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Abstract

Turbulence in idealized geophysical flows is a very rich and important topic. The
anisotropic effects of explicit deterministic forcing, dispersive effects from rotation due
to the β-plane and F-plane, and topography together with random forcing all combine
to produce a remarkable number of realistic phenomena. These effects have been stud-
ied through careful numerical experiments in the truncated geophysical models. These
important results include transitions between coherent jets and vortices, and direct
and inverse turbulence cascades as parameters are varied, and it is a contemporary
challenge to explain these diverse statistical predictions. Here we contribute to these
issues by proving with full mathematical rigor that for any values of the deterministic
forcing, the β and F-plane effects and topography, with minimal stochastic forcing,
there is geometric ergodicity for any finite Galerkin truncation. This means that there
is a unique smooth invariant measure which attracts all statistical initial data at an ex-
ponential rate. In particular, this rigorous statistical theory guarantees that there are
no bifurcations to multiple stable and unstable statistical steady states as geophysical
parameters are varied in contrast to claims in the applied literature. The proof utilizes
a new statistical Lyapunov function to account for enstrophy exchanges between the
statistical mean and the variance fluctuations due to the deterministic forcing. It also
requires careful proofs of hypoellipticity with geophysical effects and uses geometric
control theory to establish reachability. To illustrate the necessity of these conditions,
a two dimensional example is developed which has the square of the Euclidean norm
as the Lyapunov function, and is hypoelliptic with nonzero noise forcing, yet fails to
be reachable or ergodic.
Keywords: Unique stochastic invariant measure, exponential attraction, beta plane,
topography, general dispersion.

1 Introduction

Turbulence in idealized geophysical flows is a very rich and important topic with numerous
phenomenological predictions and idealized numerical experiments. The anisotropic effects
of explicit deterministic forcing, the β-effect due to the earth’s curvature, and topography
together with random forcing all combine to produce a remarkable number of realistic phe-
nomena [1, 2, 3]. These include the formation of coherent jets and vortices, and direct and
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inverse turbulent cascades as parameters are varied [1, 2, 3]. It is well known that careful
numerical experiments indicate interesting statistical bifurcations between jets and vortices
as parameters vary [4, 5, 6, 7, 8, 9], and it is a contemporary challenge to explain these
approximate statistical theories [10, 11, 12, 4]. However, careful numerical experiments and
statistical approximations are only possible or valid for large finite times so the ultimate sta-
tistical steady state of these turbulent geophysical flows remain elusive. Here we contribute
to these issues by proving with full mathematical rigor that for any values of the determin-
istic forcing, the β-plane effect, and topography and with precise minimal stochastic forcing
for any finite Galerkin truncation of the geophysical equations, there is a unique smooth
invariant measure which attracts all statistical initial data at an exponential rate, that is
geometric ergodicity. The rate constant depends on the geophysical parameters and could
involve a large preconstant.

Next we introduce the equations for geophysical flows which we consider in this paper.
Here we investigate the ergodicity of a finite Galerkin truncation of geophysical flow on a
periodic domain T

2 = [−π, π]2, with general dissipation, β-plane effect, stratification effect,
topography, deterministic forcing and a minimal stochastic forcing. Without truncation, the
model is given by [3]:

dq +∇⊥ψ · ∇qdt = D(Δ)ψdt+ f(x)dt+ dWt,

q = Δψ − F 2ψ + h(x) + βy.
(1.1)

In the equation [3] above:

• q is the potential vorticity. ψ is the stream function. It determines the vorticity by
ω = Δψ, and the flow by u = ∇⊥ψ = (−∂yψ, ∂xψ). Here x = (x, y) denotes the spatial
coordinate.

• The operator D(Δ)ψ =
∑l

j=0(−1)jγlΔ
lψ stands for a general dissipation operator.

We assume here γl ≥ 0 and at least one γl > 0. This term can include: 1) Newtonian
(eddy) viscosity, νΔ2ψ, 2) Ekman drag dissipation, −dΔψ, 3) radiative damping, dψ,
4) hyper-viscosity dissipation, which could be a higher order power of Δ and any
positive combination of these.

• Here f(x) is the external deterministic forcing. The random forcing Wt is a Gaussian
random field. Its spectral formulation will be given explicitly soon afterwards by (1.4).

• βy is the β-plane approximation of the Coriolis effect and h(x) is the periodic topog-
raphy.

• The constant F = L−1
R , where LR =

√
gH0/f0 is the Rossby radius which measures

the relative strength of rotation to stratification.

Note if one considers for example the atmospheric wind stress on the ocean, the equation in
(1.1) naturally has both deterministic and stochastic components to the forcing.

The main goal of the present study is the following Theorem informally stated here
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Theorem 1.1. Consider any finite Galerkin truncation of (1.1) and the associated statistical
solutions. Then for any deterministic forcing, f , topography, h, and β, F , with any minimal
stochastic forcing involving at least two modes in a precise fashion, there is a unique smooth
invariant measure which attracts all other statistical solution at large time at an exponential
rate.

Note that the requirement of minimal stochastic forcing is essentially the same as in
[13, 14] without considering any geophysical effects.

Here is the outline of the remainder of the paper. After a few preliminary subsections
on the Galerkin truncation and spectral formulation of (1.1), we build on earlier works on
geometric ergodicity for finite dimensional systems [15, 16, 17, 18] to yield a general strategy
to prove the precise version of the above theorem, which involves the following three key
steps:

1) The existence of a stochastic Lyapunov function for (1.1).

2) Hypoellipticity of the generator.

3) Reachability through a suitable cadlag control process [18].

In Section 2, following [19], we construct a new stochastic Lyapunov function for the Galerkin
truncation of (1.1) with both deterministic and stochastic forcing involving the square of the
mean enstrophy plus the trace of the covariance matrix for the fluctuating enstrophy. In
Section 3 we verify hypoellipticity of the generator of the Galerkin truncation of (1.1).
Our proof reveals the subordinate role of the linear geophysical effects compared to the
nonlinear triad interaction. In Section 4, we use geometric control theory [18, 20] to prove
reachability by a suitable cadlag control. Our inductive proof follws similar reasoning as our
verification of hypoellipticity in Section 4 and reveals a parallel structure. In Section 5, we
construct a specific example of a two dimensional stochastic system which has the quadratic
Euclidean energy as a Lyapunov function, is hypoelliptic with non-zero forcing everywhere,
yet violates the reachability criterion and fails to be ergodic. A concluding discussion and
further research directions are discussed in Section 6. The appendix fills an important gap
for rigorous hypoellipticity in [16, 18] by deriving higher order bounds for the system.

