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atmospheric time series obtained on each subdomain are 

used to train the Bayesian procedure incrementally. Con-

vergence of the marginal posterior densities for all seven 

parameters is demonstrated for two different grid partitions, 

and sensitivity tests to other model parameters are also pre-

sented. A single column model simulation using the SMCM 

parameterization with the Giga-LES inferred parameters 

reproduces many important statistical features of the Giga-

LES run, without any further tuning. In particular it exhibits 

intermittent dynamical behavior in both the stochastic cloud 

fractions and the large scale dynamics, with periods of dry 

phases followed by a coherent sequence of congestus, deep, 

and stratiform convection, varying on timescales of a few 

hours consistent with the Giga-LES time series. The chaotic 

variations of the cloud area fractions were captured fairly 

well both qualitatively and quantitatively demonstrating the 

stochastic nature of convection in the Giga-LES simulation.

Keywords Parameter estimation · Bayesian inference · 

Stochastic multicloud model · Tropical convection · 

General circulation models · Stochastic cumulus 

parameterization · Giga-LES · Markov Chain Monte 

Carlo · Large matrix exponential · Parallel and high 
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1 Introduction

General circulation models (GCMs) generate climate pre-

dictions over a time period of seasons to years, and have 

a spatial resolution of O(100 km). Clouds and convection 

processes, on the other hand, are organized in a hierarchy 

of temporal and spatial scales, ranging from individual con-

vective cells (clouds) of one to 10 km and a few hours, to 

mesoscale cloud clusters of a few hundreds of kilometers 

Abstract The poor representation of tropical convec-

tion in general circulation models (GCMs) is believed to be 

responsible for much of the uncertainty in the predictions 

of weather and climate in the tropics. The stochastic multi-

cloud model (SMCM) was recently developed by Khouider 

et al. (Commun Math Sci 8(1):187–216, 2010) to represent 

the missing variability in GCMs due to unresolved fea-

tures of organized tropical convection. The SMCM is based 

on three cloud types (congestus, deep and stratiform), and 

transitions between these cloud types are formalized in 

terms of probability rules that are functions of the large-

scale environment convective state and a set of seven arbi-

trary cloud timescale parameters. Here, a statistical infer-

ence method based on the Bayesian paradigm is applied 

to estimate these key cloud timescales from the Giga-LES 

dataset, a 24-h large-eddy simulation (LES) of deep tropi-

cal convection (Khairoutdinov et al. in J Adv Model Earth 

Syst 1(12), 2009) over a domain comparable to a GCM 

gridbox. A sequential learning strategy is used where the 

Giga-LES domain is partitioned into a few subdomains, and 
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and 1–2 days, to super-clusters of a few thousands of kil-

ometres and 5−10 days, to their planetary/intraseasonal 

scale envelopes such as the Madden–Julian oscillation 

(MJO, Madden and Julian 1972; Mapes et al. 2006; Mon-

crieff 2010). Because of their coarse resolution, GCMs 

include parameterizations that represent, based on some 

closure assumptions, the small scale effects of clouds and 

convection on the large-scale/resolved dynamics. Clouds 

and convection parameterization deficiencies have long 

been attributed to the failure of GCMs to adequately repre-

sent the variability associated with organized tropical con-

vection (Hung et al. 2013; Lin et al. 2006; Moncrieff and 

Klinker 1997).

Purely deterministic closures, such as the Arakawa and 

Schubert (1974) quasi-equilibrium assumption, the moist 

convective adjustment idea of Manabe and Smagorinsky 

(1967), or the large-scale moisture convergence closure 

of Kuo (1974) type—and some more recent variants—, 

were found to inadequately represent the highly intermit-

tent nature and variability of tropical convection. A new 

perspective for improving GCMs, in the last decade, came 

from the inclusion of stochastic parameterizations (see, for 

instance, the models of Lin and Neelin 2003; Buizza et al. 

1999).

The stochastic multicloud model (SMCM) for tropical 

convection introduced by Khouider et al. (2010) (KBM10 

below) is an approach based on a stochastic interacting 

particle lattice model where each lattice site is either occu-

pied by a cloud of a certain type (congestus, deep, or strati-

form), or is cloud free (clear sky). The transitions between 

the cloud types are governed by a set of probability rules 

that are constrained by the large-scale convective available 

potential energy (CAPE) and middle troposphere dryness, 

and are modulated by a set of seven arbitrary cloud tran-

sition timescales τjk. When local interactions between the 

lattice sites are ignored, a coarse-grained stochastic birth-

death process is derived for the dynamical evolution of the 

area fractions σc, σd, and σs of congestus, deep, and strati-

form clouds (KBM10). The coarse-graining procedure is 

extended to the more complex case with local interaction 

in Khouider (2014), under the assumption of uniform redis-

tribution of particles within each coarse cell—i.e, a GCM 

grid box. The cloud area fractions in turn affect the large-

scale dynamics by modulating the strength, timing and 

spacial distribution of the convective heating and precipita-

tions rates.

