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ABSTRACT

In this paper, a conditional Gaussian framework for filtering complex turbu-

lent systems is introduced. Despite the conditional Gaussianity, such systems

are nevertheless highly nonlinear and are able to capture the non-Gaussian

features of nature. The special structure of the filter allows closed analytical

formulae for updating the posterior states and is thus computationally effi-

cient. An information-theoretic framework is developed to assess the model

error in the filter estimates. Three types of applications in filtering condition-

al Gaussian turbulent systems with model error are illustrated. First, dyad

models are utilized to illustrate that ignoring the energy-conserving nonlinear

interactions in designing filters leads to significant model errors in filtering

turbulent signals from nature. Then a triad (noisy Lorenz 63) model is adopt-

ed to understand the model error due to noise inflation and underdispersion.

It is also utilized as a test model to demonstrate the efficiency of a novel

algorithm, which exploits the conditional Gaussian structure, to recover the

time-dependent probability density functions associated with the unobserved

variables. Furthermore, regarding model parameters as augmented state vari-

ables, the filtering framework is applied to the study of parameter estimation

with detailed mathematical analysis. A new approach with judicious model

error in the equations associated with the augmented state variables is pro-

posed, which greatly enhances the efficiency in estimating model parameters.

Other examples of this framework include recovering random compressible

flows from noisy Lagrangian tracers, filtering the stochastic skeleton model

of the Madden-Julian oscillation (MJO) and initialization of the unobserved

variables in predicting the MJO/Monsoon indices.
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1. Introduction38

Turbulent dynamical systems are ubiquitous in many disciplines of contemporary science and39

engineering (Hinze and Hinze 1959; Townsend 1980; Frisch 1995; Majda and Wang 2006; Vallis40

2006; Salmon 1998). They are characterized by both a large dimensional phase space and a large41

dimensional space of instability with positive Lyapunov exponents. These linear instabilities are42

mitigated by energy-conserving nonlinear interactions, yielding physical constraints (Majda and43

Harlim 2013; Sapsis and Majda 2013b; Majda and Harlim 2012; Harlim et al. 2014), which trans-44

fer energy to the linear stable modes where it is dissipated resulting in a statistical steady state.45

Both understanding complex turbulent systems and improving initializations for prediction require46

filtering for an accurate estimation of full state variables from noisy partial observations. Since47

the filtering skill for turbulent signals from nature is often limited by errors due to utilizing an48

imperfect forecast model, coping with model errors is of wide contemporary interest (Majda and49

Harlim 2012; Majda 2012).50

Many turbulent dynamics are summarized as conditional Gaussian systems (Majda and Harlim51

2012; Majda 2003; Kalnay 2003; Majda and Gershgorin 2013; Majda et al. 1999). Despite the52

conditional Gaussianity, such systems nevertheless can be highly nonlinear and able to capture the53

non-Gaussian features of nature (Berner and Branstator 2007; Neelin et al. 2010). In this paper, we54

introduce a general conditional Gaussian framework for continuous-time filtering. The conditional55

Gaussianity means that once the trajectories of the observational variables are given, the dynamics56

of the unobserved variables conditioned on these highly nonlinear observed trajectories become57

Gaussian processes. One of the desirable features of such conditional Gaussian filter is that it58

allows closed analytical formulae for updating the posterior states associated with the unobserved59

variables (Liptser and Shiryaev 2001) and is thus computationally efficient.60
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Recently, the conditional Gaussian nonlinear filter was adopted for filtering the stochastic skele-61

ton model for the Madden-Julian oscillation (MJO) (Chen and Majda 2015a), where equatorial62

waves and moisture were filtered given the observations of the highly intermittent envelope of63

convective activity. Another application of this exact and accurate nonlinear filter involves fil-64

tering turbulent flow fields utilizing observations from noisy Lagrangian tracer trajectories (Chen65

et al. 2014c, 2015), where an information barrier was shown as increasing the number of tracers66

(Chen et al. 2014c) and a multiscale filtering strategy was studied for the system with coupled67

slow vortical modes and fast gravity waves (Chen et al. 2015). In addition, a family of low-order68

physics-constrained nonlinear stochastic models with intermittent instability and unobserved vari-69

ables, which belong to the conditional Gaussian family, was proposed for predicting the MJO70

and the monsoon indices (Chen et al. 2014b; Chen and Majda 2015d,c). The effective filtering71

scheme was adopted for the on-line initialization of the unobserved variables that facilitates en-72

semble prediction algorithm. Other applications that fit into the conditional Gaussian framework73

includes the cheap exactly solvable forecast models in dynamic stochastic superresolution of s-74

parsely observed turbulent systems (Branicki and Majda 2013; Keating et al. 2012), stochastic75

superparameterization for geophysical turbulence (Majda and Grooms 2014), and blended particle76

filters for large-dimensional chaotic systems (Majda et al. 2014; Qi and Majda 2015) that cap-77

tures non-Gaussian features in an adaptively evolving low-dimensional subspace through particles78

interacting with conditional Gaussian statistics on the remaining phase space.79

In this paper, we illustrate three types of applications of the conditional Gaussian filtering frame-80

work, where the effect of model error is extensively studied. In addition to the traditional path-wise81

measures, an information-theoretic framework (Branicki and Majda 2014; Branicki et al. 2013;82

Majda and Branicki 2012; Majda and Wang 2006) is adopted to assess the lack of information and83

model error in filtering these turbulent systems.84
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The first application involves utilizing dyad models (Majda and Lee 2014; Majda 2015) to s-85

tudy the effect of model error due to the ignorance of energy-conserving nonlinear interactions86

in forecast models in filtering turbulent signals from nature. Such model error exists in many ad-87

hoc quadratic multi-level regression models (Kravtsov et al. 2005; Kondrashov et al. 2005; Wikle88

and Hooten 2010; Cressie and Wikle 2011) that are utilized as data-driven statistical models for89

time series of partial observations of nature. However, these models were shown to suffer from90

finite-time blow up of statistical solutions (Majda and Yuan 2012; Majda and Harlim 2013). To91

understand the effect of such model error in filtering, a physics-constrained dyad model (Majda92

and Lee 2014) is adopted to generate the turbulent signals of nature while a stochastic parameter-93

ized model without energy-conserving nonlinearities (Majda and Harlim 2012) is adopted as the94

imperfect filter. The skill of this stochastic parameterized filter is studied in different dynamical95

regimes and the lack of information in the filter estimates is compared with that using the perfect96

filter. Meanwhile, the role of observability (Gajic and Lelic 1996; Majda and Harlim 2012) is97

explored and its necessity in filtering turbulent systems is emphasized.98

The second application of the conditional Gaussian framework is to filter a family of triad mod-99

els (Majda 2003; Majda et al. 1999, 2001, 2002b), which include the noisy Lorenz 63 (L-63)100

model (Lorenz 1963). The goal here is to explore the effect of model error due to noise inflation101

and underdispersion in designing filters. The motivation of studying such kind of model error102

comes from the fact that many models for turbulence are underdispersed since they have too much103

dissipation (Palmer 2001) due to inadequate resolution and deterministic parameterization of un-104

resolved features. On the other hand, suitably inflating the noise in imperfect forecast models are105

widely adopted to reduce the lack of information (Anderson 2001; Kalnay 2003; Majda and Har-106

lim 2012) and also to suppress catastrophic filter divergence (Harlim and Majda 2010a; Tong et al.107

2015). Besides filtering a single trajectory, recovering the full probability density function (PDF)108
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associated with the unobserved variables given an ensemble of observational trajectories is also109

of particular interest. Combining the ensembles of the analytically solvable conditional Gaussian110

distribution associated with filtering each unobserved single trajectory, an effective conditional111

Gaussian ensemble mixture approach is proposed to approximate the time-dependent PDF asso-112

ciated with the unobserved variables. In this fashion, an efficient algorithm can be generated for113

systems with a large number of the unobserved variables, compared with applying a direct Monte114

Carlo method which is extremely slow and expensive due to the “curse of dimensionality” (Majda115

and Harlim 2012; Daum and Huang 2003).116

Parameter estimation in turbulent systems is an important issue and this is the third topic with-117

in the conditional Gaussian filtering framework of this paper. Regarding the model parameters118

as augmented state variables, algorithms based on particle or ensemble Kalman filters were de-119

signed for parameter estimation (Dee 1995; Smedstad and O’Brien 1991; Van Der Merwe et al.120

2001; Plett 2004; Wenzel et al. 2006; Campillo and Rossi 2009; Harlim et al. 2014; Salamon and121

Feyen 2009). Although many successful results utilizing these algorithms were obtained, very122

little mathematical analysis was provided for exploring the convergence rate and understanding123

the potential limitation of such algorithms. Guidelines for enhancing the efficiency of the algo-124

rithms are desirable since a short training period is preferred in many real-world applications. In125

the conditional Gaussian framework, the closed analytic form of the posterior state estimations126

facilitates the analysis of both the error and the uncertainty in the estimated parameters for a wide127

family of models, where detailed mathematical justifications are accessible. Here, focus is on the128

parameter estimation skill dependence on different factors of the model as well as the observabil-129

ity. In some applications that certain prior information of the parameters is available (Yeh 1986;130

Iglesias et al. 2014). Yet, none of the existing filtering-based parameter estimation approaches em-131

phasizes exploiting such prior information in improving the algorithms. In this paper, stochastic132

6



parameterized equations (Majda and Harlim 2012), involving the prior knowledge of the param-133

eters, are incorporated into the filtering algorithm as the underlying processes of the augmented134

state variables. This improved algorithm greatly enhances the convergence rate at the cost of on-135

ly introducing a small model error and it is particularly useful when the system loses practical136

observability.137

The remainder of this paper is as follows. The general framework of the conditional Gaussian138

nonlinear systems is introduced in Section 2. In Section 3, an information-theoretic framework139

for assessing the model error in filtering is proposed. The information measures compensate the140

insufficiency of the path-wise ones in measuring the lack of information in the filtered solution-141

s. Section 4 deals with dyad models, where focus is on model error in filtering due to the lack142

of respecting the underlying physical dynamics of the partially observed system. In Section 5, a143

general family of triad model is proposed and the noisy L-63 model is adopted as a test model144

for understanding the model error in noise inflation and underdispersion. In the same section, the145

conditional Gaussian ensemble mixture for approximating the PDF associated with unobserved146

variables is introduced and the model error in filtering the PDF utilizing imperfect models is s-147

tudied. Section 6 involves parameter estimation, where the skill of estimating both additive and148

multiplicative parameters is illustrated with detailed mathematical analysis. The comparison of149

utilizing direct method and stochastic parameterized equations approach is shown for estimating150

parameters in both linear and nonlinear systems. Summary conclusions are included in Section 7.151
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2. Conditional Gaussian nonlinear systems152

The conditional Gaussian systems have the following abstract form,153

duI = [A0(t,uI)+A1(t,uI)uII]dt +ΣI(t,uI)dWI(t), (1a)

duII = [a0(t,uI)+a1(t,uI)uII]dt +ΣII(t,uI)dWII(t), (1b)

where uI(t) and uII(t) are vector state variables, A0,A1,a0,a1,ΣI and ΣII are vectors and matrices154

that depend only on time t and state variables uI, and WI(t) and WII(t) are independent Wiener155

processes. Once uI(s) for s≤ t is given, uII(t) conditioned on uI(s) becomes a Gaussian process156

with mean ūII(t) and covariance RII(t), i.e.,157

p
(
uII(t)|uI(s≤ t)

)
∼N (ūII(t),RII(t)). (2)

Despite the conditional Gaussianity, the coupled system (1) remains highly nonlinear and is able to158

capture the non-Gaussian features such as skewed or fat-tailed distributions as observed in nature159

(Berner and Branstator 2007; Neelin et al. 2010).160

One of the desirable features of the conditional Gaussian system (1) is that the conditional dis-161

tribution in (2) has the following closed analytic form (Liptser and Shiryaev 2001),162

dūII(t) =[a0(t,uI)+a1(t,uI)ūII]dt +(RIIA∗1(t,uI))(ΣIΣ
∗
I )
−1(t,uI)×

[duI− (A0(t,uI)+A1(t,uI)ūII)dt],

dRII(t) ={a1(t,uI)RII +RIIa∗1(t,uI)+(ΣIIΣ
∗
II)(t,uI)

−(RIIA∗1(t,uI))(ΣIΣ
∗
I )
−1(t,uI)(RIIA∗1(t,uI))

∗}dt.

