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ABSTRACT

Lagrangian tracers are drifters and floaters that collect real-time information

of fluid flows. This paper studies the model error in filtering multiscale ran-

dom rotating compressible flow fields utilizing noisy Lagrangian tracers. The

random flow fields are defined through random amplitudes of Fourier eigen-

modes of the rotating shallow water equations that contain both incompress-

ible geostrophically balanced (GB) flows and rotating compressible gravity

waves, where filtering the slow-varying GB flows is of primary concern. De-

spite the inherent nonlinearity in the observations with mixed GB and gravity

modes, there are closed analytical formulae for filtering the underlying flows.

Besides the full optimal filter, two practical imperfect filters are proposed. An

information-theoretic framework is developed for assessing the model error

in the imperfect filters, which can apply to a single realization of the observa-

tions. All the filters are comparably skillful in a fast rotation regime (Rossby

number ε = 0.1). In a moderate rotation regime (ε = 1), significant model

errors are found in the reduced filter containing only GB forecast model while

the computationally efficient 3D-Var filter with a diagonal covariance matrix

remains skillful. First linear then nonlinear coupling of GB and gravity modes

is introduced in the random Fourier amplitudes while linear forecast models

are retained to ensure the filter estimates have closed analytical expressions.

All the filters remain skillful in ε = 0.1 regime. In ε = 1 regime, the full filter

with a linear forecast model has an acceptable filtering skill while large model

errors are shown in the other two imperfect filters.
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1. Introduction36

Lagrangian tracers are drifters and floaters that collect real-time information of fluid flows, es-37

pecially at the center of oceans where Eulerian measurements are inaccessible (Griffa et al. 2007;38

Gould et al. 2004). An important application of Lagrangian data is to recover the current underly-39

ing velocity field. To this end, many approximate filters have been developed for assimilation of40

Lagrangian data (Molcard et al. 2003; Kuznetsov et al. 2003; Apte et al. 2008) and the properties41

of these filters are studied through numerical experiments (Salman et al. 2006, 2008; Slivinski42

et al. 2015).43

However, due to the complexity and highly nonlinear nature of Lagrangian data assimilation,44

there was little systematic analysis of the approximate filters based on rigorous theory. Recently,45

an analytically tractable nonlinear filtering framework for Lagrangian data assimilation was devel-46

oped (Chen et al. 2014b, 2015), which allows the study of random incompressible/compressible47

flow field with full mathematical rigor. In this framework, the turbulent flow field is defined48

through a finite number of random Fourier modes, which are coupled through the tracer observa-49

tions in a highly nonlinear way. The key fact is that the resulting signal-observation process forms50

a conditional Gaussian system conditioned on the observations. Despite the inherent nonlinearity51

in measuring noisy Lagrangian tracers, it was shown that there are exact closed analytic formu-52

lae for the optimal filter in filtering the velocity field involving Riccati equations with random53

coefficients for the covariance matrix. In (Chen et al. 2014b), this Lagrangian data assimilation54

framework was applied to random incompressible flows, where a practical information barrier in55

increasing the number of tracers was revealed. In (Chen et al. 2015), the filtering framework was56

applied to a realistic multiscale random compressible flow field that is a linear combination of57

random incompressible geostraphically balanced (GB) flows and random rotating compressible58
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gravity waves. In addition to the full optimal filter, an idealized GB filter, serving as a reference59

for filtering the slow-varying GB flows, and a practical suboptimal filter with mode reduction in60

the forecast model were studied. Rigorous theorems through suitable stochastic fast-wave averag-61

ing techniques and explicit formulas demonstrated that all these filters have comparably high skill62

in recovering the slow GB flows in the limit of small Rossby number ε → 0 for any bounded time63

interval (Chen et al. 2015).64

Since simplifications and approximations are ubiquitous in designing filters, a central practical65

issue is to understand the model error by utilizing imperfect filters for assimilation of Lagrangian66

data (Majda 2012; Majda and Harlim 2012). This requires assessing the lack of information in67

the filter estimate utilizing imperfect filters related to that utilizing perfect one. Yet, despite the68

application of recursive Bayesian estimation in Lagrangian data assimilation, the filtering skill in69

the previous works (Salman et al. 2006, 2008; Slivinski et al. 2015; Chen et al. 2014b, 2015) was70

evaluated mostly based on the path-wise RMS error in the posterior mean estimation, where the71

uncertainty represented by the posterior covariance was completely ignored. Clearly, a moderate72

error in the posterior mean estimation utilizing imperfect filters with a tiny posterior covariance73

is of particular danger since it implies the biased estimation is falsely trusted with high certainty.74

Likewise, a strongly overestimated posterior covariance utilizing imperfect filters provides little75

information even if the posterior mean is quite close to that utilizing perfect one. Therefore, it76

is important to develop a systematic framework for assessing the model error in imperfect filters77

based on the lack of information in the full posterior distribution.78

Below, an information-theoretic framework (Branicki et al. 2013; Majda and Wang 2006; Majda79

and Branicki 2012; Branicki and Majda 2014) is developed to assess the model error in imperfect80

filters for filtering the multiscale random rotating compressible flows, which can apply to a sin-81

gle realization of the observations. The lack of information in the posterior distribution utilizing82
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imperfect filters related to that utilizing perfect filter is measured through an information metric,83

named as the relative entropy (Majda and Wang 2006; Majda et al. 2002), which takes into account84

not only the error in the mean state estimation but the uncertainty in the filter estimates as well.85

Following the general nonlinear filtering framework (Chen et al. 2014b, 2015), the idealized86

flow fields of the multiscale random rotating compressible flows studied here are defined through87

random amplitudes of Fourier eigenmodes of the rotating shallow water equations, which involve88

both the incompressible GB flows and the rotating compressible gravity waves. To ensure the filter89

estimates of the perfect full filter having closed analytic expressions that facilitates the study of90

the information model error, linear and independent stochastic dynamics are adopted for the ran-91

dom amplitudes of different modes. These assumptions are often utilized in tests for Lagrangian92

data assimilation (Kuznetsov et al. 2003; Apte et al. 2008; Slivinski et al. 2015). Despite such93

decoupling in the true underlying flow fields and thus in the perfect forecast model, the GB and94

gravity modes are nevertheless coupled in a highly nonlinear way through the tracer observations.95

Note that many geophysical scenarios involve fast rotating flows, where the Rossby number ε� 196

(Vallis 2006). Thus, the random rotating shallow water equations become a slow-fast system and97

the primary objective in practice is to recover the GB component that dominates the slow-varying98

geophysical flows (Rossby 1937; Gill 1982; Majda 2003; Cushman-Roisin and Beckers 2011)99

from the noisy Lagrangian tracer observations.100

In addition to the full optimal filter, an idealized GB filter involving only the GB dynamics in the101

forecast model and artificial noisy observations associated with the GB flow is developed, serving102

as a reference for filtering the slow-varying GB flows (Chen et al. 2015). Two practical imperfect103

filters are proposed. First, formally applying the mode reduction (Majda et al. 2003, 1999) to the104

gravity waves results in a suboptimal filter that contains only the GB dynamics in the forecast105

model while the noisy observations nevertheless include the coupled GB and gravity modes as in106
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the perfect full filter. This dimension reduction strategy in the forecast model simplifies the filter107

structure and saves the computational cost. Another practical reduced filter includes the full GB108

and gravity dynamics in the forecast model but the posterior covariance is assumed to be diagonal.109

The special structure of such reduced filter leads to a constant diagonal covariance matrix after a110

short relaxation time and therefore it becomes a 3D-Var type of filter (Navon 2009). Since this111

diagonal reduced 3D-Var filter only requires the update of the posterior mean, it is computationally112

efficient. Below, the comparison of the filtering skill and the information model error by utilizing113

these two reduced imperfect filters will be extensively studied in different dynamical regimes.114

Another central issue in this paper involves studying a more complicated and realistic flow field.115

Recall that the random Fourier amplitudes associated with the GB and gravity modes as discussed116

above are assumed to evolve independently with each other. Yet, both the mathematical theory117

of the slow-fast geophysical flows (Embid and Majda 1998; Majda 2003; Gershgorin and Ma-118

jda 2008) and high resolution of turbulent simulations in slow-fast geophysical regimes (Smith119

2001; Smith and Waleffe 2002; Waite and Bartello 2004) indicate the interactive effect between120

the GB and gravity modes. Therefore, following the theory in (Embid and Majda 1998; Majda121

2003; Gershgorin and Majda 2008), a quadratic nonlinear interaction between the GB mode and122

the two gravity modes with the same Fourier wavenumber is incorporated into the underlying dy-123

namics of the random amplitudes associated with the gravity modes while the GB flow remains124

evolving independently. However, the perfect filter including the nonlinear forecast model for the125

random Fourier amplitudes breaks the conditional Gaussian filtering framework in (Chen et al.126