The statistical equilibrium of σc, σd, and σs is critically 

linked to the choice of the cloud timescales τjk. In their 

introductory paper on the SMCM (KBM10), the authors 

conclude from case studies (see Table 5) that the dynamics 

of the stochastic lattice model and associated gridbox frac-

tional cloudiness is very sensitive to the prescribed values 

of the cloud transition timescales. In another study using 

the SMCM, Frenkel et al. (2012) (FMK12 below) use yet 

a different set of parameter values (see Table 5) to study 

flows above the equator without rotation effects, and look 

at the impact of convective timescale dilation on the vari-

ability of convective coherent structures. Efforts towards a 

more systematic way of determining these parameters have 

recently been undertaken, most notably by Peters et al. 

(2013) (P2013 below) who visually constrained the equilib-

rium distribution of the multicloud area fractions to radar 

data (covering a 36,000 km2 area over Darwin, Australia) 

to find best-fit transition timescales (see Table 5) that better 

represent the statistics of observed rainfall time series.

This work aims at using a rigorous statistical inference 

method, newly introduced by De La Chevrotière et al. 

(2014) (hereafter DKM14) to estimate the SMCM cloud 

timescale parameters from the Giga-LES dataset of Khai-

routdinov et al. (2009), a large-eddy simulation (LES) of 

deep tropical convection over a domain comparable to a 

GCM gridbox. The inference method of DKM14 is basi-

cally a static inverse problem, in which an inference about 

the static model parameters τjk is obtained by assimilat-

ing time series of atmospheric data, based on the “exact” 

nonlinear forward SMCM (e.g. no imposed linearization). 

The inference model uses the Bayesian framework to for-

mulate a posterior distribution over the model parameters, 

given the data. The challenge of the Bayesian method is 

that posterior exploration may be hard for computation-

ally intensive forward models. In the multicloud problem, 

the calculation of the likelihood function requires solving 

a large system of differential equations (the Kolmogorov 

equations) as many times as there are data points, which 

is prohibitive both in terms of computation time and stor-

age requirements. DKM14 uses the parallel Uniformization 

Method, which gives fast and scalable approximations of 

large sparse matrix exponentials for the solutions of sys-

tems of differential equations, without sacrificing accuracy. 

The high dimensional posterior distribution is sampled here 

using the standard Markov Chain Monte Carlo technique. 

As per design of the SMCM, the Bayesian inference proce-

dure is trained using the large-scale CAPE and mid-tropo-

sphere dryness, and the subgrid-scale cloud coverage time 

series.

To increase information capacity, the full 205 × 205 km2 

Giga-LES domain is subdivided into grids, and training 

time series are obtained on each grid cell subdomain. The 

parameters are then progressively learned using a sequen-

tial learning technique tested and validated in DKM14.

The paper is organized as follows. The SMCM and the 

Bayesian learning procedure are presented in Sect. 2 while 

the Giga-LES dataset and the domain partitioning setup are 

discussed in Sect. 3. In Sect. 4, we process the Giga-LES 
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data to extract the cloud area fractions and large-scale indi-

cator time series, which are needed as input for the Bayes-

ian inference algorithm. The resulting distributions of the 

transition timescales and the convergence of the sequential 

learning strategy are presented in Sect. 5 together with sen-

sitivity tests to two key parameters of the SMCM likelihood 

function, namely, the reference scales of CAPE and dry-

ness. Section 5 also contains simulation results using a sin-

gle column GCM based on the SMCM with the Giga-LES 

inferred transition timescales, which reproduces the main 

statistical features of the Giga-LES time series including 

the high intermittency and chaotic behavior of the cloud 

area fractions. Finally, a concluding discussion is presented 

in Sect. 6.

2  The model: SMCM and the Bayesian inference 
procedure

In this section, we describe the procedure of statistical 

inference for the SMCM based on the Bayesian paradigm 

following DKM14. As introduced in KBM10, the SMCM 

is essentially a multi-dimensional Markov birth-death pro-

cess with immigration, which characterizes the populations 

or area fractions of different cloud types, evolving on the 

GCM subgrid scale. Transitions between the different cloud 

types occur at rates that are functions of the large-scale 

environment, modulated by a set of seven cloud transition 

parameters that allow for timescale adjustments (KBM10). 

A rigorous statistical method to estimate these cloud time-

scales from data was recently introduced and successfully 

validated using a synthetic experiment in DKM14. Here we 

provide a general overview of the method in Sect. 2.2, and 

refer the reader to DKM14 for a more in-depth discussion. 

We first start by reviewing in Sect. 2.1 the dynamical and 

physical features of the SMCM parameterization that are 

relevant for the Bayesian set-up.

2.1  The SMCM

The SMCM aims at representing the missing variability 

in GCMs due to unresolved processes of organized tropi-

cal convection (Johnson and Ciesielski 2013; Johnson et al. 

1999; Mapes et al. 2006). Each GCM gridbox is overlaid 

with a lattice of n × n convective sites. Each of the n2 sites 

is associated with a four state Markov process (Yi
t )t>0 that 

takes the values 0, 1, 2, or 3 according to whether the site 

is either cloud free, or occupied by one of the three cloud 

types. More illustrative details of the SMCM are found in 

earlier publications, e.g., KBM10, FMK12, and DKM14.