(3)

The exact and accurate solutions in (3) provide a general framework for studying continuous-163

time filtering and uncertainty quantification of the conditional Gaussian system (1). In filtering the164

turbulent system (1), if uI(s≤ t) is the observed process, then the posterior states of the unobserved165
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process uII(t) in (2) are updated following the analytic formulae (3) associated with the nonlinear166

filter (1).167

3. An information-theoretic framework for assessing the model error168

Assume ut is the true signal and u f ilter
t is the filtered solution. The traditional measures for169

assessing the filtering skill in the i-th dimension of ut and u f ilter
t are the root-mean-square (RMS)170

error and anomaly pattern correlation (Hyndman and Koehler 2006; Kalnay 2003; Majda and171

Harlim 2012),172

RMS error =
√

E
[
(ut−u f ilter

t )2
]
,

Pattern Correlation =
E
[(

ut−E[ut ]
)(

u f ilter
t −E[u f ilter

t ]
)]√

E
[(

ut−E[ut ]
)2
]
·E
[(

u f ilter
t −E[u f ilter

t ]
)2
] , (4)

where ut and u f ilter
t represent the i-th dimension of the vector fields ut and u f ilter

t , respectively.173

Despite their wide applications in assessing filtering and prediction skill, these path-wise mea-174

sures fail to assess the lack of information in the filter estimates and the predicted states (Branicki175

and Majda 2014; Chen and Majda 2015d). As shown in (Chen and Majda 2015d), two predict-176

ed trajectories with completely different amplitudes can have the same RMS error and anomaly177

pattern correlation. Undoubtedly, the solution having comparable amplitude as the truth is more178

skillful than the one with strongly underestimated amplitude, which misses all the extreme events179

(Majda et al. 2010b; Majda and Harlim 2012; Majda and Branicki 2012) that are important for180

the turbulent systems. Different from the indistinguishable skill utilizing the path-wise measure-181

ments, an information-theoretic framework including the measurement of the lack of information182

succeeds in discriminating the prediction skill of the two solutions.183

In (Branicki and Majda 2014), a systematic information-theoretic approach was developed to184

quantify the statistical accuracy of Kalman filters with model error and the optimality of the im-185
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perfect Kalman filters in terms of three information measures was presented. Another application186

of information theory is illustrated in (Branicki and Majda 2015) for improving imperfect predic-187

tions via multi-model ensemble forecasts.188

Following the general information-theoretic framework in (Branicki and Majda 2014; Chen and189

Majda 2015d), we consider three information measures:190

The Shannon entropy S(Ut) of the residual Ut = ut−u f ilter
t is given by (Majda and Wang 2006;191

Abramov and Majda 2004)192

S (Ut) :=−
∫

p(Ut) ln p(Ut)dUt . (5)

The relative entropy P(π,π f ilter) of the PDF π f ilter associated with u f ilter
t compared with the193

truth π is given by (Majda et al. 2005; Majda and Wang 2006; Majda and Branicki 2012; Majda194

et al. 2002a),195

P(π,π f ilter) :=
∫

π(u) ln
π(u)

π f ilter(u)
du. (6)

The mutual information M (ut ,u
f ilter
t ) between the true signal ut and the filtered one u f ilter

t is196

given by the symmetric formula (MacKay 2003; Branicki and Majda 2014),197

M (ut ,u
f ilter
t ) :=

∫ ∫
p(ut ,u

f ilter
t ) ln

p(ut ,u
f ilter
t )

π(ut)π f ilter(u f ilter
t )

dutdu f ilter
t . (7)

Each one of the three measures provides different information about the filtering skill. The mu-198

tual information M (ut ,u
f ilter
t ) measures the dependence between ut and u f ilter

t . The Shannon199

entropy of the residual S (Ut) measures the uncertainty in the filtered solution u f ilter
t compared200

with the truth ut . These two information measures are the surrogates for the anomaly pattern corre-201

lation and RMS error in the path-wise sense, respectively (Branicki and Majda 2014). Particularly,202

if both the truth ut and the filtered solution u f ilter
t are Gaussian distributed, then the asymptotic203

anomaly pattern correlation and RMS error can be expressed in analytic forms by the mutual in-204

formation and the Shannon’s entropy. The relative entropy P(π,π f ilter) quantifies the lack of205
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information in the statistics of the filtered solution u f ilter
t relative to that of the truth ut (Majda and206

Gershgorin 2010; Majda and Branicki 2012). Therefore, it is an indicator of assessing the disparity207

in the amplitudes and spread between u f ilter
t and ut . Importantly, the relative entropy is able to208

quantify the ability of capturing the extreme events (Chen et al. 2014b; Chen and Majda 2015d;209

Branicki and Majda 2014), corresponding to the tails of a distribution, in the filtered solutions.210

The relative entropy is often interpreted as a ’distance’ between the two probability densities but it211

is not a true metric. It is non-negative with P = 0 only when π = π f ilter and it is invariant under212

nonlinear changes of variables.213

Due to the importance of measuring the lack of information in the filtered solutions, the relative214

entropy is included in assessing the filtering skill throughout this work. Along with the relative215

entropy, we nevertheless show the anomaly pattern correlation and the RMS error instead of the216

mutual information and the Shannon’s entropy since the readers are more familiar with these217

traditional path-wise measures. Yet, it is important to bear in mind that the mutual information and218

the Shannon’s entropy are the surrogates of the path-wise measures in the information-theoretic219

framework.220

In the study of filtering the unobserved single trajectories in Section 4 and 5a, the posterior mean221

estimation is chosen as the filter estimate u f ilter
t . Both the path-wise filtering skill in u f ilter

t using222

(4) and the lack of information in the time-averaged PDF of u f ilter
t related to that of the truth ut223

via the relative entropy (6) are assessed. In measuring the lack of information in the recovered224

time-dependent PDF in Section 5b and 5c, the relative entropy (6) in the recovered PDF π f ilter
225

related to the truth π at each time instant is computed, where π f ilter is obtained from conditional226

Gaussian ensemble mixture approach.227

It is worthwhile remarking that although most of the focus of this paper is on assessing the lack228

of information in the path-wise sense, the conditional Gaussian framework (1)–(3) also provides a229
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general framework for quantifying the uncertainty using imperfect models in ensemble prediction.230

Assume the joint distributions regarding uI and uII in (1) for perfect and imperfect models are231

given by232

p(uI,uII) = p(uII|uI)π(uI), pM(uI,uII) = pM
L (uII|uI)π

M(uI),

where due to the incomplete knowledge or the coarse-grained effect the distribution pM associated233

with the imperfect model is assumed to be formed only by the conditional moments up to L.234

According to (Branicki et al. 2013), the lack of information in the imperfect model related to the235

perfect one is given by236

P(p(uI,uII), pM
L (uI,uII)) = P(p(uI,uII), pL(uI,uII))+P(pL(uI,uII), pM

L (uI,uII)), (8)

where pL is the PDF reconstructed using the L moments of the perfect model. The first term on the237

right hand side of (8) is called the intrinsic barrier, which measures the lack of information in the238

perfect model due to the coarse-grained effect from the insufficient measurement, and the second239

term is the model error using the imperfect model. Direct calculation shows that240

Intrinsic barrier =
∫

π(uI)(S (pL(uII))−S (p(uII))) , (9)

Model error = P(π(uI),π
M(uI))+

∫
π

M(uI)P(pL(uII|uI), pM
L (uII|uI))duI. (10)

In the conditional Gaussian framework, L = 2 and the relative entropy for the conditional Gaussian241

distributions in (10) is assessed in light of the closed analytic formulae (3) for both the distribu-242

tions. Note that in filtering complex turbulent systems, if the observations in the imperfect filter243

πM(uI) are assumed to be the same as π(uI) in the perfect filter, then the lack of information in244

the imperfect filter related to the perfect one is simply assessed by245

E (t) = P(pL(uII(t)|uI(s)), pM
L (uII(t)|uI(s))), 0≤ s≤ t. (11)
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The information measurement in (11) provides a guideline in designing practical imperfect filters.246

An example of applying (11) to assess the information model error in different imperfect filters247

is shown in (Chen and Majda 2015b) for filtering a turbulent flow field using noisy Lagrangian248

tracers.249

4. Dyad models250

Many turbulent dynamical systems involve dyad and triad interactions (Majda 2015; Majda and251

Lee 2014; Majda et al. 2009). These nontrivial nonlinear interactions between large-scale mean252

flow and turbulent fluctuations generate intermittent instability while the total energy from the253

nonlinear interactions is conserved. In this and the next sections, we study the filtering skill of254

dyad and triad models, where the effect of different model errors is explored.255

In this section, we utilize dyad models to understand the effect of model error due to the igno-256

rance of energy-conserving nonlinear interactions in forecast models in filtering turbulent signals257

from nature. As discussed in Section 1, such model error exists in many ad-hoc quadratic multi-258

level regression models (Kravtsov et al. 2005; Kondrashov et al. 2005; Wikle and Hooten 2010;259

Cressie and Wikle 2011) for fitting and predicting time series of partial observations of nature,260

which were shown to suffer from finite-time blow up of statistical solutions and also have patho-261

logical behavior of the related invariant measure (Majda and Yuan 2012; Majda and Harlim 2013).262

Recently, a new class of physics-constrained nonlinear regression models were developed (Majda263

and Harlim 2013) and the application of these physics-constrained models in ensemble Kalman fil-264

tering is shown in (Harlim et al. 2014) together with other recent applications to prediction (Chen265

et al. 2014b; Chen and Majda 2015c,d).266
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The general form of the dyad models is described in (Majda 2015; Majda and Lee 2014). Here267

we focus on the following dyad model,268

du = (−duuu+ γuv+Fu)dt +σudWu, (12a)

dv = (−dvvv− γu2)dt +σvdWv. (12b)

In (12), u is regarded as representing one of the resolved modes in a turbulent signal, which269

interacts with the unresolved mode v through quadratic nonlinearities. The conserved energy in270

the quadratic nonlinear terms in (12) is seen by271

(u,v) ·

 γ uv

−γ u2

= 0.

Below, the physics-constrained dyad model (12) is utilized to generate true signals of nature. The272

goal here is to filter the unobserved process v given one single realization of the observed process273

u. In addition to adopting the perfect filter (12), an imperfect filter with no energy-conserving274

nonlinear interactions is studied for comparison. In this imperfect filter, the nonlinear feedback275

−γu2 in v is dropped and the result is a stochastic parameterized filter (Majda and Harlim 2012),276

du = (−duuu+ γuv+Fu)dt +σudWu, (13a)

dv =−dM
vv(v− v̄M)dt +σ

M
v dWv. (13b)

In the stochastic parameterized filter (13), the parameters in the resolved variable u are assumed277

to be the same as nature (12). We further assume the statistics of the unobserved variable v of278

nature (12) are available. Thus, the parameters dM
vv, v̄

M and σM
v in the unresolved process v are279

calibrated (Harlim and Majda 2008, 2010b; Branicki et al. 2013) by matching the mean, variance280

and decorrelation time of those in (12). Note that both (12) and (13) belong to the conditional281

Gaussian framework (1) by denoting uI = u and uII = v.282
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One important issue in filtering is observability (Gajic and Lelic 1996; Majda and Harlim 2012).283

The coupled system (12) is said to lose its observability if the observed process u provides no284

information in determining the unobserved variable v. Intuitively, this corresponds to u= 0 in (12),285

in which case v disappears in the observed process u. The rigorous definition of the observability286

is included in Appendix A. To understand the role of observability in filtering, we consider the287

following two dynamics regimes,288

(A) duu = 1, dvv = 1, γ = 1.5, and Fu = 1.

