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ABSTRACT

Simplified asymptotic models are developed to investigate tropical–

extratropical interactions. Two kinds of interactions are illustrated in the

model: (i) MJO initiation through extraction of energy from the barotropic

Rossby waves and (ii) MJO termination via energy transfer to extratropical

Rossby waves. A new feature, in comparison to previous simplified mod-

els, is that here these waves interact directly in the presence of a climato-

logical mean flow given by the Walker circulation. The simplified models

are systems of ordinary differential equations (ODEs) for the amplitudes of

barotropic Rossby waves and the MJO, and they are systematically derived

from the MJO skeleton model by using multiscale asymptotics. The simpli-

fied ODEs allow for rapid investigation of a wide range of model parameters,

such as initial conditions and wind shear. Background wind shear is shown

to have only a minor effect on these interactions in the setup used here. The

models illustrate some realistic features of tropical–extratropical interactions

on intraseasonal to seasonal timescales. A key aspect of the models here is

that the water vapor and convective activities are interactive components of

the model, rather than specified external heating sources.
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1. Introduction31

The Madden-Julian Oscillation (MJO) is the dominant component of intraseasonal (≈30-32

60 days) variability in the tropics (Madden and Julian 1971, 1972, 1994). It is an equatorial wave33

envelope of complex multi-scale convective processes, coupled with planetary-scale (≈10,000-34

40,000 km) circulation anomalies. Individual MJO events propagate eastward at a speed of35

roughly 5 m/s, and their convective signal is most prominent over the Indian and western Pacific36

Oceans (Zhang 2005). In addition to its significance to its own right, the MJO also significantly37

affects many other components of the atmosphere-ocean-earth system, such as monsoon develop-38

ment, intraseasonal predictability in mid-latitude, and the development of the El Niño southern39

oscillation (ENSO) (Lau and Waliser 2012; Zhang 2005).40

Besides its strong tropical signal, the MJO interacts with the global flow on the intraseasonsal41

timescales. Teleconnection patterns between the global extratropics and the MJO have been de-42

scribed in early observational analyses by Weickmann (1983), Weickmann et al. (1985) and Lieb-43

mann and Hartmann (1984). Their results demonstrate coherent fluctuations between extratropical44

flow and eastward-propagating outgoing longwave radiation (OLR) anomalies in the tropics. In a45

later study, Matthews and Kiladis (1999) illustrate the interplay between high-frequency transient46

extratropical waves and the MJO. More recently, Weickmann and Berry (2009) demonstrate that47

convection in the MJO frequently evolves together with a portion of the activity in a global wind48

oscillation. Gloeckler and Roundy (2013) argued by using lagged composite analysis that the high49

amplitude extratropical circulation pattern is associated with simultaneous assessment of both the50

MJO and the equatorial Rossby wave events.51

Besides observational analyses, models have also been used to study the interactions between the52

MJO and extratropical waves. By including tropical convection forcing data in a model, Ferranti53
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et al. (1990) found significant improvement in the model’s predictability. Hoskins and Ambrizzi54

(1993) argued from their model that a zonally varying basic state is necessary for the MJO to55

excite extratropical waves by forcing perturbations to a barotropic model. To view the extratropical56

response to convective heating, Jin and Hoskins (1995) forced a primitive equation model with a57

fixed heat source in the tropics in the presence of a climatological background flow and obtain58

the Rossby wave train response as a result. To diagnose the more specific response to patterns59

of convection more like those of the observed MJO, Matthews et al. (2004) forced a primitive60

equation model in a climatological background flow with patterns of observed MJO. The resulting61

global response to that heating is similar in many respects to the observational analysis. The62

MJO initiation in response to extratropical waves was illustrated by Ray and Zhang (2010). They63

show that a dry-channel model of the tropical atmosphere developed MJO-like signals in tropical64

wind fields when forced by reanalysis fields at poleward boundaries. In addition, Lin et al. (2009)65

showed the significance of midlatitude dynamics in triggering tropical intraseasonal response by66

including extratropical disturbances in a tropical circulation model. Frederiksen and Frederiksen67

(1993) used a two-level primitive equation eigenvalue model and found that large-scale basic-state68

flow and cumulus heating to be necessary for generating MJO modes with realistic structures.69

Many other interesting studies on tropical–extratropical interactions have been carried out. For70

example, see the review by Roundy (2011).71

Among the past studies based on climate models, typically the effect of the MJO is represented72

by forced perturbations (Hoskins and Ambrizzi 1993; Jin and Hoskins 1995; Matthews et al.73

2004)or, the influence of the midlatitude variations are treated as boundary effects for the trop-74

ical circulation model (Ray and Zhang 2010; Lin et al. 2009; Frederiksen and Frederiksen 1993;75

Roundy 2011). Such simplifications are useful for isolating individual processes within these com-76

plex models. As a next step, it would be desirable to design a simplified model where both the77
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MJO and extratropical waves are simultaneously interactive, rather than externally imposing one78

of these two components.79

Recently, a simplified model that includes the MJO and tropical-extratropical interactions was80

developed by Chen et al. (2015). This model combines the dry barotropic-first baroclinic interac-81

tion that has been studied by Majda and Biello (2003) and Khouider and Majda (2005) with (ii) the82

