
                             Elsevier Editorial System(tm) for Journal Of 

Computational Physics 

                                  Manuscript Draft 

 

 

Manuscript Number:  

 

Title: Nonlinear Laplacian Spectral Analysis of Rayleigh-Benard 

convection  

 

Article Type: Regular Article 

 

Keywords: rayleigh-benard convection; nonlinear laplacian spectral 

analysis; machine learning 

 

Corresponding Author: Mr. Noah Domino Brenowitz, B.S. 

 

Corresponding Author's Institution: New York University 

 

First Author: Noah Domino Brenowitz, B.S. 

 

Order of Authors: Noah Domino Brenowitz, B.S.; Dimitris Giannakis, BA, 

MSci, MPhil, PhD; Andrew J Majda, B.S., M.S., Ph.D. 

 

Abstract: The analysis of physical datasets using modern methods 

developed in machine learning presents unique challenges and 

opportunities. These datasets typically feature many degrees of freedom, 

which tends to increase the computational cost of statistical methods and 

complicate interpretation. In addition, physical systems frequently 

exhibit a high degree of symmetry that should be exploited by any data 

analysis technique. The classic problem of Rayleigh Benard convection in 

a periodic domain is an example of such a physical system with trivial 

symmetries. This article presents a technique for analyzing the time 

variability of numerical simulations of two-dimensional Rayleigh-Benard 

convection at large aspect ratio and intermediate Rayleigh number. The 

simulated dynamics are highly unsteady and consist of several convective 

rolls that are distributed across the domain and oscillate with a 

preferred frequency. Intermittent extreme events in the net heat 

transfer, as quantified by the time-weighted probability distribution 

function of the Nusselt number, are a hallmark of these simulations. 

 

Nonlinear Laplacian Spectral Analysis (NLSA) is a data-driven method 

which is ideally suited for the study of such highly nonlinear and 

intermittent dynamics, but the trivial symmetries of the Rayleigh-Benard 

problem such as horizontal shift-invariance can mask the interesting 

dynamics. To overcome this issue, the vertical velocity is averaged over 

parcels of similar temperature and height, which substantially compresses 

the size of the dataset and removes trivial horizontal symmetries. This 

isothermally averaged dataset, which is shown to preserve the net 

convective heat-flux across horizontal surfaces, is then used as an input 

to NLSA. The analysis generates a small number of orthogonal modes which 

describe the spatiotemporal variability of the heat transfer. A 

regression analysis shows that the extreme events of the net heat 

transfer are primarily associated with a family of modes with fat tailed 

probability distributions and low frequency temporal power spectra. On 

the other hand, the regular oscillation of the heat transfer is 

associated with a pair of modes with nearly uniform probability 

distributions. Physical mechanisms for the regular oscillation and the 



extreme heat transfer events are hypothesized based on an analysis of the 

spatio-temporal structure of these modes. Finally, proposals are made for 

this approach to be applied to the study of other problems in turbulent 

convection, including three-dimensional Rayleigh-Benard convection and 

moist atmospheric convection.  

 

 

Suggested Reviewers: Jorg Schumacher 

joerg.schumacher@tu-ilmenau.de 

Expert in Rayleigh Benard convection 

 

Nadine Aubry 

n.aubry@neu.edu 

Expert in the data analysis of dynamical systems 

 

Daan Crommelin 

Daan.Crommelin@cwi.nl 

 

 

 

 



This manuscript presents an algorithm for the analysis of a numerical 

simulation of Rayleigh Benard convection using state of the art methods 

adapted from the machine learning community. There are two primary 

contributions: 

 

1) The transient dynamics of two dimensional Rayleigh Benard convection 

are analyzed with a special focus on intermittency in the bulk heat 

transfer, which is quantified by the probability distribution of the 

Nusselt number. 

 

2) An algorithm which combines nonlinear Laplacian spectral analysis 

(NLSA) and an isothermal averaging procedure is developed. This algorithm 

is specifically designed to take into account the trivial symmetries 

inherent to fluid dynamics simulations in idealized geometries. This 

algorithm generates mode families which successfully explain the 

intermittent aspects of heat transfer. The isothermal averaging procedure 

has the added benefit of substantially reducing the computational cost of 

the NLSA algorithm, which suggests that the algorithm is applicable to 

large three-dimensional simulations. 
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Abstract

The analysis of physical datasets using modern methods developed in machine learning presents

unique challenges and opportunities. These datasets typically feature many degrees of freedom,

which tends to increase the computational cost of statistical methods and complicate interpretation.

In addition, physical systems frequently exhibit a high degree of symmetry that should be exploited

by any data analysis technique. The classic problem of Rayleigh Benárd convection in a periodic

domain is an example of such a physical system with trivial symmetries. This article presents a

technique for analyzing the time variability of numerical simulations of two-dimensional Rayleigh-

Bénard convection at large aspect ratio and intermediate Rayleigh number. The simulated dynamics

are highly unsteady and consist of several convective rolls that are distributed across the domain

and oscillate with a preferred frequency. Intermittent extreme events in the net heat transfer,

as quantified by the time-weighted probability distribution function of the Nusselt number, are a

hallmark of these simulations.

Nonlinear Laplacian Spectral Analysis (NLSA) is a data-driven method which is ideally suited

for the study of such highly nonlinear and intermittent dynamics, but the trivial symmetries of the

Rayleigh-Bénard problem such as horizontal shift-invariance can mask the interesting dynamics. To

overcome this issue, the vertical velocity is averaged over parcels of similar temperature and height,

which substantially compresses the size of the dataset and removes trivial horizontal symmetries.

This isothermally averaged dataset, which is shown to preserve the net convective heat-flux across

horizontal surfaces, is then used as an input to NLSA. The analysis generates a small number of
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orthogonal modes which describe the spatiotemporal variability of the heat transfer. A regression

analysis shows that the extreme events of the net heat transfer are primarily associated with a

family of modes with fat tailed probability distributions and low frequency temporal power spectra.

On the other hand, the regular oscillation of the heat transfer is associated with a pair of modes

with nearly uniform probability distributions. Physical mechanisms for the regular oscillation and

the extreme heat transfer events are hypothesized based on an analysis of the spatio-temporal

structure of these modes. Finally, proposals are made for this approach to be applied to the study

of other problems in turbulent convection, including three-dimensional Rayleigh-Bénard convection

and moist atmospheric convection.

1. Introduction

There are several aspects of physical datasets, be they from simulation, observation, or exper-

iment, that complicate the straightforward application of advanced machine learning techniques.

From a practical standpoint, these datasets are often extremely large with three spatial dimensions,

and thousands time samples. Despite these thousands of time samples, it is clear that the resultant

time series are frequently not fully sampled, and any technique should be able to cope with this.

Secondly, physical datasets are frequently heterogeneous, with several relevant variables such as

fluid velocity and temperature. Finally, unlike many industrial or biological datasets, the dynamics

of physical systems are often governed by partial differential equations which can be simulated with

a reasonable degree of accuracy on modern computer systems. This paper presents a physics-aware

methodology for the analysis of physical datasets, that addresses each of these three issue in the

context of a numerical simulation of Rayleigh-Bénard (RB) convection.