2014b, 2015). Thus, the same linear stochastic forecast models where different modes evolve in-127

dependently as described above are utilized for filtering the nonlinearly coupled flow field, which128

ensure the filter estimates have closed analytical expressions. Despite this intrinsic model error,129

such simplification is a common strategy for filtering large dimensional turbulent systems in many130
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practical issues, such as utilizing the extended Kalman filter (Haykin 2004) or adopting the mean131

stochastic forecast model in filtering (Majda and Harlim 2012; Harlim and Majda 2013). Note that132

the observational process here remains highly nonlinear and thus the coupled signal-observation133

system still forms a nonlinear filter. It is of practical importance to understand the effect of model134

error by dropping the nonlinear coupling between different modes in the forecast models for fil-135

tering the random rotating compressible flows with nonlinearly coupled GB and gravity modes in136

different dynamical regimes.137

The remainder of this paper is organized as follows. In Section 2, the multiscale random rotating138

compressible shallow water flows are described and the analytically tractable nonlinear Lagrangian139

data assimilation framework is introduced. The description of the four filters is also included in140

the same section. In Section 3, a general information-theoretic framework for assessing the model141

error in imperfect filters is developed. Section 4 starts with describing a simple setup of the GB142

flow field with diverse flow structures varying in time, which is followed by the filtering skill and143

information model error in filtering the multiscale random rotating compressible flows. Specifi-144

cally, Section 4c deals with the situation where the GB and gravity modes evolve independently145

while Section 4d handles the flow field where the underlying dynamics of the random Fourier146

coefficients contains the nonlinear interaction between GB and gravity modes. Section 5 contains147

the concluding discussion.148
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2. Basic set-up149

a. Random rotating compressible shallow water flows150

The 2-dimensional (2D) random rotating compressible shallow water flows are described in the151

following way:152 ~v(~x, t)
h(~x, t)

= ∑
~k∈K,α∈{0,±}

v̂~k,α(t)exp(i~k ·~x)~r~k,α , (1)

where ~v is the 2D velocity field and h is the height function. In (1), K is some finite symmetric153

subset of Z2, while modes with α = 0 represent the geostrophic balanced (GB) part and modes154

with α =± represent the two gravity waves. The vectors~r~k,α are the eigenvectors associated with155

different modes, where the projection of~r~k,0 on the velocity components is perpendicular to~k due156

to the incompressibility of the GB part (Majda 2003; Embid and Majda 1998; Majda and Embid157

1998) and~r~k,± indicate the direction of the compressible gravity waves. The turbulent nature of158

the underlying flow field is reflected in the wave amplitudes v̂~k,α(s) with stochastic forcing and159

damping terms (Majda and Harlim 2012; Chen et al. 2015),160

dv̂~k,0(t) =
(
−dBv̂~k,0 + f~k,0(t)

)
dt +σ~k,0dW~k,0(t), (2a)

dv̂~k,±(t) =
(
(−dg + iω~k,±±iγ v̂~k,0 )v̂~k,±(t)+ f~k,±(t)

)
dt +σ~k,±dW~k,±(t), (2b)

where the GB modes v̂~k,0 are assumed to be real and the gravity modes v̂~k,± are complex. In (2),161

ω~k,± are the oscillation frequencies of the gravity modes, the details of which will be given in (6),162

dB,dg > 0 are damping coefficients, σ~k,0,σ~k,± > 0 are stochastic forcing amplitudes and f~k,0, f~k,±163

are deterministic forcing. To guarantee the full flow fields in (1) to be real-valued, we require that164

~r∗~k,α =~r−~k,−α
and (v̂~k,α)

∗ = v̂−~k,−α
. The equality for the eigenvectors are automatically satisfied165

which will be discussed below in (5), (7) and (8) and the equality for the Fourier coefficients as-166

sociated with the gravity modes are enforced by requiring each term in (2b) for the two gravity167
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wave pairs being complex conjugate. For a detailed description of this enforcement, we refer to168

Appendix A.1 of (Chen et al. 2014b). Note that such a modeling strategy for random turbulence169

has been widely applied in many other situations (Majda and Harlim 2012). The effect of the slow170

GB mode on the fast gravity modes is reflected on the nonlinear coupling term with coefficient γ171

in (2b), which is motivated directly from mathematical theory of the slow-fast geophysical flows172

(Embid and Majda 1998; Majda 2003; Gershgorin and Majda 2008) and high resolution of tur-173

bulent simulations in slow-fast geophysical regimes (Smith 2001; Smith and Waleffe 2002; Waite174

and Bartello 2004). The situation with γ = 0 in (2b) implies utilizing linear stochastic model to175

describe the random Fourier coefficients, where the GB and gravity modes are independently with176

each other. Despite the linear dynamics associated with each Fourier mode, the stochastic forcing177

and damping terms compensate the nonlinearity in nature and the full velocity field remains highly178

turbulent. Some path-wise behaviors of the situation with such uncoupled GB and gravity modes179

was discussed in (Chen et al. 2015). In this paper, the information model error and the path-wise180

filtering skill of both linearly independent (γ = 0) and nonlinearly coupled (γ 6= 0) GB and gravity181

modes will be studied.182

To provide the motivation of the model (1)–(2) and the choices of the eigenvectors ~r~k,α and183

rotation frequency ω~k,±, we recall the linearized shallow water equations in the non-dimensional184

form (Section 4.4 of (Majda 2003)):185

∂~u
∂ t

+ ε
−1~u⊥ =−ε

−1
δ

1/2
∇η ,

∂η

∂ t
+ ε
−1

δ
1/2

∇ ·~u = 0,
(3)

where~u is a horizontal two dimensional velocity field and η is the height function rescaled by δ 1/2
186

to guarantee the symmetric hyperbolic form in (3). We denote the non-dimensional parameters187

ε = Ro and δ = Ro2Fr−2, where Ro is the Rossby number representing the ratio between the188

Coriolis term and the advection term and Fr is the Froude number. For most atmosphere-ocean189
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problems, ε is a small number representing fast rotation and δ is either O(1) or O(ε) (Vallis 2006).190

Following Section 4.4 of (Majda 2003), the general solution of (3) is given by a superposition of191

plane waves:192 ~u(~x, t)
η(~x, t)

= ∑
~k∈Z2,α∈{0,±}

û~k,α exp(i~k ·~x− iω~k,αt)~r~k,α . (4)

The modes with α = 0 represent the geostrophic balanced (GB) modes, also known as the vor-193

tical waves, where the geostrophic balance relation ~u⊥ = −∇η always holds (Majda 2003). The194

associated rotational speed ω~k,0 = 0 and the normalized eigenvector~r~k,0 is given by195

~r~k,0 =
1√
|~k|2 +1


−ik2

ik1

1

 . (5)

The modes with α = ± represent the gravity modes also known as the Poincaré waves (Majda196

2003). They have a nonzero phase speed:197

ω~k,± =±ε
−1
√

δ |~k|2 +1. (6)

The associated normalized eigenvectors~r~k,± are given by198

~r~k,± =
1

|~k|
√
(δ +δ 2)|~k|2 +2


ik2± k1

√
δ |~k|2 +1

−ik1± k2

√
δ |~k|2 +1

δ |~k|2

 . (7)

For the special case,~k =~0, the Poincaré waves have no gravity component and coincide with the199

inertial waves. The resulting eigenvalues become ω~0,± =±ε−1 with the eigenvectors200

~r~0,+ =
1√
2


i

1

0

 and ~r~0,− =
1√
2


−i

1

0

 . (8)
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By taking a finite Fourier truncation and replacing the deterministic coefficients û~k,α exp(−iω~k,αt)201

in (4) with the stochastic processes~v~k,α modeled by (2), we arrive at the basic rotating compress-202

ible random field model in (1)–(2). The additional linear coefficients iω~k,± from (6) describe the203

oscillations of the gravity waves, where a small ε corresponds to a fast rotation. It is worth notic-204

ing that ε and δ enter the dynamics only through the gravity waves in~r~k,± and ω~k,±. Moreover,205

ω~k,± is a parameter of order ε−1; its appearance in the linear coefficient for the gravity modes (2)206

represents the same rotational effect as in the deterministic setting.207

b. Observation process from noisy Lagrangian tracers208

The observations are from the trajectories of L Lagrangian tracers transported by the underlying209

velocity field with additional noise. The observation process is given by210

d~Xl(s) =~v(~Xl(s),s)ds+σxdW x
l (s)

= ∑
~k∈K,α∈{0,±}

v̂~k,α(t)exp(i~k ·~Xl(s))Pv~r~k,αds+σxdW x
l (s), l = 1, . . . ,L,

(9)

where Newton’s law is applied in the first row of (9) and the second row is due to (1), where the211

operator Pv is the projection of a 3D vector to its first two dimension entries. The noise amplitude212

σx in different tracers is assumed to be the same but the noise W x
l itself is independent for different213

l.214

c. Filters for noisy Lagrangian tracers215

Given the observations from the noisy Lagrangian tracers (9), the goal is to filter the underlying216

flow field~v(~x, t) in (1), or equivalently the Fourier coefficients v̂~k,α(t) for all~k and α . For simplicity217

of notations, we define k = {~k,α} ∈K such that the Fourier coefficient and the eigenvector in (1)218

can be written as v̂k(~x, t) and ~rk, respectively. Furthermore, we define kB = {~k,0} ∈ KB and219

kg = {~k,±} ∈Kg representing the GB and gravity modes, respectively.220
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Recall that each trajectory of the noisy Lagrangian tracers is given by (9). Let’s group all ~Xl(s)221

into one 1×2L column vector222

Xs =


~X1(s)

...