MJO skeleton model of Majda and Stechmann (2009, 2011). The MJO skeleton model includes83

the interactive dynamics of moisture q and convective activity envelope a. It has captured the main84

features of the MJO at the intraseasonal/planetary scale: (i) the slow phase speed of ≈5m/s, (ii)85

the peculiar dispersion relation of dω
dk ≈ 0, and (iii) the horizontal quadrupole vortex structure. By86

combining the barotropic equations and the MJO skeleton, the model of Chen et al. (2015) illus-87

trated applications to MJO initiation and termination, including three-wave interaction cases of (i)88

the MJO, equatorial baroclinic Rossby waves, and barotropic Rossby waves interacting, and (ii)89

the MJO, baroclinic Kelvin waves, and barotropic Rossby waves interacting. In those cases, the90

barotropic Rossby wave acts like a catalyst for the interaction between the MJO and dry equatorial91

waves, but its own amplitude is nearly unchanged. One of the main purposes of the present paper92

is to investigate scenarios where the barotropic Rossby waves may significantly exchange energy93

with the MJO. Two possible factors are wind shear and sea surface temperature (SST) variations94

and the accompanying variations in the climatological tropical circulation, the Walker circulation95

(Webster 1972, 1981, 1982; Hoskins and Jin 1991; Majda and Biello 2003). The present work will96

investigate the effects of regional varying SST and global shear flow in the interactions between97

the MJO and barotropic Rossby waves. It will be seen that the presence of the Walker circulation98

allows significant energy exchanges between barotropic Rossby waves and the MJO.99

The paper is organized as follows. Section 2 describes the barotropic-first baroclinic MJO skele-100

ton model, including SST regional variations and the resulting Walker circulation. Unbalanced101
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moisture and cooling source terms with spatial variance are taken into account in the MJO skele-102

ton to represent the effect of SST, in which case the Walker circulation can be found, that is, the103

steady state solution of the baroclinic system. The energy principle and asymptotic expansions are104

also presented. In Section 3, the resonance condition is identified in the presence of an idealized105

Walker circulation, which mediates the interaction between the MJO and the barotropic Rossby106

waves. Two cases are numerically computed for the ODE system: (i) MJO initiation, and (ii) MJO107

termination and excitation of barotropic Rossby waves. Section 4 considers more general Walker108

circulation cases composed of two different wave numbers. New ODE systems are derived for109

the resonant condition and numerical results are presented. Section 5 investigates the effect of a110

global shear flow. Finally, Section 6 is a concluding discussion.111

2. Model description112

a. The barotropic-first baroclinic MJO skeleton model113

The barotropic-first baroclinic β -plane equations with water vapor and convection can be written114

as115

∂v
∂ t

+v ·∇v+ yv⊥+∇p =−1

2
∇ · (v⊗v), (1a)

∇ ·v = 0, (1b)

for the barotropic mode, and116

∂v
∂ t

+v ·∇v−∇θ + yv⊥ =−v ·∇v, (1c)

∂θ
∂ t

+v ·∇θ −∇ ·v = δ 2(H̄a−Sθ ), (1d)

∂q
∂ t

+v ·∇q+ Q̃∇ ·v =−δ 2(H̄a−Sq), (1e)

∂a
∂ t

+v ·∇a = Γqa. (1f)
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for the first-baroclinic mode. These equations combine the MJO skeleton model (Majda and117

Stechmann 2009) and nonlinear interactions between the baroclinic and barotropic modes (Majda118

and Biello 2003). The details of this model are described in Chen et al. (2015). Here v = (u,v) and119

p are barotropic velocity and pressure. The barotropic streamfunction ψ can be used to rewrite120

(1a)–(1b) as121

∂
∂ t

Δψ +v ·∇Δψ +ψx +
1

2
∇ · [−(vu)y +(vv)x] = 0. (2)

The other variables, v = (u,v) and θ are baroclinic velocity and potential temperature; and q is122

water vapor (sometimes referred to as “moisture”). The tropical convective activity envelope is123

denoted by δ 2a, where δ is a small parameter that modulates the scales of tropical convection124

envelope. We define δ 2 as the ratio of radiative cooling rate of 1 K/d divided by the reference125

heating rate scale at 10 K/day. Likewise, δ 2 is also incorporated with the quantities Sθ and Sq,126

radiative cooling and the moisture source. Here, for simplicity, we consider δ 2Sθ and δ 2Sq to be127

spatially varying and time-independent, although in general, they have both spatial and temporal128

variations.129

b. Walker circulation and energy evolution130

First consider the baroclinic system (1c)–(1f) with the barotropic velocity ignored. When the131

system has unbalanced moistening and cooling sources, i.e., Sq �= Sθ , the Walker circulation is132

formed for the baroclinic equations with zero barotropic winds. When v = 0, the Walker circula-133

tion is the steady state solution for the baroclinic system (Ogrosky and Stechmann 2015):134

7



∇θW + yv⊥W = 0, (3a)

∇ ·vW = δ 2 Sθ −Sq

1− Q̃
, (3b)

qW = 0, (3c)

aW =
Sq − Q̃Sθ

H̄(1− Q̃)
. (3d)

When the Walker circulation variables are subtracted from the baroclinic variables, the baroclinic135

system has energy conservation for the anomalies: dEBCa/dt = 0, where136

EBCa =
1

2

∫ Y

−Y

∫ X

0

1

2

[|v−vW |2 +(θ −θW )2
]
+

1

Q̃(1− Q̃)

[
q+ Q̃(θ −θW )

]2
+

δ 2

Q̃Γ
[H̄a−aW log(a)]dxdy.