1.1 Galerkin truncation

In order to implement (1.1) in numerics, we need to do a Galerkin truncation. One way to
achieve this is letting q = qΛ+βy, where qΛ has Fourier modes only within a symmetry finite
indices set I ⊂ Z

2/{(0, 0)} :

qΛ =
∑
k∈I

qkek(x), ek(x) =
eik·x

2π
.

We say I is symmetric if k ∈ I, then −k ∈ I. One practical choice of I can be of form

I = {k ∈ Z
2/{(0, 0)}∣∣ |k| ≤ N} or I = {k ∈ Z

2/{(0, 0)}∣∣ |k1| ≤ N, |k|2 ≤ N}, (1.2)
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with N being a large number. Let PΛ be the projection of L2(T2) onto the finite subspace
spanned by {ek(x), k ∈ I}. We can then project (1.1) to the modes in I using a truncation
operator . The truncated model is then

dqΛ = −PΛ(∇⊥ψΛ · ∇qΛ)dt− β(ψΛ)xdt+D(Δ)qΛdt+ fΛ(x)dt+ dWΛ(t),

qΛ = ΔψΛ − F 2ψΛ + hΛ(x).
(1.3)

ψΛ =
∑

k∈I ψkek(x) is the truncation of ψ, and likewise we can have spectral formulations
of the truncated relatively vorticity ωΛ, external forcing fΛ, topography hΛ. In particular,
we model the Gaussian random field as

WΛ(t) =
∑
k∈I

σkWk(t). (1.4)

The Wk(t) above are independent complex Wiener processes except for conjugating pairs,
where σk = σ∗

−k,Wk = W ∗
−k. One simple way to achieve this is letting Br

k(t), B
i
k(t) to be

independent real Wiener processes, and

Wk(t) =
1√
2
(Br

k(t) + iBi
k(t)), W−k(t) =

1√
2
(Br

k(t)− iBi
k(t))

for k ∈ I+ = {k ∈ I : k2 > 0} ∪ {k ∈ I : k2 = 0, k1 > 0}. The corresponding incompressible

flow field is uΛ = ∇⊥ψΛ, while its underlying basis will be ẽk =
ik⊥
|k| ek.

1.2 Spectral formulation

Another way to obtain and study (1.3) is projecting (1.1) onto each Fourier mode. In fact,
it suffices to derive equations for any one of qk, ψk,uk or ωk, since the others can then be
determined quite easily by the following linear relation:

ωk =
|k|2(qk − hk)

F 2 + |k|2 , ψk =
−qk + hk

F 2 + |k|2 , uk = −|k|(qk − hk)

F 2 + |k|2 ωk.

We chose to project (1.3) onto the Fourier modes of qΛ. The resulting formula for qk is

dqk(t) =
−dk + iβk1
F 2 + |k|2 (qk(t)− hk)dt+

∑
m+n=k,m,n∈I

(am,nqmqn − bm,nhnqm)dt+ fkdt+ σkdWk(t),

(1.5)
with the three wave interaction coefficients am,n, bm,n and the general damping dk given by

bm,n :=
〈n⊥,m〉

2π|n|2 + 2πF 2
, am,n =

〈n⊥,m〉
4π

(
1

|m|2 + F 2
− 1

|n|2 + F 2

)
, dk =

∑
j

γj|k|2j.

It is easy to see that
〈n⊥,m〉 = 〈(n+m)⊥,m〉 = −〈m⊥, n〉

so am,m = 0, am,n = an,m = an,m+n = −a−m,n, moreover the triad conservation property
am,n + an,−m−n + a−m−n,m = 0 since the sum is

〈n⊥,m〉
4π

(
1

|m|2 + F 2
− 1

|n|2 + F 2
+

1

|n|2 + F 2
− 1

|n+m|2 + F 2
+

1

|m+ n|2 + F 2
− 1

|m|2 + F 2

)
.

Also note that the damping dk ≥ d0 :=
∑

j γj > 0.
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1.3 Ergodicity with minimal stochastic forcing

When β = 0 and F ≡ 0, (1.3) is essentially the stochastic Navier Stokes equation with finite
projection. [13, 14] have considered the minimum number of stochastically forced modes in
order for the system to be ergodic, and the least amount of forced modes is given by the
following assumption

Assumption 1.2. Let I0 = {k ∈ I|σk �= 0} be the symmetric subset of stochastically forced
modes, suppose that the following increasing sequence of index sets

Ij = I0 ∪ {m+ n|m,n ∈ Ij−1 with 〈m⊥, n〉 �= 0, |m| �= |n|},
has IN = I for certain N < ∞.

The intuition behind Assumption 1.2 is straightforward: the stochastic forcing over modes
in I0 can influences other modes by the the three waves interaction in (1.5), and the way that
Ij expands follows exactly the same rules. In particular, if I is connected by the neighboring
relation on Z

2 and includes {k : max{|k1|, |k2|} = 1}} as a subset, like the ones in (1.2),
then Assumption 1.2 holds as long as I0 contains modes (0, 1) and (1, 1). The verification is
given by Lemma A.1. According to [13, 18, 14], Assumption 1.2 is the minimal requirement
for (1.5) to be ergodic without geophysical effects. Our paper shows this minimal stochastic
forcing assumption is still sufficient when general geophysical effects are considered.

Following our derivations from the previous two subsections, we can view qΛ(t) as a
process q ∈ C

I . Geometric ergodicity of diffusion processes in finite-dimensional spaces is
relatively well understood. The following theorem is a version of [15, Theorem 2.3].

Theorem 1.3. Let Xn be a Markov chain in a space E such that

1. There is a Lyapunov function E : E �→ R
+ for the Markov process Xn with compact

sub-level sets, while EE(Xt) ≤ e−γt
EE(X0) +K for certain γ,K > 0.