(B) duu = 1, dvv = 1, γ = 1.5, and Fu = 0.
(14)

The fixed point associated with the deterministic part of (12) is given respectively by289

(A) uc = 0.5741, vc =−0.4945,

(B) uc = 0, vc = 0.

It is clear that in dynamical regime (B) the system (12) loses practical observability when the solu-290

tion is around the fixed point. As shown in Figure 2, both models are able to generate intermittency291

with suitable choices of the observational noise σu and the system noise σv.292

Below, the true signals are generated from the dyad model (12) with different observational293

noise σu and system noise σv. The filtering skill scores utilizing both the physics-constrained294

perfect filter (12) and the stochastic parameterized imperfect filter (13) are shown in Figure 1. The295

first two rows show the RMS error and pattern correlation in the posterior mean estimation of v296

and the third row illustrates the information model error P(π,π f ilter) in the time-averaged PDF297

of the posterior mean estimation π f ilter related to that of the truth π . Here, if the model error298

is larger than P = 5, which is already significant, then the same color as P = 5 is utilized for299

representation in Figure 1.300

The skill scores in dynamical regime (A) are shown in column (a) and (b) of Figure 1. The301

physics-constrained perfect filter (12) has high filtering skill when σu/σv � 1 and σu/σv ≥ 3.302
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As contrast, the stochastic parameterized filter (13) is skillful only when σu/σv � 1, in which303

case the filter estimation of v is mostly determined from the observation process u with small304

observational noise and therefore the two filters are expected to have comparable high skill when305

the system has observability. Panel (a) of Figure 2 compares the posterior mean estimations across306

time with σu = 0.2 and σv = 2. Clearly, both filters succeed in filtering v provided that the practical307

observability is satisfied, i.e. u not approaching zero. On the other hand, as shown in panel (b)308

of Figure 2 with σu = 2 and σv = 0.2, the energy-conserving perfect filter (12) filters v almost309

perfectly while the stochastic parameterized filter (13) has no skill. In fact, σv � σu implies310

that the filter trusts more towards the dynamics of v and the amplitude of energy feedback −γu2
311

is much larger than the stochastic forcing in v. Thus, the process of v is largely driven by the312

nonlinear energy feedback −γu2 in (12b). However, the stochastic parameterized filter (13) has313

no such mechanism and therefore the posterior mean estimation is simply around the maximum314

likelihood state of v, i.e., the mean v̄M. Importantly, without the nonlinear energy feedback term315

−γu2, the information model error P(π,π f ilter) utilizing the imperfect filter (13) remains huge316

unless σu/σv� 1.317

Next, we study the filtering skill in dynamical regime (B), at the fixed point of which the system318

has no observability. Comparing with regime (A), significant deterioration of the filtering skill is319

found when σu� σv ≤ 1 in the truth, where the trajectory of u is around the fixed point uc = 0320

implying no practical observability. See panel (a) of Figure 3. With the increase of σv, more321

positive values of v are reached, which correspond to the increase of intermittent phases of u322

with large bursts. Clearly, the observability is regained at these intermittent phases and thus an323

improved skill in filtering is found. See panel (b) of Figure 3.324

To conclude, the energy-conserving nonlinear feedback plays a significant role in filtering the325

dyad model (12), especially with large observational noise σu. Despite comparable RMS errors,326
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the imperfect stochastic parameterized filter (13) without energy-conserving nonlinearities leads to327

a much larger information model error P(π,π f ilter) than the energy-conserving perfect filter (12)328

for σu/σv 6� 1. In addition, the observability becomes quite important when the system noise σv329

is moderate and the observational noise σu is small. An increase of σv enhances the intermittency330

that improves the filtering skill.331

5. Triad models332

The nonlinear coupling in triad systems is generic of nonlinear coupling between any three333

modes in larger systems with quadratic nonlinearities. Here, we introduce the general form of the334

triad models that belongs to the conditional Gaussian framework (1),335

duI = (L11uI +L12uII +F1)dt +σ1 dWI,

d~uII = (L22~uII +L21uI +Ω~uII +F2)dt +σ2 dWII,

(15)

where uI = u1 and uII = (u2,u3)
T and the coefficients L11,L12,L21,L22 and Ω are functions of336

only the observed variable. In (15), either uI or uII can be regarded as the observed variable and337

correspondingly the other one becomes the unresolved variable that requires filtering. The triad338

model (15) has wide applications in atmosphere and ocean science. One example is the stochastic339

mode reduction model (also known as MTV model) (Majda et al. 2003, 1999, 2002b, 2001), which340

includes both a wave-mean flow triad model and a climate scattering triad model for barotropic341

equations (Majda et al. 2001). Another example of (15) involves the slow-fast waves in the coupled342

atmosphere-ocean system (Majda and Harlim 2012), where one slow vortical mode interacts with343

two fast gravity modes with the same Fourier wavenumber.344
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With the following choice of the matrices and vectors in (15),345

uI = x, uII = (y,z)T , L11 =−σ , L12 = (σ ,0), L21 = (ρx,0)T , σ1 = σx,

L22 =

 −1

−β

 , Ω =

 0 −x

x 0

 , σ2 =

 σy

σz

 ,

the triad model (15) becomes the noisy Lorenz 63 (L-63) model (Lorenz 1963),346

dx = σ(y− x)dt +σxdWx,

dy =
(
x(ρ− z)− y

)
dt +σydWy,

dz = (xy−β z)dt +σzdWz.

(16)

As is known, adopting the following parameters347

ρ = 28, σ = 10, β = 8/3, (17)

the deterministic version of (16) has chaotic solutions, where the trajectory of the system has a348

butterfly profile at the attractor. Such a feature is preserved in the appearance of small or moderate349

noise in (16). See Figure 4 for the trajectories of (16) with σx = σy = σz = 0,5 and 10. Note that350

the noisy L-63 model possesses the property of energy-conserving nonlinear interactions.351

The noisy L-63 model (16) equipped with the parameters (17) is utilized as a test model in this352

section. Below, we first study filtering the unresolved trajectories given one realization of the noisy353

observations. Then an efficient conditional Gaussian ensemble mixture approach is designed to354

approximate the time-dependent PDF associated with the unresolved variables, which requires355

only a small ensemble of the observational trajectories. In both studies, the effect of model error356

due to noise inflation and underdispersion is studied. The underdispersion occurs in many models357

for turbulence since they have too much dissipation (Palmer 2001) due to inadequate resolution358

and deterministic parameterization of unresolved features while noise inflation is adopted in many359

imperfect forecast models to reduce the lack of information (Anderson 2001; Kalnay 2003; Majda360
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and Harlim 2012) and suppress the catastrophic filter divergence (Harlim and Majda 2010a; Tong361

et al. 2015).362

a. Model error in filtering the unresolved processes363

We explore filtering the unresolved single trajectories in L-63 model utilizing imperfect filters,364

where model error comes from the observational and system noise σx,σy and σz. Here, the noisy365

L-63 model (16) is adopted to generate true signals. The model utilized for filtering differs from366

(16) by the noise amplitudes367

dx = σ(y− x)dt +σ
M
x dWx,

dy =
(
x(ρ− z)− y

)
dt +σ

M
y dWy,

dz = (xy−β z)dt +σ
M
z dWz.

(18)

Note that although the system noise in (18) can be arbitrary, the observational noise amplitude368

must be non-zero to avoid the singularity in solving the posterior estimations (3).369

1) FILTERING THE DETERMINISTIC L-63 SYSTEM UTILIZING THE IMPERFECT FORECAST370

MODEL WITH NOISE371

The first test involves the situation that the true signal is generated from the L-63 model which372

has no stochastic noise, i.e, σx = σy = σz = 0 in (16),373

dx = σ(y− x)dt,

dy =
(
x(ρ− z)− y

)
dt,

dz = (xy−β z)dt.

(19)

The filtering skill utilizing the imperfect model (18) with nonzero noise is studied. This demon-374

strates the role of noise inflation in the forecast model. In the situation of filtering x with observa-375

tions from y and z, we have the following results.376
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Proposition 1 Assume the true signal is generated from the system (19). In the situation of filter-377

ing x with observations from y and z, the posterior variance Rt of xt and the error in the posterior378

mean ‖µt− xt‖2 utilizing the forecast model (18) with nonzero σM
y and σM

z , are bounded by379

Rt ≤ R0e−2σt +
(
σ

M
x
)2 1− e−2σt

2σ
, (20a)

‖µt− xt‖2 ≤ ‖µ0− x0‖2e−σt , (20b)

where µ0 and R0 are the mean and uncertainty of variable x at initial time.380

The detailed derivations of Proposition 1 is shown in Appendix B. The results in (20) imply that381

the error in the posterior mean estimation decays to zero in an exponentially fast rate regardless of382

the noise level σM
x ,σM

y and σM
z in the imperfect filter (18). The uncertainty after the initial period383

is essentially bounded by the system noise variance (σM
x )2 over the known parameter (2σ). This384

indicates if the system noise σM
x is zero in the imperfect forecast model (18), then the posterior385

estimation will converge to the truth with an uncertainty that decays exponentially to zero. Panel386

(a) in Figure 5 validates Proposition 1, where the statistics are averaged across time t ∈ [5,50]. The387

nearly zero RMS error and nearly one pattern correlation reveal that the posterior mean converges388

to the truth. The posterior variance increases as the observational noise σM
x increases.389

The qualitative conclusions are the same in the situation of observing x and filtering y and z.390

See panel (b) in Figure 5. The uncertainty in filtering z is larger than that in filtering y, since y is391

directly related in the observational process x in (18). The trajectories as a function of time are392

shown in panel (c) and (d), with nonzero and zero system noise σM
y = σM

z , respectively. In both393

cases the posterior mean converges to the truth. If the system noise is nonzero, then the posterior394

variance for both y and z remains nonzero but is bounded.395
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These results indicate that noise inflation in the imperfect forecast model brings no error regard-396

ing the posterior mean estimation and a bounded posterior uncertainty after a short relaxation time397

provided that the signal is generated from the system with no stochastic noise.398

2) FILTERING THE NOISY L-63 SYSTEM UTILIZING THE IMPERFECT FORECAST MODEL WITH399

NO SYSTEM NOISE400

Next, we reverse the setup in the previous subsection. We assume the true signal is generated401

from the noisy L-63 model (16) but the imperfect forecast model (18) contains no system noise.402

This illustrates the effect of utilizing an underdispersive imperfect forecast model in filtering. Note403

that the observational noise in (18) must be nonzero to avoid the singularity in solving the posterior404

states in (3). Since the two situations that observing either x or y and z lead to qualitatively the405

same results, we focus on the situation that only x is observed. Thus, the imperfect filter has the406

following form,407

dx = σ(y− x)dt +σ
M
x dWx,

dy =
(
x(ρ− z)− y

)
dt,

dz = (xy−β z)dt.