(4)

Now consider the full coupled system (1) including both the barotropic and baroclinic components.137

When the barotropic energy EBT = 1
2

∫ Y
−Y

∫ X
0 |v|2dxdy is also considered, the total energy for the138

anomalies is E = EBCa +EBT and it evolves according to:139

dE

dt
=−1

2

∫ Y

−Y

∫ X

0
v ·∇ [vW ⊗vW +(v−vW )⊗vW +vW ⊗ (v−vW )]+(v−vW ) · (vW ·∇v+v ·∇vW )

+
[
Q̃q+(1+ Q̃2)(θ −θW )

]
v ·∇θW dxdy. (5)

Note that the right-hand side of this equation is not zero, so the energy is not conserved.140

c. Asymptotic ansatz141

The asymptotic expansion is now carried out by introducing equatorial long-wave scaling,142

x′ = δx, t ′ = δ t, and v′ =
1

δ
v, (6)

as well as the longer time scales:143

T1 = δ t ′, T2 = δ 2t ′. (7)
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Hence, in the asymptotic model, three long time scales are involved: t ′, T1 and T2. Their character-144

istic time scales are 1 day, 3 days and 10 days, respectively. In addition, small amplitude variables145

are also assumed for asymptotic expansion:146

(ψ,u,v′,θ ,q) = δ 2(ψ1,u1,v1,θ1,q1)+δ 3(ψ2,u2,v2,θ2,q2)

+δ 4(ψ3,u3,v3,θ3,q3)+O(δ 5), (8a)

and a = ā+δa1 +δ 2a2 +δ 3a3 +O(δ 4), (8b)

where each of the variables on the right-hand side of (8) is a function of x′, t ′, T1 and T2, although147

this dependence has been suppressed in (8) to ease notation. For the moisture source and radiative148

cooling, it is assumed that149

Sq = Sq +δSq
1, Sθ = Sθ +δSθ

1, (9)

where · =
∫ · dxdy is the mean value over the horizontal domain. We further assume that Sq =150

Sθ = H̄ā, which is a necessary consistency condition to ensure the existence of a steady Walker151

circulation (Majda and Klein 2003).152

Under this assumption for Sq and Sθ , the Walker circulation would only appear in the leading153

order, so the baroclinic variables at the leading order can be written as:154

[u1,v1,θ1,q1,a1] = [u1,v1,θ1,q1,a1]W +[u1,v1,θ1,q1,a1]a (10)

where the subscript ‘W’ stands for Walker circulations, and the subscript ‘a’ stands for the leading155

order anomalies from the Walker circulation.156

d. Meridional basis truncation157

To carry out the multi-scale analysis, a meridional truncated basis is used for all of the variables.158

The main reason for introducing a meridional truncation is that the linear eigenmodes of (1) are not159
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known, whereas the linear eigenmodes of a truncated version of this system are known and were160

previously described by Majda and Stechmann (2009). We adopt the same meridional structure161

described in Chen et al. (2015), where for the barotropic wind it is assumed that162

ψ(x,y, t) = B(x, t)sin(Ly), (11)

where L is the meridional wavenumber. For the baroclinic variables, the meridional structures are163

assumed to be164

l(x,y, t) = l(0)(x, t)Φ0(y)+ l(2)(x, t)Φ2(y), (12a)

r(x,y, t) = r(0)(x, t)Φ0(y)+ r(2)(x, t)Φ2(y), (12b)

v(x,y, t) = v(1)(x, t)Φ1(y) (12c)

q(x,y, t) = q(0)(x, t)Φ0(y)+q(2)(x, t)Φ2(y) (12d)

H̄a(x,y, t)−Sθ (x,y, t) = H̄a(0)(x, t)Φ0(y). (12e)

where l =−u+θ
2 and r = u−θ

2 are the Riemann invariants for the baroclinic system, and Φ(y) are165

the parabolic cylinder functions. The motivation for this particular truncation is mainly to have166

the simplest system that includes the Kelvin wave and the first symmetric equatorial Rossby wave;167

see Chen et al. (2015) for further discussion. The details of the parabolic cylinder functions can168

be found in the Appendix. In addition, we also assume that the variations for moisture source and169

radiative cooling share the same zonal structure:170

Sq
1 = S̃qy(y)S̃x(x), Sθ

1 = S̃θy(y)S̃x(x), (13)

although in general they often have different zonal structures. Further, the meridional structures171

are assumed to be proportional to the leading parabolic cylinder function:172

S̃qy(y) = cqΦ0(y), S̃θy(y) = cθ Φ0(y), (14)
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The asymptotic expansions in (8) are then applied to the meridional truncated system, which is173

described in the Appendix. At the leading order, the truncated system is linear, and the baroclinic174

and barotropic systems are decoupled. The four major eigenmodes for the baroclinic system were175

described in Majda and Stechmann (2009), and they are the Kelvin, MJO, moist Rossby, and dry176