Rayleigh-Bénard convection is an important, but relatively simple, test-bed for the analysis of

complex physical datasets. RB convection is the simplest prototype model for turbulent convection

and has been extensively studied over the last century. It was an early example of convective in-

stability (Chandrasekhar, 1981), and it forms the basis for Lorenz’s famous work on chaos (Lorenz,

1963). A large part of the theoretical, numerical, and experimental work has gone into deriving

scaling laws relating the important parameters of the problem at steady state (Ahlers et al., 2009;
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Chillà and Schumacher, 2012, and references therein). However, the transient nature of the dynam-

ics are also a topic of heavy interest (Kadanoff, 2001; Xi et al., 2009). Recent work has analyzed the

transient aspects of RB convection using techniques such as empirical orthogonal functions (EOF)

analysis (Bailon-Cuba et al., 2010)— which is also known by a wide array of names including prin-

cipal components analysis, proper orthogonal decomposition (Aubry et al., 1991), and the discrete

Karhunen-Loève expansion.

EOF analysis, however, has some faults. Because it ranks modes by variance explained, EOF

analysis can fail to capture intermittent aspects of the dynamics. This concern is particularly

relevant in the study of self-organizing nonlinear systems like RB convection, where the intermittent

aspects of the data are frequently the most interesting. Moreover, when the system is undersampled

in space, time, or otherwise, the dataset can suffer from loss of Markovianity. One technique for

overcoming undersampling in dynamical systems is the classic method of expanding the dimension

of the data by delay-embedding (Takens, 1981; Sauer et al., 1991). An important application of this

principle is Singular Spectrum Analysis (SSA) (Vautard and Ghil, 1989), which combines Takens’

embedding and EOF analysis. However, because SSA still selects modes based on variance explained

it often under-emphasizes intermittent modes of variability and extreme events. A particularly

striking example of the failure of variance-greedy algorithms is described by Crommelin and Majda

(2004, Sec. 3), where the leading five EOFs of a six dimensional chaotic system capture over

99.9% of the energy, but fail to reproduce the chaotic dynamics. Specifically, the reduced dynamics

converge towards a single fixed point.

To allow an accurate representation of intermittent and chaotic dynamics, Giannakis and Majda

(2012b) recently proposed an algorithm known as Nonlinear Laplacian Spectral Analysis (NLSA).

Like SSA, the NLSA algorithm consists of delay-embedding followed by an eigen-decomposition

technique. NLSA improves upon SSA by using state of the art nonlinear manifold learning methods

(Belkin and Niyogi, 2003; Coifman and Lafon, 2006) instead of linear EOF-based techniques. As

a matter of course, NLSA is able to recreate the chaotic dynamics of the six-dimensional system

described above using only three modes—the minimal dimensionality required for chaotic systems

by the Poincare-Bendixson theorem (Strogatz, 2001). Since its original publication, NLSA has
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been successfully applied to the analysis of highly complex datasets in the field of atmosphere-ocean

science (AOS). Examples include the study of variability in North Pacific ocean currents (Giannakis

and Majda, 2011, 2012a), the coupled dynamics of sea ice, the ocean, and the atmosphere (Bushuk

et al., 2014; Bushuk and Giannakis, 2015; Bushuk et al., 2015), and the dynamics of cloud patterns

in the tropics (Giannakis et al., 2012; Tung et al., 2014; Chen et al., 2014; Székely et al., 2015).

However, unforced systems in simplified geometries like RB convection present unique challenges

that are not present in climate datasets, which are strongly forced by effectively external factors

such as the diurnal cycle, the seasonal cycle, topography, and anthropogenic sources.

Unlike the climate system, isolated systems in idealized geometries frequently have many trivial

symmetries such as shift and Galilean invariance, which from a data analysis perspective can serve

mask interesting aspects of the dynamics. For example, the EOFs of a system with shift invariance

and periodic boundary conditions are essentially spatial Fourier modes (Aubry et al., 1993), a

fact which only reflects the geometry of the system, not the underlying equations of motions. In

the context of fluid mechanics, a useful approach to remove the effect of these symmetries can be

achieved by averaging in an approximately Lagrangian frame (McIntyre, 1980).

A recent approach that is quasi-Lagrangian in nature has been proposed in Pauluis and Mrowiec

(2013) for the study of moist-atmospheric convection. The authors there average various scalar

quantities, such as humidity and vertical mass flux, over parcels of constant height and equivalent

potential temperature, a temperature-like quantity which is a function of the humidity, temperature,

and pressure. Because the equivalent potential temperature is nearly materially conserved in moist

convective processes, this isentropic binning approach essentially replaces a spatial dimension such

as x with a dynamically significant dimension. Therefore, it is able to represent advective fluxes of

scalars in a robust fashion. Taking time averages allows inference of the steady-state mixing and

transport properties of the convective circulation. However, in applications, the unsteady dynamics

of these convective flux quantities are of great interest.

In this paper, we use an analogous technique to generate a post-processed dataset for dry RB

convection in an idealized geometry. Because RB convection is already isentropic by definition,

it suffices to use temperature to stratify the data. The intuition is that temperature is nearly
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materially conserved in regions with small temperature gradients. Moreover, parcels of the same

temperature and height are likely to be similar to each other. Combining this isothermal binning

procedure with NLSA analysis homes in on the interesting aspects of the heat transfer dynamics

such as extreme events in the net heat transfer.

The outline of the paper follows. Section 2 provides a brief overview of RB convection. NLSA

and the proposed isothermal-binning technique are described in Section 3. Section 4 describes the

specifics of the numerical simulations performed and places emphasis on the intermittency of the

bulk heat transfer dynamics. The integrated data analysis pipeline is performed on this dataset,

and the results are discussed in Section 5. Finally, some concluding remarks are given in Section 6.

2. Rayleigh-Bénard Convection

Rayleigh-Bénard convection is perhaps the best understood model of turbulent convection

(Kadanoff, 2001; Ahlers et al., 2009; Chillà and Schumacher, 2012). The setup consists of a thin

layer of Boussinesq fluid suspended between two horizontal plates. The upper plate is held at a

colder temperature than the lower plate, which leads to buoyant instability when the tempera-

ture difference is sufficiently large. The equations of motion for the layer of fluid can be derived

from the full Navier-Stokes equations by assuming that density is a linear function of temperature

ρ = ρ0 [1− α(T − T0)], where α is known as the thermal expansion coefficient. Moreover, it is

assumed that fluctuations in density are small compared to the background so that 1/ρ ≈ 1/ρ0. On

other hand, gradients in density induce pressure gradients which can drive the flow. Using these

approximations, the momentum and continuity equations are given by

Dv

Dt
= −∇p+ gαTez + ν∇2v, (1)

∇ · v = 0, (2)

where v = (u, v, w) and the material derivative is, as usual, given by D/Dt = ∂t + v · ∇v. Note

that the constant T0 term has been absorbed into the pressure gradient. The reader familiar with

atmospheric or oceanic dynamics will notice that these equations are a more general form of hydro-

static Boussinesq equation often used for geophysical flows. Indeed, a hydrostatic approximation
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is not valid in regimes where the vertical and horizontal velocities are similar in magnitude, which

is the case in RB convection. The temperature equation is given by a simple advection-diffusion

equation
DT

Dt
= κ∇2T, (3)

where κ is the thermal diffusivity. From this relation it is easy to see that temperature is nearly

materially conserved when the diffusion term is small. This will typically be the case away from

the boundaries, which motivates the isothermal binning procedure to be described in Section 3.3.