Transitions between the different cloud types, listed in 

Table 1, are formalized in terms of transition rates rjk that 

are functions of the large-scale atmospheric state, and 

scaled by a set of timescale parameters τjk. The large-scale 

atmospheric state provides the three convective indicators 

C, Cl, and D, defined as

Here, CAPE and CAPEl are the convective available 
potential energies (see Emanuel 1994), obtained by inte-

grating the buoyancy of an adiabatically lifted parcel, over 

the whole and lower troposphere (see Sect. 4 and Table 2 

for height levels specific to the Giga-LES study), respec-

tively, θeb and θem are the boundary layer and mid-tropo-

sphere equivalent potential temperatures, and CAPE0, T0 

are climatological reference values. D is a measure of the 

dryness of the mid-troposphere, i.e. θem � θeb indicates a 

mid-troposphere that tends to be dry. The influence of C, Cl 

and D on the transition rates rjk (see Table 1) is represented 

through the activation function of Arrhenius type

In practical implementation, evolving in time each one 

of the n2 microscopic Markov chains has a high compu-

tational overhead. A coarse-grained model is derived in 

KBM10 for the GCM grid box cloud area fractions alone, 

which can be easily evolved without the detailed knowl-

edge of the microstate configuration (see also Katsoulakis 

et al. 2003; Khouider 2014; Khouider et al. 2003). The area 

fractions for congestus, deep, and stratiform clouds are 

given, respectively, by

(1)

C = CAPE

CAPE0

, Cl = CAPEl

CAPE0

, and D = θeb − θem

T0

.

(2)Γ (x) = {
1 − e−x if x > 0, 0 otherwise

}
.

Table 1  Transition rates rjk given as functions of the large scale vari-

ables CAPE (C), low level CAPE (Cl), and mid troposphere dryness 

D, via the activation function Γ  defined in (2) and modulated by the 

(unknown) timescale parameters τjk

The transition rates r03, r13, r21, r31, and r32 are set zero. They rep-

resent forbidden transitions whose transition probabilities during a 

short period of time are negligible

Cloud transition Transition rate

Formation of congestus
r01 = 1

τ01

Γ (Cl)Γ (D)

Decay of congestus
r10 = 1

τ10

Γ (D)

Conversion of congestus to deep
r12 = 1

τ12

Γ (C)
(
1 − Γ (D)

)

Formation of deep
r02 = 1

τ02

Γ (C)
(
1 − Γ (D)

)

Conversion of deep to stratiform
r23 = 1

τ23

Decay of deep
r20 = 1

τ20

(
1 − Γ (C)

)

Decay of stratiform
r30 = 1

τ30
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where 1{Yi
t =k} is the indicator function, which takes the 

value one when Yi
t = k and zero otherwise. As a function 

of time, (σ t
c , σ t

d , σ t
s ) effectively forms a three dimensional 

birth-death process with probability transition rules that are 

given in terms of the microscopic rates rkl. Given the large-

scale thermodynamic state, the birth-death process is easily 

evolved in time using Gillespie’s exact algorithm (Gillespie 

1975, KBM10), without significant computational over-

head. However for the purpose of the Bayesian model, it is 

more convenient to track the cloud populations Nt
c = Nσ t

c, 

Nt
d = Nσ t

d, and Nt
s = Nσ t

s, where N = n2 is the total num-

ber of microscopic sites within the coarse cell. The number 

of cloud free sites is given by Nt
cs = N − Nt

c − Nt
d − Nt

s.

The cloud populations Nt
c, Nt

d, and Nt
s form a three 

dimensional birth-death process with immigration, which is 

denoted by

The probability transition matrix for this stochastic process 

solves the backward Kolmogorov equations (DKM14).

with the initial conditions Pij(0) = δij. Here i = (i1, i2, i3) 

and j = (j1, j2, j3) are triplets of non-negative integers in 

the range space S of Xt, and Pij(t) is the conditional prob-

ability that at time t the populations of congestus, deep 

and stratiform are respectively j1, j2, and j3, given that 

there were i1 congestus, i2 stratiform, and i3 deep clouds at 

time t = 0. The vectors ε1 = (1, 0, 0), ε2 = (0, 1, 0), and 

ε3 = (0, 0, 1) are the canonical unit vectors in R3. Here Rkl 

are the transition rates of the coarse-grained process. We 

note that only the seven admissible transitions are included 

in Eq. 4 (KBM10, DKM14). In the case where local inter-

actions are ignored, all n2 stochastic processes Yi
t  are inde-

pendent and identically distributed, and the coarse transi-

tion rates satisfy (KBM10)

where rkl are the microscopic rates depending only on the 

exogenous factors C, Cl, D as defined in Table 1. We note 

that while the microscopic timescales τkl are measured in 

hours, the effective timescales for the coarse grained–cloud 

area fraction processes are given by τkl/ik. In the extreme 

(3)

σ t

c
=

1

N

N∑

i=1

1{Yi
t =1}, σ t

d
=

1

N

N∑

i=1

1{Yi
t =2},

σ t

s
=

1

N

N∑

i=1

1{Yi
t =3},

(Xt)t>0, Xt = (Nt
c, Nt

d , Nt
s).