Rossby modes as shown in Figure 1.177

3. Direct tropical-extratropical interaction mediated by Walker circulation178

This section provides the reduced ODE model that includes direct tropical–extratropical interac-179

tions mediated by the Walker circulation. In particular, numerical computations for two cases will180

be given for this interaction mechanism: (i) MJO initiation and (ii) MJO termination and excitation181

of barotropic Rossby waves.182

a. The reduced model183

For the interaction of the MJO and barotropic Rossby wave, in the presence of the Walker184

circulation, their wave numbers and frequencies must satisfy the resonance condition:185

kMJO + kW + kT = 0, (15a)

ωMJO +ωT = 0 (15b)

where kMJO, kW and kT are the wave numbers for the MJO, the Walker circulation, and the

barotropic Rossby wave, and ωMJO and ωT are the wave frequencies for the MJO and the

barotropic Rossby wave. The frequency for the Walker circulation ωW is zero. This type of

resonance condition is analogous to topographic resonance (Majda et al. 1999). Because the MJO

and barotropic Rossby waves travel in opposite directions, (15a) implies that the wavenumber of
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the Walker circulation has to satisfy the following condition:

|kW| ≥ 2.

A Walker circulation with wavenumber kW = 2 can be viewed in Figure 2. One can view this186

wavenumber-2 Walker circulation as an idealization of the two main circulation cells in nature,187

which are centered over the maritime continent and South America (Stechmann and Ogrosky188

2014; Ogrosky and Stechmann 2015). The resonance condition with kMJO = 1 and kT = 1 is189

shown in Figure 3.190

To proceed with the multiscale analysis, we write the leading order baroclinic solution as191

�U1 = α(T1,T2)ei(kMJOx−ωMJOt)�rMJO +�rW +C.C., (16)

and the leading order barotropic solution as192

B1 =
1√
2πL

β (T1,T2)ei(kTx−ωTt) +C.C., (17)

where C.C. stands for the complex conjugates, �rMJO is the right eigenvector for the MJO mode,193

and�rW is the right eigenvector of the Walker circulation. The eigenvector for the MJO mode is194

normalized by the baroclinic energy as described by Stechmann and Majda (2015).195

Next, the second and third order systems are considered in order to determine the evolution196

of α(T1,T2) and β (T1,T2) from (16) and (17) on the long time scales T1 and T2. A systematic197

multiscale asymptotic analysis is carried out to ensure the sub-linear growth of the second- and198

third-order terms of the asymptotic expansion in (8). Following similar procedures as in Chen199

et al. (2015), the result is a reduced ODE model for the amplitudes of the modes:200

∂T2
β+id12α2α8 + id2β +h3α∗ = 0, (18a)

∂T2
α + id4α2α∗+ id5α +h6β ∗ = 0, (18b)
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where coefficients ds and hs are pure real values and where ∗ denotes complex conjugate. Three201

groups of interacting terms appear in this ODE system: the cubic self-interaction term id4α2α∗
202

corresponding to the nonlinear q-a interaction, the linear self-interaction terms id2β and id5α203

related to dispersive terms in the barotropic-baroclinic system, and the coupled linear terms h3α∗
204

and h6β ∗ related to the Walker circulation. In contrast to the ODE system derived by Chen et al.205

(2015) where the coupling terms are quadratic, here the coupling terms h3α∗ and h6β ∗ are linear.206

This is because the Walker circulation is involved in this coupling, but it is a stationary mode with207

fixed amplitude, so that one part of the quadratic term is a fixed value.208

The values of h3 and h6 in (18) are determined by the strength of the variations in the source209

terms, Sq
1 and Sθ

1, or their meridional projection coefficients cq and cθ from (14), as is shown in210

Table 1. In this paper, for simplicity, the two coefficients are fixed so that cq = 1.2 and cθ = 1,211

which results in the Walker circulation shown in Figure 2.212

According to (18), the coupled linear terms determine the energy exchange between the two213

modes:214

d|α|2
dT2

=−2h3Re(αβ ),
d|β |2
dT2

=−2h6Re(αβ ), (19)

where Re denotes the real part. At the leading order, the total energy E for the anomalies is215

E = |α|2 + |β |2, (20)

which is only conserved when h3 +h6 = 0. However, this is generally not the case. In Table 1, h3216

and h6 have opposite signs, indicating from (19) that as one mode is gaining energy, the other one217

is losing energy, but the total energy is not necessarily constant.218

Here the simplified asymptotic equations in (18) are utilized to gain insight into the interactions219

between the MJO and the barotropic Rossby waves. For this purpose, the reduced model is inte-220

grated numerically for two sets of initial data: (i) MJO initiation: α|T2=0 = 0 and β |T2=0 = 1, and221
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(ii) MJO termination and excitation of barotropic Rossby waves: α|T2=0 = 1 and β |T2=0 = 0. The222

computation time is up to 200 days to observe the properties of the solutions on the long T2 time223

scale. A standard fourth-order Runge-Kutta time discretization is adopted as the basic numerical224

method. The accuracy of the numerical solution is checked by doubling and halving the time-steps225

and ensuring the relative difference between these solutions at 200 days is within 0.1 %.226

b. MJO initiation227

To simulate a case of MJO initiation, the initial conditions are set to be α|T2=0 = 0 and β |T2=0 =228