(21)

Below, we assume the observational noise σM
x in (21) is the same as σx in the model (16) that408

generates the true signal. Then model error in filtering simply comes from the ignorance of the409

system noise σy and σz in (16). Column (a)-(c) of Figure 6 show the dependence of the statistics410

on the system noise σy and σz in (16), where we set σy = σz for simplicity. Clearly, with the411

increase of σy and σz, the filtering skill regarding the RMS error and the pattern correlation in the412

posterior mean of both y and z becomes worse while these posterior states are quite certain, both of413

which indicate the negative effect of underdispersion in the imperfect forecast model. In addition,414

the model error P(π,π f ilter) (6) increases as a function of the system noise σy and σz in (16) and415
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is larger in filtering variable z than y. The comparable statistics in the three columns of Figure 6416

reveal that increasing the observational noise σx in the true model (16) has little effect in filtering417

the unresolved variables provided that the observational noise σM
x in the imperfect forecast model418

(21) equals σx.419

In column (d) of Figure 6, we show the trajectories with σx = 1 and σy = σz = 10. Therefore420

a severe underdispersion exists in the imperfect forecast model (21). A larger skewness is found421

in time-averaged PDF of the filter estimation of z than that of the truth, which explains the model422

error.423

3) FILTERING THE NOISY L-63 SYSTEM UTILIZING THE IMPERFECT L-63 FORECAST MODEL424

WITH DIFFERENT NOISE AMPLITUDES425

Finally, we study the general situation that both the system that generates the true signal (16) and426

the imperfect filter (18) contain non-zero noise. Again, we illustrate the situation with observing427

x and filtering y and z. The other case has the same qualitative results.428

Figure 7 shows the filtering skill utilizing the imperfect filter (18), where the model error comes429

from either the observational noise σM
x or system noise σM

y ,σM
z and the noise levels in the truth430

σx,σy and σz are set to equal with each other. In Column (a), (c) and (e), the noise level in the431

true dynamics (16) is gradually increased σx = σy = σz = 1,5 and 10. In the imperfect filter, the432

system noise σM
y and σM

z are taken to be the same as σy and σz and the filtering skill with different433

observational noise σM
x is studied. Clearly, inflating the observational noise σM

x in the imperfect434

forecast model (18) leads to only small model errors (column (a), and column (c) with σM
x > 5).435

On the other hand, underestimating σM
x corresponds to a rapid increase of the RMS error and a436

quick decrease of the pattern correlation (column (e)). At the same time, the posterior variance437

Rt in the underdispersion case becomes smaller, implying these inaccurate estimations are quite438
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certain. It is worthwhile noting that the model error P(π,π f ilter) in the time-averaged PDF of the439

posterior mean estimation associated with variable z shoots up in the underdispersive case (column440

(e)), indicating a significant lack of information in the filter estimates. Similar conclusions are441

found in with imperfect system noise levels σM
y and σM

z . Large errors are found when σM
y and σM

z442

are underdispersed (column (f)) while noise inflation has little negative effect on the model error443

(column (b) and (d)).444

Figure 8 illustrates the posterior mean estimation as a function of time compared with the truth445

in two underdispersive situations. In the case that the observational noise σM
x is underestimated446

(panel (a)-(c)), the filtered trajectories of both y and z are quite noisy. In addition, the mean of the447

PDF associated with the filtered variable z has a positive bias, which explains the large model error448

in column (e) of Figure 7. Looking at the filtered trajectory of z in panel (c), the filtered solution449

misses many negative extreme events such as those around time t = 7.5,14.5 and 18. At these450

time instants, the corresponding values of the observed variable x are all near zero, which implies451

the system losses practical observability (See Appendix A for details). In fact, when x = 0 the452

process of z is completely decoupled from x and y in (18) and observing x plays no role in filtering453

z. On the other hand, as shown in panel (d)-(f), even though the model errors P(π,π f ilter) in the454

unresolved variables y and z are small with the underestimated system noise σM
y and σM

z , the RMS455

error in the filter estimation remains significant.456

Therefore, we conclude that underdispersion in the imperfect filter deteriorates the filtering skill457

while noise inflation within certain range introduces little error.458
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b. Recovering the time-dependent PDF of the unresolved variables utilizing conditional Gaussian459

mixture460

One important issue in uncertainty quantification for turbulent systems is to recover the time-461

dependent PDF associated with the unobserved processes. In a typical scenario, the phase space462

of the unobserved variables is quite large while that of the observed ones remains moderate or463

small. The classical approaches involve solving the Fokker-Planck equation or adopting Monte464

Carlo simulation, both of which are quite expensive with the increase of the dimension, known as465

the “curse of dimensionality” (Majda and Harlim 2012; Daum and Huang 2003). For conditional466

Gaussian systems, the PDF associated with the unobserved processes can be approximated by an467

efficient conditional Gaussian ensemble mixture with high accuracy, where only a small ensemble468

of observed trajectories is needed due to its relatively low dimension and is thus computationally469

affordable. Note that the idea here is similar to that of the blended method for filtering high470

dimensional turbulent systems (Majda et al. 2014; Qi and Majda 2015; Slivinski et al. 2015; Sapsis471

and Majda 2013a).472

Below, we provide a general framework of utilizing conditional Gaussian mixtures in approx-473

imating the time-dependent PDF associated with the unobserved processes. Although the test474

examples of this approach below are based on the 3D noisy L-63 system, this method can be eas-475

ily generalized to systems with a large number of unobserved variables. This section deals with476

the situation with no model error. In Section 5c, the skill of recovering the PDF in the appearance477

of the model error due to noise inflation or underdispersion is explored.478

Let us recall the observed variables uI and the unobserved variables uII in the conditional Gaus-479

sian system (1). Their joint distribution is denoted by480

p(uI,uII) = p(uI)p(uII|uI).
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Assume we have L independent observational trajectories u1
I , . . . ,u

L
I and therefore they are equally481

weighted. The marginal distribution of uI is approximated by482

p(uI)≈
1
L

L

∑
i=1

δ
(
uI−ui

I
)
. (22)

The marginal distribution of uII at time t is expressed by483

p(uII) =
∫

p(uI,uII)duI =
∫

p(uI)p(uII|uI)duI

≈ 1
L

L

∑
i=1

p(uII|ui
I),

(23)

where for each observation ui
I, according to the analytically closed form (3),484

p
(
uII(t)|ui

I(s≤ t)
)
∼N (ūi

II(t),R
i
II(t)). (24)

Thus, the PDF associated with the unobserved variable uII is approximated utilizing (23) and485

(24). Note that in many practical issues associated with turbulent systems, the dimension of the486

observed variables is much lower than that of the unobserved ones. Thus, only a small number of L487

is needed in approximating the low-dimensional marginal distribution p(uI) in (22) to recover the488

marginal distribution p(uII) associated with the unobserved process with this conditional Gaussian489

ensemble mixture approach.490

Now we utilize the noisy L-63 model (16) as a test model for the conditional Gaussian ensemble491

mixture idea in (23). Here we assume x is the observed process while y and z are the unobserved492

ones. The tests with different observational noise σx and system noise σy and σz ranging from 1 to493

10 reach similar qualitative conclusions and thus we only show the situation where σx = σy = σz =494

5. The initial distribution is assumed to be Gaussian with mean (x0,y0,z0) = (1.51,−1.53,25.46)495

following (Majda and Harlim 2012) and a small covariance R0 = 0.1I3.496

Figure 9 shows the recovery of the first four central moments, i.e., mean, variance, skewness and497

kurtosis, associated with the unobserved variable z with different L. For comparison, we also show498
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the results by adopting Monte Carlo simulation with a large ensemble number N = 50,000, which499

is regarded as the truth. Even with L = 20 in (23), the short-term transitions in the mean, variance500

and skewness are captured quite well. With L = 100 ensembles, the leading four moments have501

already been recovered with high accuracy. If L = 500 ensembles are adopted, then these statistics502

are recovered almost perfectly. The same results are found in variable y and thus they are omitted503

here.504

In panel (a) of Figure 10, we show the model error (6) utilizing the conditional Gaussian ensem-505

ble mixture in recovering the marginal PDF of y at a short-term transition time t = 0.46, where506

the skewness arrives at its maximum. Clearly, the model error decays as L and it is already negli-507

gible with L = 100. The comparison of the marginal PDFs is shown in panel (e), which validates508

the results in panel (a). Panel (b) and (f) are the analogy to panel (a) and (e) for recovering the509

marginal PDF of z at the most skewed transition phase t = 0.35. Panel (c) and (d) show the model510

error dependence of L at the essentially statistical equilibrium phase (t = 10). Again, L = 100 is a511

sufficient number for approximating the marginal PDFs with high skill.512

We have also tested the model error dependence on the ensemble number N utilizing Monte Car-513

lo simulations. To reach a comparable skill with L = 100 utilizing conditional Gaussian ensemble514

mixture, the ensemble size utilizing Monte Carlo simulation is around N = 5000, which is much515

larger than L. Note that N increases dramatically with the dimension of the unobserved processes.516

c. Recovering the time-dependent PDF of the unresolved variables with model error517

Now we study recovering the time-dependent PDF of the unresolved variables in noisy L-63518

model with model error. The true signal associated with the observed variable x is generated from519

model (16) and the imperfect model with model error in observational and system noise (18) is520
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utilized to recover the unobserved PDFs. Below, the effect of the model error due to both noise521

inflation and underdispersion are explored.522

First, we take σx = σy = σz = 2 in noisy L-63 model (16) to generate the true signal while the523

imperfect model for recovering the hidden PDFs (18) are equipped with noise σM
x =σM

y =σM
z = 5.524

Therefore, the noise is inflated in the imperfect forecast model. See Figure 11. The recovered525

statistics associated with y are quite accurate utilizing the conditional Gaussian mixture approach526

(23) with L = 100. On the other hand, there is an information barrier in the recovered PDF of z527

at a short-term transition time t = 0.38 due to the underestimation of the skewness. See column528

(c) and (e). Despite the failure of capturing this non-Gaussian feature at the short transition time,529

the time-dependent mean and variance of z are recovered with high accuracy with L = 100 and the530

equilibrium marginal distributions (column (f) and (g)) associated with both y and z are estimated531

with almost no model error.532

Next, we take σx = σy = σz = 10 in noisy L-63 model (16) to generate the true signal while the533

imperfect model for recovering the hidden PDFs (18) are equipped with noise σM
x =σM

y =σM
z = 5.534

Therefore, model error comes from underdispersion in the imperfect forecast model. As shown in535

column (b) of Figure 12, the marginal variance of both y and z is always underestimated. There-536

fore, the recovered marginal PDFs have smaller spreads than the truth, especially at a short-term537

transition phase t = 0.30 for variable z (column (e)). Moreover, even at the essentially statistical538

equilibrium state t = 5, obvious errors are found in the tails of the recovered PDFs (column (g)),539

which implies the probability of the extreme events is severely underestimated.540

6. Parameter estimation541

One of the important issues in many scientific and engineering areas is to estimate model param-542

eters given noisy observations. Classical ways of estimating parameters includes maximum likeli-543
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hood (Snijders 2011; Sowell 1992), Bayesian inference (Bretthorst 2013; Golightly and Wilkinson544

2008; Chen et al. 2014a) and least square methods (Marquardt 1963). One promising way for the545

real-time estimation of the parameters in turbulent systems is via filtering/data assimilation, in546

which the parameters are regarded as augmented state variables. Here, we study the skill of esti-547

mating the parameters in the dynamics that have the following general form,548

dU = (A0(t,U)+A1(t,U)Γ∗) dt +ΣU(U)dWU , (25)

where U = (u1, . . . ,um)
T are the observed state variables and Γ∗= (γ∗1 , . . . ,γ

∗
n )

T are the parameters549

to be estimated that are assumed to be constants. We also assume the system contains random550

noise, the amplitude of which ΣU(U) is known. Evidently, the function A0(t,U)+A1(t,U)Γ∗ can551

consist of polynomials or trigonometric polynomials, where the coefficient of each monomial is552

to be estimated. Note that both the dyad and triad systems in (12) and (15) belong to the model553

family (25) provided that all the state variables are observed.554

Since these parameters Γ∗ are constants, it is natural to augment the system (25) by an n-555

dimensional trivial equations for Γ∗ (Harlim et al. 2014; Smedstad and O’Brien 1991; Van556