In the RB problem, a thin layer of fluid with width d is suspended between an cold upper and

warm lower surface. The vertical boundary conditions for the velocity are traditionally taken to

be either free-slip or no-slip, and the temperature at the lower plate is fixed at T (z = 0) = T0 and

for the upper plate at T (z = d) = T0 −∆T . A wide array of horizontal geometries and boundary

conditions can be used, but in this paper we simply use periodic conditions.

The equations of motion can be cast in nondimensional form in a number of possible ways, but

for the present purposes it is best to choose scales associated with the buoyant force. The typical

length (d) and temperature scales (∆T ) are provided by the geometry and boundary conditions. A

typical velocity scale associated with the buoyant acceleration of the fluid is known as the free fall

velocity scale and is given by Uf =
√
gαd∆T . The advective free-fall time scale associated with the

free-fall velocity is then given by

Tf =
d

Uf
=

√
d

gα∆T
. (4)

For most interesting physical regimes, the free fall time is much faster than than diffusive or viscous

time scales.

Using these scales to non-dimensionalize (1)–(3), leads to the system given by

Dv

Dt
= −∇p+ Tez +

Pr1/2

Ra1/2
∇2v, (5)

DT

Dt
=

1

(RaPr)1/2
∇2T, (6)

∇ · v = 0. (7)

This system depends on the Rayleigh and Prandtl nondimensional numbers, which are, respectively,
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given by

Ra =
gα∆Td3

νκ
and Pr =

ν

κ
.

The Rayleigh number can be interpreted as the ratio of bouyant and viscous forces or time scales,

whereas the Prandlt number is simply the ratio of kinematic viscosity and thermal diffusivity. In

both the free-slip and no-slip cases, this state with no fluid motion is linearly unstable when the

Rayleigh number, exceeds some critical value Rcrit ≈ 1000 (Chandrasekhar, 1981); Rayleigh was

the first to show this, which is why RB convection bears his name. The Rayleigh and Prandtl

numbers are important controlling parameters, but the actual amount of heat transported by the

flow depends on these two parameters in a nontrivial way. The Nusselt number, which quantifies

the relative contribution of advective and diffusive heat fluxes is therefore an important diagnostic.

It is given by

Nu =
1
L

´H
0

´ L
0
wT − κTzdxdz
κ∆T

, (8)

where the integration is performed over the entire domain given by 0 ≤ x < L and 0 ≤ z < H. The

normalizing factor of κ∆T is horizontally averaged heat flux due to conduction of heat, which can

be seen by computing the integral ˆ H

0

κTzdz = κ∆T. (9)

A great deal of research has gone into studying the dependence of statistical steady-state rela-

tionships between Ra, Pr, and Nu on these two parameters (Kadanoff, 2001; Ahlers et al., 2009,

and references therein), but the transient aspects of the relationship are less well understood. More

plainly, in a given numerical simulation of RB convection the (8) can be calculated for each sample

to generate a time series of Nu. In this paper, it is emphasized that Nu(t) is a highly intermittent

oscillatory time series with rich low frequency content in regimes with suitably high Rayleigh num-

ber. Understanding the dynamics of the Nusselt number in all their richness is the key target of

the analysis below.
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3. Spatio-temporal analysis of Rayleigh-Bénard Convection

As described in the introduction, the proposed data analysis pipeline for studying RB convection

consists of an isothermal averaging procedure followed by NLSA. We begin by describing the general

NLSA algorithm.

3.1. Nonlinear Laplacian spectral analysis

The nonlinear Laplacian spectral analysis (NLSA) technique developed in Giannakis and Majda

(2012b) is an extension of singular spectrum analysis (SSA) that targets intermittency and time-

scale separation in dynamical systems. NLSA is a combination of ideas from spectral graph theory

and dynamical systems, and has been used to analyze several datasets in field of atmosphere-ocean

science (Bushuk et al., 2014; Székely et al., 2015).

NLSA, as well as SSA, are based on Takens’ time-lagged embedding (Takens, 1981; Sauer et al.,

1991). To describe the algorithm, assume the input data has n degrees of freedom and s time

samples. For example, the degrees of freedom can be fluid temperature and velocity sampled over

a regular grid. Let the data for a time sample i be given by the n dimensional vector xi. The

common step between SSA and NLSA is called the lagged embedding step, wherein the dimension

of this dataset is compounded by constructing a new dataset for which each sample includes q lags

of the given spatial pattern. Specifically, the ith sample of the q-lagged embedded data is given by

nq-dimensional vector

xqi =



xi

xi−1
...

xi−(q−1)


.

For convenience, we denote the phase-space of these lagged embedded vectors as M = Rnq. These

lagged-embeded samples are then collated in data matrix given by

X =
[
xq1 x

q
2 . . . x

q
s−q
]
. (10)

At this point in the algorithm, NLSA fundamentally differs from SSA. SSA proceeds simply

by performing a singular value decomposition (SVD) of X and returning the associated empirical
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orthogonal functions (EOFs) and principal components (PCs). The EOFs represent the spatial-

temporal patterns over q-lags, and the principal components describe the temporal variability of

these spatio-temporal patterns. Here, we note that the SVD is equivalent to solving for the eigen-

values and eigenvectors of the temporal covariance matrix C = (s− q)−1XTX. NLSA also returns

EOFs and PCs, but does so by solving a different, dynamically-aware, eigenvalue problem.

Laplacian eigenmaps are a nonlinear dimension reduction procedure that are particular suited

to the empirical analysis of nonlinear systems (Belkin and Niyogi, 2003). In machine learning, this

and other techniques are known by the label “nonlinear manifold learning”. In an extension of

this work, Coifman and Lafon (2006) introduced a theory for Diffusion maps (DM) that forms the

basis of the eigenvalue problem solved by NLSA. The formulation is a closely related to that of the

covariance matrix, and is a form of kernel EOF analysis. In the formulation described in Giannakis

and Majda (2012b), a kernel matrix between time samples is defined by

Kij = exp

(
‖xq

i−x
q
j‖2

εξiξj

)
.

In addition to the Takens embedding, the dynamical systems point of view further enters through

the normalizing values, ξi =
∥∥xqi+1 − xqi−1

∥∥, which are the approximations to the velocity in phase

space (Giannakis and Majda, 2012b). It has been shown both experimentally (Giannakis and

Majda, 2012b) and theoretically (Berry et al., 2013) that using Takens embedding in conjunction

with kernel methods enhances time scale separation in the computed eigenfunctions. The parameter

ε is used to alter the preferred width of this kernel in phase space, and is typically chosen so that

ε = O(1).

Following the DM machinery of Coifman and Lafon (2006), this kernel matrix, which is sym-

metric, is then normalized by a function of its row (or column) sums, Qi =
∑
j Kij . This gives an

adjusted matrix

K̃ij =
Kij

Qαi Q
α
j

,

where α is a parameter of the analysis. Finally, this kernel is turned into a probability matrix given
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by

Pij =
K̃ij∑
j K̃ij

,

which represents a Markov chain defined on the underlying state space of the dynamical system.