1. From the reduced model (18), it can be seen that the nonzero value of β will excite α through229

the coupled linear terms. The numerical simulation in Figure 4 shows this behavior initially where230

the MJO gains energy while the barotropic Rossby wave is losing energy, and the total energy is231

increasing until it peaks at around 70 days. After this time, the MJO mode decays in amplitude232

as the barotropic Rossby wave gains energy and returns to the original state. This patterns repeats233

itself to be a nonlinear cycle with time period of roughly 140 days.234

To illustrate the spatial variations, Figure 5 shows the Hovmoller diagram for H̄a1a, the leading235

order anomaly of the convective activity. In this figure, the MJO is traveling eastward at a speed236

of ∼5 m/s, and the wave amplitude is zero at 0 day, peaks at around 70 day, and returns back to237

zero-amplitude at 140 day. This corresponds to a wave train of roughly one or two MJO events,238

depending on the spatial location, similar to the organization of sequences of MJO events in nature239

(Yoneyama et al. 2013; Thual et al. 2014). In Figure 6, the horizontal velocity fields at lower-240

troposphere are shown for the MJO, the barotropic Rossby wave and the Walker circulation. The241

Walker circulation is a stationary field. For the MJO, the velocity field is zero at 0 day, and achieves242

its maximum at 70 day. The barotropic Rossby wave is at its maximum initially, and achieves its243

smallest magnitude at 70 day.244
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c. MJO termination and excitation of barotropic Rossby waves245

To consider MJO termination and the excitation of barotropic Rossby waves, the initial condition246

is set to be α|T2=0 = 1 and β |T2=0 = 0. Figure 7 shows the numerical simulation from the ODE247

solver. In this case, at the initial time, the MJO is losing energy whereas the barotropic Rossby248

wave is gaining energy, and the total energy of these two modes are decaying at first, until ∼70 day.249

The amplitudes and energy return to their original state at around 140 day.250

4. More general Walker circulation251

In the previous section, the case for the sinusoidal Walker circulation with wavenumber kW = 2252

is discussed. The realistic Walker circulation, on the other hand, is composed of a variety of253

wave numbers. For example, Ogrosky and Stechmann (2015) described simplified versions of the254

Walker circulation using 1 or 3 Fourier modes in their study. In this section, another mode for the255

Walker cell, kW = 3 is also included in addition to kW = 2. The Walker circulation in this case is256

shown in Figure 8. In this situation, two sets of resonant triads arise corresponding with the two257

Walker cell wavenumbers:258

kMJO1 + kW1(=−2)+ kT1 = 0, (21a)

ωMJO1 +ωT1 = 0, (21b)

and259

kMJO2 + kW2(=−3)+ kT2 = 0, (22a)

ωMJO2 +ωT2 = 0. (22b)

To select some reasonable cases for illustration, the values for kMJO1 and kT1 are both fixed to be260

1, and two cases are considered: (i) kMJO2 = 1, kT2 = 2, and (ii) kMJO2 = 2, kT2 = 1. For case261
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(i), kMJO1 and kMJO2 represent the same k = 1 MJO mode. For case (ii), kT1 and kT2 are the same262

wavenumber, but they represent barotropic Rossby waves with different meridional wavelengths.263

In the two cases below, the strength of Sθ
1 and Sq

1 at wavenumber k = 3 are also chosen to be264

cq = 1.2 and cθ = 1, as in the previous section, for simplicity, although more general situations265

can be applied.266

a. MJO–b.t. Rossby–b.t. Rossby267

Here three modes are considered: the MJO mode with wavenumber kMJO1 = 1, the barotropic268

Rossby waves with kT1 = 1 and kT2 = 2. The resonance conditions for the three modes are shown269

in Figure 9. Here the barotropic waves have two different meridional wave numbers, L1 and L2,270

so that the initial condition for the barotropic streamfunction can be written as271

ψ1 = δ 2 sin(L1y)
β1√
2πL1

ei(kT1x−ωT1t) +δ 2 sin(L2y)
β2√
2πL2

ei(kT2x−ωT2t) +C.C. (23)

where β1 and β2 are the amplitudes for the two barotropic Rossby waves. The initial condition for272

the baroclinic system is273

�U1 = α(T1,T2)ei(kMJOx−ωMJOt)�rMJO +�rW1 ++�rW2 +C.C., (24)

where�rW1 and�rW2 are the Walker circulation components at wave numbers kW = 2 and 3. These274

two resonant triads lead to the reduced ODE system:275

∂T2
β1+id1α1

2α1
8α1 + id21β1 +h31α∗ = 0, (25a)

∂T2
β2+id1α1

2α1
8α1 + id22β2 +h32α∗ = 0, (25b)