2. Minorization: for any compact set B, there is a compact set C ⊃ B such that the
minorization condition holds for C. That is, there is a probability measure ν with
ν(C) = 1, and a η > 0 such that for any given set A

P(Xn ∈ A|Xn−1 = x) ≥ ην(A)

for all x ∈ C.

Then there is a unique invariant measure π and a constant r ∈ (0, 1), κ > 0 such that

‖Pμ(Xn ∈ · )− π‖tv ≤ κrn
(
1 +

∫
E(x)μ(dx)

)
.

Here P
μ(Xn ∈ · ) is the law of Xn given X0 ∼ μ; and ‖ · ‖tv denotes the total variation

distance, which is ‖μ− ν‖tv =
∫ |p(x)− q(x)|dx, assuming μ and ν has density p and q.

As for diffusion processes in R
d, the minorization condition can be achieved by the fol-

lowing proposition, which is a combination of [15, Lemma 2.7], [21], Theorem 4.20 [22] and
Lemma 3.4 of [16].
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Proposition 1.4. Let Xt be a diffusion process in R
d that follows

dXt = Y (Xt)dt+
n∑

k=1

Σk(Xt) ◦ dBk. (1.6)

In above, Bk are independent 1D Wiener processes, and ◦ stands for Stratonovich integral. Y
and Σk are smooth vector fields with at most polynomial growth for all derivatives. Assume
moreover that for any T > 0, k > 0, p > 0 and initial condition, the following growth
condition holds

E sup
t≤T

|Xt|p < ∞, E sup
t≤T

‖J (k)
0,t ‖p < ∞, E sup

t≤T
‖J−1

0,t ‖p < ∞. (1.7)

Here J0,t is the Frechet derivative flow: J0,tv = limε→0
1
ε
(Xx0+εv

t − Xx0
t ), and J

(k)
0,t are the

higher order derivatives. Then Xt satisfies the minorization assumption if the following two
hold:

• Hypoellipticity: let L be the Lie algebra generated by {Y,Σ1, . . . ,Σn}. Let L0 be the
ideal of {Σ1, . . . ,Σn} inside L, which is essentially the linear space spanned by

{Σi, [Σi,Σj], [Σi, Y ], [[Σi,Σj],Σk], [[Σi, Y ],Σk], . . .}.
The diffusion process is hypoelliptic if L0 = R

d at each point.

• Reachability: there is a point x∗ ∈ R
d, such that with any ε > 0 there is a T > 0, such

that from any point x0 ∈ R
d we can find an cadlag control process bk such that the

solution to the following ODE initialized at x0

dxt = Y (xt)dt+
n∑

k=1

Σk(xt)bkdt (1.8)

satisfies |xT − x∗| < ε. Here by cadlag control, we mean bk(t) is continuous from right,
has left limit and locally bounded.

Moreover, with arbitrary initial condition, Xt has a smooth density with respect to the
Lebesgue measure. So if π is an invariant measure, it has smooth density.

In Section 2-4 we will verify these conditions one by one, while the growth condition is
verified in the Appendix. So in conclusion we have

Theorem 1.5. The truncated general model in (1.3) with all geophysical effects is geomet-
rically ergodic, and the invariant measure has smooth density with respect to the Lebesgue
measure, as long as the minimal stochastic forcing condition Assumption 1.2 holds.

Remark 1.6. First, in Proposition 1.4 the Stratonovich integral makes no difference with
Itô integral in our following discussion, because Σk are constant vector fields. Second, in the
original proofs of [13, 16, 18], the growth bound (1.7) is not verified. This is not very rigorous
because the application of Hörmander theorem, like [23, Theorem 38.16], [24] and [25], all
require the underlying vector fields to have bounded derivatives. The moment controls (1.7)
are needed for unbounded vector fields, like stochastic Navier Stokes, see [21]. On the other
hand, this technical gap can be easily closed by some arguments in [26], which is demonstrated
in our Appendix.
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Remark 1.7. If we don’t require smoothness of the density, but just ergodicity, the authors
doubt that it suffices to verify the Hörmander condition near point x∗ instead of all points.
This can be told from Theorem 2.3.3 of [24], and the fact that the proof of [21] does not use
information away from the initial point.

2 Lyapunov functions

2.1 Statistical energy conservation form

Following the procedures documented in [19], we can rewrite (1.3) into following form:

dq = [L+D]q+B(q,q) + F+ ΣdW(t). (2.1)

Here q,F and W are |I|-dim complex valued vectors with components being qk, Fk,Wk. The
operators above are given by

• L is a skew symmetric matrix. Its diagonal entries are Lkk = iβk1
|k|2+F 2 , and off diagonal

entries are Lkm = −bk−m,mhk−m. Note that Lmk = −bm−k,mhm−k = −L∗
km.

• D is a diagonal negative definite matrix. Its diagonal entries are −dk
|k|2+F 2 .

• B is a quadratic form. Its k-th component is [B(p,q)]k =
∑

am,npmqn. It satisfies the
relation

〈B(q,q),q〉 =
∑
k∈I

q∗k
∑

m+n=k

am,nqmqn

=
∑
m,n

am,nqmqnq−m−n

=
1

3

∑
m,n

qmqnq−m−n(am,n + an,−m−n + a−m−n,m) = 0

due to the triad conservation property listed below (1.5).

• F is a constant vector, it has components of form Fk = −−dk+iβk1
F 2+|k|2 hk + fk.

• Σ is a diagonal matrix with entries Σkk = σk.

In many applications, statistical quantities are considered for their ensemble mean and fluctu-
ations [27, 28, 29]. We denote the ensemble mean field as q̄ = Eq, then the potential vorticity
field has the Reynold’s decomposition q = q̄ +

∑
k∈I Zk(t)ek. The ek is the canonical unit

vector with 1 at its k-th component, which corresponds to ek in the Fourier decomposition.
The exact mean field equation is the following:

dq̄

dt
= (L+D)q̄+B(q̄, q̄) +

∑
m,n

Rm,nB(em, en) + F.
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Rm,n in the above equation is the covariance covariance matrix Rm,n = EZmZ
∗
n. This matrix

follows an ODE, as derived in [19]:

dR

dt
= LvR +RL∗

v +QF +Qσ.