The eigenvalues of the graph Laplacian of this probability matrix, which is given by L = I − P

are then found, typically using a computationally inexpensive iterative method. These eigenfunc-

tion/eigenvalue pairs, which are given by Lφi = λφi for i ∈ N can be used as a new set of coordinates

on the manifold. A more practical interpretation of these eigenfunctions as time series will be pro-

vided below in Section 3.2. The eigenfunctions of the graph Laplacian on the manifold are analogous

to Fourier modes on the periodic real line. This machinery also predicts an equilibrium measure

µP = µ which induces an inner product defined by

(u, v) =

s−q∑
k

u(k)v(k)µ(k) (11)

A key point is that the Laplacian eigenfunctions are orthogonal with respect to this inner product,

so that (φi, φj) = δij , where δij is the Kronecker delta. Therefore, they can be used as a convenient

orthogonal basis for original dataset that respects the nonlinear structure of the manifold the data

inhabit in phase space.

3.2. NLSA in practice

In the previous section, it was shown that the main output of NLSA is a set of Laplacian

eigenfunctions {φi}i=1,2,... which are orthogonal with respect to the inner product induced by the

metric µ. The first interpretation of these eigenfunctions is as functions on the lagged embedded

phase space M , which in mathematical symbols implies φi : M → R. However, the NLSA analysis

only returns the values of φi at a discrete set of locations in phase-space which sampled at uniform

time intervals. Therefore, µ and the φi can be interpreted as discrete time series of length s − q.

This can be written symbolically φi(tj) = φi(x(tj)) with tj = j∆t and q ≤ j ≤ s. These time

series are analogous to the principal components returned in an SSA or EOF analysis and can be

analyzed in a similar fashion to any time series.

The phase-space structure of the Laplacian eigenfunctions can also be analyzed by projecting
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any time series of length s− q onto the φi, using the inner product defined by (11). In more detail,

let a matrix Y ∈ Rm×s−q, which can be interpreted as a discrete time series of length s − q in

am m-dimensional phase space, be given by Y = [y1 . . .ys−q]. The lag-embedded data matrix X

defined in (10) is an example. Then, each eigenfunction φi can be associated with a spatio-temporal

pattern ψYi ∈ Rm by a simple weighted projection

ψYi = Y (φi � µ) (12)

where “�” denotes elementwise multiplication of the column vectors φi and µ. If the lagged-

embedded data matrix, X, is used, then the column vectors ψXi can be interpreted as spatio-

temporal patterns consisting of q lags of the original non-embedded data. These spatial patterns

are typically visualized as movies of a two or three dimensional field such as temperature or velocity.

The lagged embedding framework has numerous advantages and theoretical motivations (Tak-

ens, 1981; Sauer et al., 1991), but it is often easier to interpret modes in the original space. Here,

a procedure is described that essentially allows the entire NLSA procedure to be treated as blind

source separation that returns dynamically significant modes of variability. The typical algorithm

in SSA and NLSA to accomplish this is known as reconstruction (Giannakis and Majda, 2012b;

Vautard and Ghil, 1989; Vautard et al., 1992). The outer product of a spatio-temporal pattern

and and its corresponding Laplacian eigenfunction, MX
i = ψXi ⊗ φi, can be regarded as func-

tion MX
i (k, j, `) = ψXi (k + n`)φi(j∆t) over the spatial index k, time index j, and lag index `.

The redundancy between the time index j and lag index ` means that any element of the set

{MX
i (·, j, `)|t = (j − `)∆t} can be identified as a spatial pattern at time t. A simple way to resolve

this redundancy is to take an average over each of these sets. In particular, the “reconstructed”

function associated with a Laplacian eigenfunction φi is given by

M̃X
i (·, tj) =

1

q

q−1∑
`=0

MX
i (·, j + `, `) (13)

This reconstructed mode M̃X
i (k, tj) can be interpreted as an anomaly due to the ith Laplacian eigen-

function, and can be visualized and analyzed in an identical fashion as the original non-embedded

data. Summing the reconstructed modes allows for a convenient summary of the aggregate behavior
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of different Laplacian eigenfunctions. The anomaly due to a set of Laplacian eigenfunctions S, is

therefore given by

M̃X
S =

∑
i∈S

M̃X
i . (14)

Grouping modes is qualitative in nature, and typical methods include grouping modes with similar

power spectra or statistical characteristics. If all the eigenfunctions are used (e.g. S = {1, . . . , s−q}),

then the original dataset, X, is recovered exactly by (14).

3.3. Isothermal binning

There are, however, some caveats when any machine learning algorithm is applied directly to

a large physical dataset with trivial and uninteresting symmetries. The approach described in

Section 3.1 does not account for these symmetries. In the present context, the most basic of these

is the spatial shift-invariance of two dimensional periodic RB problem. Practically speaking, the

leading modes of an EOF or NLSA analysis of the full temperature or velocity fields consist of

low frequency spatial shifts, which do not effect integral diagnostics such as bulk heat transfer

and Nusselt number. These modes are, for our purposes dynamically uninteresting, and they

mask the underlying convective dynamics. Therefore, we first develop a technique to remove these

uninteresting symmetries. In addition, this technique saves significant computational expense. Both

NLSA and SSA require computing the pairwise distances between every time sample, which is an

operation that scales quadratically with the time-lagged dimension. Practically speaking solving

the eigenvalue problem is comparatively cheap due to the use of cheap iterative eigenvalue solvers.

While NLSA has been shown to scale to systems with millions of degrees of freedom, there are still

practical limits when analyzing systems with billions of degrees of freedom such as the output of a

three-dimensional fluid dynamics simulation.

Prior to analysis with NLSA, the RB data are compressed by using temperature rather than x

as a horizontal coordinate. As described in the introduction, this procedure is quite similar to the

isentropic stream function analysis of Pauluis and Mrowiec (2013). However, since Boussinesq flows

are already isentropic, the compression for this dataset works in temperature coordinates, T , rather

than equivalent potential temperature. Essentially, the net effect of the procedure is to transform
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the vertical velocity w, which is a function of (x, z, t), as a function of (T, z, t). In so doing, the

Eulerian horizontal coordinate x is replaced by the dynamically significant coordinate T .

This coordinate change is accomplished by averaging the vertical velocity over parcels of the

same height and temperature. In the continuum setting, the formula which performs this is given

by

wT (T0, z0) =

¨
δ(T (x, z)− T0)δ(z − z0)w(x, z)dxdz, (15)

where δ(·) is the Dirac delta function. A convenience of this averaging procedure is that, in the

continuum limit, the convective heat flux can be given by

ˆ
wT (T ′, z)T ′dT ′ =

ˆ
Tδ(T (x, z)− T ′)wdxdT ′ =

ˆ
wTdx, (16)

so that integrated convective heat flux through a particular level can be perfectly recovered. In

practice, however, (15) is implemented by dividing the temperature range into a finite number of

bins, and averaging the vertical velocity within each bin; therefore, (16) is only approximately true

in practice. On the other hand, diffusive heat fluxes cannot be captured using this approach, but

as shown in (9), the bulk conductive transport of heat is constant.