~XL(s)

 .
Then the abstract form of the observation process for the L noisy Lagrangian tracers follows:223

dXs = PX(Xs)Usds+σxdW x
s , (10)

where W x
s is a 2L×2L diagonal matrix and PX(Xs) is given by, according to (9),224

PX(Xs) =


PX(~X1(s))

...

PX(~XL(s))

=


· · · exp(i~k ·~X1(s))~rk · · ·
...

...
...

· · · exp(i~k ·~XL(s))~rk · · ·

 := [PB
X(Xs),Pg

X(Xs)]. (11)

With a slight abuse of the notation,~rk in (11) is the eigenvector that has only the first two entries225

corresponding to the 2D velocity directions.226

On the other hand, by formally applying mode reduction over the gravity waves, it is possible227

to write down the simplified random flow field that contains only GB part of the flow. The corre-228

sponding noisy Lagrangian tracers transported by only the GB flow can be formally constructed,229

d~XB
l (s) = PB

X (~X
B
l (s))U

B
s ds+σxdW B

l (s), l = 1, . . . ,L.

Similar to (10), the abstract form by collecting all L tracers transported by the GB flow is given by230

dXB
s = PB

X(X
B(s))UB

s ds+σxdW B
s . (12)

Note that (12) is an artificial observation process since it is practically impossible to extract the231

component that corresponds to the random GB signals from the full noisy observations.232

With the observation processes in (10) or (12), what remains is to design the forecast models in233

filters for the velocity field. Recall the dynamics associated with the true velocity field in (2).234
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In the situation with uncoupled GB and gravity modes, i.e., γ = 0, the underlying dynamics of235

the Fourier coefficients for wavenumber~k associated with the flow field~v(~x, t) in (1) reduces to a236

linear stochastic system237

dv̂~k,0(t) =
(
−dBv̂~k,0 + f~k,0(t)

)
dt +σ~k,0dW~k,0(t), (13a)

dv̂~k,±(t) =
(
(−dg + iω~k,±)v̂~k,±(t)+ f~k,±(t)

)
dt +σ~k,±dW~k,±(t). (13b)

As was done for the tracers, the Fourier coefficients for all the GB modes in (13a) and all the238

gravity modes in (13b) can be grouped into a 1× |K| and a 2× |K| column vector, respectively.239

Then, the corresponding dynamics of the GB and gravity modes becomes240

dUB
s =−Γ

BUB
s ds+FB

s ds+Σ
B
u dW B

u (s), (14a)

dUg
s = (−Γ

g + iΩε)Ug
s ds+Fg

s ds+Σ
g
udW g

u (s), (14b)

and jointly:241

dUs =−ΓUsds+Fsds+ΣudWu(s), (15)

where Ωε in (14b) is a diagonal matrix and its k-th entry is given by, according to (6),242

ωk =±ε
−1
√

δ |~k|2 +1, k ∈Kg, (16)

and Γ in (15) involves both the damping ΓB,Γg and the oscillation frequency iΩε .243

Utilizing the perfect dynamics of the underlying flow field (15) as the forecast model in the244

filter, the joint observation-signal system (10) and (15) becomes a conditional Gaussian system245

given the observations. For such kind of system with Gaussian initial conditions, the conditional246

distribution of the flow field given the observed noisy Lagrangian tracer trajectories, knowing as247

posterior distribution, is a Gaussian distribution where the evolutions of the conditional mean and248

conditional covariance have closed analytic formulae (Liptser and Shiryaev 2001). See Appendix249
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A for details. This provides an exact and accurate perfect filter for recovering the underlying250

velocity field.251

In the situation where the GB modes affect the gravity modes in a nonlinear way, i.e., γ 6= 0 in252

(2), the perfect observation-signal system is no longer a conditional Gaussian system since given253

the observations the underlying dynamics (2) is a quadratic nonlinear system with non-Gaussian254

statistics, which breaks the analytically tractable filtering framework in (Chen et al. 2014b, 2015).255

Due to the high dimensionality of the coupled signal-observation system, it is computationally256

unaffordable to solve the posterior distribution via direct numerical methods. Thus, in the appear-257

ance of the nonlinearly coupled GB and gravity modes (γ 6= 0) in the true velocity field (2), the258

linear system in (13) for each Fourier wavenumber is nevertheless utilized as the forecast model in259

the designed filters to maintain the analytically solvable feature of the filters. Despite this intrin-260

sic model error, such simplification is a common strategy for filtering large dimensional turbulent261

systems in many practical issues, where the linearized methods such as the extended Kalman filter262

(Haykin 2004) or the mean stochastic forecast model (Majda and Harlim 2012; Harlim and Majda263

2013) are widely adopted. An important practical issue is to understand the effect of model error264

due to adopting a linear stochastic forecast models with independent GB and gravity components265

to filter the random rotating compressible flows with nonlinearly coupled GB and gravity modes.266

Note that, the tracer trajectories in (10) is transported by the true nonlinear dynamics (2) while the267

linear stochastic turbulent system in (13) is only utilized as the forecast model in the filters.268

In the following, four different filters, which all belong to the conditional Gaussian framework,269

are designed. Their filtering skill will be extensively studied in Section 4.270
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1) FULL FILTER WITH LINEAR FORECAST DYNAMICS271

Utilizing the nonlinear observation process (10) and the linear dynamics with independent GB272

and gravity modes as the forecast model (14), the full filter with linear forecast dynamics is given273

by274

dXs = PX(Xs)Usds+σxdW x
s ,

dUs =−ΓUsds+Fsds+ΣudWu(s).
(17)

The filter (17) is a perfect optimal filter if the underlying flow of the truth (2) is also linear, i.e.,275

γ = 0 in (2b). In such case, we simply name (17) as the full filter. Otherwise (γ 6= 0), model276

error comes from ignoring the nonlinear coupling of GB and gravity modes in (2b). The analytic277

solution of updating the posterior mean and posterior covariance of Ut given Xs≤t is shown in278

Appendix A.279

2) IDEALIZED GB FILTER280

In many practical issues, the primary practical objective is to recover the GB component that281

dominates the slow-varying geophysical flows (Rossby 1937; Gill 1982; Majda 2003; Cushman-282

Roisin and Beckers 2011). To this end, an idealized GB filter is constructed based on the GB283

forecast model (14a) and the artificial observations from only GB part of the flow (12),284

dXB
s = PB

X(X
B
s )U

B
s ds+σ

B
x dW B

s ,

dUB
s =−Γ

BUB
s ds+FB

s ds+Σ
B
u dW B

u (s).
(18)

This idealized GB filter (18) is a perfect filter regardless of the coupling coefficient γ in (2) as the285

nonlinearity in the underlying flow appears only in the gravity modes.286

Since the underlying GB flow is incompressible, the properties of this idealized GB filter was287

well studied in (Chen et al. 2014b). In addition, without being scrambled by the gravity modes,288

this perfect GB filter indicates the optimality of filtering the GB flow field. Thus, the results from289
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this idealized GB flow are regarded as a reference for checking the filtering skill utilizing other290

filters. Note that, despite its optimality, the GB filter is not a practical filter because extracting the291

observations corresponding only to the random GB part of flow from the full noisy observations is292

impractical in real applications.293

3) REDUCED FILTER WITH ONLY GB FORECAST MODEL THROUGH FULL OBSERVATIONS294

Motivated from the idealized GB filter (18), a practical reduced filter for filtering GB part of295

the flow is formed by adopting only the GB dynamics (14a) as the forecast model while the cou-296

pled GB and gravity observations from noisy Lagrangian tracers are utilized as the input in the297

observation process. This follows the formal application of the mode reduction strategy (Majda298

et al. 2003, 1999) to the gravity waves in the forecast model. For consistency, the corresponding299

dynamics of the observation process contains the modes associated with only the GB flow as well,300

i.e., replacing PX in (10) by PB
X . Therefore, such reduced filter reads,301

dXs = PB
X(Xs)UB

s ds+σ
B
x dW B

s ,

dUB
s =−Γ

BUB
s ds+FB

s ds+Σ
B
u dW B

u (s).
(19)

Since the gravity parts of the flow is dropped from the forecast model in (19), the dimension of the302

flow field UB
s in (19) is only 1/3 compared with Us of the full filter in (17) and in turn the number303

of the entries in the covariance matrix is only 1/9 of that associated with the perfect filter. Due304

to the fact that most of the computational cost lies in the update of the posterior covariance, this305

reduced filter is more computational efficient than the full filter. Yet, the reduced filter (19) is only306

a suboptimal filter due to the model error from filtering only GB part of the flow through the full307

mixed observations.308
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4) DIAGONAL REDUCED 3D-VAR FILTER309

Another practical reduced filter includes both the GB dynamics and the linearized gravity dy-310

namics in the forecast model (14), which are the same as the full filter (17), but the posterior311

cross-covariance is assumed to stay zero and thus it reduces to a diagonal filter. Furthermore, as312

shown in Appendix B, the diagonal entries in the posterior covariance associated with this diago-313

nal reduced filter converge to constant values after a short relaxation time and therefore only the314

update of the posterior mean is needed afterwards. Due to the same behavior as the 3D-Var with315

a constant background error covariance (Navon 2009), this filter is named as a diagonal reduced316

3D-Var filter,317

dXs = PX(Xs)Usds+σxdW x
s ,

dUs =−ΓUsds+Fsds+ΣudWu(s),

Diagonal posterior covariance matrix.