∂T2
α + id4α2α∗+ id5α +h61β1

∗+h62β2
∗ = 0. (25c)

The derivation, not shown here, is similar to Chen et al. (2015). From system (25), we can see that276

both barotropic waves are interacting with the MJO mode (α), but there is no direct interaction277

between the two barotropic Rossby waves.278
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In principle, either one of the barotropic waves can potentially initiate the MJO. To consider each279

wave separately, two cases are computed numerically: (i) α|T2=0 = 0, β1|T2=0 = 1, β2|T2=0 = 0,280

and (ii) α|T2=0 = 0, β1|T2=0 = 0, β2|T2=0 = 1. The results, not shown here, show reasonable MJO281

initiation for the former case and weak MJO initiation for the latter case. Furthermore, additional282

cases, such as investigations of MJO termination, were also carried out. The results, not shown283

here, demonstrate that the energy transfer with the MJO is mainly contributed from that of the284

barotropic Rossby wave with kT = 1, and the wavenumber kT = 2 Rossby wave exchanges only285

a very small amount of energy with the MJO. It is possible that the meridional wavelength 2π
L2

,286

which is ≈ 840 km is too small to initiate the MJO.287

b. MJO–MJO–b.t. Rossby–b.t. Rossby288

In this section, four modes are considered: the MJO modes with wavenumbers kMJO1 = 1, and289

kMJO2 = 2, and two barotropic Rossby waves with the same zonal wavenumbers kT1 = kT2 = 1290

but different meridional wavenumbers L1 and L2. Figure 10 shows the resonance condition for the291

interactions between the four modes. The ansatz for the barotropic wind can still be written as292

(23), and293

�U1 = α1(T1,T2)ei(kMJO1x−ωMJO1t)�rMJO1 +α2(T1,T2)ei(kMJO2x−ωMJO2t)�rMJO2 +�rW1 +�rW2 +C.C.,

(26)

for the baroclinic modes, where α1 and α2 stand for amplitudes for the MJO at wavenumbers294

kMJO1 = 1 and kMJO2 = 2. The following coupled ODE system describes the interaction mecha-295
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nism:296

∂T2
β1+id1α1

2α1
8α1 +α1α2α2

∗+ id21β1 +h31α∗
1 = 0, (27a)

∂T2
α1 + id41α1

2α∗
1 + ig1α1α2α∗

2 + id51α1 +h61β ∗
1 = 0, (27b)

∂T2
β2+id1α1

2α1
8α1 +α1α2α∗∗+ id22β2 +h32α∗

2 = 0, (27c)

∂T2
α2 + id42α2

2α∗
2 + ig2α2α1α∗

1 + id52α2 +h62β ∗
2 = 0. (27d)

Again, the derivation, not shown here, is similar to Chen et al. (2015). In this ODE system,297

besides the existing coupled linear terms between the MJO–barotropic Rossby wave interactions,298

additional cubic interactions appear between the two MJO modes. Specifically, the terms for299

MJO–MJO interactions are ig1α1α2α∗
2 in (27b) and ig2α2α1α∗

1 in (27d). These cubic interactions300

arise from the nonlinear q-a interaction in the MJO skeleton model, similar to the cubic self-301

interaction terms in Chen et al. (2015).302

Figure 11 shows the MJO initiation with initial conditions α1|T2=0 = α2|T2=0 = 0 and β1|T2=0 =303

β2|T2=0 = 1. It can be seen from the reduced system (25) that the barotropic Rossby waves β1 and304

β2 are necessary to initiate MJO modes, α1 and α2, respectively. In Figure 11, the two MJO modes305

interact with each other, and the solutions are not following a periodic pattern. Also, notice that306

the MJO is significantly weakened for times 110-140 days, but it is not completely terminated. To307

illustrate this more clearly, Figure 12 is the Hovmoller diagram for the convective envelope of the308

leading order MJO waves with wave numbers 1 and 2. A wave packet is presented in the diagram309

that propagating westward at about 10 m/hr with a life cycle around 150 day. These cases illustrate310

additional realism, such as MJOs with more realistic zonal variations, through the interaction with311

the Walker circulation, with more realistic zonal variations.312
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5. Effects of wind shear313

This section includes the effect of the horizontal and vertical wind shear in the model. We314

consider both the barotropic and baroclinic wind shear is O(δ 2):315

(ũ(x,y,z), ṽ(x,y,z), w̃(x,y,z)) =
(
Ũ(y,z),0,0

)
(28)

where316

Ũ(y,z) = δ 2
[
U0 +Lsin(Ly)B0 + cos(πz)

(
u(0)0Φ0 +u(2)0Φ2

)]
. (29)

Here U0 is the constant global mean flow, B0 is the strength of the barotropic wind shear on the317

meridional direction, and u(0)0, u(2)0 are the strengths of the baroclinic wind shear on both vertical318

and meridional directions.319

A similar multi-scale analysis is carried out, and the resonance condition is not affected by the320

wind shear. The reduced ODE model for the MJO–barotropic Rossby wave interaction is:321

∂T2
β+iα1α1

8α1 + i(d2 + f1)β +h3α∗ = 0 (30a)

∂T2
α + id4α2α∗+ i(d5 + f2)α +h6β ∗ = 0 (30b)