(4)

dPij(t)

dt
= R

i
12Pi−ε1+ε2 ,j(t) + R

i
23Pi−ε2+ε3 ,j(t) + R

i
10Pi−ε1 ,j(t)

+ R
i
20Pi−ε2 ,j(t) + R

i
30Pi−ε3 ,j(t) + R

i
01Pi+ε1 ,j(t) + R

i
02Pi+ε2 ,j(t)

− (
R

i
12 + R

i
23 + R

i
10 + R

i
20 + R

i
30 + R

i
01 + R

i
02

)
Pij(t),

Ri
kl =

{
ikrkl, if k �= 0

(N − i1 − i2 − i3)r0l, otherwise

case where ik = N, the effective transition timescale can 

be reduced by as much as two orders of magnitude if 

N = 10 × 10, for example, resulting in transition times in 

the order of a few seconds to minutes.

If we let P = {Pij(t)} ∈ R
|S|×|S| be the matrix of transi-

tion probability functions Pij(t), we may cast the Kolmogo-

rov system in its matrix form:

where Id is the identity matrix of order |S|, the cardinality 

of S, and R ∈ R
|S|×|S| is the matrix of transition rates Ri

kl 

(the infinitesimal generator of the birth-death process).

2.2  The Bayesian inference procedure

The SMCM simulates the evolution of the cloud popula-

tions x = (Nc, Nd , Ns)
1 constrained by the large-scale 

atmospheric state u = (C, Cl, D). We label the correspond-

ing sequence of observations x1, x2, x3, . . . and u1, u2, u3, . . . 

by xt and ut, respectively. The SMCM parameterization 

includes seven numerical inputs (or parameters), namely 

the cloud convective timescales (see Table 1), which we 

stack in the vector

While the SMCM characterizes the behavior of the future 

observations of X conditional on θ, a statistical inference 

method allows instead to deduce from observations x of X 

an inference about θ. A general description of this inversion 

is given by the Bayesian paradigm. The Bayesian approach 

incorporates the initial information and residual uncertainty 

about the model parameters θ into a prior distribution π(θ) , 

which is then updated by the model likelihood function 

f (xt |θ) to formulate a posterior distribution π(θ |xt) of the 

parameters given the data (Robert 2007):

The inference is then based on the distribution of θ condi-

tional on x as defined by (6). Conditioning further on ut , 

the posterior is given (up to a proportionality constant) as

The likelihood function f (xt |ut , θ) is in essence an 

expression of the SMCM model and we refer to DKM14 

for the full derivation. For series of observations 

x1:T = (x1, . . . , xT ) and u1:T = (u1, . . . , uT ) of length T, it 

is found by conditioning on past events and using the prob-

ability matrix density functions (4) for the one-step transi-

tion likelihoods (DKM14):

(5)P′(t) = RP(t), P(0) = Id,

1 Observations of the random variable X are here written in lower 

case.

θ = (τ01, τ10, τ12, τ02, τ23, τ20, τ30).

(6)π(θ |xt) = f (xt |θ)π(θ)
∫

f (xt |θ)π(θ)dθ

.

(7)π(θ |xt , ut) ∝ f (xt |ut , θ)π(θ).
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Here 1
∗

φ(·)
 is the transpose of 1φ(·) (1φ(·) is the 

canonical vector in R
|S| that has 1 at the index cor-

responding to φ(·), and 0’s everywhere else), and 

φ(d, b, c) = d3

6
+ d2

2
+ d

3
+ db − b2

2
+ 3b

2
+ c for 

non-negative integers 0 ≤ d ≤ N, 0 ≤ b ≤ d, and 

0 ≤ c ≤ d − b , and dt = Nt
c + Nt

d + Nt
s. The function 

φ : S → N maps each triple in S to a counting order 

(address), which is needed to automate the construction 

of the large matrix R. Note that the matrix exponential 

exp[R(·)h] is the solution to the system (5) assuming that 

the large-scale environment varies on a longer timescale 

than the data sampling time interval h. In the Giga-LES 

inference study presented in here, cloud data is available 

every 15 min (h = 15 min) and over such period of time, 

the large-scale variable u is effectively approximately 

constant (see Fig. 4).

It is easy to see that dim = O(N3), and thus the size 

and memory requirements of R become prohibitively large 

with the dimensions of the cloud lattice (DKM14). A par-

allel version of a preconditioning technique known as the 

Uniformization Method was developed in DKM14 that 

allows for fast, numerically stable, and scalable approxi-

mations of large sparse matrix exponentials. The sampling 

of the posterior distribution is done with the Monte Carlo 

Markov Chain technique (see DKM14 and references 

therein).