(20)

When the true underlying flow field is linear, i.e., γ = 0 in (2), the only model error in the diagonal318

reduced 3D-Var filter (20) comes from the ignoring of the off-diagonal entries in the posterior319

covariance matrix. If the diagonal entries dominate the posterior covariance matrix, then a com-320

parable filtering skill in the diagonal reduced 3D-Var filter (20) is expected as the full filter (17)321

but (20) is much more efficient. On the other hand, when γ 6= 0 in the true underlying flow fields322

(2), an extra model error in the diagonal reduced 3D-Var filter (20) comes from utilizing the linear323

forecast model for the gravity modes, which is the same as in the full filter (17).324

3. An information-theoretic framework in assessing model error325

As discussed in Section 1, due to the inevitable approximations and simplifications in real-world326

Lagrangian data assimilation, it is of practical importance to assess and understand the model error327

by utilizing imperfect filters with various simplifications. Note that the traditional approach of328

17



measuring the filtering skill is based on the path-wise RMS error which takes into account only329

the point-wise information in the posterior mean while the information in the posterior covariance330

that represents the uncertainty in the filter estimate is completely ignored. To assess the lack of331

information in the posterior distribution of imperfect filters, an information-theoretic framework332

is developed in this section.333

Information theory was widely adopted to measure the lack of information in filtering and pre-334

diction utilizing imperfect models (Majda and Gershgorin 2010, 2011b,a; Majda et al. 2002; K-335

leeman 2002). Recently, a systematic information-theoretic approach was developed in (Branicki336

and Majda 2014) to quantify the statistical accuracy of Kalman filters with model error and the337

optimality of the imperfect Kalman filters in terms of three information measures was presented.338

Another application of information theory is illustrated in (Branicki and Majda 2015) for improv-339

ing imperfect predictions via multi-model ensemble forecasts. Information measures were also340

adopted for model calibration in predicting the real-time indices of the Madden-Julian oscillation341

(Chen and Majda 2015d), which shows the significant skill of capturing the extreme events that342

cannot be assessed by the path-wise RMS error and pattern correlation.343

Here, the information model error is assessed through the relative entropy (Majda and Wang344

2006; Majda et al. 2002),345

P(p,q) =
∫

p ln
p
q
, (21)

which measures the lack of information in the probability distribution function (PDF) associated346

with the imperfect model q related to that of the perfect system p. The relative entropy is often347

interpreted as a ‘distance’ between the two probability densities but it is not a true metric. It is348

non-negative with P = 0 only when p = q and it is invariant under nonlinear changes of variables.349
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Note that when both p ∼ N (~mp,Rp) and q ∼ N (~mq,Rq) in (21) are Gaussian, the relative350

entropy has the closed form:351

P(p,q) =
[

1
2(~mp−~mq)

T R−1
q (~mp−~mq)

]
+ 1

2

[
tr(RpR−1

q )−N− lndet(RpR−1
q )
]
, (22)

where N is the dimension of both the distributions. The first term in brackets in (22) is called the352

“signal”, which measures the lack of information in the mean weighted by model covariance. The353

second term in brackets is called the “dispersion”, which involves only the covariance ratio.354

Now we develop an information-theoretic framework to measure the model error in imperfect355

filters. Consider a coupled system with variables (uI,uII), where uI stands for observations and356

uII represents the variables for filtering. Let’s denote p and pM the PDFs of the perfect and the357

imperfect models, respectively. In a typical scenario, the imperfect model is coarse-grained and358

thus we assume the distribution pM is formed only by the conditional moments up to L. Let’s359

further denote pL the PDF that is reconstructed utilizing the L conditional moments of the perfect360

model. Then the joint distributions regarding uI and uII can be written as361

p(uI,uII) = p(uII|uI)π(uI)

pL(uI,uII) = pL(uII|uI)π(uI)

pM(uI,uII) = pM
L (uII|uI)π

M(uI),

According to (Branicki et al. 2013), the lack of information in the imperfect model related to the362

perfect one is given by363

P(p(uI,uII), pM
L (uI,uII))

= P(p(uI,uII), pL(uI,uII))+P(pL(uI,uII), pM
L (uI,uII)),

(23)

where the first term on the right hand side of (23) is called the intrinsic barrier that measures364

the lack of information in the perfect model due to the coarse-grained effect from the insufficient365

measurement and the second term is the model error where the imperfect model is compared with366
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the perfect model that possesses the same number of moments. Direct calculation (Branicki et al.367

2013) shows that368

Intrinsic barrier =
∫

π(uI)(S (pL(uII))−S (p(uII))) , (24)

Model error = P(π(uI),π
M(uI))+

∫
π

M(uI)P(pL(uII|uI), pM
L (uII|uI))duI, (25)

where S is the Shannon’s entropy (Majda and Wang 2006). In filtering the state variables uII, we369

assume the observations in the imperfect model πM(uI(s ≤ t)) is the same as those in the perfect370

model π(uI(s≤ t)). Therefore, the first term in the model error (25) disappears and πM(uI) in the371

second term is replaced by π(uI), which simplifies the model error in (25),372

Model error =
∫

π(uI)P(pL(uII|uI), pM
L (uII|uI))duI. (26)

373

Model error for a single realization of the observations.374

In filtering the random compressible flow, only one single realization of the observational tra-375

jectory associated with each tracer ui
I(s≤ t), i = 1, . . . ,L is given. Thus, we simply need to assess376

the following model error377

E (t) = P(pL(uII(t)|uI(s)), pM
L (uII(t)|uI(s))), 0≤ s≤ t. (27)

In Section 4c, when the underlying flow field is generated from system (2) with decoupled GB378

and gravity modes, i.e., γ = 0, the full filter (17) is a perfect filter. Since we have also assumed379

the observations in the two reduced filters (19) and (20) are the same as those in the full filter,380

the formula (27) is applied to compute the model error at each time t, where pL(uII(t)|uI(s)) is381

the posterior distribution of the perfect full filter (17) and pM
L (uII(t)|uI(s)) is that of one of the382

imperfect filters (19) or (20). Note that all the three filters are conditional Gaussian filters. Thus383

L = 2 in (27) and the model error is splitted into signal and dispersion as described in (22).384
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On the other hand, in Section 4d, when the underlying flow field is generated from the sys-385

tem with nonlinearly coupled GB and gravity modes, i.e., γ 6= 0 in (2), the full filter with linear386

dynamics (17) is no longer a perfect filter. Two alternative approaches are applied to assess the387

model error in the imperfect filters. In the first method, we assess the model error in the posterior388

mean estimate of the imperfect filters compared with the true signal. Here, we adopt the general389

relative entropy formula (21), where p is the time-averaged PDF of the true signal and q is the390

time-averaged PDF associated with the posterior mean estimation from one of the imperfect filter-391

s. Although this model error measures the lack of information based only on the posterior mean, it392

is nevertheless different from the path-wise RMS error. In fact, this information metric takes into393

account the spread of both the posterior mean time series and the true signal. Therefore, it is able to394

quantify the skill of the imperfect filters in capturing the extreme events in the true signal, which is395

not accessible by the path-wise RMS error and pattern correlation (Chen and Majda 2015d). The396

second approach involves formally applying the posterior distribution of the idealized GB filter397

(18) to pL in (27). Yet, since the observations in the GB filter are different from those in the three398

imperfect filters, this argument becomes only an approximation in assessing the model error in399

the filter estimates utilizing the imperfect filters related to that utilizing the perfect one within the400

information-theoretic framework developed in (27). In Appendix C, we compare the information401

model error by utilizing either the full filter (17) or the GB filter (18) as the reference distribution402

p in (27) in the situation with γ = 0 to justify that the approximation error due to adopting GB403

filter as the reference filter is acceptable in studying the information model error of the imperfect404

filters in the dynamics regimes of interest.405
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4. Numerical experiments406

a. Simple GB flow with time-varying flow structures407

An interesting and realistic GB flow field involves time-varying flow structures. The simplest408

setup of such GB flow consists of 5 Fourier wavenumbers, where k = (0,0),(±1,0) and (0,±1).409

Since the eigenvector (5) corresponding to the GB mode k = (0,0) has only non-zero entry in h410

direction, the underlying GB flow is essentially driven by the 4 modes with |~k|= 1, i.e.,411

~v = ∑
|~k|=1

v̂~k(t)exp(i~k ·~x)Pv~r~k, (28)

where for notation simplicity we have dropped the subscript ·0 that distinguishes GB flows from412

gravity waves. To look at the flow structures of the GB flow field (28), we write down the eigen-413

vectors (5) projected on the horizonal and vertical velocity directions,414

Pv~r(1,0) =
1√
2

 0

i

 , Pv~r(−1,0) =
1√
2

 0

−i

 ,

Pv~r(0,1) =
1√
2

 −i

0

 , Pv~r(0,−1) =
1√
2

 i

0

 .

