parametric regression models, which were shown to
fail to beat persistence.

The kernel ensemble analog forecasting methods out-
lined included two variations on the underlying out-of-sample
extension scheme, each with its strengths and weaknesses.
The geometric harmonics method, based on the Nyström
method, worked well for observables that are band-limited
in the eigenfunction basis, in particular the eigenfunctions
themselves. However for observables not easily expressed in
such a basis, the Laplacian pyramid provides an alternative
method based on a multiscale decomposition of the original
observable.

While the low-frequency eigenfunctions from NLSA were
a natural preferred class of observables to target for predic-
tion, we also studied the case of objective observables un-
influenced by the data analysis algorithm. Motivated by the
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strong reemergence phenomena, we considered sea ice ex-
tent anomalies as our target for prediction in the North Pa-
cific. Using a shorter embedding window due to faster (sea-
sonal) time scale dynamics, we obtain approximately a two
month increase in predictive skill over the persistence fore-
cast. It is also evident that when considering regional sea
ice extent anomalies winds play a large role in moving ice
into and out of the domain of interest, and as such additional
consideration of the atmospheric component in the system
could be included in the multivariate kernel function, despite
having weaker low-frequency variability.

An important consideration is that our prediction metrics
are averaged over initial conditions ranging over all possible
initial states of the system. As we saw clearly in the case
of North Pacific sea ice volume anomalies, these prediction
strategies can have difficulty with projecting from an initial
state of quiessence, and can easily predict to the wrong sign
of an active state, greatly hampering predictive skill. On the
other hand we would expect predictive skill to be stronger
for those initial states that begin in a strongly active state,
or said differently, clearly in one climate regime, as oppose
to in transition between the two. Future work will further
explore conditional forecasting, where we either condition
forecasts on the initial month, or the target month. Also ex-
tending this analysis to the North Atlantic, another region of
strong low-frequency variability, is a natural progression of
this work.
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