The matrix Lv is given by

[Lv]m,n = 〈[L+D]em +B(q̄, em) + B(em, q̄), en〉.
Matrix Qσ expresses energy transfers due to external stochastic forcing, so it is a diagonal
matrix with entries [Qσ]k,k = |σk|2. The energy flux is represented by QF as

[QF ]m,n = ZiZjZn〈B(ei, ej), en〉+ ZiZjZm〈B(ei, ej), en〉.
One key property of QF is that tr(QF ) = 0 [19, 27, 28, 29].

2.2 Stochastic Lyapunov functions

The statistical energy conservation form (2.1) combined with [19] gives us a straight forward
Lyapunov function, which is the total potential enstrophy. Define

E =

∫
1

2
|qΛ|2dx =

1

2
|q|2 = 1

2

∑
k∈I

|qk|2,

then EE = 1
2

∫ |q̄|2dx + 1
2
tr(R). Applying the Theorem in [19], the time derivative of EE is

given by
d

dt
EE = 〈Dq̄, q̄〉+ 〈q̄,F〉+ tr(DR) + trQσ.

Using the spectral decomposition of ω̄

〈Dq̄, q̄〉+ tr(DR) = −
∑
k

dk(|q̄k|2 +Rk,k) ≤ −2d0EE ,

here we recall d0 =
∑

γl ≤ dk for all k. As a consequence, E is a Lyapunov function because

d

dt
EE ≤ −2d0EE +Re〈q̄,F〉+ 1

2
tr(Qσ) ≤ −d0EE +

1

2d0
|F|2 + 1

2
tr(Qσ). (2.2)

In the derivation above, we used that 2EE ≥ |q̄|2, and then applied Young’s inequality. Then
from (2.2), it suffices to apply Grönwall’s inequality to see E is a Lyapunov function.

As a matter of fact, we can use (2.2) and show that E2n and exp(λE) for λ below a
threshold are all Lyapunov functions. This is verified in the Appendix.

When there is no topography, h ≡ 0, the total energy will also be a Lyapunov function.
The total energy is given by E = 1

2

∫
(|∇ψΛ|2+F 2|ψΛ|2)dx = 1

2

∑
k∈I |vk|2, where vk = C−1

k qk
with Ck =

√|k|2 + F 2. The dynamics of vk can be derived from (1.5) by a linear transform.

dvk(t) =
−dk + iβk1
F 2 + |k|2 vk(t)dt+

∑
m+n=k,m,n∈I

am,nCmCnC
−1
k vmvndt+ C−1

k fkdt+ C−1
k σkdWk(t).
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We can as well rewrite this dynamic into a statistical energy conservation form like (2.1),
because for all m+ n = k,

am,nCmCnC
−1
k + an,kCnCkC

−1
m + ak,mCkCmC

−1
n = 0.

The remaining derivation for the dissipation of E is identical to the one of E . If we need to
include topography we need another equation for a large scale flow in the original dynamics
as discussed extensively in [3].

3 Hypoellipticity

In order to demonstrate hypoellipticity, we verify the Hörmander brackets condition. The
complication here is that the variables are complex valued, and complex conjugacy requires
that qk = q∗−k. Therefore, we decompose the Fourier modes into their real and complex part,

qk = Rk + iIk, hk = hr
k + ihi

k, Fk = F r
k + iF i

k.

Notice that Rk = R−k and Ik = −I−k. We also partition I into I+ and I−, where

I+ = {k ∈ I|k2 > 0} ∪ {k ∈ I|k2 = 0, k1 > 0}, I− = {k ∈ I| − k ∈ I+}.

It is clear that the vector ω is determined once its components with k ∈ I+ are, so we will
focus on the indices set I+ instead of I. In this formulation, we regard (1.5) as a real valued
process (Rk, Ik)k∈I+ , where the dynamics is given by

dRk =

(
− dk|k|2
F 2 + |k|2Rk − k1β

F 2 + |k|2 Ik
)
dt+ F r

kdt+
σk√
2
dBr

k(t)

+
∑

m+n=±k

am,n(RmRn − ImIn)dt+
∑

m−n=±k

am,n(RmRn + ImIn)dt

−
∑

m+n=±k

bm,n(h
r
nRm − Imh

i
n)dt−

∑
m−n=±k

bm,n(h
r
nRm + hi

nIm)dt,

= Y r
k (q)dt+

σk√
2
dBr

k(t); (3.1)

dIk =

(
− dk|k|2
F 2 + |k|2 Ik +

k1β

F 2 + |k|2Rk

)
dt+ F i

kdt+
σk√
2
dBi

k(t)

+
∑

m+n=±k

am,n(RmIn + ImRn)dt+
∑

m−n=±k

am,n(RmIn − ImRn)dt

−
∑

m+n=±k

bm,n(Rmh
r
n − Imh

i
n)dt−

∑
m−n=±k

bm,n(Rmh
i
n − Imh

r
n)dt

= Y i
k (q)dt+

σk√
2
dBi

k(t). (3.2)

Proposition 3.1. With the minimal forcing condition, Assumption 1.2, the Fourier coeffi-
cients (ωk)k∈I+, which follow (3.1)-(3.2), are jointly hypoelliptic.
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Proof. Define the linear span of vector fields

L0 = span

{
∂

∂Ik
,

∂

∂Rk

∣∣∣∣k ∈ I0

}
,

and define an expansion inductively by

Ln = span {X1, [X2, [X1, Y ]]|Xi ∈ Ln−1} .

Here the vector field Y is given

Y =
∑
k

Y r
k (q)

∂

∂Rk

+
∑
k

Y i
k (q)

∂

∂Ik
.

Following Proposition 1.4, in order to show hypoellipticity, we essentially need to show
Ln = R

2I+ for some n, since Ln ⊂ L0.
For that purpose, we define the set I+

n in the following sense, where I+
0 = {k ∈ I+|k ∈

I0 or − k ∈ I0}.

I+
n = I+

n−1 ∪ {k ∈ I+ : k = (m+ n)+ or (m− n)+,m, n ∈ In−1, am,n �= 0}.

Here (m+ n)+ is {m+ n,−m− n} ∩ I+. It is easy to see that I+
n = In ∩ I+.