322

The wind shear introduces two additional linear terms with coefficients f1 and f2, both of which323

are real values. In the derivation of these two linear terms, only the barotropic shear is involved.324

In order for the baroclinic shear to have an effect, it must instead be assumed to have an amplitude325

of O(δ ); in such a case (not shown), it is noticed that the inclusion of the baroclinic shear also326

introduces similar self-interacting linear terms, so that the reduced ODE is in the same form of327

(30).328

Numerical simulations are performed for MJO initiation with the effects of barotropic shear.329

The resonance condition is the same as in Section 3. Four different barotropic shear profiles are330
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considered. (i) U0 = 0, B0 = 1, (ii) U0 =−1, B0 = 1, (iii) U0 = 1, B0 = 0, and (iv) U0 = 1, B0 = 1.331

The results for the four cases are recorded in Table 2, which lists the value for the coefficients f1332

and f2, the maximum amplitude attained by MJO and the time period of the solution. From the333

table, we notice that the shear does not significantly affect the energy exchange between the MJO334

and the barotropic Rossby waves.335

6. Concluding discussion336

Asymptotic models have been designed and analyzed here for the nonlinear interaction between337

the MJO and the barotropic Rossby waves. The models involve the combination of the barotropic338

and equatorial baroclinic modes together with interactive moisture and convective activity enve-339

lope. An important feature of this framework is that the tropical and extratropical dynamics are340

interactive, rather than specifying one of these components as an external forcing term or boundary341

condition.342

To explore more realistic conditions, Walker circulations were also considered with more general343

zonal variations. With the presence of the Walker circulation, the MJO and the barotropic Rossby344

waves can interact directly. In Section 3, the reduced ODE model is derived by identifying resonant345

triads that include: the MJO, the Walker circulation, and the barotropic Rossby wave. Two cases346

are presented: (i) MJO initiation, and (ii) MJO termination and excitation of barotropic Rossby347

waves. In contrast to the results in Chen et al. (2015), where the barotropic Rossby wave exchanges348

very little energy with other modes, here with the Walker circulation, the barotropic Rossby wave349

and the MJO are exchanging energy directly. The time period between initiation and termination350

is about 140 days, a realistic timescale which corresponds to one or two MJO events, depending351

on the spatial location.352
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To explore more realistic conditions, Walker circulations were also considered with more general353

zonal variations. More resonant triads are identified to generate energy exchange between different354

modes. In particular, a four wave MJO–MJO–barotropic Rossby–barotropic Rossby interaction is355

found with MJO at wave numbers 1 and 2, where the two MJO modes are interacting through the356

nonlinear coupling term between moisture and convective activity envelope in the MJO skeleton357

equation. In this case, rather than an idealized MJO with a single zonal wavenumber, a wave358

packet of MJO events arises with an amplitude that is zonally localized.359

As a final element of additional realism considered here, horizontal and vertical shear were360

incorporated in the model. From our model, the barotropic and baroclinic shear, if zonally uniform,361

have little effect on the energy exchange between the MJO and the barotropic Rossby waves.362

This is in contrast to the significant effect of zonally varying wind shear as part of the Walker363

circulation. Further investigations are needed to better understand the role of wind shear in these364

different settings.365

While this simplified asymptotic model includes several realistic aspects of tropical–366

extratropical interactions, some other physical mechanisms are not included. For instance, the367

meridional structures of the variables here are set to be the leading parabolic cylinder functions.368

With more complicated meridional structures, the interaction mechanism will be richer and more369

realistic, and it would allow the model to cope with different background states, such as the boreal370

summer/winter, when the ITCZ is off the equator. Such topics are interesting avenues for future371

investigations.372
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APPENDIX378

Asymptotic expansion of the meridional truncated system379

The parabolic cylinder functions that are used to define the meridional structure of the baroclinic380

variables are:381

Φm(y) =
(
m!

√
π
)− 1

2 2−
m
2 e−

y2

2 Hm(y), (A1)

with Hermite polynomials Hm(y) defined by382

Hm(y) = (−1)mey2 dme−y2

dym . (A2)

The parabolic cylinder functions form an orthonormal basis on the 1D function space. The first383

few functions are384

Φ0(y) = π− 1
4 e−y2/2, Φ1(y) = π− 1

4

√
2ye−y2/2, Φ2(y) = π− 1

4
1√
2
(2y2 −1)e−y2/2. (A3)

The parabolic cylinder functions satisfy the following identities:385

L+Φm(y) = (2m)1/2Φm−1(y), L−Φm(y) =− [2(m+1)]1/2 Φm+1(y), (A4)

which help to simplify many expressions, where the operators L± are defined as L± = ∂
∂y ± y.386
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The equations (3) for the Walker circulation can be written for the truncated system as387

− l(0)1sx + v(1)1s +
1√
2

H̄a(0)1s =
1√
2

cqS̃x, (A5a)

− l(2)1sx = 0, (A5b)

r(0)1sx +
1√
2

H̄a(0) =
1√
2

cqS̃x, (A5c)

r(2)1sx −
√

2v(1)s1 = 0 (A5d)