In other words, the Nusselt number (c.f. Eq. 8), which is the primary diagnostic quantity of in-

terest here is preserved under the isothermal averaging procedure. The benefit is that the convective

heat flux is a linear functional of wT , whereas it is a quadratic one of w and T . Therefore, if wT can

be expressed as a linear superposition of modes, which will be generated here by NLSA, then each

mode can be associated with an unique heat-flux profile. Again, the isothermal binning procedure

does not effect the overall heat transfer dynamics, and it removes the obfuscating presence of trivial

horizontal symmetries. However, the averaging approach implicitly relies on the assumption that

parcels with similar temperatures are somehow dynamically similar. In a highly organized system,

like RB convection, there is a mechanism for the interaction of spatially distant parcels of the same

temperature; however, in unorganized systems, the summation formulas above would likely lead to

the cancellation of the interesting dynamics. This means that the non-locality of the underlying

physical dataset should be considered when applying this technique.
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Figure 1: A single snapshot of the convection system at t = 0 (recall the first 10000 samples have been excluded).
The raw temperature data are plotted (left) with temperature in color ranging between 0 (blue) and 1 (yellow). The
isothermally averaged velocity is plotted on the right with color ranging between −2 (blue) and 2 (red). The vertical
axis is z, and the horizontal axes are x (left) and T (right). The flow consists of several convective cells (left), which
are condensed into a single cell in (T, z) space (right).

4. Simulation of two dimensional Rayleigh-Bénard Convection

The isothermal NLSA data analysis pipeline described in the previous section is now applied to

a numerical simulation of two-dimensional RB convection for intermediate Rayleigh number in a

large aspect ratio domain. As mentioned in Section 2, the geometry consists of a horizontal layer of

fluid suspended between two plates which are separated by d = 1, and the temperature difference

between the plates is ∆T = 1. The vertical boundary conditions are no-slip, and the horizontal

boundary conditions are periodic. To study the dynamics of multiple interacting convection cells,

the horizontal extent of the domain is fixed at 15 times the width of the fluid layer, and periodic

boundary conditions are used. The Rayleigh number is fixed at linearly unstable value, but non-

turbulent, value of Ra = 5 · 106, to allow for the emergence of intermittency and low-frequency

oscillation in the resultant circulation. The Prandtl number is fixed at Pr = 1.

The simulations are performed using a spectral element code known as Nek5000 (Fischer, 1997;

nek5000, 2015). The numerical grid used is non-uniform but orthogonal in the (x, z) plane. The

domain is discretized using 15 square spectral elements distributed horizontally, which each contain

32× 32 grid points. Therefore, the entire computational grid consists of 32 and 480 = 32 · 15 grid

points in the vertical and horizontal directions, respectively. A time step of 1/600Tf is used, and
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output is saved every 600 time steps, so that the output time step is the same as the free-fall time

scale for this problem, which is the fastest intrinsic time scale of the flow. To reach statistical

equilibrium, a long time series of 20000 samples is generated, and the first 10000 samples are

excluded from the analysis pipeline. The isothermal binning procedure described in Section 3.3 is

performed using 21 equally spaced bins between T = 0, which is the temperature of the top plate,

and T = 1, the temperature of the bottom plate.

A single snapshot of the raw model output is shown in Figure 1. The flow consists of several

convective cells with aspect ratios close to unity. The ascent (descent) occurs in narrow regions

of warm (cold) fluid. When the isothermal averaging procedure described in Section 3.3 is carried

out, the multiple cells in (x, z) space are collapsed into a single cell in (T, z) space. This cell is

associated with the ascent (descent) of warm (cold) fluid.

The Nusselt number defined in (8) is the key number quantifying both the total heat transfer of

the system as well as its dynamical character. A portion of the Nu time series is plotted in the first

row of Figure 2 along with its power spectrum and probability density function (pdf). It is marked

by a characteristic high frequency oscillation, which corresponds to the “wobble” of the circulation

cells. The Nusselt number also experiences epochs of extremely low heat transfers which occur

intermittently. As can be seen in the power spectrum, the Nusselt number has a spectral peak at

a period of around 5Tf , which is relatively high frequency. However, the time series also shows

significant power for periods longer than 100Tf . On a logarithmic axis, a gaussian pdf will appear

as a parabola. By comparing the pdf of Nu, with a Gaussian pdf of the same mean and variance,

it is clear the Nu pdf has a fat left tail. Also, the skewness in the pdf reflects the asymmetry in the

time series of Nu.

As mentioned in Section 3.3, the binning procedure can introduce some errors in the calculated

net heat transfer (e.g. Nusselt number). Figure 3 contains a scatter plot of Nu calculated using the

original and isothermally binned data. The near perfect correspondence shows that the number of

bins (21) chosen here is sufficiently accurate to resolve the heat transfer dynamics.
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5. NLSA of the isothermally averaged vertical velocity

Having given a brief overview of the spatial, temporal, and statistical characteristics of the

simulations, we perform NLSA on the isothermally averaged dataset. First, the temporal mean of

the isothermally averaged vertical velocity wT (T, z) is calculated, and then NLSA is performed on

the anomalies from this mean. A lagged embedding window of 20 is chosen to capture patterns

of variability associated with the high frequency oscillation of Nu, which has a period of 5 Tf .

The Laplacian eigenfunctions are generated for α = .5 and ε = .3. The results are fairly robust

to changes in these parameters, and this particular set was chosen because it yields the cleanest

results. For more information about how to choose the parameters α and ε, we refer the interested

reader to Giannakis and Majda (2012b).

A subset of the resulting Laplacian eigenfunctions (φi), are visualized as time series in the left

column of Figure 2. The corresponding spectral and statistical characteristics are shown in second

and third columns, respectively. The first two eigenfunctions, φ1 and φ2, are a pair of modes which

comprise the regular high frequency oscillation of Nu. They have a spectral peak at the same

frequency as the Nusselt number, and have nearly uniform pdfs. In other words, these two modes

are nearly equally active in all samples of the time series.

While the first two eigenfunctions capture the regular high-frequency behavior of the data, there

are other eigenfunctions which capture the intermittent high frequency behavior, as well as a family

of low frequency modes. For example, φ12 and φ13 have similar spectral characteristics to φ1 and

φ2, but their distributions have symmetric fat tails. Most interestingly, visual comparison reveals

that extreme events in the Nusselt number are associated with increased amplitude of these high

frequency intermittent eigenfunctions. For instance compare the event around t = 190, where the

Nusselt number drops to nearly 6. Finally, there are a family of eigenfunctions (e.g. φ3, φ10 and

φ11) which describe the low-frequency variability of the data. It will be shown in the next section

that these low-frequency eigenfunctions are related to the envelope of the Nusselt number.

In summary, NLSA yields an interesting decomposition of the data into eigenfunctions with

different spectral characteristics. This efficient time scale separation is an advantage of NLSA that

has been observed in a wide array datasets (Bushuk et al., 2014; Tung et al., 2014; Székely et al.,

16



2015). It is also striking that even within sets of eigenfunctions with similar spectral character-

istics, NLSA separates signals which have nearly constant amplitude (e.g. 1 and 2) from highly

intermittent modes such (e.g. 12 and 13). While the former effect is seen in a conventional SSA

analysis (Vautard and Ghil, 1989), the separation of intermittent from regular components is a

special strength of the NLSA algorithm (Giannakis and Majda, 2012b).