Our proof is closed once we can show that ∂
∂Rk

, ∂
∂Ik

∈ Lj for all k ∈ I+
j inductively. This

claim holds explicitly for j = 0. If m,n ∈ I+
j−1, while

∂
∂Ri

, ∂
∂Ii

∈ Lj−1 for i = m,n, then[
∂

∂Rm

, Y

]
=

−dm|m|2
|m|2 + F 2

∂

∂Rm

− m1β

|m|2 + F 2

∂

∂Im

+
∑
n∈I+

am,nRn
∂

∂R(m+n)+
+ am,nRn

∂

∂R(m−n)+
+ am,nIn

∂

∂I(m+n)+
+ am,nIn

∂

∂I(m−n)+

−
∑
n∈I+

bm,nh
r
n

∂

∂R(m+n)+
− bm,nh

r
n

∂

∂R(m−n)+
− bm,nh

i
n

∂

∂I(m+n)+
− bm,nh

i
n

∂

∂I(m−n)+
,

and symmetrically[
∂

∂Im
, Y

]
=

−dm|m|2
|m|2 + F 2

∂

∂Im
+

m1β

|m|2 + F 2

∂

∂Rm

+
∑
n∈I+

−am,nIn
∂

∂R(m+n)+
+ am,nIn

∂

∂R(m−n)+
+ am,nRn

∂

∂I(m+n)+
− am,nRn

∂

∂I(m−n)+

+
∑
n∈I+

bm,nh
i
n

∂

∂R(m+n)+
− bm,nh

i
n

∂

∂R(m−n)+
− bm,nh

r
n

∂

∂I(m+n)+
+ bm,nh

r
n

∂

∂I(m−n)+
.
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As a consequence, [
∂

∂Rn

,

[
∂

∂Rm

, Y

]]
= am,n

∂

∂R(m+n)+
+ am,n

∂

∂R(m−n)+
,[

∂

∂In
,

[
∂

∂Rm

, Y

]]
= am,n

∂

∂I(m+n)+
+ am,n

∂

∂I(m−n)+
,[

∂

∂Rn

,

[
∂

∂Im
, Y

]]
= am,n

∂

∂I(m+n)+
− am,n

∂

∂I(m−n)+
,[

∂

∂In
,

[
∂

∂Im
, Y

]]
= −am,n

∂

∂R(m+n)+
+ am,n

∂

∂R(m−n)+
.

(3.3)

It is clear that these four vector fields span ∂
∂R(m+n)+

, ∂
∂R(m−n)+

, ∂
∂I(m+n)+

, ∂
∂I(m−n)+

, which com-

pletes our induction.

4 Reachability

In [14], the reachability issue is easy to demonstrate. If fact, this method still works if there
are no deterministic forcing or topography. Because when fk ≡ 0, hk ≡ 0, we can simply let
the stochastic forcing in (1.8), and consider the total enstrophy function E , its time derivative
is given by (2.2)

dE
dt

≤ −νE

As a consequence,
∑ |qk(t)|2 ≤ e−νt

∑ |qk(0)|2, so for large enough t, q is close to the origin.
Yet with general geophysical effects, this argument no longer holds, and we need to introduce
a more complicate framework.

4.1 Geometric control

In geometry control theory [20], the question of reachability has been discussed in a more
general setting. Let the underlying state space M be a simply connected n-dimensional
smooth manifold, and TM denotes its tangent space. Let F : M ×U → TM be a mapping,
such that for each u in the control space U , F ( · , u) : M �→ TM is an analytic vector field.
Let F = {F ( · , u)} be the family of vector fields generated by F . In the context of our

system (3.1) and (3.2), M = R
2|I+| and U = R

2|I+0 |, while

F (q,u) = Y (q) +
∑
k∈I+0

ur
k

∂

∂Rk

+ ui
k

∂

∂Ik
.

A continuous curve x(t) ∈ M , t ∈ [0, T ], is an integral curve of F , if there exists a
partition 0 = t0 < t1 < · · · < tm = T , and X1, . . . , Xm ∈ F , such that

ẋ(t) = Xi(x(t)), t ∈ (ti−1, ti).

11



The reachable set from a point x0 ∈ M , denoted by AF(x0, T ), is the set of terminal points
x(T ) of integral curves of F that originates at x0. In particular, we will write the integral
curve generated by a vector field {X} at x0 as exp(tX)x0. We will also denote set of points
reachable from x0 before T as AF(x0,≤ T ) = ∪t≤TAF(x0, t).

In order to verify the reachability condition of Proposition 1.4, the interested question
here is when will AF(x, T ) be M for all x, in which case we say F is time-T strongly
controllable. We will say F is strongly controllable, if AF(x,≤ T ) = M for any T > 0.
Roughly speaking, one sufficient condition to guarantee controllability is letting {F (x, · )} =
TxM , because then the integral curves can go to any desired direction. In [20], a set of

techniques is developed to gradually expand F eligibly, so that {F̃ (x, · )} = Rn where F̃ is
an expansion of F . We call an expansion F ′ of F eligible, if

AF ′(x,≤ T ) ⊂ AF(x,≤ T ), x ∈ M.

It is relatively intuitive to see that F ′ will be confined in the time zero ideal I of Lie algebra
generated by F . Here I = Lie(X − Y, [X, Y ] : X, Y ∈ F), which is essentially L0 if we
consider the control problem (1.8). The largest eligible extension of F within I will be called
the strong Lie saturate. Its equivalence to controllability is given by the following Theorem

Theorem 4.1 (Theorem 12 of Section 3.3 [20]). F is strongly controllable if and only if the
strong Lie saturate is equal to Lie(F) and Ix(F) = TxM .

Moreover, we have the equivalence of strong controllability and time-T strong controlla-
bility as follow:

Theorem 4.2 (Theorem 13 of Section 3.4 [20]). If F is strongly controllable and Ix(F) =
TxM , then AF(x, T ) = M for all x and T > 0.

Note in [20], there is an additional concept called “Lie-determined systems”. We do not
introduce this notion since all analytic vector fields are Lie-determined systems.

Due to these two theorems, in order to show strong controllability, it suffices for us find
an eligible expansion F ′ of F such that it spans the tangent space. [20] have introduced
three ways to do eligible expansions. The first eligible way of expansion is by taking closure
of the control space

Theorem 4.3 (Theorem 5 of Section 3.2.1 [20]). Let F1 be the topological closure of a smooth
family of vector files F , then it is an eligible expansion.