3  Giga-LES dataset and sequential learning

The choice of observed data for the multicloud parameter 

estimation problem hinges on two major points which char-

acterize tropical convection: (1) a fine enough resolution to 

capture the small (time and spacial) scale processes associ-

ated with deep convection and (2) a large enough domain in 

order to represent some level of multiscale organization of 

coherent structures. This inference study is based on the 

Giga-LES dataset (Khairoutdinov et al. 2009), a large-eddy 
simulation (LES) of deep tropical convection on a numeri-

cal domain comparable to a GCM grid cell. Traditionally, 

LES have been used to simulate turbulence and low clouds 

in the PBL, where the grid spacing of O(10–100 m) is 

small enough to explicitly represent turbulent processes 

associated with large eddies occurring in the boundary 

layer. The “Giga-LES” is one of the very few studies that 

extends the technique to deep convection in the 

(8)

f (x1:T |u1:T , θ) =
T∏

t=1

ft−1(xt|xt−1, ut−1, θ)

=
T∏

t=1

1
∗

φ(dt−1,N
t−1

d
,N

t−1
s )

exp[R(ut−1, θ)h]1
φ(dt ,N

t

d
,N

t
s)

.

atmosphere,2 with a grid spacing of 100 m. It can simulate 

deep convective cloud processes and exhibit some mes-

oscale organization characterized by a tri-modal vertical 

distribution of deep, middle, and shallow clouds similar to 

that often observed in the tropics (Khairoutdinov et al. 

2009).

The Giga-LES dataset is a 24-h long LES of deep trop-

ical convection over a domain of 204.8 km in both hori-

zontal directions and about 27 km in the vertical, which 

uses the mean sounding and forcing observed during the 

GARP Atlantic Tropical Experiment (GATE) Phase III 

experiment over the Atlantic Inter-Tropical Convergence 

Zone (ITCZ) (Khairoutdinov et al. 2009). The atmospheric 

fields are available every 15 min at all 2048 × 2048 × 256 

grid points of the three dimensional space. A full descrip-

tion of the simulation setup, including the idealized mean 

GATE initial thermodynamic profiles and large–scale forc-

ing is found in Khairoutdinov et al. (2009). Figure 1 pre-

sents a visualization of the cloud scene over the whole 

204.8 × 204.8 km2 domain at hour 13. The scene illus-

trates complex convection activity, with individual deep 

clouds and mesoscale cloud systems dominated by strati-

form anvils, surrounded by smaller congestus and shallow 

clouds.

The evolution of convection in the simulation is illus-

trated by the time series of the vertical profile of hori-

zontally averaged non precipitating cloud liquid/ice con-

densate, in Fig. 2a. The convection activity triggers after 

a “spin-up” transient period of approximately 6 h, with 

a shallow boundary layer appearing during that period. 

Figure 2a shows a shallow cloud layer that gradually deep-

ens until a burst of deep cumulus convection occurs near 

hour 6. A nearly steady deep cumulus regime is established 

by hour 12, characterized by a trimodal vertical distribu-

tion of the cloud field; namely formed by shallow and deep 

convective cloud maxima accompanied by a cumulus con-

gestus maximum within the lower troposphere, i.e, near 

the freezing level (Khairoutdinov et al. 2009). Figure 2b 

presents the horizontally averaged vertical profiles of 

cloud water/ice and water vapor mixing ratios, and rela-

tive humidity, averaged over the last 12 h of the simulation 

period. The water/ice mixing ratio is of particular interest 

to this study, as it is used to derive the gridbox cloud area 

fractions σc, σd, σs (see Sect. 4.2 for details).

Figure 1b shows the time evolution of horizontally aver-

aged CAPE, low level CAPE, and midtroposphere dry-

ness D = (θeb − θem)/T0 (T0 = 10 K). The CAPE and low 

level CAPE were computed from the domain-averaged 

2 A simulation rerun, which uses a spatial resolution of 50 m and 

covers a physical domain of 86 km × 86 km × 22 km, has been car-

ried by Loh and Austin (2015; manuscript in preparation) to study 

entrainment and detrainment rates.
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thermodynamic profiles assuming pseudo-adiabatic ascent 

with the departure point at 960 mb.

During the “spin-up” transition, the CAPE value 

increases by about 70 %, after which the onset of deep con-

vection occurs and consumes a fraction of that CAPE. By 

hour 8, the simulation reaches a deep convection regime 

with an approximately steady CAPE value of 2000–2100 

J/kg. The midtroposphere dryness also reaches a maximum 

towards the 6 h mark, indicating a moistening of the bound-

ary layer which sets the favourable conditions for deep 

convection; It then gradually drops as the midtroposphere 

moisture content increases due to deep convection. The 

CAPE in the lower troposphere reaches a maximum of 

about 625 J/kg at the onset of convection which consumes 

about 16 % of that amount to stabilize at around 500 J/

kg, indicating a sustained low level convection activity 

throughout the last 18 h of simulation.

3.1  Domain partitioning and sequential learning

The Giga-LES is a 24-h long simulation, with a time reso-

lution of 15 min. Excluding a transient period of approxi-

mately 4–5 h, the length of the time series is between 76 

and 80 data points. To increase information capacity, the 

full 205 × 205 km2 Giga-LES domain is subdivided into 
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4 8 12 16 20 24

hours

50
0

10
00

15
00

20
00

C
A

PE
, l

ow
 le

ve
l C

A
PE

 (J
/

K
g)

0.
90

0.
95

1.
00

1.
05

1.
10

1.
15

M
id

-t
ro

po
sp

he
ri

c 
d

ry
ne

ss
CAPE
low level CAPE
Dryness

(b)