Der Merwe et al. 2001; Plett 2004; Wenzel et al. 2006). This forms the framework of parame-557

ter estimation with direct approach,558

dU = (A0(t,U)+A1(t,U)Γ) dt +ΣU(U)dWU , (26a)

dΓ= 0. (26b)

Throughout this section, Γ∗ (with asterisk) always represents the true value of the parameters559

while Γ stands for the variables in the parameter estimation framework.560

In some applications, prior information about the possible range of the parameters is available.561

To incorporate such information into the parameter estimation framework, we augment the system562

(25) by a group of stochastic equations of Γ (Majda and Harlim 2012), where the equilibrium dis-563
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tributions of these stochastic processes represent the prior information for the range of the param-564

eters Γ. This framework is called parameter estimation with stochastic parameterized equations,565

566

dU = (A0(t,U)+A1(t,U)Γ) dt +ΣU(U)dWU , (27a)

dΓ= (a0 +a1Γ) dt +ΣΓ dWΓ. (27b)

Given an initial value µ0,i and an initial uncertainty R0,i of each component of Γ, both the567

augmented systems (26) and (27) belong to the conditional Gaussian framework (1)–(3), where568

uI = U and uII = Γ. Therefore, the time evolution of Γ is solved via closed analytic formulae.569

Below we aim at studying the dependence of the error µt,i− γ∗i and uncertainty Rt,i on different570

factors, such as the noise in the system, the initial uncertainty and the model structure, utilizing571

both the framework in (26) and (27). The important role of observability in parameter estimation572

will be emphasized. In addition, the difference of the skill in parameter estimation in linear and573

nonlinear problems will be explored. The detailed derivations associated with the propositions574

shown below are all included in Appendix C.575

a. Estimating one additive parameter in a linear scalar model576

We start with estimating one additive parameter γ∗ in the following linear scalar model,577

du = (A0u+A1γ
∗)dt +σudWu. (28)

Given the initial guess µ0 of the parameter γ∗ with initial uncertainty R0, the simple structure of578

model (28) allows the analytic expression of the error µt−γ∗ in the posterior mean estimation and579

the posterior uncertainty Rt as a function of time.580
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We start with estimating the additive parameter γ∗ in (28) within the framework utilizing direct581

approach (26),582

du = (A0u+A1γ)dt +σudWu, (29a)

dγ = 0. (29b)

Proposition 2 In estimating the additive parameter γ∗ in (28) within the framework utilizing direct583

approach (29), the posterior variance Rt and the error in the posterior mean µt − γ∗ have the584

following closed analytical form,585

Rt =
R0

1+A2
1σ
−2
u R0t

, (30a)

µt− γ
∗ =

µ0− γ∗

1+A2
1σ
−2
u R0t

+
A1σ−1

u R0

1+A2
1σ
−2
u R0t

∫ t

0
dWu(s). (30b)

According to (30), both the posterior uncertainty Rt and the deterministic part of the error in586

posterior mean converge to zero asymptotically at an algebraic rate of time t−1. The second term587

on its right hand side of (30b) represents the stochastic fluctuation of the error that comes from the588

system noise. The variance of this fluctuation at time t is given by589

var(µt− γ
∗) =

(A1σ−1
u R0)

2t
(1+A2

1σ
−2
u R0t)2

,

the asymptotic convergence rate of which is t−1 as well.590

It is clear from (30) that decreasing the noise σu and increasing the prefactor A1 helps accelerate591

the reduction of both the error and the uncertainty for long-term behavior. In fact, a nearly zero A1592

implies the system losses practical observability, which corresponds to a slow convergence rate.593

On the other hand, although increasing the initial uncertainty R0 enhances the convergence rate594

of the deterministic part of µt , it has no effect on the long-term behavior of reducing either the595

uncertainty Rt and the error in the fluctuation part of µt − γ∗. In addition, a large R0 leads to a596

large error in the fluctuation part of µt− γ∗ at the initial period.597
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Next, we study estimating γ∗ in (28) within the framework utilizing the stochastic parameterized598

equations in (27). To this end, we form the augmented system,599

du = (A0u+A1γ)dt +σudWu, (31a)

dγ = (a0−a1γ)dt +σγdWγ , (31b)

where the equilibrium distribution of γ in (31b) is Gaussian with mean γ̄ = a0/a1 and variance600

var(γ) = σ2
γ /(2a1).601

Proposition 3 In estimating the additive parameter γ∗ in (28) within the framework utilizing s-602

tochastic parameterized equations (31), the posterior variance Rt and the error in the posterior603

mean µt− γ∗ have the following closed analytical form,604

Rt = r2 +
r1− r2

1−
(

R0−r1
R0−r2

)
· exp

(
−A2

1σ
−2
u (r1− r2)t

) , (32a)

µt− γ
∗ ≈(µ0− γ

∗)e−(a1+ReqA2
1σ−2

u )t +
1− e−(a1+ReqA2

1σ−2
u )t

a1 +ReqA2
1σ
−2
u

(a0−a1γ
∗)

+ReqA1σ
−1
u

∫ t

0
e−(a1+ReqA2

1σ−2
u )(t−s)dWu(s), (32b)

where R0 is assumed to be larger than r1 in (32a) and r1 > 0 > r2 are the two roots of the algebraic605

equation606

−A2
1σ
−2
u R2

t −2a1Rt +σ
2
γ = 0.

In (32b), the variance Rt is replaced by its equilibrium value Req for the conciseness of the expres-607

sion due to its exponentially fast convergence rate.608

Unlike (30b) where the error in the posterior mean estimation converges to zero eventually, the609

error utilizing the stochastic parameterized equation (32b) converges to610

|µt− γ
∗|eq =

|a0−a1γ∗|
a1 +ReqA2

1σ
−2
u

,
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which is nonzero unless the mean of the stochastic parameterized equation (31b), i.e., γ =−a0/a1,611

equals the true value of the parameter γ∗. Similarly, the posterior uncertainty converges to a612

nonzero value r1 unless the right hand side of (31b) disappears.613

Yet, comparing the formulae in (30) and (32), it is obvious that the parameter estimation frame-614

work utilizing stochastic parameterized equations (31) leads to an exponential convergence rate for615

both the reduction of the posterior uncertainty and the error in the posterior mean, which implies a616

much shorter training data is needed in the framework (31). The convergence rate is controlled by617

the tuning factors in the stochastic parameterized equations. Thus, with a suitable choice of (31b),618

the convergence rate is greatly improved at the cost of only introducing a small bias in parameter619

estimation.620

b. Estimating one multiplicative parameter in a linear model621

Many applications require estimating parameters that appear as the multiplicative factors of the622

state variables. Here we study a simple situation where only one multiplicative parameter γ∗623

appears in the dynamics. Consider the following system,624

du = (A0− γ
∗u)dt +σudWu, (33)

where we assume the parameter γ∗ > 0 to guarantee the mean stability of the system. Given the625

initial guess µ0 of the parameter γ∗ with initial uncertainty R0, the analytic expressions of the626

error µt − γ∗ and the uncertainty Rt are still available in the framework utilizing direct approach627

(26). There is no simple closed expression for the error estimation in the framework utilizing628

stochastic parameterized equations (27) but numerical results will be provided for comparing the629

skill utilizing the two approaches.630

32



The augmented system utilizing direct approach (26) has the following form,631

du = (A0− γu)dt +σudWu,

dΓ = 0.
(34)

Proposition 4 In estimating the multiplicative parameter γ∗ in (33) within the parameter esti-632

mation framework utilizing direct approach (34), the posterior variance Rt and the error in the633

posterior mean µt− γ∗ have the following closed analytical form,634

Rt =
R0

1+R0σ
−2
u
∫ t

0 u2(s)ds
, (35a)

µt− γ
∗ =

µ0− γ∗

1+R0σ
−2
u
∫ t

0 u2(s)ds
− R0σ−1

u

1+R0σ
−2
u
∫ t

0 u2(s)ds

∫ t

0
u(s)dWu(s). (35b)

The long-term behavior of (35) can be further simplified. Apply the Reynold’s decomposition635

u(t) = ū(t)+u′(t) with u′ = 0 and u′ū = 0, (36)

where ū(t) represents the ensemble mean of a random variable u at a fixed time t. Thus,636 ∫ t

0
u2(s)ds =

∫ t

0
(ū(s))2ds+

∫ t

0
(u′(s))2ds. (37)

Utilizing ergodicity, the two integrals on the right hand of (37) are given by637

lim
t→∞

1
t

∫ t

0
(ū(s))2ds =

∫
∞

−∞

(ū(s))2 peq(u)dU =
A0

γ∗
,

lim
t→∞

1
t

∫ t

0
(u′(s))2ds =

∫
∞

−∞

(u′)2 peq(u)dU =
σ2

u
2γ∗

,

(38)

respectively, where peq(u) is the equilibrium Gaussian distribution associated with the system638

(33). Thus, the long-term behavior of (35) simplifies to639

Rt ≈
R0

1+R0σ
−2
u A2

0(γ
∗)−2t +R0(2γ∗)−1t

. (39a)

µt− γ
∗ ≈ µ0− γ∗

1+R0σ
−2
u A2

0(γ
∗)−2t +R0(2γ∗)−1t

− R0σ−1
u

1+R0σ
−2
u A2

0(γ
∗)−2t +R0(2γ∗)−1t

∫ t

0
u(s)dWu(s). (39b)
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Similar to the situation in estimating one additive parameter in (30), the convergence of both640

the error and uncertainty in (39) is at an algebraic rate t−1. However, the convergence strongly641

depends on the prefactor A0. When A0 is zero, the denominator of the terms on the right hand side642

of (39) becomes (1+R0(2γ∗)−1t), which is independent of the noise amplitude σu. On the other643

hand, when A0 is highly non-zero, decreasing the noise level σu accelerates the convergence. In644

fact, a nearly zero A0 implies that the mean state of u is nearly zero and the system (34) has no645

practical observability. With a small noise, losing practical observability implies a much slower646

convergence.647

Alternately, the augmented system utilizing stochastic parameterized equations (27) has the for-648

m,649

du = (A0− γu)dt +σudWu, (40a)

dγ = (a0−a1γ)dt +σγdWγ . (40b)

Since there is no simple closed formulae for the error and uncertainty in the posterior estimation,650

we show the numerical results utilizing the equations in (3) for estimating γ∗ utilizing (40) and651

compare with those from (34).652

In Figure 13, we show the posterior mean µt and the posterior uncertainty Rt in estimating653

the multiplicative parameter γ∗ in (33) utilizing both the direct approach (34) and the stochastic654

parameterized equation (40). Here, the truth is γ∗ = 5. The constant factor A0 in (33) is set655

to be A0 = 0 such that the system has no practical observability. Different noise σu and initial656

uncertainty R0 are chosen. To introduce an initial error, the initial value of γ in both (34) and657

(40) is set to be γ0 = 2. When estimating γ utilizing stochastic parameterized equation (40), the658

ratio a0/a1 = 5.5 is assumed such that there exists a bias in the equilibrium mean in (40b) and the659
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equilibrium variance σ2
γ /(2a1) = 2 is also fixed. Thus, there is only one freedom a1 in (40b), the660

inverse of which is the decorrelation time.661

We first look at the parameter estimation skill utilizing the direct approach (34). Since A0 = 0,662

the system has no practical observability and the convergence rate has no dependence on σu ac-663

cording to (39), which is validated by panels (a)-(c) in Figure 13. Clearly, the posterior uncertainty664

Rt goes to zero but the error in the posterior mean |µt − γ∗| is still above 0.5 even after t = 100665

nondimensional units. When the initial uncertainty decreases from R0 = 0.5 (panel (a)) to R0 = 0.1666