The second eligible way of expansion is doing a convex cone.

Theorem 4.4 (Theorem 8 of Section 3.2.2 [20]). Let F1 be the convex cone
∑n

i=1 λiXi with
λi ≥ 0,

∑
λi ≤ 1, and Xi ∈ F , then it is an eligible expansion.

The third way of expansion is by considering a strong normalizer. A smooth diffeomor-
phism Φ on M is a strong normalizer for F , or simply called a normalizer, if

Φ(AF(Φ−1(x),≤ T )) ⊂ AF(x,≤ T ), x ∈ M,T ≥ 0.

We denote the set of all strong normalizer as NS(F). If X is vector field and Φ is a diffeo-
morphism, we will use Φ#(X) to denote the vector field (Φ∗ ◦ X) ◦ Φ−1. One easy way to
tell a diffeomorphism is a normalizer is the following

12



Lemma 4.5 (The Lemma after Definition 5 in Section 3.2.2 [20]). A diffeomorphism Φ is a
strong normalizer for F if both Φ(x) and Φ−1(x) belong to AF(x,≤ T ) for all x and T > 0.

One particular choice of Φ(x) for the application of this lemma, is letting Φ(x) =
exp(tX)x, if λX ∈ F for all λ ∈ R.

The following theorem shows that normalizers can expand the eligible controls.

Theorem 4.6 (Theorem 9 of Section 3.2.3 [20]). Let F1 = {Φ#(X) : Φ ∈ NS(F), X ∈ F},
then it is an eligible expansion.

In a simplified setting, we can consider polynomial vector fields on R
d. A vector field

A(x) is called a polynomial vector field if the each coordinate is a polynomial in the variable
x1, . . . , xn. In general A(x) can be written as

A(x) =

p∑
k=0

A(k)(x) (4.1)

where A(k)(x) is a homogenous polynomial vector field of order k, so A(k)(λx) = λkA(k)(x).
One useful fact of polynomial vector fields is the following:

Lemma 4.7. Let A(x) be a polynomial vector field of highest order p with decomposition
(4.1). Suppose {A, λX, λ ∈ R} ⊂ F , and X is a constant vector field. We consider the Lie
bracket as a linear mapping from vector fields on R

d to themselves, and write adV : Y �→
[V, Y ]. Let F ′ = F ∪ {λ(adV )pAp, λ > 0}, then it is an eligible expansion of F .

Proof. Since both X and −X are in F , for any fixed λ > 0, exp(±λX)x ∈ AF(x), so
by Lemma 4.5, exp(λX) is a normalizer. By Theorem 4.6, we can expand F by including
exp(λX)#A. By taking the k-th order derivative of λ over the expression exp(λX)∗A exp(−λX),
one will find the following Taylor expansion, which holds for general vector fields X and A,
as long as the sum converges,

exp(λX)#A =
∞∑
k=0

λk

k!
(adX)kA.

In our particular case, the convergence is trivial, since the series are nonzero only for the
first p terms. This is because X is a constant vector field, so [X, V ] is of order k − 1 if V is
of order k, and [X, V ] = 0 if V is a constant vector field as well. Due to Theorem 4.4, we
can also include λ−p exp(λX)#A for the expansion. Then by Theorem 4.3, we can eligibly
include the limit of λ′λ−p exp(λX)#A with any fixed λ′ > 0 and λ → ∞, which is clearly
λ′
k!
(adX)pA(p) in this case.

Using the argument of Lemma 4.7, one important result of [20] is that if A is of an
odd order, then hypoellipticity implies controllability, when the controls are over constant
vector fields. The fact that A is odd, makes (adX)pA and (ad(−X))pA constant vector
fields of opposite sign, so one can gradually expand F like in the proof of hypoellipticity.
Unfortunately for us, the system (3.1-3.2) is of order two. But still we can show controllability
if we carefully do the expansions.

13



Proposition 4.8. Under Assumption 1.2, the joint system (3.1-3.2) is strongly controllable,
and also time-T strongly controllable for all T > 0.

Proof. Recall that I+
n is defined as follow, I+

0 = {k ∈ I+|k ∈ I0 or − k ∈ I0} and

I+
n = I+

n−1 ∪ {k ∈ I+ : k = (m+ n)+ or (m− n)+,m, n ∈ In−1, am,n �= 0}.

Based on Theorems 4.1 and 4.2, if suffices to show that starting from

F0 = span

{
Y,

∂

∂Ik
,

∂

∂Rk

∣∣∣∣k ∈ I+
0

}
,

we can find a sequence of eligible expansions such that

Fj ⊃ span

{
Y,

∂

∂Ik
,

∂

∂Rk

∣∣∣∣k ∈ I+
j

}
.

This can be easily obtained by induction. Suppose the relation above holds for Fj, then for
any k ∈ I+

j+1, there are m,n ∈ I+
j so that k is (m+ n)+ or (m− n)−, while am,n �= 0. Let

X = c
∂

∂Rm

+
∂

∂Rn

,

which is a constant vector field in Fj. Apply Lemma 4.7, we can expand Fj eligibly by
adding λ(adX)2Y , λ > 0. According to 3.3,

(adX)2Y = c

[
∂

∂Rn

,

[
∂

∂Rm

, Y

]]
+ c

[
∂

∂Rm

,

[
∂

∂Rn

, Y

]]
= 2cam,n

∂

∂R(m+n)+
+ 2cam,n

∂

∂R(m−n)+
,

because am,n = an,m and am,m = an,n = 0. Following the same line, if we let

X ′ = c
∂

∂Im
+

∂

∂In
,

we can eligibly add

(adX ′)2Y = −2cam,n
∂

∂R(m+n)+
+ 2cam,n

∂

∂R(m−n)+
.

Since c here can be any real number, by Theorem 4.4, we can expand Fj eligibly into Fj+1

so that it includes span{ ∂
∂R(m+n)+

, ∂
∂R(m−n)+

}, and likewise also span{ ∂
∂I(m+n)+

, ∂
∂I(m−n)+

}, using
the another half of (3.3). This concludes the induction and also the proof.
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5 Reachability is necessary for ergodicity

Although in our turbulent system (1.3), the proof for hypoellipticity was easily extended
to one for reachability, thanks to [20], in general reachability is not replaceable by hypoel-
lipticity. In particular, reachability guarantees that the the state space is irreducible while
hypoellipticity only shows the regularity of the transition density.