(29)

In addition, the four Fourier bases in (28) with |~k|= 1 are given by415

k = (1,0) : exp(ix) = cos(x)+ isin(x), k = (−1,0) : exp(−ix) = cos(x)− isin(x)

k = (0,1) : exp(iy) = cos(y)+ isin(y), k = (0,−1) : exp(−iy) = cos(y)− isin(y).
(30)

Inserting (29) and (30) into (28), the horizonal and vertical velocities (v1,v2) are given by416

√
2v1 = v̂(0,1) · (−i) · (cos(y)+ isin(y))+ v̂(0,−1) · (i) · (cos(y)− isin(y))

= v̂(0,1)(−icos(y)+ sin(y))+ v̂(0,−1)(icos(y)+ sin(y)),

√
2v2 = v̂(1,0) · (i) · (cos(x)+ isin(x))+ v̂(−1,0) · (−i) · (cos(x)− isin(x))

= v̂(1,0)(icos(x)− sin(x))+ v̂(−1,0)(−icos(x)− sin(x)).

(31)
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Since the Fourier coefficients associated with the GB modes are assumed to be real, we have417

v̂(0,1) = v̂(0,−1) and v̂(1,0) = v̂(−1,0), which simplify (31),418

v1 =
√

2v̂(0,1) sin(y),

v2 =−
√

2v̂(1,0) sin(x).
(32)

and the corresponding stream function is given by419

ψ =−
√

2v̂(1,0) cos(x)+
√

2v̂(0,1) cos(y). (33)

Thus, we only need to look at the amplitude of the two coefficients v̂(0,1) and v̂(1,0) to obtain420

the structure of the GB flow. With different choices of v̂(0,1) and v̂(1,0), the streamlines illustrate421

various profiles that switch between422

1. simple shear flow: v̂(0,1)� 1, v̂(1,0) ∼ O(1) or v̂(1,0)� 1, v̂(0,1) ∼ O(1),423

2. 2D array of swirling eddies: v̂(0,1) ≈ v̂(1,0) ∼ O(1), and424

3. swirling eddies embedded in a shear-flow stream: v̂(0,1) ∼ O(1), v̂(1,0) ∼ O(1) but v̂(0,1) 6≈425

v̂(1,0).426

See Chapter 1 of (Majda and Wang 2006) for more detailed description.427

b. Filter setup428

As in Section 4a, the underlying flow field contains 5 Fourier wavenumbers with |~k| ≤ 1. Thus,429

the total number of GB and gravity modes is |KB| = 5 and |Kg| = 10, respectively. In most430

realistic situations, the number of the observations is typically less than the degree of freedom of431

the underlying system. Thus, we set the number of the tracers L = 5 < 15 = |K|. The observation432

noise level is set to be σx = 0.2, which is a moderate value, implying that the filters make use of433

the information in both the forecast models and the observations.434

23



The GB mode at the largest scale k = (0,0) is set to be deterministic while the other four GB435

modes with |~k| = 1 and all the 10 gravity modes are stochastic. The damping and stochastic436

forcing coefficients are determined in the situation with uncoupled GB and gravity modes, i.e.,437

γ = 0 in (2), and the same values are adopted in the coupled case. The energy in each stochastic438

GB mode is set to be EB = 0.3 and that in each gravity mode is Eg = 0.1. A relatively small439

damping dB = dg = 0.05 is utilized for all the stochastic modes, which correspond to a moderately440

long decorrelation time τ = 20 non-dimensional units in the uncoupled flow case. The stochastic441

forcing in each GB mode is computed by utilizing the formula σ2
~k,0

/(2dB) = EB and similar for442

that in each gravity mode.443

In addition to the typical values mentioned above, the filtering skill dependence on different444

parameters is of particular interest. Below, the filtering dependence on the number of tracers L, the445

observation noise σx and the energy in the gravity modes Eg will be explored. In each experiment,446

only one parameter is varied and the others are all set to be their typical values.447

The deterministic forcing are chosen in two different ways:448

1. Zero deterministic forcing. In this setup, the flow is purely driven by the stochastic forcing,449

which makes it possible to study the effect of the random forcing in changing the underlying450

flow structures.451

2. Time-periodic deterministic forcing:452

GB modes: f~k,0 = a~k,0 cos(φ t)+b~k,0,

Gravity modes: f~k,± = a~k,± exp(iφ t),
(34)

where a~k,0 =
√

3/10 and b~k,0 =
√

3/20 for mode (0,0); a~k,0 =
√

3/10 and b~k,0 =
√

3/200453

for modes (±1,0); a~k,0 = −
√

3/10 and b~k,0 =
√

3/200 for modes (0,±1); and a~k,± = 1/10454

for all gravity modes. The frequency φ = 20. The amplitudes of these large-scale determin-455
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istic forcing and stochastic forcing are comparable. This setup implies the flow field has a456

large-scale background mean flow and a random part. The flow structure is able to switch457

between nearly straight streamlines and swirling eddies according to (33). Comparing the458

two situations helps us understand the effect of the deterministic mean flow on the filtering459

skill.460

For the initialization of the filters, the states of all the stochastic modes are set to be consistent461

with the value at their statistical equilibrium associated with the forecast models, where the initial462

uncertainty of the stochastic modes is 0.3 and 0.1 for each GB and gravity mode, respectively.463

The tracers Xs utilized in the full filter (17) and the two reduced filters (19) and (20) are iden-464

tically the same. On the other hand, the tracers XB
s in (12) for the GB filter (18) are based only465

on the GB part of the flow and therefore they are different from those in (10). For the sake of466

comparing the filtering skill, we impose the same observation noise process in (10) and (12), i.e.,467

W x
s = W B

s . Furthermore, the initial locations of the tracers utilized in both the full filter and GB468

filter are the same and are distributed uniformly in the periodic domain T2 = [−π,π]2.469

Two dynamical regimes are considered. The first one is a fast rotation regime with small Rossby470

number ε = 0.1, which mimics the motion in the mid-latitude atmosphere or ocean (Majda 2003).471

Another dynamical regime involves moderate rotation with ε = 1. Note that the GB flow is kept472

to be the same in both regimes and the only difference lies in the gravity waves according to the473

rotation frequency and eigenmodes in Section 2a. The nondimensional number δ = 1 is fixed474

which implies that the Rossby and the Froude number are equal with each other. Below, the475

filtering behavior up to a long time t = 200 is studied.476
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c. Results for filtering the random flow fields with uncoupled GB and gravity modes477

In this subsection, we study the situation where the random GB and gravity modes evolve in-478

dependently, i.e., γ = 0 in (2). Thus, the underlying dynamics of the velocity field for Fourier479

wavenumber~k of nature is given by480

dv̂~k,0(t) =
(
−dBv̂~k,0 + f~k,0(t)

)
dt +σ~k,0dW~k,0(t), (35a)

dv̂~k,±(t) =
(
(−dg + iω~k,±)v̂~k,±(t)+ f~k,±(t)

)
dt +σ~k,±dW~k,±(t). (35b)

Recall that the damping and stochastic forcing in (35) compensate the nonlinearity and represent481

the turbulent behaviors in nature and such strategy for describing random turbulence has been482

widely applied in many other situations (Majda and Harlim 2012). Since the true dynamics (35)483

and the forecast model (13) in the full filter (17) are the same for all~k, the full filter becomes a484

perfect filter.485

First, we look at the tracer behaviors. Row (a) of Figure 1 includes the comparison of the tracer486

trajectories utilizing the full filter (17) and the GB filter (18) at an initial period from t = 0 to t = 10487

in the two dynamics regimes with different ε , where the large-scale deterministic forcing is set to488

be zero. For conciseness, only one of the five tracers associated with each filter is shown. The two489

trajectories starting at the same location almost overlap with each other during this short initial490

period in ε = 0.1 regime while the two trajectories diverge quickly in ε = 1 regime. Comparing491

the snapshot of the GB flow (column III) with the full flow (column I and II) at t = 10, it is clear492

that the gravity waves have non-negligible contributions to the total flow at each time instant.493

Fortunately, due to the fast oscillation nature of the gravity waves in ε = 0.1 regime, the effect of494

the gravity waves is averaged out and therefore the two trajectories align with each other. Row495

(b) is similar to row (a) but the time-periodic deterministic forcing in the underlying flow (35) is496

nonzero as described in (34) in Section 4b and the initial period shown is shortened up to t = 7.497
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The same phenomenon is found in row (b) in the two different dynamics regimes, despite that the498

tracers move faster due to the deterministic background flow velocity. We have also found that499

the deterministic forcing has no effect on the RMS error and the uncertainty in the filter estimates.500

In row (c) and (d), we compare the posterior variance for GB mode (1,0) as a function of time501

up to t = 25. The difference by adopting different deterministic forcing is insignificant. Yet, it is502

obvious that the relaxation time of the posterior variance towards the statistical equilibrium state503

is longer in ε = 1 regime. Since the large-scale deterministic forcing only affects the tracer speed504

while it has little influence on the filtering skill, below we focus on the situation with no large-scale505

deterministic forcing.506

Next, we study the long-term behavior of tracers’ distribution. In Figure 2 we show the distribu-507

tions of the tracers utilizing the full filter (17) and the GB filter (18) in the two dynamical regimes508

at t = 199. In addition to showing the distribution with L = 5 tracers, the results with L = 20 are509

included to provide a more clear vision. Since the GB filter deals with only the incompressible510