(panel (d)), the convergence becomes slower as expected from (39). On the other hand, the con-667

vergence utilizing the stochastic parameterized equation (40b) (panels (e)-(h)) is much faster and668

it is almost unchanged by reducing the initial uncertainty (panel (h)). Although the equilibrium669

mean of the stochastic parameterized equation (40b) has a bias of 0.5 unit in γ , with the help of670

observations the averaged posterior mean at the equilibrium differs from the truth by only 0.1 to671

0.2 unit. In addition, the posterior mean estimation is quite robust with respect to the choice of672

the coefficients a0,a1 and σγ in the stochastic parameterized equations (40b) as seen in panels673

(e)-(g). Yet, overestimating (panel (e)) and underestimating (panel (g)) a1 lead to the increase of674

fluctuations and the decrease of convergence, respectively. The optimal choice here is a1 = 0.005675

as shown in panel (f).676

We have so far focused on the parameter estimation skill in the appearance of one observational677

trajectory. In some applications, repeated experiments are available and therefore it is worthwhile678

studying the parameter estimation skill given an ensemble of independent observations. Assume679

the number of the independent observed trajectory is L. Corresponding to (34), the parameter680
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estimation framework utilizing direct approach is given by681

du = (A0− γu)dt +ΣudWu,

dΓ = 0,
(41)

where u is a 1×L column vector, representing L independent observations. All the entries in the682

1×L column vector A0 are equal to A0. Both Σu and Wu are L×L diagonal matrices, where each683

diagonal entry of Σu is σu.684

Proposition 5 In estimating the multiplicative parameter γ∗ in (33) within the parameter estima-685

tion framework utilizing direct approach (41) with L independent observed trajectories, the poste-686

rior variance Rt and the error in the posterior mean µt − γ∗ have the following closed analytical687

form,688

Rt =
R0

1+LR0σ
−2
u
∫ t

0 u2(s)ds
, (42a)

µt− γ
∗ =

µ0− γ∗

1+LR0σ
−2
u
∫ t

0 u2(s)ds
− R0σ−1

u

1+LR0σ
−2
u
∫ t

0 u2(s)ds

∫ t

0
u(s)dWu(s). (42b)

Comparing (35) and (42), the asymptotic convergence with L independent trajectories within the689

direct approach framework is enhanced by a multiplier L in front of t. Thus, increasing the number690

of independent observations accelerates the convergence but the convergence rate remains alge-691

braic.692

c. Estimating parameters in cubic nonlinear models693

From now on, we study the parameter estimation issue in nonlinear models. Our focus is on a694

model with cubic nonlinearity,695

du = (a∗u+b∗u2− c∗u3 + f ∗)dt +σudWu, (43)

where c∗ > 0 to guarantee the mean stability. The cubic model (43) is a special case of the normal696

form for reduced stochastic climate model (Majda et al. 2009) and it is utilized as a test model697
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for fluctuation-dissipation theorems in (Majda et al. 2010a). The goal is to estimate the four698

parameters Γ= (a∗,b∗,c∗, f ∗).699

To understand the underlying difference of estimating parameters in nonlinear and linear dy-700

namics, we begin with a simplified version of (43),701

du = (A0− γ
∗u3)dt +σudWu, (44)

where the analytic formulae of the posterior uncertainty and the error in the posterior mean are702

available in the framework utilizing the direct approach (26),703

du = (A0− γu3)dt +σudWu, (45a)

dγ = 0. (45b)

Proposition 6 For any odd k, the framework utilizing direct approach (26) to estimate the param-704

eter γ∗ in705

du = (A0− γ
∗uk)dt +σudWu

is given by706

du = (A0− γuk)dt +σudWu, (46a)

dγ = 0. (46b)

The posterior variance Rt and the error in the posterior mean µt− γ∗ associated with system (46)707

have the following closed analytical form,708

Rt =
R0

1+R0σ
−2
u
∫ t

0 u2k(s)ds
,

µt− γ
∗ =

µ0− γ∗

1+R0σ
−2
u
∫ t

0 u2k(s)ds
− R0σ−1

u

1+R0σ
−2
u
∫ t

0 u2k(s)ds

∫ t

0
u(s)dWu(s).

(47)

Applying Reynold’s decomposition (36), the integral
∫ t

0 u2k(s)ds can be rewritten as709 ∫ t

0
u2k(s)ds =

∫ t

0
(ū(s)+u′(s))2kds =

∫ t

0

2k

∑
m=0

(
2k
m

)
ūm · (u′(s))2k−mds. (48)
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Regarding the cubic model in (45), the index k in (46) and (48) is set to be k = 3. Further710

consider the situation with A0 = 0, which implies the system losses practical observability with711

ū = 0 at the equilibrium. Clearly, the only non-zero term on the right hand side of (48) at a long-712

term range is
∫ t

0(u
′(s))6ds. Since ū = 0, we utilize u to replace u′ for notation simplicity. In light713

of the ergodicity of u,714 ∫
∞

−∞

u6 peq(u)du = lim
t→∞

1
t

∫ t

0
u6(s)ds,

where the analytic expression of the equilibrium PDF peq(u) is given by (Majda et al. 2009),715

peq(u) = N0 exp
(

2
σ2

u

(
−γ∗

4
u4
))

.

Direct calculation shows that716

∫
∞

−∞

U6 peq(U)dU =

(
2
γ∗

) 3
2

σ
3
U

(
Γ

(
1
4

))−1

Γ

(
7
4

)
, (49)

where Γ is the Gamma function (Abramowitz et al. 1965). Therefore, the posterior variance Rt and717

the error in the posterior mean µt − γ∗ for the long-term behavior utilizing the direct approach718

(45) with A0 = 0 have the following closed analytical form,719

Rt ≈
R0

1+ c̃R0σut
, (50a)

µt− γ
∗ ≈ µ0− γ∗

1+ c̃R0σut
− R0σ−1

u
1+ c̃R0σut

∫ t

0
u(s)dWu(s), (50b)

where the constant c̃ = (2/γ∗)3/2Γ(7/4)/Γ(1/4).720

We compare the results in (50) of cubic nonlinear system (44) with those in (39) of the linear721

system (33). The most significant difference is the role of the noise σu. In the linear model,722

without practical observability, i.e, A0 = 0, the convergence rate has no dependence on σu. On723

the other hand, in the cubic nonlinear model, increasing the noise σu accelerates the convergence!724

This seems to be counterintuitive. However, the cubic nonlinearity, serving as the cubic damping725
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in (44), indicates that the state variable u is trapped to the region around its attractor u = 0 more726

severely than that in the linear model. Since the system has no practical observability around u= 0,727

an enhanced σu is preferred for increasing the amplitude of u and thus improves the parameter728

estimation skill.729

Now we focus on the full cubic system (43) and estimate the four parameters (a∗,b∗,c∗, f ∗) in730

different dynamical regimes. Phase portrait analysis indicates that the deterministic part of (43)731

can have either 1) one stable equilibrium or 2) two stable equilibria and one unstable equilibrium.732

Here we fix the parameter b∗ = −4 and c∗ = 4 and consider the free parameters a∗ and f ∗. The733

phase space (a∗, f ∗) is divided into two separate regions with different dynamical behaviors, where734

the dividing curve between these two regimes can be written down analytically (Majda et al. 2009),735

f ∗ =−a∗b∗

3c∗
− 2(b∗)3

27(c∗)2 ±2c∗
(

a∗

3c∗
+

(b∗)2

9(c∗)2

)3/2

.

See Figure 14.736

Below, we study the parameter estimation skill within the framework (26) utilizing the direct737

approach in three dynamical regimes as shown in Figure 14, where regime I ( f ∗ = 2) and regime738

III ( f ∗ = 10) correspond to one and three equilibria in phase portrait, respectively, and regime739

II ( f ∗ = 4.5) has one equilibrium but the parameter values are near the dividing curve. Here a740

moderate noise σu =
√

2 is chosen. Panel (a) and (b) in Figure 15 show the observed trajectories741

and equilibrium PDFs of u for the three regimes. The bimodal and nearly Gaussian PDFs for742

regime I and III are due to the number of stable equilibria. The PDF for regime II is skewed where743

the one-sided extreme events in the trajectory increase the probability at the tail of the PDF. In the744

parameter estimation framework (26), the initial value µ0 of each parameter is chosen to be 2 units745

smaller than the truth and the initial uncertainty is set to be R0 = 5.746
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The posterior mean µt and posterior uncertainty Rt associated with the parameter c correspond-747

ing to three regimes are shown in panel (c) and (d) of Figure 15. A rapid convergence in both748

posterior mean and posterior uncertainty is found in regime I, where the two distinct states in the749

trajectory of u clearly indicate the dynamical behavior. As contrast, the convergence of the poste-750

rior uncertainty in regime III is quite slow and the posterior mean remains far from the truth even751

after t = 500 nondimensional unit. Such unskillful behavior is due to the fact that the dynami-752

cal structure is hard to be recovered from the noisy trajectory with short memory. An interesting753

phenomenon is found in the regime II. The convergence remains slow at short- and medium-lead754

times while a sudden uncertainty reduction occurs around t = 135, at which time an extreme event755

occurs in u. Such extreme events, despite having small probability, are important in conveying756

information of the dynamical structure.757

It is worthwhile remarking that if the noise σu is too small in Regime I, then the trajectory of758

u will be trapped in one attractor, which leads to an extremely slow convergence of the posterior759

uncertainty and a significant error in the posterior mean estimation. Thus, a moderately large760

noise helps enhance the parameter estimation skill in the model with cubic nonlinearity, which is761

consistent with the conclusions from the special case in (50).762

Finally, to overcome the slow convergence of parameter estimation utilizing the direct approach763

(26) in the Regime III, we turn to the framework utilizing stochastic parameterized equation (27),764

which is given by765

du = (au+bu2− cu3 + f )dt +σudWu, (51a)

dγ = (a0−a1γ)dt +σγdWγ , γ stands for a,b,c or f . (51b)

For each parameter, we set the mean of the stochastic parameterized equations (51b) a0/a1 to be766

0.5 units larger than the truth, representing model error, and the equilibrium variance is assumed767
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to be σ2
γ /(2a1) = 2. The damping coefficient is set to be a1 = 0.01 for all the four parameters. The768

comparison of estimating the four parameters utilizing the direct approach (26) and stochastic pa-769

rameterized equation (27) is shown in Figure 16. Estimating the parameters utilizing the stochastic770

parameterized equations has a much faster convergence and the model error in the stochastic pa-771

rameterized equation is alleviated with observations.772

7. Summary conclusions773

In this paper, we study filtering the nonlinear turbulent dynamical system (1) through conditional774

Gaussian statistics. The special structure of the system allows closed analytic form for the updates775

of the posterior states (Section 2). Information measures (Section 3) are adopted for assessing the776

model error and lack of information in filtering.777

The role of energy-conserving nonlinear interactions in filtering the turbulent systems is studied778

in Section 4 based on a dyad model (12). The lack of information in the stochastic parameter-779

ized filter (13) is large and the energy-conserving nonlinear feedback is found to be particularly780

important when the stochastic noise amplitude σu in the observed process is not negligible. The781

observability plays a key role with moderate σv and small σu in generating the true signal. Inter-782

mittency increases the signal to noise ratio, which helps improve the filtering skill.783

The model error in the stochastic forcing amplitudes is studied in Section 5 where the L-63784

model (a triad model) is adopted as a test model. Both mathematical analysis (Proposition (1))785

and numerical experiments (Figure 7) support that noise inflation leads to little error in filtering786

the unobserved trajectory while significant model errors are found in the imperfect filter due to787

underdispersion (Figure 6, 7 and 8). An efficient conditional Gaussian ensemble mixture method788

(23) is proposed in approximating the time-dependent PDF of the unobserved processes, which789

requires only small ensembles (Figure 10) and can be generalized to systems with a large number790
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of unobserved variables. Again, noise inflation in the imperfect model leads to only a small model791

error (Figure 11) while underdispersion results in an obvious gap in estimating the PDF, where a792

severe underestimation of the variance implies the failure of capturing extreme events (Figure 12).793