5.1. Regression Analysis

In the previous section, it was hinted that the Laplacian eigenfunctions are able to capture

certain aspects of the Nusselt number behavior. We expand upon this here in quantitative fashion by

performing two related linear regression analyses. Specifically, it is shown that a small subset of the

Laplacian eigenfunctions plotted above are successful in capturing both the spectral and statistical

features of Nusselt number. To this effect, a weighted linear regression analysis is performed by

regressing the Nusselt number time series onto the Laplacian eigenfunctions. The first 20 Laplacian

eigenfunctions and a constant are used, and the model can be written as a weighted least squares

regression model

Nu(t) = α+

20∑
i=1

βiφi(t) + σ(t)η(t)

where η(t) is a noise term and the standard deviation process σ(t) = µ(t)−1/2 is given by the

invariant measure of the graph Laplacian. The particular statistical nature of η(t) is not important

here. It is only necessary that η(t) be orthogonal to φi(t) for i ∈ {1, . . . , 20} according to the inner

product defined by (11). Typically, the invariant measure, µ, is close to a constant, and it is used

here for consistency with the procedure described in Section 3.1. To highlight the low frequency

character of the extreme events we also perform this regression on the rolling minimum time series

Nu20(t) = min {Nu(t− q) : 0 ≤ q ≤ 20} . (17)

This time series is in essence the lower envelope of the Nusselt number. Moreover, using this time

series resolves the ambiguity in how the eigenfunction time series should be aligned to the Nusselt

number time series temporally. After all, the eigenfunction time series are q samples shorter than

the Nusselt number time series, and the first available sample of the eigenfunctions is associated
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with all of the q lags of the data.

Each target time series, Nu(t) and Nu20(t), is regressed onto the first 20 eigenfunctions returned

by NLSA. The resultant regression coefficients β1–β20 are plotted in Figures 4 and 6 for the Nu

and Nu20 analyses, respectively. Then the magnitude |βi| is used to rank the eigenfunctions, and

the improvements from including more eigenfunctions in each regression model is analyzed. A

convenient visualization of the performance of a regression analysis is obtained by plotting the

fitted values and the dependent variable together. This is shown for Nu(t) and Nu20(t) in Figures

5 and 7, respectively. The log-densities of the fitted values are used to analyze the ability of the

regression models to capture the intermittency and extreme events of the Nusselt number.

The raw Nusselt number regressions show the ability of a small number of Laplacian eigenfunc-

tions to capture the primary oscillatory behavior of the heat transfer. The R2 for the raw Nusselt

number regression with 20 eigenfunctions is 0.833, and it is clear from Figure 5, that regression

model consisting of only three eigenfunctions (e.g. 1,7, and 2) captures a remarkable amount of

the variability. That said, the pdfs of the regression estimates do not share the fat left tail of

the Nusselt number. It appears that the weighted least squares (WLS) minimization problem is

masking the role of intermittent eigenfunctions. This makes sense because the larger share of the

variability comes from the regular oscillation of the Nusselt number.

On the other hand, the regression for the rolling minimum Nusselt number (c.f. Figure 7)

reveals the important role that the low-frequency components have in modulating the extreme heat

transfer events. The R2 for the rolling minimum analysis is .795. The most important regressor

is φ3, which has a Gaussian or sub-Gaussian tails, but including the second ranked regressor, φ10,

allows for high-fidelity tracking of extreme events.

For both cases, we have shown that a small number of eigenfuctions are able to quantitatively

capture the variance and intermittency of the Nusselt number. In particular, the bulk of the

variance of the Nusselt number is captured using a set of high-frequency Laplacian eigenfunctions

with nearly constant amplitude, while the intermittent aspects of the signal can be described using

fat tailed low frequency eigenfunctions.
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5.2. Reconstructed mode family composites

Having demonstrated that the Laplacian eigenfunctions adequately reconstitute the temporal

behavior of the Nusselt number in a statistical sense, it is important to get a sense of what the

modes look like spatially. Using the regression analysis, as well as the statistical and spectral

characteristics of the eigenfunction time series as guides, three families of modes are been selected.

These are:

• “oscil”: A family consisting of the first two eigenfunctions, S = {1, 2}, which are a pair of

modes the capture the bulk uniform oscillation of the Nusselt number (c.f. Figure 5).

• “high”: A family with S = {12, 13}, which have high temporal frequency, but more fat-tailed

distributions than the φ1 and φ2.

• “low”: A family consisting of the low frequency modes, S = {3, 10, 11}, that explain the

variance of the rolling minimum Nusselt number (c.f. Figure 7).

The choice of these families is not intended to provide a comprehensive survey of the variability.

Rather these modes families were largely chosen to provide a physical picture to the modes that

were played an important role in the regression analysis of the previous section.

The reconstruction procedure described in Section 3.2 is used to calculate reconstructed anomaly

fields for each mode family described above. This reconstruction is performed for two different fields.

The first is the isothermally averaged data wT (T, z) that was the input to the NLSA algorithm.

This provides a convenient summary of each mode family’s effect on the heat transfer. For a

given mode family S, the wT (T, z, t) reconstructions are denoted by M̃w
S (x, T, t). These fields can

be visualized as movies (see the supplement), but generating averages which are conditional on

the Nusselt number provides are more coherent summary of each mode family. In particular, the

range of the Nusselt number is divided into two intervals Nu < 8, and 14 ≤ Nu, which are chosen to

represent the left-tail and right-tail of the distribution. The reconstructed fields are then temporally

averaged conditional on these intervals. The overall temporal average of the fields is also calculated.

As mentioned in Section 3.3, the isothermal binning allows for straightforward reconstruction of

the transient heat flux, and it is possible to associate each NLSA mode with a convective temper-
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ature flux profile. This is one of the key benefits of the isothermal binning approach. A centered

version of the convective heat flux due to a mode family S is given by

Mw
S · (T − 0.5) =

ˆ 1

0

Mw
S (T − 0.5)dT. (18)

This formula is derived by analogy with (16), and the offset of 0.5 is used to center the resultant

anomaly.

The M̃w
S composites are shown in Figure 8, and the associate heat flux composites for each

vertical level z are contained in Figure 9. The “oscil” mode family has a simple structure and

amplitude relationship. The behavior is rather simple given that left-tail of the Nusselt number is

associated with decreased heat transfer. For low Nusselt number, the “oscil” family is associated

with the upward (downward) motion of moderately low (high) temperature fluid, which would

tend to depress the heat transfer. The composite for Nu > 14 has a very similar structure in (T, z)

space, but it has an opposite sign. Finally, the overall temporal average is near zero, which indicates

that the “oscil” mode family represents a regular symmetric oscillation. The convective heat flux

plots in Figure 9 confirm that the “oscil” family causes no net heat-flux, and that the Nu < 8

conditional average is nearly equal-and-opposite the Nu ≥ 14 average. An additional detail is the

composites show that boundary layer and mid-domain heat-fluxes are of opposite sign, although

the mid-domain heat flux dominates.

The “high” mode family is also has a high frequency oscillatory behavior, but the composites

show that it is preferentially active when the Nusselt number is reduced. Its structure in (T, z) space

is similar to that of the “oscil” family in the center of the domain, but different near z = 0 and z = 1.