GB flow, it has been proved (Chen et al. 2014b) that the tracers are uniformly distributed at the511

statistical equilibrium state. With the interference of the gravity modes, the distribution of tracers512

at t = 199 remains nearly uniform in ε = 0.1 regime since the fast oscillation averages out the513

effect from the random compressible gravity waves. On the other hand, pronounced clustering of514

tracers is found in ε = 1 regime due to the compressible nature of the underlying flow. In addition,515

it is clear that with L = 5 tracers, the underlying GB flow can be filtered with high accuracy in516

both dynamical regimes utilizing both the full and the GB filter.517

We now focus on the filtering skill utilizing different filters. As stated in (33), the structure of GB518

flow is controlled by the two Fourier coefficients v̂(0,1) and v̂(1,0). To this end, we show in Figure 3519

the truth and the posterior mean estimates of these two coefficients in the two dynamical regimes.520

In ε = 0.1 regime, the filtered solutions of v̂(0,1) and v̂(1,0) utilizing all the four filters are quite521
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close to the truth while in ε = 1 regime a significant error with many unexpected oscillations is522

found (row d) in the filter estimate utilizing the reduced filter with only GB forecast model (19). To523

provide an intuitive illustration of the error in the filter estimates, the recovered streamlines of the524

GB flow is demonstrated in Figure 4 at two time instants, where the true GB streamline at t = 142.3525

is 2D array of swirling eddies and at t = 161.4 it becomes a shear-flow stream. Consistent with526

Figure 3, the filtered streamlines utilizing all the filters are nearly the same as the truth in ε = 0.1527

regime. On the other hand, despite the skillful filter estimates utilizing both the GB (18) and full528

filter (17), the reduced filter with only GB forecast model (19) leads to a large disparity in the529

recovered the streamlines, where the swirling eddies at t = 142.3 are falsely recovered by shear530

flows (row c) and the weak shear-flow stream at t = 161.4 becomes strong swirling eddies in the531

filtered solution (row d). In addition, although some inaccuracy is also found in the filter estimate532

utilizing the diagonal reduced 3D-Var filter (20), the recovered streamlines are qualitatively similar533

to the truth.534

To understand the dependence of the filters’ behavior on different parameters, we show in Figure535

5–7 the filtering skill as a function of the tracer numbers L, the observation noise σx and the energy536

in the gravity modes Eg, respectively. Both the RMS error in the posterior mean estimate and537

averaged posterior variance are computed over time interval t ∈ [20,200], where only the statistics538

of mode (1,0) is shown for simplicity. The information model error in filtering the GB flows539

utilizing the two imperfect reduced filters (19) and (20) compared with the perfect full filter (17)540

through the relative entropy (27) is computed, where the information model error is splitted into541

the signal and dispersion parts utilizing the formula in (22). The model error averaged over time542

interval t ∈ [20,200] in filtering the GB flow field is shown in these figures.543

First, we look at the RMS error in filtering the GB mode (1,0). The RMS error decreases in the544

filter estimates utilizing the GB filter (18) with the increase of L and the decrease of σx and Eg. In545
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ε = 0.1 regime, all the filters have comparably high filtering skill, despite that the reduced filter546

with only GB forecast model (19) leads to a slightly larger RMS error with a small observation547

noise σx or a large increase in the energy associated with the gravity modes Eg. In ε = 1 regime, the548

filtering skill utilizing both the full filter (17) and the diagonal reduced 3D-Var filter (20) remains549

close to that utilizing the idealized GB filter (18). However, the RMS error utilizing the reduced550

filter with only GB forecast model (20) is much larger than that utilizing the other three filters.551

Note that the RMS error in the reduced filter with only GB forecast model (19) shoots up with a552

decrease of σx when σx is small, which is a different trend compared with the other filters. Clearly,553

a small σx means the filter trusts more towards the observations, which however implies the filter554

(19) falsely regards the scrambled GB and gravity observations as the observations associated the555

GB modes in (19).556

Now we focus on the information model error (27). As shown in row (c) of Figure 5–7, the557

model error in the reduced filter with only GB forecast model (19) is significant in ε = 1 regime,558

where the signal part has a dominant portion. In contrast to (19), the model error in the diagonal559

reduced 3D-Var filter (20) shown in row (d) is much smaller, implying an insignificant lack of560

information in its posterior distribution related to that of the perfect filter. In addition, the model561

error in ε = 0.1 regime utilizing both the imperfect filters is smaller than that in ε = 1 regime.562

Note that different trends in large L and small σx are found in the RMS error and information563

model error utilizing the diagonal reduced 3D-Var filter (20). This is because the signal part of564

the information model error (22) is proportional to the inverse of the covariance of the imperfect565

model. With a slowly-varying gap in the mean estimates, a smaller covariance implies a more566

certain estimate of the incorrect state and thus a larger information model error. It is worthwhile567

pointing out that the information model error has no upper bound and thus it is very sensitive when568

the model covariance becomes extremely small. A bounded measurement for checking the model569
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error in the posterior distribution is the Hellinger distance (Beran 1977; Branicki and Majda 2014),570

which is however not able to be explained as a measure of information gain. The definition of the571

Hellinger distance and its comparison with information model error (27) is included in Appendix572

D.573

Finally, to provide a deeper understanding of the two imperfect filters, we include in panel (a)-574

(d) of Figure 8 some time series of the filtered solutions for mode (1,0). Panel (a) and (b) show575

the absolute error in the posterior mean estimate of GB mode (1,0) utilizing the reduced filter576

with only GB forecast model (19), where the y-axis limit is the same as that in Figure 3 of the577

truth. In ε = 0.1 regime, the error amplitude remains significantly smaller than the true signal. On578

the other hand, except a small error at the initial period for t ≤ 20 in ε = 1 regime, the amplitude579

of the error is comparable with that of the true signal, which leads to a large RMS error and a580

significant lack of information in the signal part. In panel (c) and (d), the posterior covariance581

for mode (1,0) utilizing both the full filter (17) and the diagonal reduced 3D-Var filter (20) is582

shown. Clearly, the diagonal components of the covariance matrix of the full filter, i.e., both the583

variance of the GB mode (blue) and that of the gravity mode (black), have much larger amplitudes584

than the cross-covariance between them (magenta). The negligible cross-covariance is possibly585

due to the orthogonality of the eigenvectors associated with GB and gravity modes. We have also586

checked the cross-covariance between different GB and different gravity modes and they are small587

as well. These are evident proofs for the skillful behavior of the reduced 3D-Var filter (20). It588

is also noticeable that the posterior variance of the diagonal reduced 3D-Var filter (20) becomes589

a constant after a short initial relaxation time, which is justified in Appendix B. Note that the590

variance of the GB modes utilizing both filters (blue and green) are close to each other in ε = 0.1591

regime while the reduced 3D-Var filter results in a smaller variance than the full filter in ε = 1592

regime, which leads to the increase of the information model error. A natural improvement for the593
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diagonal reduced 3D-Var filter is to inflate its diagonal covariance matrix by a factor r with r ·Rt .594

In panel (e), we show the information model error as a function of the inflation factor r. When595

r = 1.6, which is around the ratio of the averaged variance utilizing the full filter over the variance596

at the statistical equilibrium utilizing the diagonal reduced filter, the information model error is597

reduced by 40%. The lack of information in the dispersion part is nearly zero as expected and that598

in the signal part is also reduced since the signal part is proportional to the inverse of the model599

covariance.600

d. Results for filtering the random flow fields with coupled GB and gravity modes601

From now on, we study the skill of filtering the multiscale random rotating compressible flow in602

the situation that each GB mode affects the underlying dynamics of the two corresponding gravity603

modes through quadratic nonlinear interactions, which is motivated directly from mathematical604

theory of the slow-fast geophysical flows (Embid and Majda 1998; Majda 2003; Gershgorin and605

Majda 2008) and high resolution of turbulent simulations in slow-fast geophysical regimes (Smith606

2001; Smith and Waleffe 2002; Waite and Bartello 2004). Let’s recall the governing equations of607

the underlying flow field for Fourier wavenumber k,608

dv̂~k,0(t) =
(
−dBv̂~k,0 + f~k,0(t)

)
dt +σ~k,0dW~k,0(t), (36a)

dv̂~k,±(t) =
(
(−dg + iω~k,±±iγ v̂~k,0 )v̂~k,±(t)+ f~k,±(t)

)
dt +σ~k,±dW~k,±(t), (36b)

where the coupling coefficient γ is non-zero. On the other hand, such nonlinear coupling between609

the GB and gravity modes is dropped in the forecast models of both the full filter (17) and the610

diagonal reduced 3D-Var filter (20) and therefore these forecast models become linear independent611

stochastic model (35) as discussed in Section 2c. Due to this model error, the full filter is no612

longer a perfect filter. Note that despite the linear independent forecast model for the random613
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Fourier amplitudes, the observational processes in (17), (19) and (20) remain highly nonlinear614

with coupled GB and gravity modes.615

We first look at the intrinsic change in the coupled flow fields with the coupling effect. In616