Fig. 1  a Image of simulated cloud scene over the area 

205 × 205 km2 corresponding to hour 13 of the Giga-LES simula-

tion, obtained from visible albedo estimated from the liquid and ice 

water paths (from Khairoutdinov et al. 2009). b Time evolution of 

CAPE (J/kg), low level CAPE (J/kg), and midtroposphere dryness 

D = (θeb − θem)/T0, T0 = 10 K, calculated from the horizontally 

averaged fields of the Giga-LES dataset. The midtroposphere dryness 

D measures the discrepancy between the boundary layer and mid-

troposphere equivalent potential temperatures, fixed at pressure levels 

1000 and 500 mb, respectively

time (hrs)

he
ig

ht
 (k

m
)

cloud liquid/ice water mixing ratio (× 10−3 kg kg−1)

5 10 15 20

2

4

6

8

10

12

14

16

0

0.01

0.02

0.03

0.04

(a)

0 0.005 0.01 0.015 0.02

   water vapor mixing ratio (kg/kg), 
water + ice mixing ratio (10-3 kg/kg) 

0
5

10
15

20
25

he
ig

ht
 (k

m
) 

25 50 75
relative humidity (%) 

water + ice mixing ratio
water vapor mixing ratio
relative humidity

(b)

Fig. 2  a Evolution of horizontally averaged cloud liquid/ice water 

mixing ratio vertical profile. b Comparison of vertical profiles of 

horizontally averaged cloud water/ice mixing ratio (solid black), 

water vapor mixing ratio (dashed blue), and relative humidity (dotted 
green), averaged over the last 12 h of the Giga-LES simulation run
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M subdomains, and time series of cloud populations and 

large-scale convection indicators are obtained for each.

The parameters are then progressively learned using a 

sequential learning technique described in DKM14, which 

in simple terms consists of a Bayesian updating scheme of 

the form

where a prior πm(θ) gets updated by a likelihood fm+1(θ) to 

give a posterior πm+1(θ). This gives the following recursive 

scheme: Starting on subdomain 1 and specifying an initial 

prior π0, we run the Bayesian posterior simulator that out-

puts a posterior π1, which in turn is used as a prior for sub-

domain 2, etc. At each step, a multivariate normal distri-

bution is fitted to the posterior using the sample mean and 

sample covariance matrix. This method was successfully 

validated in DKM14 where the inference results based on 

a synthetic time series of length 5a were compared to the 

sequential analysis obtained by segmenting that time series 

into five contiguous subsequences of length a.

Figure 3 illustrates the two partitions that are used in 

this study: a 2 × 2 (M = 4) grid and a 4 × 4 (M = 16) grid, 

which correspond to GCM grid box sizes of 102.4 and 51.2 

km, respectively. Time series for the cloud cover fractions 

σc, σd, and σs and large-scale convection indicators C, Cl, 

and D are derived next for the two partitions.

4  Data preprocessing

As mentioned in Sect. 2.2, the Bayesian inference proce-

dure draws its inference on the convective timescale param-

eters τjk from two training sets of observations: the large-

scale convection indicators (1), and the subgrid-scale area 

fractions σc, σd, and σs of congestus, deep, and stratiform 

πm+1(θ) ∝ πm(θ) × fm+1(θ), 0 ≤ m ≤ M − 1,

clouds (see 3). The amount of convective available poten-

tial energy (CAPE) of the environment is determined from 

simple parcel theory (assuming pseudo-adiabatic ascent 

with the departure point at 960 mb; see Emanuel (1994) for 

more details), while the dryness D is obtained directly from 

the equivalent potential temperature’s vertical profile. The 

time series for the large-scale convective indicators are pre-

sented in Sect. 4.1.

Fractional cloud area, on the other hand, is not a well 

defined quantity and deriving cloud fractions from experi-

mental radar/lidar or simulated data can be done in various 

ways. Our calculation of the cloud area fractions σc, σd, and 

σs is based on a diagnosis of water and ice mixing ratios 

present within single vertical columns to identify clouds of 

the three types. The time series of the subgrid-scale cloud 

area fractions are presented in Sect. 4.2.

4.1  Time series of large-scale convection indicators

The time series of the large-scale convection indicators C, 

Cl, and D, defined in (1), are shown in Fig. 4 using the two 

reference values CAPE0 = 1500 J/kg, and T0 = 10 K for 

both the 2 by 2 and 4 by 4 grids. The corresponding CAPEl 

and CAPE values were obtained by integrating the parcel’s 

buoyancy over the lower and whole troposphere, respec-

tively, whose base and top levels are fixed at the parcel’s 

LFC and LNB (see Table 2 for values specific to the Giga-

LES dataset).

The time series of the gridded domains are qualita-

tively similar to those of the full domain shown in Fig. 1b: 

a buildup of convective energy combined to a moistening 

of the boundary layer takes place until an explosive tran-

sition to deep cumulus convection occurs near hour 6, 

which depletes the atmosphere of CAPE and moisten the 

midtroposphere.

4.2  Time series of cloud area fractions

The cloud fractions associated with congestus, deep and 

stratiform clouds are derived from the prognostic cloud 

water/ice mixing ratio qn. At every grid point (i, j) of the 

2048 × 2048 horizontal gridded domain, we consider the 

vertical profile of qn and binarize it using a zero threshold 

to obtain a 256 level binary vector Qij. Each binary vertical 

profile is then compared to four cloud/no cloud reference 

profiles: congestus Pc, deep Pd, stratiform Ps, and clear 

sky Pcs. These profiles are constructed using the lifted con-
vection level (LCL) as an estimate for congestus and deep 

cloud base, the freezing level (FL) as an estimated conges-

tus cloud top and stratiform cloud base, and the level of 

neutral buoyancy (LNB) as an estimated deep and strati-

form cloud tops, as shown in Fig. 5. 