The pattern also appears to tilt to the left. The vertical structure and asymmetric response to the

Nusselt number are particularly clear from the convective heat-fluxes in Figure 9. As seen in Figure

2, the eigenfunctions which make up the “high” family (φ12 and φ13) have extremely fat tailed but

symmetric distributions. This provides a demonstration that nearly symmetric eigenfunctions can

have an asymmetric impact on transient aspects of the convective heat transfer. The intermittency

of these modes is potentially crucial in provoking this asymmetric response.
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To summarize, the high-frequency eigenfunctions played a prominent role in the regression anal-

ysis of the raw Nusselt number in Figure 5, but the low-frequency modes were vital in reproducing

extreme events in the rolling minimum time series defined by (17). Like the “high” family, the “low”

family appears to be preferentially active when the the net heat transfer (i.e. Nusselt number) is

weak, with opposite sign when Nu ≥ 14. On the other hand, the “low” family has a simpler vertical

structure without any sign changes. In (x, z) space, the pattern appears to tilt to the right. Of

the three modes, the “low” family is responsible for the largest anomalies anomalies when Nu < 8,

which further indicates that extreme events in the Nusselt number are more strongly associated

with low-frequency changes than high frequency ones.

5.3. Spatial visualisation and discussion

Having provided a brief survey of the effect of the three different mode families in the iso-

thermally binned (T, z) space, it is illuminating to study the structure in the original (x, z) space.

This may appear somewhat odd given the original motivation for using the isothermally binning

procedure, but viewing the practical NLSA procedure described in Section 3.2 as a black-box

provides this flexibility, However, the spatial visualizations contain horizontal drift, so it is not

feasible to visualize it using averaged composites. Instead, we analyze the dynamics of the system

before, during, and after a particular extreme heat transfer event which happens between t = 4950

and t = 5150. For the rest of this section, we will use the time from the beginning of this interval

to refer to specific time samples.

The portion of the Nusselt number time series for this section is plotted in Figure 10. From

t = 0 − 50, there is a quiescent period where the oscillations of the heat transfer are damped

substantially. This transitions to a period of strong oscillations between t = 75 − 150, which

account for both high and low extreme events. The spatial reconstructions for the “oscil” and “low”

mode families (e.g. M̃T
S (x, z, t)), along with the original data, during four representative times

are shown in Figure 11, and a full video of the event is available as supplementary material. The

discussion here will focus on surveying the high frequency regular oscillation and intermittent low-

frequency dynamics of the Nusselt number, and the dynamics of the “high” mode family will not

be discussed. The reconstructed NLSA mode families will be used to provide plausible physical
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hypotheses.

5.3.1. High frequency oscillation

The dominant aspect of the visualization is the regular back-and-forth oscillation of the original

data. The period of the oscillation is close to 10 Tf , and essentially consists of the coordinated tilting

to the left or right of all the ascent/descent plumes. Since the observed value of velocity is close to

U = 0.4, and the diameter of the cells is near d = 1, the turnover time scale of the circulation is given

by U(dπ)−1 ≈ 10. This connection between the turnover time and the oscillation period indicates

that the oscillation could be caused by advection of temperature and momentum anomalies by the

convection rolls.

The impact of this oscillation on the Nusselt number is apparent. The heat transfer is maximized

when the ascent/descent plumes are nearly vertical, and minimized when the plumes are tilted from

the vertical. Therefore, the Nusselt number oscillates with half the period of the regular oscillation

as the plumes tilt from left to right. These dynamics also hint at the reason why there is a fat

left tail, but no fat right tail, in the distribution of the Nusselt number (c.f. Figure 2, panel 1).

Basically, a tilted circulation can become more strongly tilted, but the un-tilted circulation is tightly

constrained. Therefore, the minima of the Nusselt number, which are associated with the tilted

states, can take more extreme values than the maxima. The degree to which the convection rolls

are tilted depends on the low frequency state of the system, as will be discussed in the next section.

As was seen in Section 5.1, this oscillation is strongly associated with the “oscil” family of

reconstructed modes. An interesting aspect of this mode family is its near horizontal homogeneity.

More specifically, for t = 43, the temperature anomalies near z = .15 and z = 85 are of opposite

sign, but nearly constant in x. Moreover, there is a sign change in the boundary layers that

corresponds to the interesting vertical structure seen in the heat-flux composites seen in Figure 9.

This horizontal homogeneity is not shared by the corresponding velocity anomalies, which tend to

follow the roll-like structure of the circulation. This is an indication that it is the advection of

momentum, not temperature, that is essential to the dynamics of the regular oscillation. In other

words, it is likely a coordination of the velocity field which causes the regular oscillation, rather

than stochastic plume dynamics.
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This conclusion leads to a possible physical mechanism. Consider the case with two cells in

a periodic domain. The left cell rotates counterclockwise and the right cell rotates clockwise. A

positive u anomaly near the lower left boundary will be advected around the circulation to the upper

boundary in about 5 time units. If the anomaly is significant, it will push the upper circulation to

the right. However, if pushed too far to the right, the circulation will be gravitationally unstable,

and it will attempt to restore itself by sloshing back to the left. This restoration coincides with the

arrival of negative u from the lower half of the right cell, which completes the cycle. Therefore,

this oscillation represents the combined effect of buoyant dynamics within each circulation cell,

which is coordinated between cells by the momentum transfer. Essentially, the buoyancy generates

momentum, and the regular oscillation tosses momentum back and forth between the cells. These

pairwise connections lead the oscillation to synchronize throughout the domain. This physical

mechanism essentially slaves the temperature anomalies to the velocity field—a conclusion that has

been demonstrated for the analogous “sloshing” mode in an experiments of three-dimensional RB

convection (Xi et al., 2009).

5.3.2. Low frequency dynamics and extreme events

While the high-frequency dynamics can explain the regular oscillation of Nu, the extreme events

are associated with longer temporal scales. Qualitatively, the extreme heat transfer events seems to

occur when the circulation is strongly tilted and more disorganized. This can be seen by comparing

the original dataset visualizations available in Figure 11 for t = 43 and t = 83, respectively.

The low frequency dynamics of the Nusselt number are associated with the “low” mode family,

as was seen in Section 5.1. Visualizing this mode family allows us to isolate the low-frequency

intermittent aspects of the signal. In terms of the single heat transfer event plotted in Figure

10, the “low” mode family proceeds from a quiescent phase (t = 0 − 50) to a more active phase

(t ≥ 50). Interestingly, the appearance of large reconstructed temperature and velocity anomalies

due to “low” family coincides with the increase in the magnitude of the Nusselt number oscillation

from t = 50 to t = 100.

During this time period, the “low” mode family reconstruction passes through two phases with

distinct spatial patterns. Both patterns are characterized by anomalously cold/warm patches near
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the boundary layers, but, unlike the “oscil” mode family, the temperature anomalies vary greatly

in x, and are aligned with the individual convection rolls. As might be expected, the cold (warm)

patches are associated with downward (upward) motion. The first phase of “low” is typified by

t = 54, and consists of larger cold (warm) anomalies near the lower (upper) boundary. While

this how the stronger anomalies are organized, there are weaker temperature anomalies inside the

circulation cell (see (x, z, t) = (5.5, .8, 54)). When this phase is active, the regular high frequency

oscillation described above is largely suppressed. The second phase of the “low” mode family is

typified by t = 83. In this case, the temperature anomalies near the upper and lower boundaries

have the same sign and magnitude. Typically, this is associated with greater disorder in the full

solution and more extreme oscillation in the Nusselt number.