Figure 9, the sample trajectories and the associated power spectrums of the gravity mode (1,0)617

are demonstrated, and those of the GB mode are also shown as comparison. The spectrum of the618

gravity mode becomes more and more flat with the increase of the coupling coefficient γ in both619

regimes. In ε = 0.1 regime, the spectrums of the GB and gravity modes remain having almost620

no overlapped band even with γ = 5, which implies a clear scale separation between them and621

therefore skillful filtering results of the GB flow are expected. On the other hand, the spectrum622

bands of the GB and the gravity modes in ε = 1 regime become completely overlapped with each623

other for γ > 1, which indicates that the GB and gravity flows are hard to be distinguished from the624

mixed observations. Therefore, the filtering skill in ε = 1 regime is expected to be deteriorated.625

We show in Figure 10 the filtered GB modes (1,0) and (0,1) and the reconstructed streamlines626

with γ = 2 in ε = 1 regime. Here the true GB flow is adopted to be the same as that in Section627

4c and therefore the two Fourier modes in Figure 10 remain the same as those in Figure 3. The628

filter estimate of the GB filter (18) has very little change due to the randomness in the observation629

noise. However, the filter estimates utilizing all the three imperfect filters contain evident errors,630

where the bias utilizing reduced filter with only GB forecast model (19) is the most significant.631

This is reflected in the recovered streamlines at five different time instants. The reduced filter with632

only GB forecast model (19) leads to completely wrong flow structures while the full filter with633

linear forecast model (17) at least has some skill at t = 8.5 and t = 105.5 and the diagonal reduced634

3D-Var filter (20) is skillful for recovering the shear flow at time t = 8.5 as well.635

In Figure 11, we show the RMS error in the posterior mean estimation and the averaged posterior636

variance for mode (1,0), where the filtering skill in both the GB and one of the gravity modes is637
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included. As motivated from Figure 9, the nonlinear coupling up to γ = 5 has little effect on638

the filtering skill of GB mode utilizing all the filters in ε = 0.1 regime due to the apparent scale639

separation. The error in the filtered solution of the gravity mode is also almost unchanged with640

different γ , which is possibly due to the fact that its intrinsic oscillation in this fast oscillation641

regime dominates the stochastic oscillation from the interaction with the GB mode and therefore642

the stochastic oscillation behaves as insignificant random noise. On the other hand, the filtering643

skill of the GB mode utilizing all the three imperfect filters deteriorates with a gradual increase of644

γ in ε = 1 regime. Among the three imperfect filters, the largest RMS error remains in the reduced645

filter with only GB forecast model (19). In addition, unlike the uncoupled situation where the full646

filter and the diagonal reduced 3D-Var filter always have comparable filtering skill, with a nonzero647

γ the error utilizing the diagonal reduced 3D-Var filter (20) becomes more significant than the648

full filter with linear forecast model (17). Furthermore, filtering the gravity waves becomes less649

skillful utilizing both the full filter with linear forecast model and the diagonal reduced 3D-Var650

filter with the increase of γ in ε = 1 regime.651

Finally, we study the information model error in the imperfect filters. Note that the full filter652

with linear forecast model (17) is no longer a perfect filter and therefore the model error in both653

(17) and the two reduced filters (19) and (20) are assessed following the discussion at the end of654

Section 3.655

Panel (a) and (b) of Figure 12 show the model error in the time-averaged PDF of the posterior656

mean estimation utilizing the imperfect filters related to that of the true signal over time interval657

t ∈ [20,200] for GB mode (1,0). In ε = 0.1 regime, the model error remains small for all the filters.658

In ε = 1 regime, the model error of the three imperfect filters becomes large for γ ≥ 1, where the659

largest model error is found in the diagonal reduced 3D-Var filter. In panel (c), we compare the660

time series of the posterior mean estimate and the true signal with γ = 2 in ε = 1 regime and the661
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associated PDFs are shown in panel (d). Clearly, the difference in the PDF of the posterior mean662

estimates compared with the truth, reflecting the lack of information, is obvious utilizing all the663

three imperfect filters. Particularly, the large information model error in the diagonal reduced 3D-664

Var filter (20) is due to the fact that its PDF is more concentrated than that of the truth. This implies665

the posterior mean estimation of (20) misses many extreme events, such as those around t = 140.666

Note that with a nonzero coupling coefficient γ , a non-negligible cross-covariance between the667

GB and gravity modes appears and therefore a large model error is expected by dropping the off-668

diagonal entries in the posterior covariance matrix. It is worthwhile pointing out that the RMS669

error and the information model error provide different views in assessing the filtering skill in the670

posterior mean estimation. Despite a smaller RMS error compared with the reduced filter with671

only GB forecast model (19), a larger information model error in the diagonal reduced 3D-Var672

filter (20) implies the potential danger in utilizing (20) with a moderate or large γ due to its failure673

in capturing the important extreme events.674

Figure 13 shows the information model error in the posterior distribution pM of the GB flow675

utilizing the three imperfect filters (17), (19) and (20) compared to p utilizing the idealized GB676

filter (18). The statistics shown is averaged over time t ∈ [20,200]. It is clear that the information677

model error in all the three imperfect filters remain small in ε = 0.1 regime while it becomes678

significant larger in ε = 1 regime and increases as a function of γ . Again, the signal part dominates679

the model error. As expected, the full filter with linear forecast model (17) has the smallest lack680

of information. Among the two reduced filters, the computational efficient diagonal reduced 3D-681

Var filter (20) has smaller model error than the reduced filter by completely dropping the forecast682

models associated with the gravity waves (19). Yet, the lack of information in the diagonal reduced683

3D-Var filter increases much more significantly with γ than the full filter with linear forecast684

model.685
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5. Summary conclusions686

In this paper, the filtering skill and the multiscale information model error of filtering the random687

rotating compressible flows utilizing noisy Lagrangian tracers are extensively studied. The random688

flow fields are defined through random amplitudes of Fourier eigenmodes of the rotating shallow689

water equations, which involve both the random incompressible GB flows and the random rotating690

compressible gravity waves (Section 2a). The GB and gravity modes are coupled in a highly non-691

linear way in the tracer observations (Section 2b). An information-theoretic framework (Section692

3) is developed to assess the lack of information and model error in imperfect filters, which applies693

to a single realization of the observations. Two scenarios of the underlying dynamics of the flow694

fields are taken into consideration.695

First, linear stochastic equations with extra damping and stochastic forcing that represent the696

turbulent nature are utilized to model the underlying dynamics of the random amplitudes of Fourier697

modes, where the GB and gravity modes are assumed to be independent with each other (Equation698

(13)). The joint signal-observation system then becomes a conditional Gaussian system given699

the observations. Despite the high nonlinearity in the observations, such system allows analytical700

solutions for the update of the posterior states in the optimal filter (Appendix A). In addition to701

the full optimal filter, an idealized GB filter (18) is proposed as a reference for filtering the slow-702

varying GB flow which is of primary concern in practice and two practical imperfect filters with703

different simplifications (19) and (20) are developed. The truth of the GB flow field is designed704

based on a simple setup with time-varying flow structures (Section a). Shown in Section 4c, in the705

dynamical regime with fast rotation (Rossby number ε = 0.1), all the four filters have comparably706

high filtering skill and the lack of information in the two imperfect filters related to the perfect full707

filter remains small. In a moderate rotation regime (ε = 1), a significant information model error708
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in the posterior distribution is found in the filtered solutions utilizing the reduced filter with only709

GB forecast model through the full observations (19). On the other hand, the diagonal reduced710

3D-Var filter (20) is not only computationally efficient but nearly as skillful as the optimal filters711

in filtering the GB modes as well.712

In the second part of this paper, a more realistic situation with coupled GB and gravity modes713

in the underlying dynamics is considered, where each GB mode affects the two gravity modes714

with the same Fourier wavenumber through a quadratic nonlinear interaction (36) following the715

mathematical theory of the slow-fast atmosphere flows (Embid and Majda 1998; Majda 2003;716

Gershgorin and Majda 2008). Since the full filter with nonlinear forecast model no longer belongs717

to the conditional Gaussian filtering framework, the same linear forecast model as in the situation718

with uncoupled Fourier modes is adopted in both the full and the diagonal reduced 3D-Var filters,719

which follows the common practical strategy for filtering high dimensional turbulent systems (Ma-720

jda and Harlim 2012; Harlim and Majda 2013). Again, as shown in Section 4d, all the four filters721

are comparably skillful in ε = 0.1 regime even in the appearance of a strong nonlinear coupling722

in the true underlying flow. In ε = 1 regime, the three imperfect filters, i.e., the full filter with723

linear dynamics and the two reduced filters, lose their filtering skill as the increase of the nonlinear724

coupling. The filtering skill of the full filter with linear forecast model remains acceptable. On725

the other hand, information theory shows that the diagonal reduced 3D-Var filter fails to recover726

the extreme events while the reduced filter with only GB forecast model suffers from a significant727

lack of information in the posterior distribution compared to that of the idealized GB filter.728