The conditional Gaussian framework also allows systematical study of parameter estimation794

skill, where the parameters are regarded as the augmented state variables. The convergence rate795

of the estimated parameters depends largely on the observability. Without practical observability,796

a slow convergence rate is found utilizing the direct parameter estimation approach (26) (Propo-797

sition 2, Proposition 4). On the other hand, a suitable choice of the stochastic parameterized798

equations for the augmented state variables (27) leads to an exponentially fast convergence rate799

at the cost of only introducing a small error (Proposition 3, Figure 13). In estimating parameters800

in a cubic nonlinear system, the convergence rate varies in different dynamical regimes utilizing801

the direct approach (26). The solutions converge to the truth very quickly in a bimodal regime802

while an extremely slow convergence is found in the nearly Gaussian regime (Figure 15). Adopt-803

ing the stochastic parameterized equations (27) again improves the skill of parameter estimation804

significantly (Figure 16).805

Developing a systematic framework for optimizing the stochastic parameterized equations will806

be useful for estimating parameters in more complex systems. The information-theoretic frame-807

work described in Section 3 is a good candidate for this optimization, which remains as a future808

work. Other future works involve designing computationally affordable filters based on (3), fol-809

lowing the guidelines provided in this work, for more complex turbulent systems. Noticeably, the810

conditional Gaussian framework (1)–(3) is also quite useful in studying the ensemble prediction811

skill and quantifying the uncertainty with model error.812
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APPENDIX A817

Observability of continuous systems818

Observability plays an important role in filtering the hidden variables from observations. Let’s819

consider the linearized coupled observation-filtering system,820

u̇ = Av+Bu, (A1)

v̇ =Cv+Du, (A2)

where u and v are the observational and filtering processes, respectively.821

The observability (Gajic and Lelic 1996) of system (A1)-(A2) can be derived as follows. Taking822

one more derivative with respect to (A1), with the help of (A2), yields823

ü = Av̇+Bu̇

= A(Cv+Du)+B(Av+Bu)

= (AC+BA)v+(AD+B2)u.

(A3)

Similar argument applies for higher order derivative of u. Therefore, the augmented system is824

given by825 
u̇

ü
...

=


A

AC+BA

...

v+


B

AD+B2

...

u

:= Ov+Fu.

(A4)
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A system is said to be observable if, for any possible sequence of the state (unobserved variable)826

v(s),(s ≤ t) and control quantities A,B,C and D, the current state v(t) can be determined using827

only the observations u(s),(s≤ t). Therefore, the condition of the observability is that the rank of828

matrix O equals the dimension of v. In practice, due to the noise and numerical errors, the system829

is said to have no practical observability if the matrix O is nearly singular.830

A.1. Observability of the dyad model (12).831

Let’s linearize both u and v around the mean states ū and v̄,832

u = ū+u′, v = v̄+ v′.

The associated equations of (12) for the perturbed variables u′ and v′ are given by833

du′ =−duuu′+ γ v̄u′+ γ ūv′,

dv′ =−dvvv′−2γ ūu′.
(A5)

Since v′ in (A5) is a scalar, the observability matrix O in (A4) becomes O = γ ū. Clearly, the834

dyad system (12) losses its observability when ū = 0. This implies the unobserved variable v is835

decoupled from the observational process. In dynamical regime (B) with Fu = 0, the fixed point is836

uc = 0, around which the system has no practical observability.837

A.2. Observability of the L-63 model (16).838

Again, we linearize x,y and z around their mean states x̄, ȳ and z̄,839

x = x̄+ x′, y = ȳ+ y′, z = z̄+ z′,

The associated equations of L-63 model (16) for the perturbed variables are given by840

dx′ = σ(y′− x′)dt,

dy′ =
(
x′(ρ− z̄)− x̄z′− y′

)
dt,

dz′ =
(
x̄y′+ x′ȳ−β z′

)
dt.

(A6)
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If x is the observed variables and y and z are the filtering variables, then corresponding to (A1)–841

(A2), u = x′, v = (y′,z′)T , and842

A = (σ ,0), B =−σ , C =

 −1 −x̄

x̄ −β

 , D =

 ρ− z̄

ȳ

 .

According to (A4), the observability matrix is given by843

O =

 A

AC+BA

=

 σ 0

−σ −σ2 −σ x̄


Since σ = 10 is given and is non-zero, the system loses observability when x̄ = 0. It is also clear844

that when the system loses observability, the second column of the observability matrix O becomes845

zero and therefore observations provides no information in filtering the variable z.846

On the other hand, if the observed variables are y and z and the filtering variable is x, direct847

calculations show that the system has no observability when ȳ = 0 and z̄ = ρ .848

APPENDIX B849

Detailed derivation of Proposition 1 in Section 5a of triad models850

In the situation of observing y and z while filtering x, the posterior variance utilizing the forecast851

model (18) is given by, according to (3),852

dRt =

−2σRt +(σM
x )2−Rt(ρ− z,y)

 (σM
y )−2

(σM
z )−2


 ρ− z

y

Rt

dt

=
[
−2σRt +(σM

x )2−
(
(ρ− z)2(σM

y )−2 + y2(σM
z )−2)R2

t
]

dt.

(B1)

Note that the covariance matrix Rt remains non-negative in (B1). Clearly,853

(ρ− z)2(σM
y )−2 + y2(σM

z )−2 ≥ 0,
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and therefore854 (
(ρ− z)2(σM

y )−2 + y2(σM
z )−2)Rt ≥ 0.

If we formally write (B1) as855

dRt =−2σ̃Rt +(σM
x )2, (B2)

where856

σ̃ = σ +
(
(ρ− z)2(σM

y )−2 + y2(σM
z )−2) Rt

2
> σ ,

then it is obvious that the convergence rate of the posterior covariance to the equilibrium is faster857

than exp(−2σt). Actually, the solution of Rt is bounded by858

Rt ≤ R0e−2σt +(σM
x )2 1− e−2σt

2σ
, (B3)

where the right hand side of (B3) is the solution of the following equation859

dRt =−2σRt +(σM
x )2.

If the system noise σM
x in the filter model (18) is zero, then the posterior variance converges to860

zero in the exponential rate.861

The posterior mean evolution can be written down explicitly862

dµt =(σy−σ µt)dt+Rt(ρ−z,y)

 (σM
y )−2

(σM
z )−2



 dyt

dzt

−

 −y

−β z

+

 ρ− z

y

µt

dt

 .
(B4)

Recall y and z equation in the perfect model (19),863  dyt

dzt

=


 −y

−β z

+

 ρ− z

y

xt

dt. (B5)
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Therefore, inserting (B5) into (B4) leads to864

dµt = (σy−σ µt)dt +Rt(ρ− z,y)

 (σM
y )−2

(σM
z )−2


 ρ− z

y

(xt−µt)dt

= σ(y−µt)dt−Rt
(
(ρ− z)2(σM

y )−2 + y2(σM
z )−2)(µt− xt)dt.

(B6)

In addition, note the x equation of the perfect model (19) is given by,865

dxt = σ(y− xt)dt. (B7)

Subtracting (B7) from (B6) leads to866

d(µt− xt) =−σ(µt− xt)dt−Rt
(
(ρ− z)2(σM

y )−2 + y2(σM
z )−2)(µt− xt)dt. (B8)

The error equation ε = ‖µt− xt‖2 is given by867

dε =−
(
σ +Rt

(
(ρ− z)2(σM

y )−2 + y2(σM
z )−2))

εdt. (B9)

Since both (ρ− z)2(σM
y )−2 + y2(σM

z )−2 are Rt are non-negative, the error is bounded by868

ε ≤ ε0e−σt , (B10)

which decays to zero in an exponential rate.869

APPENDIX C870

Detailed derivations for Proposition 2–4 in Section 6a and 6b of parameter estimation in871

linear models872

C.1. Detailed derivations of Proposition 2.873

We aim at estimating the additive parameter γ∗ in the linear system,874

du = (A0u+A1γ
∗)dt +σudWu. (C1)
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The augmented system for estimating γ∗ utilizing direct approach (26) is given by875

du = (A0u+A1γ)dt +σudWu, (C2a)

dγ = 0, (C2b)

where the initial guess µ0 and the initial uncertainty R0 are assigned. In light of (3), the evolutions876

of posterior mean and posterior variance of γ have the following form877

dµt =RtA1 ·σ−2
u · [du− (A0u+A1µt)dt], (C3a)

dRt =−A2
1σ
−2
u R2

t dt. (C3b)

The solution of Rt in (C3b) is reached by separation of variables,878

Rt =
R0

1+A2
1σ
−2
u R0t

. (C4)

To calculate the error in the posterior mean µt compared with the constant truth γ∗, we first rewrite879

(C3b) as880

d(µt− γ
∗) = RtA1 ·σ−2

u · [du− (A0u+A1µt)dt]. (C5)

Since u in (C5) is from the true observations, we insert (C1) into (C5),881

d(µt− γ
∗) = RtA1 ·σ−2

u · [(A0u+A1γ
∗)dt +σudWu− (A0u+A1µt)dt],

=−RtA2
1σ
−2
u (µt− γ

∗)dt +RtA1σ
−1
u dWu.

(C6)

With the expression of the variance Rt in (C4), we have882

d(µt− γ
∗) =− R0A2

1σ−2
u

1+A2
1σ
−2
u R0t

(µt− γ
∗)dt +

R0A1σ−1
u

1+A2
1σ
−2
u R0t

dWu. (C7)

For the simplicity of notation, we define883

y := µt− γ
∗, ã := A2

1σ
−2
u R0, and b̃ := R0A1σ

−1
u .

Then (C7) becomes884

dy =− ã
1+ ãt

ydt +
b̃

1+ ãt
dWu. (C8)
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Applying the method of integrating factor, we have885

y = y0e−
∫ t

0
ã

1+ãs ds + e−
∫ t

0
ã

1+ãs ds
∫ t

0

b̃
1+ ãs

e
∫ s

0
ã

1+ãv dvdWu(s),

= y0e− ln t+ã−1

ã−1 + e− ln t+ã−1

ã−1

∫ t

0

b̃ã−1

s+ ã−1 eln s+ã−1

ã−1 dWu(s),

= y0
ã−1

t + ã−1 +
ã−1

t + ã−1

∫ t

0

b̃ã−1

s+ ã−1
s+ ã−1

ã−1 dWu(s),

= y0
ã−1

t + ã−1 +
ã−1b̃

t + ã−1

∫ t

0
dWu(s).

(C9)

Changing back to the original notations leads to886

µt− γ
∗ =

µ0− γ∗

1+A2
1σ
−2
u R0t

+
A1σ−1

u R0

1+A2
1σ
−2
u R0t

∫ t

0
dWu(s). (C10)

C.2. Detailed derivations of Proposition 3.887

Now we estimate the additive parameter γ∗ in (C1) utilizing stochastic parameterized equation888

method (27),889

du = (A0u+A1γ)dt +σudWu, (C11a)

dγ = (a0−a1γ)dt +σγdWγ , (C11b)

where a1 > 0 is to guarantee the mean stability of (C11b). The evolutions of the posterior mean890

and variance of γ have the closed form, according to (3),891

dµt =(a0−a1µt)dt +RtA1σ
−2
u [du− (A0u+A1µt)dt], (C12a)

dRt =
(

2a1Rt +σ
2
γ −A2

1σ
−2
u R2

t

)
dt. (C12b)

Clearly, for a1 > 0 and σγ 6= 0, the algebraic equation892

−A2
1σ
−2
U R2

t −2a1Rt +σ
2
Γ = 0 (C13)

always having two real roots r1,r2 with different signs. Let’s assume r1 > 0 > r2 and initial value893

R0 > r1. Utilizing separation of variables, the posterior variance Rt is solved,894

Rt = r2 +
r1− r2

1−
(

R0−r1
R0−r2

)
· exp

(
−A2

1σ
−2
u (r1− r2)t

) . (C14)
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This implies Rt will converge to the equilibrium state in an exponential way.895

To solve the error in the posterior mean, we use the equilibrium variance Req to replace Rt in896

(C12a) due to the fact that Rt converges exponentially fast to Req. The qualitative conclusion does897

not change if we keep Rt in (C12a) but the expression will becomes extremely complicated. Again,898

noticing the true value γ∗ is a constant and making use of the true dynamics (C1), the error in the899

posterior mean (C12a) becomes900

d(µt− γ
∗) = (a0−a1µt)dt +ReqA1σ

−2
u [dU− (A0U +A1µt)dt]

= (a0−a1(µt− γ
∗)−a1γ

∗)dt +ReqA1σ
−2
u [(A0u+A1γ

∗)dt +σudWu− (A0u+A1µt)dt]

=−
(
a1 +ReqA2

1σ
−2
u
)
(µt− γ

∗)dt +(a0−a1γ
∗)dt +ReqA1σ

−1
u dWu.