The fact that the appearance of the first phase of the “low” family occurs before the extreme heat

transfer event suggests a possible mechanism for the low frequency oscillation and fat left tail of the

Nusselt number. The asymmetry of the first phase suggests that process is initiated with plumes

that penetrate the boundary layer especially well. This is further supported by the fact that the

largest cold (warm) anomalies occur beneath (above) the descending (ascending) regions, and could

potentially explain the differences in vertical heat-flux structure seen in Figure 9. When the plume

penetrates deeper into the boundary layer, it eventually causes enhanced re-circulation of cold fluid

to the upper level by advection, which tends to decrease the efficiency of the circulation. A parallel

perspective, is that deep penetrating plumes cause stronger horizontal gradients in temperature,

which increase the potential energy available to the system. This potential energy increases until

the the roll-like structure of the flow destabilizes as seen around t = 100. The exact mechanism

for this destabilization is not clear. This analysis of a single heat transfer event suggests that

abnormally deep and strong plumes in a few places in the domain cause the appearance of the heat

transfer events. But it is uncertain what initiates the plumes and coordinates the actions between

non-adjacent circulation cells.
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6. Conclusions and future work

This paper presents a method for analyzing the temporal variability of two-dimensional Rayleigh-

Bénard convection—a prototype model for high-dimensional physical datasets. This method reveals

interesting aspects of the dynamics which would be otherwise hidden by trivial symmetries of the

data that account for much of the variance of the dataset. It does so by employing a quasi-

Lagrangian approach which averages the vertical velocity over parcels of constant temperature

and height. This dataset, which is substantially reduced in size, allows for a practically lossless

reconstruction of the convective heat-flux, a quadratic quantity.

The intermittent aspects of the isothermally averaged dataset are then revealed using nonlinear

Laplacian spectral analysis. In particular, the dynamics are separated into a families of orthogonal

modes which each capture distinct aspects of the dynamics. These modes can be divided by the

temporal spectral characteristics and statistical features. Namely, there are high/low frequency

modes and intermittent/non-intermittent modes. The Nusselt number, which quantifies the bulk

averaged heat transfer, is used as a guide in forming these families. The regular oscillation of the

Nusselt number is captured by a pair of modes with relatively uniform amplitude in time, and

entirely symmetric heat transfer characteristics in vertical. On the other hand, it is shown that the

intermittent aspects of the bulk heat transfer are primarily associated with a family of low-frequency

modes, which are preferentially active during the low heat transfer events. Notably, the variability

of these modes occurs at slower time scales than the uniform oscillation of the heat transfer, and

they are responsible for negative heat transfer at all vertical levels. There is also an intermittent

family of modes which is preferentially active during the low heat transfer events, but has the same

temporal frequency as the regular oscillation.

In summary, it appears that the extreme events of the heat transfer are primarily associated with

the low and high frequency modes with intermittent temporal characteristics. When visualized in

physical space these modes, both the temperature and velocity anomalies aligns with the individual

convection rolls and are non-homogeneous in x. This notably contrasts with the non-intermittent

high-frequency mode which has a nearly uniform horizontal structure. On the other hand, the

high-frequency modes share a similar vertical structure with sign changes in convective heat flux

25



near the vertical boundaries.

In addition to providing some physical insight into the dynamics of two-dimensional Rayleigh-

Bénard convection, this paper is intended to demonstrate a clear path forward for the temporal

analysis of turbulent convection. The two-dimensional Rayleigh-Bénard dataset is used primarily

as a toy problem demonstrating the utility of our approach, and it is crucial to extend this to more

complicated systems. As a next step, the isothermal averaging approach can be readily applied to

three-dimensional convection Rayleigh-Bénard datasets. The computational expense of temporal

analysis techniques like EOFs, SSA, and NLSA is increased greatly by including an additional spatial

direction, so the compression obtained by isothermal averaging will be greatly helpful in conquering

this “curse of dimension”. Finally, we hope to employ an analogous technique for the study of moist

atmospheric convection, a problem of great importance to climate and weather prediction. This can

be accomplished relatively straightforwardly by using an isentropic rather than isothermal binning

procedure as indicated by (Pauluis and Mrowiec, 2013).
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Figure 2: Visualizations of Laplacian eigenfunctions and Nusselt number. Time series portions (left), power spectra
densities (middle), and log-probability plots (right) are plotted. The time series portions are only shown for 0 ≤ t ≤
1000, but the full 10000 samples are used to calculate the power spectra and pdfs. The log-probability plots show
the kernel density estimate (black) and a Gaussian comparison (dashed). The Nusselt number is plotted in the top
row, and in the subsequent rows the labels indicate the index of the eigenfunction.
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Figure 3: Scatter plot comparing the Nusselt number calculated on the raw and isothermally averaged datasets. The
nearly perfect correspondence between the two is even present in the tail of the distribution.
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Figure 4: Estimated regression coefficients of the full Nusselt number, Nu, regressed onto the first twenty Laplacian
eigenfunctions.
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Figure 5: Performance of the regression analysis for the full Nusselt number. Each row includes succesively more
regressors in the analysis, and consists of the indicated Laplacian eigenfunctions. The Nusselt number (black) and the
estimated model (blue) are shown on the left. The log pdfs (black) are shown on the right with Gaussian comparison
(green). The full regression analysis has difficulty capturing the tails of the Nusselt number despite the presence of
intermittent eigenfunctions. This occurs because linear regression is not tailored for extreme events, and this analysis
could likely be improved using a general linear model. The R2 retaining 20 regressors is .833.
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Figure 6: Like Figure 4 but for the coefficients of the rolling minimum nusselt number, Nu20, regressed onto the first
twenty Laplacian eigenfunctions.
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Figure 7: Like Figure 5 but for the regression analysis for the rolling minimum Nusselt number, Nu20. The low
frequency eigenfunctions capture the fat tails with high fidelity. The R2 retaining 20 regressors is .795.
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Figure 8: Composites of isothermally binned vertical velocity wT . The colorscale is in non-dimensional velocity units.
The (left) mean of the reconstructed mode family and the (middle) temporal mean for all samples with Nu ≤ 8 and
(right) Nu > 14 are plotted. For each mode family, the average across all time samples is small, which is a feature
of the NLSA analysis assuming the dynamics are ergodic.
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Figure 9: Convective heat flux averaged horizontally.
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Figure 10: Portion of Nusselt number time series for the extreme heat transfer event for t = 4950− 5150. The time
axis has been shifted to begin at t = 0. The spatial reconstructions for the NLSA mode families are plotted in Figure
11 for the three time samples indicated by the vertical dashed lines.
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Figure 11: Snapshots of the spatially reconstructed velocity and temperature field for the time interval plotted in
Figure 10. Three time samples are contained in the plot. The upper panel of each time sample plots the original
data, and each subsequent row contains the spatial reconstructions for the indicated mode family. Temperature is
indicated using contours and velocity with the arrows.
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