It is worthwhile pointing out that the conditional Gaussian filtering framework adopted here has729

many other desirable applications. Examples of this framework includes filtering the stochastic730

skeleton model of the Madden-Julian oscillation (MJO) (Chen and Majda 2015b), initialization of731

the unobserved variables in predicting the MJO/Monsoon indices (Chen et al. 2014a; Chen and732
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Majda 2015d,c), exploring the model error in dyad and triad models and analyzing the parameter733

estimations skill for a wide class of models (Chen and Majda 2015a).734

In addition, utilizing information-theoretic framework for the assessment of filter performance735

is an important topic in filtering turbulent systems. A systematic description of quantifying the736

statistical accuracy of Kalman filters with model error and the optimality of the imperfect Kalman737

filters in terms of different information measures is presented in (Branicki and Majda 2014).738
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APPENDIX A743

Filtering formulae for the conditional Gaussian systems744

Here, we show the formulae for updating the posterior mean and posterior covariance of the full745

linearized filter (17). It is straightforward to derive formulae for those of the idealized GB filter746

(18) and the reduced filter with only GB forecast model (19).747

Recall the full filter with linearized dynamics748

dXs = PX(Xs)Usds+σxdW x
s ,

dUs =−ΓUsds+Fsds+ΣudWu(s).
(A1)

where Xs is the observed tracer trajectories and Us is the linearized forecast model for the flow749

field. Despite the conditional Gaussianity, the full system (A1) remains highly nonlinear due750

to the nonlinear observation process. Following theorem 12.7 in (Liptser and Shiryaev 2001),751

given bounded Γt ,Ft ,PX processes being functions of Xt , if P(U0 ∈ ·|X0) is N (m0,R0), then752
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conditioned on Xs≤t , P(Ut ∈ ·|Xs≤t) is Gaussian N (mt ,Rt), with mt ,Rt being solutions to the753

following with initial value m0,R0:754

dmt = [−Γmt +Ft ]dt +σ
−1
x RtP∗X(Xt)[dXt−PX(Xt)mtdt], (A2)

dRt = [−ΓRt−RtΓ
∗+ΣuΣ

∗
u−σ

−2
x RtP∗X(Xt)PX(Xt)Rt ]dt. (A3)

APPENDIX B755

Filtering formulae for the diagonal reduced 3D-Var filter756

In the diagonal reduced 3D-Var filter, the posterior covariance is set to be diagonal. The formulae757

of updating the posterior mean are the same as that in (A2). To see the update of the posterior758

covariance, we denote Rt,i to be the (i, i)-th entry of Rt . Then the update of the posterior covariance759

Rt in (A3) becomes |K| independent 1-D equations760

dRt,i = [−ΓiiRt,i−Rt,iΓ
∗
ii +(ΣuΣ

∗
u)ii−σ

−2
x R2

t,i(P
∗
X(Xt)PX(Xt))ii]dt, (B1)

where (·)ii means the (i, i)-th entry of the matrix. In each time step, after solving each Rt,i, we761

insert Rt into the posterior mean update (A2). It is worthwhile noticing that the (i, i)-th component762

of P∗X(Xt)PX(Xt) is simply |~rk|2, as is seen in (11) due to the fact that exp(−i~k ·~Xk(s)) · exp(i~k ·763

~Xk(s)) = 1 for k ∈K. Thus, the equation (B1) is deterministic. In addition, the diagonal entry Rt,i764

converges to a constant equilibrium value after a short relaxation time.765

On the other hand, the P∗X(Xt)PX(Xt) matrix in the full filter (A1) is not a constant matrix766

because the tracer locations play important roles in the off-diagonal components. Due to the non-767

linearity in Rt , the diagonal entries affected by the off-diagonal one also becomes time-dependent768

in each update.769
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APPENDIX C770

Approximation error by utilizing the GB filter as the reference in assessing the information771

model error772

Here, we compare the information model error (27) in the imperfect filters (19) and (20) in the773

situation with γ = 0 by choosing different reference perfect filters. Note that when γ = 0, both the774

full filter (17) and the GB filter (18) are perfect filters. The posterior distribution associated with775

either (17) or (18) is chosen as p in while that associated with the two reduced filters (19) and (20)776

is chosen as pM. The goal is to see the approximation error in (27) by choosing the GB filter (18)777

as the reference filter in assessing the information model error. We show the results as a function778

of the energy in the gravity modes in Figure 14.779

It is clear that the information model error in both the imperfect filters by utilizing the posterior780

distribution associated with GB filter (18) as the reference distribution p in (27) is slightly larger781

than utilizing that associated with the full filter (17) due to the extra lack of information in the782

observations. Fortunately, the qualitative conclusions by utilizing different reference distribution783

p remain the same. The lack of information by utilizing the reduced filter with only GB forecast784

model (19) is significantly larger than that utilizing the diagonal reduced 3D-Var filter (20) in ε = 1785

regime while the lack of information in both imperfect filters remains small in ε = 0.1 regime. In786

addition, the large model error utilizing the reduced filter with only GB forecast model (19) in787

ε = 1 regime dominates the approximation error due to the idealized artificial observations in the788

GB filter (18). These results imply the justification of utilizing the GB filter as the reference in789

assessing the model error in the more complicated situation with γ 6= 0.790

APPENDIX D791
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Hellinger distance792

As discussed in Section d, the relative entropy is unbounded from above and it is very sensitive793

when the model uncertainty Rq in (22) becomes small. To provide a bounded measurement, we794

introduce the Hellinger distance (Beran 1977; Branicki and Majda 2014),795

dH(p,q) =
1
2

∫
(
√

p−√q)2 = 1−
∫ √

pq, (D1)

where p and q are the distribution associated with the perfect and imperfect model, respectively.796

In Gaussian framework p∼N (~mp,Rp) and q∼N (~mq,Rq), the Hellinger distance becomes797

dH(p,q) = 1−
|Rp|

1
4 |Rq|

1
4∣∣1

2Rp +
1
2Rq
∣∣ 1

2
exp
(
−1

4
(~mp−~mq)

T (Rp +Rq
)−1

(~mp−~mq)

)
. (D2)

It is clear that the Hellinger distance is bounded 0≤ dH(p,q)≤ 1. Yet, the drawback of Hellinger798

distance is that it cannot be explained as a measure of information gain.799

In Figure 15, we show the Hellinger distance between the posterior distribution utilizing the two800

reduced filters and that of perfect full filter (17) as a function of L, σx and Eg in the situation that801

γ = 0 in the true underlying flow field, which can be compared with the information model error in802

Figure 5, 6 and 7. Same trends of the filtering dependence are found by utilizing Hellinger distance803

and the information model error but the Hellinger distance is clearly bounded from above.804
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LIST OF FIGURES903

Fig. 1. Row (a) and (b): Tracer trajectories utilizing the full filter (17) (blue) and the GB filter (18)904

(red) at an initial period in two situations with different large-scale deterministic forcing905

as described in Section 4b. The total number of tracers in filtering is L = 5 but only one906

tracer trajectory of each filter is shown for conciseness. The cyan dot indicates the initial907

location of the tracers. The flow field is shown at time t = 10 and t = 7 for the two situations,908

respectively, where the full flow is shown in column (I) and (II) while only the GB flow is909

shown in column (III). Panel (c) and (d) show the posterior variance associated with GB910

mode (1,0) with different large-scale deterministic forcing. . . . . . . . . . . 48911

Fig. 2. Distribution of the tracer locations at time t = 199. Note that the distribution of GB filter912

(column II) is always uniform. The streamline in each panel corresponds to the GB flow. . . 49913

Fig. 3. Truth and the filtered solutions (posterior mean estimates) of v̂(0,1) and v̂(1,0) of the GB flow914
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FIG. 10. Top: Truth and the filtered solutions of GB mode (1,0) and (0,1) utilizing different filters. Bottom:

The true and recovered streamlines at five time instant in ε = 1 regime. Here, no large-scale forcing is imposed

in the underlying flow and the coupling coefficient γ = 2.
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FIG. 11. The RMS error in posterior mean estimate and the averaged posterior variance over time t ∈ [20,200]

for Fourier mode (1,0) as a function nonlinear coupling coefficient γ . Panel (a) and (b): GB mode; Panel (c)

and (d): Gravity mode.
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FIG. 12. Panel (a) and (b): Information model error in the time-averaged PDF of the posterior mean estimate

for GB mode (0,1) related to that of the truth as a function of coupling coefficient γ . Panel (c) and (d): Time

series and the associated time-averaged PDFs of the filtered solution of GB mode (0,1) with γ = 2 and ε = 1

compared with those of the truth.
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FIG. 13. Information model error (27) in the posterior distribution utilizing the three imperfect filters related

to that utilizing the perfect GB filter in filtering the GB part of the flow, where pM is the posterior distribution of

(a) the full filter with linear dynamics (17), (b) the reduced filter with only GB forecast model (19), and (c) the

diagonal reduced 3D-Var filter (20), and p is that of the GB filter. The statistics shown are the averaged value

over time interval t ∈ [20,200] for the information model error computed at each time instant.
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FIG. 14. Comparison of the information model error (27) in the posterior distribution pM of the two imperfect

filters related to that p of the perfect filters. Here p is associated with either the full filter (17) (solid lines) or the

idealized GB filter in (18) (dashed lines) in different dynamical regimes.
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FIG. 15. Hellinger distance as a function of L, σx and Eg in the situation that γ = 0 in the true underlying flow

field. Compare row (a), (b) and (c) with the information model error in Figure 5, 6 and 7.
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