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

SW

NW NE

SE

Fig. 3  Partitioning the Giga-LES domain of area 205 × 205 km2 into 

a 2 by 2 (in black) and a 4 by 4 (in blue) grid. The subdomains are 

referenced as NW,…, SE and 1,…,16 therein
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The approximate height for these reference levels for the 

Giga-LES dataset are reported in Table 2. The reference 

profiles are set as

where z is the height, 1 is an indicator vector function, and 0 

the vector of zeros. A cloud type is assigned to the LES col-

umn data Qij by minimizing some misfit measure between 

Pc = 1{LCL≤z≤FL}, Pd = 1{LCL≤z≤LNB},
Ps = 1{FL≤z≤LNB}, Pcs = 0,

Qij and the set of reference profiles P = {Pc, Pd , Ps, Pcs}. 
Here we minimize the 2-norm of the residual vector

where k is the vertical level, and P ∈ P. The result is a pro-

jected two-dimensional cloud lattice whose cloud area frac-

tion time series are shown in Fig. 6 for both the 2 by 2 and 

‖Qij − P‖2 =

√√√√ 256∑
k=1

(
Qk

ij − Pk
)2
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Fig. 4  Time series of the large-scale convection indicators C, Cl, 

and D using reference values CAPE0 = 1500 J/kg, and T0 = 10 K 

for the a 2 by 2 grid and b 4 by 4 grid. The dryness D measures the 

discrepancy between the boundary layer and midtroposphere equiva-

lent potential temperatures, set at pressure levels 1000 and 500 mb, 

respectively. Note that two different scales are used to represent C (Cl

) and D
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4 by 4 partitions. The time series show an interesting pat-

tern of intermittent cloud bursts, with frequent signatures 

of congestus events preceding deep and stratiform events. 

Larger stratiform area fractions indicate strong upper level 

cloud condensate.

5  Results

5.1  Convergence of sequential learning

The sequential learning strategy was applied to both the 

2 by 2 and 4 by 4 grids of Fig. 3 using an initial weakly 

informative multivariate normal prior, with the mean given 

by the P2013 parameter regime (see Table 5), and variance 

50 h2. Figures 7 and 8 show the marginal posteriors for all 

seven parameters for the 2 by 2 and 4 by 4 grids, respec-

tively, using the large-scale convective indicator and cloud 

area fraction time series given in Figs. 4 and 6.

Each posterior exploration was conducted using an 

ensemble of well-dispersed MCMC chains in parallel, 

each with a sample size of approximately 100 000. Burn 

in periods were removed and proposal variances were 

calibrated to obtain an optimal acceptance rate of 25 %. 

Visual diagnostics were used to monitor within-chain and 

in between-chain mixing, and ensure that the chains have 

reached equilibrium. All parallel simulations were per-

formed on the Nestor Westgrid cluster using 72 cores.

For both partition cases, the posterior densities gradually 

concentrate about a mean value with a progressive reduc-

tion of the variance, and appear to converge to a limiting 

density. The influence of the prior is negligible: The poste-

rior is strongly dominated by the data likelihood function 

right after the first learning sequence.

The results for the two partitions are juxtaposed in the 

box plot of Fig. 9 depicting the first, second, and third quar-

tiles for both sets of posterior marginals. For most param-

eters, there are large discrepancies in the values for these 

two cases. The parameters are classified as “slow” and 

“fast” transitions, depending whether their inferred value 

is less than or greater than 1.5 h. The means and standard 

deviations for the two grids are reported in Table 3.

As we can see from Table 3, all the mean transition time-

scales appear to be smaller in the fine 4 × 4 partition but 

τ01 which seems to increase by roughly 15 % (from 27.686 

to 31.789 h). Also the amounts by which the majority of 

the timescales decrease vary considerably among the τij’s. 

While the physical meaning of this rather erratic behavior 

is hard to comprehend, it sets an interesting challenge on 

the way these transition timescales should actually depend 

on the GCM grid resolution. Nonetheless, it is interest-

ing to note that the variance is consistently smaller for all 

parameters with the 4 × 4 partition.

5.2  Sensitivity to the activation function parameters

Figure 10 shows a sensitivity study to the activation func-

tion parameters CAPE0 and T0 in the definition (1) of C, 

Cl , and D. It is interesting to note that varying either refer-

ence values does not have a striking effect on the convec-

tive timescale inferred values. However for some param-

eters the discrepancy is large, notably in the case of varying 

CAPE0 for the parameters τ01 and τ02, for which there is a 

gap of more than 10 h in the two sets of estimated median 

values, especially when comparing the small CAPE0 value 

of 20 J/kg with the two larger ones (1500 and 2000 J/kg). 

However, some sensitivity of the same two parameters, τ01 

and τ02, can also be seen in the variation of T0. This sug-

gests that those two parameters, which affect directly the 

initiation of convection, are in fact sensitive to the large 

scale thermodynamics, in terms of CAPE and dryness.