(C15)

Utilizing integrating factor method, we arrive at the solution901

µt− γ
∗ =(µ0− γ

∗)e−(a1+ReqA2
1σ−2

u )t +
1− e−(a1+ReqA2

1σ−2
u )t

a1 +ReqA2
1σ
−2
u

(a0−a1γ
∗)

+ReqA1σ
−1
u

∫ t

0
e−(a1+ReqA2

1σ−2
u )(t−s)ds

(C16)

C.3. Detailed derivations of Proposition 4.902

Now we estimate the multiplicative parameter γ∗ in the linear system903

du = (A0− γ
∗u)dt +σudWu. (C17)

The augmented system by utilizing the direct method (26) yields904

du = (A0− γu)dt +σudWu, (C18a)

dγ = 0. (C18b)

The evolutions of mean and variance of γ are given by, according to (3),905

dµt =−uRt ·σ−2
u · [du− (A0−uµt)dt], (C19a)

dRt =−u2
σ
−2
u R2

t dt. (C19b)
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In light of the method of separation of variables, equation (C19b) leads to the solution for the906

posterior variance,907

Rt =
R0

1+R0σ
−2
u
∫ t

0 u2(s)ds
. (C20)

To solve the error in the posterior mean, we make use of (C17), (C19a) and (C20),908

d(µt− γ
∗) =−Rtu2

σ
−2
u (µt− γ

∗)dt−RtUσ
−1
u dWu.

=− R0σ−2
u U2

1+R0σ
−2
u
∫ t

0 u2(s)ds
(µt− γ

∗)dt− R0σ−1
u U

1+R0σ
−2
u
∫ t

0 u2(s)ds
dWu

(C21)

For the simplicity of notation, we again define909

y := µt− γ
∗, ã := R0σ

−2
u , b̃ := R0σ

−1
u , and Fu(t) :=

∫ t

0
u2(s)ds.

Then (C21) becomes910

dy =− ãu2(t)
1+ ãFu(t)

ydt− b̃u(t)
1+ ãFu(t)

dWu. (C22)

The solution of (C22) is given by911

y = y0e−
∫ t

0
ãu2(s)

1+ãFu(s)
ds
+ e−

∫ t
0

ãu2(s)
1+ãFu(s)

ds
∫ t

0
− b̃u(s)

1+ ãFu(s)
e
∫ s

0
ãu2(v)

1+ãFu(v)
dvdWu(s) (C23)

Note that912 ∫ t

0

ãu2(s)
1+ ãFu(s)

ds = ln(1+ ãFu(t)).

Therefore, (C23) reduces to913

y =
y0

1+ ãFu(t)
+

1
1+ ãFu(t)

∫ t

0
− b̃u(s)

1+ ãFu(s)
(1+ ãFu(s))dWu(s). (C24)

Changing back to the original notations, (C24) leads to914

µt− γ
∗ =

µ0− γ∗

1+R0σ
−2
U
∫ t

0 u2(s)ds
− R0σ−1

u

1+R0σ
−2
u
∫ t

0 u2(s)ds

∫ t

0
u(s)dWu(s). (C25)
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APPENDIX D915

Detailed derivations of Proposition 6 in Section 6c of estimating the multiplicative916

parameter in the special cubic system utilizing direct approach917

The derivation of (47) in Proposition 6 follows those in (C20) and (C25). Here, we derive (49).918

Recall the analytic expression of the equilibrium PDF peq(u) is given by (Majda et al. 2009),919

peq(u) = N0 exp
(

2
σ2

u

(
−γ∗

4
u4
))

.

The integral factor N0 is given by920

N−1
0 =

∫
∞

−∞

e
− γ∗u4

2σ2u du = 2
∫

∞

0
e
− γ∗u4

2σ2u du =
1
2

∫
∞

0
u−3e

− γ∗u4

2σ2u du4. (D1)

Let921

x =
γ∗

2σ2
u

u4 (D2)

and correspondingly922

u =

(
2σ2

u
γ∗

x
) 1

4

. (D3)

Inserting (D3) into (D1) results in923

N−1
0 =

∫
∞

0

(
2σ2

u
γ∗

)− 3
4

x−
3
4 e−x 2σ2

u
γ∗

dx =
1
2

(
2σ2

u
γ∗

) 1
4 ∫ ∞

0
x−

3
4 e−xdx. (D4)

Recall the definition of Γ function (Abramowitz et al. 1965)924

Γ(s) =
∫

∞

0
xs−1e−xdx. (D5)

Then (D4) becomes925

N−1
0 =

1
2

(
2σ2

u
γ∗

) 1
4

Γ

(
1
4

)
= 2−

3
4 (γ∗)−

1
4 σ

1
2

u Γ

(
1
4

)
.

This leads to926

N0 = 2
3
4 (γ∗)

1
4 σ
− 1

2
u

(
Γ

(
1
4

))−1

. (D6)
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With the formula of in N0 (D6), we are able to solve
∫

∞

−∞
u6 peq(u)du,927 ∫

∞

−∞

u6 peq(u)du = 2N0

∫
∞

0
u6e
− γ∗

2σ2u
u4

du

=
1
2

N0

∫
∞

0
u3e
− γ∗

2σ2u
u4

du4

=
1
2

N0

∫
∞

0

(
2σ2

u
γ∗

x
) 3

4

e−x 2σ2
u

γ∗
dx using (D3)

=
1
2

N0

(
2σ2

u
γ∗

) 7
4 ∫ ∞

0
x

3
4 e−xdx

= 2
3
4 (γ∗)−

7
4 σ

7
2

u Γ

(
7
4

)
N0

= 2
3
4 (γ∗)−

7
4 σ

7
2

u 2
3
4 (γ∗)

1
4 σ
− 1

2
u

(
Γ

(
1
4

))−1

Γ

(
7
4

)
using (D6)

= 2
3
2 (γ∗)−

3
2 σ

3
u

(
Γ

(
1
4

))−1

Γ

(
7
4

)
.
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FIG. 7. Filtering the noisy L-63 model (16) utilizing an imperfect forecast model (18) with model error in

the noise, where the observational variable is x and the variables for filtering are y and z. Column (a), (c) and

(e): filtering skill as a function of the observational noise σM
x . Panel (b), (d) and (f): filtering skill as a function

of the system noise σM
y and σM

z , where σM
y = σM

z . Panel (a) and (b), (c) and (d), and (e) and (f) show small,

moderate and large noise σx = σy = σz = 1,5 and 10 in the true system. The dotted line in the first row shows

the equilibrium standard deviation and that in the third row shows the equilibrium variance of each variable. The

statistics are averaged across time t ∈ [5,50].
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FIG. 9. Recovering of the mean, variance, skewness and kurtosis associated with the marginal PDF associated

with the unobserved variable z in noisy L-63 model (16) utilizing the conditional Gaussian ensemble mixture

approach (23) with different number of ensembles L in a perfect model setting. As comparison, the recovered

statistics utilizing Monte Carlo simulation with N = 50,000 ensemble members are also included. The green

dot in column (c) indicates the largest skewness in the transition phase, which will be utilized in Figure 10.
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FIG. 10. Model error (6) in recovering the marginal PDF associated with the unobserved variables y and z in

noisy L-63 model (16) utilizing the conditional Gaussian ensemble mixture approach (23) with different L in a

perfect model setting . Panel (a): model error in the PDF of y as a function of L at a short-term transition phase

t = 0.46 with largest skewness. Panel (e): comparing the PDFs of y at t = 0.46 utilizing conditional Gaussian

mixture (23) and Monte Carlo with N = 50,000. Panel (c) and (g) are similar to Panel (a) and (e) but a time

t = 10, at which the system reaches statistical equilibrium state. Panel (b), (d), (f) and (h) are for the marginal

distribution associated with the unobserved variable z.
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FIG. 11. Recovery of the marginal PDFs associated with the unobserved variables y and z in the presence of

model error from noise inflation. The noisy L-63 model (16) with σx = σy = σz = 2 is utilized in generating

the true signal. The imperfect model (18) with σM
x = σM

y = σM
z = 5 is adopted for recovering the hidden

PDFs. Column (a)-(d) show the recovered mean, variance, skewness and kurtosis compared with the truth that

is computed by Monte Carlo simulation with N = 50,000 samples. Column (e) shows the recovered PDFs at

short-term transition time with maximum skewness, where t = 0.54 for y and t = 0.38 for z. Column (f) shows

the recovered PDFs at statistical equilibrium state t = 25 for both y and z and column (g) shows the PDFs at

t = 25 in logarithm scale.
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FIG. 12. Recovery of the marginal PDFs associated with the unobserved variables y and z in the presence of

model error from underdispersion of noise. The noisy L-63 model (16) with σx = σy = σz = 10 is utilized in

generating the true signal. The imperfect model (18) with σM
x = σM

y = σM
z = 5 is adopted for recovering the

hidden PDFs. Column (a)-(d) show the recovered mean, variance, skewness and kurtosis compared with the

truth that is computed by Monte Carlo simulation with N = 50,000 samples. Column (e) shows the recovered

PDFs at short-term transition time with maximum skewness, where t = 0.36 for y and t = 0.30 for z. Column (f)

shows the recovered PDFs at statistical equilibrium state t = 5 for both y and z and column (g) shows the PDFs

at t = 5 in logarithm scale.
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FIG. 13. Comparison of estimating the multiplicative parameter γ∗ in (33). Top (panel (a)-(d)): estimation

skill utilizing direct approach (34). Bottom (panel(e)-(h)): estimation skill utilizing stochastic parameterized

equation (40). Here, the truth γ∗ = 5 and A0 = 0 are adopted. In the stochastic parameterized equation (40),

the equilibrium mean a0/a1 = 5.5 and equilibrium σ2
γ /(2a1) = 2 are fixed. The black dotted line represents the

truth γ∗ = 5; the red curve is the posterior mean µt or posterior variance Rt ; the two green curves around the

posterior mean differs from the mean µt by one standard deviation, i.e., µt ±
√

Rt .
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FIG. 16. Parameter estimation of the cubic nonlinear model (43) in Regime III with (a∗,b∗,c∗, f ∗) =

(4,−4,4,10) with direct approach (top) and stochastic parameterized equation method (bottom). The black

dotted line shows the truth of each parameter and the red dashed line shows the averaged value of the estimation

of each parameter utilizing stochastic parameterized equation method at equilibrium. Here the equilibrium mean

of stochastic parameterized equation a0/a1 has 0.5 unit bias from the truth. The equilibrium variance of each

stochastic parameterized equation is σ2
γ /(2a1) = 2. The damping coefficient in the stochastic parameterized

equation is set to be a1 = 0.01.
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