In this section, we will show a simple concrete diffusion process in R
2 that 1) has the

quadratic Euclidean norm squared as a Lyapunov function; 2) is hypoelliptic and the stochas-
tic forcing is never zero; 3) is reducible so it is not ergodic. The basic intuition for the re-
ducibility part is showing there are two regions that are separated by the drift vector fields,
so the diffusion process cannot enter one from another.

Consider the following diffusion process zt = (xt, yt)

d

[
xt

yt

]
=

[
Φ(yt)(9xt − x3

t )
−yt

]
dt+

[
0
1

]
dB1

t +

[
sinψ(xt)
cosψ(xt)

]
◦dB2

t = Y (zt)dt+Σ1dB
1
t +Σ2(zt)◦dB2

t .

(5.1)
Here Φ is one plus the cumulative distribution function of the standard normal distribution:

Φ(y) = 1 +

∫ y

−∞
φ(u)du = 1 +

∫ y

−∞

1√
2π

e−
u2

2 du.

We only need to use that Φ is smooth, takes value in (1, 2) and is strictly increasing. The
function ψ(x) in (5.1) is a combination of three mollifiers:

ψ(x) =

⎧⎪⎨⎪⎩
π
2
exp(−1/(1− x2)), |x| ≤ 1,

0, 1 ≤ |x| ≤ 2,
π
2
exp(−1/(|x| − 2)), |x| ≥ 2.

We only need to use that ψ is smooth, ψ is bounded by π/2 and positive, and ψ̇ is bounded
by π.

5.1 Lyapunov function and attractors

The Itô integral form of (5.1) is

d

[
xt

yt

]
=

[
Φ(yt)(9xt − x3

t ) +
1
4
ψ̇(xt) sin 2ψ(xt)

−yt − 1
2
ψ̇(xt) sin(ψ(xt))

2

]
dt+

[
0
1

]
dB1

t +

[
sinψ(xt)
cosψ(xt)

]
dB2

t .

Using the Itô formula, we find the time derivative of Vt :=
1
2
(x2

t + y2t ) is bounded by:

LVt = Φ(yt)(9x
2
t − x4

t ) + π(|xt|+ |yt|) + sin2 ψ(xt)− y2t + cos2 ψ2(xt)

≤ 18x2
t − x4

t − y2t + π(|xt|+ |yt|) + 1

= −1

2
x2
t −

1

2
y2t −

(
19

2
− x2

t

)2

− 1

2
(|yt| − π)2 − 1

2
(|xt| − π)2 + 1 + (

19

2
)2 + π2

≤ −Vt + kv.

So by Dynkin’s formula and Gronwall’s inequality, we have that Vt is a Lyapunov function.

EVt ≤ e−tV0 + kv.
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5.2 Hypoellipticity Verification

By Proposition 1.4, it suffices to check the following three vector fields span R
2 at each (x, y):

Σ1 =

[
0
1

]
, Σ2 =

[
sinψ(x)
cosψ(x)

]
, [Y,Σ1] =

[ [
Φ(y)(9x− x3)

−y

]
,

[
0
1

] ]
. (5.2)

When |x| /∈ [1, 2], sinψ(x) > 0, the first two vector fields in (5.2) already span R
2. For

|x| ∈ [1, 2], notice that [ [
Φ(y)(9x− x3)

−y

]
,

[
0
1

] ]
=

[
φ(y)(9x− x3)

−1

]
as φ(y) > 0 and x(x − 3)(x + 3) has no root in [1, 2], the vector field above spans R2 with
Σ1.

5.3 Reducibility from “walls”

The intuition behind system (5.1) is setting up two attracting fixed points, (±3, 0) so one
cannot be reached from another following the flow. This is achieved by building two walls:
A+ = {1 ≤ x ≤ 2}, A− = {−2 ≤ x ≤ −1} and show that no points can go from the right of
A+ to the left of it. This can be explicitly illustrated as the following lemma, which can be
used as a proof for reducibility.

Lemma 5.1. Let B+ = {1 < x} then starting from any z0 = (x0, y0) ∈ B+, xt ≥ 1 a.s.

Proof. Since xt is continuous, if xt ever reach Bc
+, it has to cross A+. So by the strong

Markov property it suffices to show that for any z0 ∈ A+, xt ≥ 1 a.s. This is equivalent of
showing that if we denote the exiting time of A+ as τ , i.e.:

τ := inf{t : xt /∈ A+},
then xτ �= 1 a.s. Note for any T ≥ 0, before time τ , xt ∈ A+, so:

xτ∧T = x0 +

∫ τ∧T

0

Ψ(yt)(9xt − x3
t )dt+

1

4
ψ̇(xt) sin 2ψ(xt)dt+ sinψ(xt)dW

2
t

= x0 +

∫ τ∧T

0

Ψ(yt)(9xt − x3
t )dt ≥ x0 > 1.

Remark 5.2. In [21], Remark 2.2 has another simple example in 1D with hypoellipticity but
reducible:

dxt = sin xt + cos xt ◦ dBt.

The bracket condition holds, because [sin x, cosx] = −1, while intervals like [2nπ− 3
2
π, 2nπ+

3
2
π] are not reachable from one and another. But stochastic forcing here is zero at (n+ 1

2
)π,

while our 2D model has forcing nonzero everywhere, and the Euclidean norm squared is a
Lyapunov function.

16



Figure 5.1: The plot of the vector fields Y and Σ2. Recall that Σ1 is the constant vector
field of direction [0, 1], so it is omitted here. The flow can go in the blue direction, the red
direction and the inverse of red direction. In the right shaded area A+, the flow can only go
rightward. The vectors are rescaled to fit into the page.