− l(0)1s +
√

2r(2)1s = 0, (A5e)

Q̃√
2
(r(0)1sx − l(0)1sx)+

Q̃√
2

v(1)1s + H̄a(0)1s = cθ S̃x, (A5f)

Q̃√
2
(r(2)1sx − l(2)1sx)− Q̃v(1)1s = 0. (A5g)

The solution to this system of equations is the Walker circulation in the meridional truncated388

system, and it can be written as389

r(0)1Wx =− cq − cθ√
2(Q̃−1)

S̃x, (A6a)

l(0)1Wx =

√
2(cq − cθ )

Q̃−1
S̃x, (A6b)

r(2)1Wx =
1√
2

l(0)1Wx (A6c)

v(1)1W =
1

2
l(0)1Wx, (A6d)

q(0)1W = 0, (A6e)

a(0)1W =
Q̃cq − cθ

H̄(Q̃−1)
S̃x. (A6f)

By writing the baroclinic variables as �U = [l(0), l(2),r(0),r(2),v(1),q(0),q(2)] for the truncated sys-390

tem, and writing �U1 = �U1a + �U1W to separate the Walker circulation (�U1W) from the anomalies391

(�U1a), the asymptotic expansion of (1), (2), (8), (11) and (12) can be written in abstract form as392
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follows. Expanding (1) and (2) in powers of δ , the first order system is393

L2Y B1t ′ −Y B1x′ = 0, (A7a)

N �U1at ′ +L�U
�U1a = 0, (A7b)

the second order system is394

L2Y B2t ′ −Y B2x′ =−L2Y B1T1
, (A8a)

N �U2t ′ +L�U
�U2 =−�U1aT1

+�F2�U1a
+�F2�U1W

, (A8b)

and the third order system is395

L2Y B3t ′ −Y B3x′ =−L2Y B1T2
−L2Y B2T1

+Y B1x′x′t ′ (A9a)

+BT3(�U1a, �U1a)+BT3(�U1a, �U1W)+BT3(�U1W, �U1W),

N �U3t ′ +L�U
�U3 =−�U1T2

−�U2T1
+�F3�U2,�U1a

+�F3�U2,�U1W
+ �B3(B1, �U1a)+ �B3(B1, �U1W). (A9b)

Here N = diag(1,1,1,1,0,1,1,1) is the 8× 8 matrix where the ‘0’ entry is to eliminate ∂tv(1),396

�F represents terms from the nonlinear interactions between q and a, and B represents the bilinear397

terms from the nonlinear interactions in the dry dynamics. The detailed descriptions for these398

terms can be found in Chen et al. (2015).399
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cq h3 h6

1.2 -0.13 0.41

1.1 -0.06 0.21

1 0 0

0.9 0.06 -0.21

0.8 0.13 -0.41

TABLE 1. Coefficients in the reduced ODE system (18) with different values of cq, and cθ = 1. See (14) for

the definitions of parameters cq and cθ .
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U0 B0 f1 f2 max |α| Time period (day)

0 1 0 6.6e-2 1.80 147

-1 1 0.15 7.7e-3 1.79 147

1 0 -0.15 0.06 1.70 135

1 1 -0.15 0.12 1.76 141

TABLE 2. Coefficients f1 and f2 for the linear terms in (30). Also shown are the MJO amplitude and oscillation

period for the nonlinear solutions (30) for different values of the barotropic shears U0 and B0, which are defined

in (29).
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FIG. 2. Walker circulation with wavenumber kW = 2. The contours denote the convective activity H̄a, with

positive (negative) anomalies denoted by solid (dashed) contours and with the zero contour removed. The
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FIG. 3. Resonance condition for the interaction of the MJO, Walker circulation, and barotropic Rossby wave

with wavenumbers kMJO = 1, kW =−2 and kT = 1 as described in (15).
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FIG. 4. Solution of the reduced model (18) for the case of MJO initiation with kMJO = 1, kW =−2 and kT = 1.
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FIG. 5. Hovmoller diagram of H̄a1a convective activity for the case of MJO initiation.
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FIG. 6. Velocity field (lower-tropospheric) of three modes for the case of MJO initiation. Left: at 0 day; right:

at 70 day. Top row: MJO. Middle row: barotropic Rossby wave. Bottom row: Walker circulation.
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FIG. 7. As in Figure ??, but with initial conditions corresponding to the case of MJO termination and excita-

tion of barotropic Rossby wave.
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FIG. 8. As in Figure 2, but for a Walker circulation with wavenumbers kW = 2 and 3 as described in Section 4.
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FIG. 9. Resonance conditions (21)-(22) with more realistic Walker circulation with one MJO mode as de-

scribed in Section 4a. Open circles correspond with (21) and asterisks correspond with (22).
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FIG. 10. Same as Figure 9, but for the case with two MJO modes, as described in Section 4b.
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FIG. 11. Solution of the reduced model (27) for the case of MJO initiations with two MJO modes: kMJO1 = 1

and kMJO2 = 2 as described in Section 4b.
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FIG. 12. Hovmoller diagram of H̄a1a for MJO initiation with two MJO modes: kMJO1 = 1 and kMJO2 = 2 as

described in Section 4b.
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