6 Concluding discussion

The main result of the paper for truncated geophysical turbulence models is geometric er-
godicity with a unique invariant measure and minimal stochastic forcing for all geophysical
parameters involving deterministic forcing, topography, and the β-plane and F -plane effects.
This theorem provides a mathematically rigorous framework to discuss and explain the ul-
timate statistical steady state in the competition between jets and coherent vortices in the
wide variety of numerical experiments with random stochastic and deterministic forcings
and dissipation operators. In particular, this rigorous theory guarantees that there are no
bifurcations to multiple statistical steady states as geophysical parameters are varied. Future
problems which should be addressed by the same approach include the extension to geophys-
ical models on the sphere where forcing two stochastic modes is not enough [3], two-layer
models with baroclinic instability [19, 13] and various equations for rotating and stratified
turbulence in three space dimensions [19, 13, 14]. The extension of the results here to the
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infinite dimensional setting [14] is a major challenge for future work.
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A Miscellaneous claims

Lemma A.1. If I is connected through neighbors on Z
2 and contains {k : max{|k1|, |k2|} =

1}} as a subset, then Assumption 1.2 holds as long as I0 contains modes (0, 1) and (1, 1).

Proof. By symmetry, (0,−1), (−1, 1) ∈ I0. Therefore (1, 0) = (0,−1) + (1, 1) is in I1 and so
is (−1, 0). Likewise (−1, 1) = (−1, 0) + (0, 1) and (1,−1) are in I2. Because I is connected,
so for any k ∈ I, there is a path (1, 0) = k1, k2, . . . , kn = k where ki and ki+1 are neighbors
in Z

2. One can then easily see ki ∈ Ii + 1, so our proof is complete.

Lemma A.2. The growth condition (1.7) holds for the truncated stochastic Navier Stokes.
In particular, we show that E2n with all n ∈ N, and exp(λE) with λ ∈ (0, 2d0/‖Σ‖2) are
Lyapunov functions.

Proof. As a matter of fact, because the Markov property, (2.2) implies that the Itô formula
for E can be bounded by the following with K0 =

1
2d0

|F|2 + 1
2
tr(Qσ)

dE =
1

2
〈q, dq〉+ 1

2
〈dq,q〉 ≤ −d0Edt+K0 +

1

2
〈q,ΣdWt〉+ 1

2
〈ΣdWt,q〉.

We apply the Itô formula to E2, by plugging the inequality above into

dE2 = 2EdE + 〈dE , dE〉,

we find that

dE2 ≤ −2d0E2dt+ 2K0E + 2‖Σ‖2E + E [〈q,ΣdWt〉+ 〈ΣdWt,q〉].

Apply Young’s inequality, there is a K1 such that

dE2 ≤ −d0E2dt+K1 + E [〈q,ΣdWt〉+ 〈ΣdWt,q〉].

By repeating this argument, there is a sequence of constant Kn such that

dE2n ≤ −d0E2ndt+Kn + 2n−1E2n−1[〈q,ΣdWt〉+ 〈ΣdWt,q〉].

Then applying the Grönwall’s inequality, we find that E2n is a Lyapunov function. As
a consequence, ed0t(E2n − d−1

0 Kn) is a submartingale. So Doob’s inequality and Jensen’s
inequality implies that E supt≤T |q|p is bounded for any power p.
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Likewise, applying Itô’s formula to exp(λE), we find that

d exp(λE) = λ exp(λE)dE +
1

2
λ2 exp(λE)〈dE , dE〉

≤ (
1

2
λ2‖Σ‖2E − d0λE +K0) exp(λE)dt+ 1

2
exp(λE)〈q,ΣdWt〉+ 1

2
exp(λE)〈ΣdWt,q〉.

As a consequence, for any λ ∈ (0, 2d0/‖Σ‖2), there is a E0 > 0 and d′0 > 0 such that if
E > E0, then

1

2
λ2‖Σ‖2E − d0λE +K0 < −d′0.

So if we let

K ′
0 = max

0≤x≤E0

(
1

2
λ2‖Σ‖2x− d0λx+K0) exp(λx)

we find the dissipative relation

d exp(λE) ≤ −d′0 exp(λE)dt+K ′
0 +

1

2
exp(λE)〈q,ΣdWt〉+ 1

2
exp(λE)〈ΣdWt,q〉.

This with a localization argument can easily show that exp(λE) is a Lyapunov function for
λ < 2d0/‖Σ‖2. By turning it into a submartingale, it is easy to argue that

E sup
t≤T

exp(λE) < ∞.

Note that λE + 1
2λ
N2 ≥ N |q|, it is clear that

E sup
t≤T

exp(N |q|) < ∞, (A.1)

for any N > 0.
We can now verify the moment bounds for derivative flows. Because in our case Σ

are constant vector fields, we find that Jα
0,t follows a linear dynamics conditioned on the

realization of q
dJ0,t = DY (q)J0,tdt.

Likewise, the inverse derivative flow also follows a linear dynamics

dJ−1
0,t = −J−1

0,t DY (q)dt.

Therefore, E[supt≤T ‖J0,t‖p] and E[supt≤T ‖J−1
0,t ‖p] are both bounded by exp(Tp supt≤T ‖DY (q)‖).

Finally, we notice that Y (q) depends quadratically in q, so ‖DY ((q)‖ is bounded by M |q|
for some M , so using (A.1) we can conclude our claim.

As for the higher order derivative, we denote the Jα
0,t as the higher order Frechet derivative

in the iterative direction α = (α1, . . . , αk), and β1 + · · · βn = α if {βj} is a partition of
(α1, . . . , an). Then using induction, and the fact that Y is quadratic so the third derivative
is zero, we find there is a constant Ck such that

dJα
0,t ≤ DY (q)Jα

0,tdt+ Ck sup

{
‖D2Y (q)‖

∏
j≥1

‖Jβj

0,t‖
}
,
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while the supreme is taken over all
∑

βj = α with βj being nonempty and not α itself. By
Grönwall’s inequality, there is a constant Dk such that

sup
t≤T

‖J (k)
0,t ‖ ≤ Dk exp

(
T sup

t≤T
‖DY (q)‖

)
sup
t≤T

{
‖D2Y (q)‖

∏
j≥1

‖Jβj

0,t‖
}
.

Notice that D2Y (q) is simply a constant tensor, by Young’s inequality, E supt≤T ‖J (k)
0,t ‖p can

be bounded by combinations of

E exp

(
T sup

t≤T
p′‖DY (q)‖

)
and E‖Jβj

0,t‖pj ,

of finite p′ and pj. Yet the quantities above are bounded by (A.1) or induction.
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