From Fig. 10, we can notice that while both τ01 and τ02 

decrease with the CAPE0, the effect of variation in T0 on the 

two parameters is in opposite direction; τ01 decreases with 

T0 while τ02 appears to increase with T0. This behaviour 

LNB

FL

LCL

z

Pc

Pc = {LCL≤z≤FL}
Pd

Pd = {LCL≤z≤LNB}

Ps

Ps = {FL≤z≤LNB}
Pcs

Pcs = 0{LCL≤z≤LNB}

Fig. 5  Reference profiles Pc, Pd, Ps, and Pcs of congestus, deep 

and stratiform clouds, and clear sky. The LCL, FL, and LNB approxi-

mate heights are given in Table 2

Table 2  Approximate LCL, LFC, and LNB obtained, using parcel 

theory, from the domain and time averaged thermodynamic fields of 

the Giga-LES dataset. FL is the freezing level, defined as the 273 K 

height. The LFC and LNB are determined from the sign of the par-

cel’s buoyancy (see Emanuel 1994), and are used in the CAPE cal-

culation

Level Approximate height

Lifted condensation level (LCL) 355 m

Level of free convection (LFC) 455 m

Freezing level (FL) 4.4 km

Level of neutral buoyancy (LNB) 14 km
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is intimately tied to the way the transition rates in Table 1 

have been defined in terms of CAPE and dryness. Since the 

intrinsic transition rates are set by the true dynamics of the 

LES simulation, i.e the observed data time series, they can 

be assumed fixed during the inference procedure. The same 

applies for the actual CAPE, CAPEl and the dryness time 

series. Thus, as far as the inference procedure is concerned, 

the timescales, τ01 and τ02 in particular can be viewed as 

two functions of CAPE0 and T0. Given that the function Γ  

in (2) is increasing and that both CAPE0 and T0 appear on 

the denominator of C, Cl and D, respectively, it is easy to 

see that both τ01 and τ02 are decreasing functions of CAPE0 

while τ01 is decreasing with T0 and τ02 is increasing with T0, 

consistent with the numerical results in Fig. 10.

5.3  Single column testing

We now use the timescales inferred from the Giga-LES 

dataset in a simple single column climate model coupled to 

the SMCM parameterization to illustrate the effectiveness 
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Fig. 6  Time series of cloud area fractions for the a 2 by 2 grid and b 4 by 4 grid
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of this procedure. A somewhat more elaborate testing 

involving a zonally symmetric model for the monsoon 

meridional circulation will be presented elsewhere.

We consider the single column model used in KBM10 

to test the SMCM. It consists of four diagnostic variables 

representing the first and second baroclinic components of 
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potential temperature, θ1, θ2, the vertically integrated mois-

ture q, and the boundary layer potential temperature, θeb.

Here Hd , Hc, Hs are the heating rates associated with deep 

convective, congestus, and stratiform clouds, and ξs, ξc are 

the stratiform and congestus contributions to the first baro-

clinic mode. The parameters Q0
R,1, Q0

R,2 are prescribed cool-

ing rates due to long wave radiation, and τR and τe are the 

Newtonian cooling and surface evaporation timescales. P 

and Dc are respectively the precipitation rate and downdraft 

(9)

dθ1

dt
= Hd + ξsHs + ξcHc − Q0

R,1 − 1

τR

θ1,

dθ2

dt
= Hc − Hs − Q0

R,2 − 1

τR

θ2,

dθeb

dt
= 1

τe

(θ∗
eb − θeb) − 1

h
Dc,

dq

dt
= − 2

√
2

π
P + 1

HT

Dc.

mass flux that serves to moisten the midtroposphere, cool 

and dry the boundary layer. Moreover, HT and h are the 

heights of the troposphere and boundary layer, respectively, 

and θ∗
eb is the saturation equivalent potential temperature. 

The closure equations of the heating rates, downdrafts, and 

precipitation rate are listed in Table 4, together with the 

set of parameters and constant values used by the model, 

for the sake of completeness. While a detailed discussion 

of this model and its coupling to the SMCM is found in 

KBM10 and FMK12 (see also DKM14), it is worthwhile 

noting that the heating rates are set proportional to the 

cloud area fractions of their respective cloud types: an 

increased area fraction of deep convection, for example, 

yields an increased potential for deep convective heating 

and zero deep area fraction results in a zero deep convec-

tive heating.

In summary, the single column model in (9) is coupled 

to the SMCM birth-death process presented in Sect. 2.1, 

following KBM10, to simulate the climatology and the 

corresponding cloud area fraction dynamics in the G-LES 

Table 3  Bayes estimates for the marginal posterior densities of 

Fig. 7 (2 × 2 partition) and 8 (4 × 4 partition), shown in solid black

Mean and SD are posterior mean and standard deviation, respectively. 

The finest 4 × 4 partition decreases the estimated variances by as 

much as an order of magnitude for some of the parameters

Parameter Mean (SD) [hours]

2 × 2 Partition 4 × 4 Partition

τ01 (Formation of congestus) 27.686 (8.233) 31.789 (4.795)

τ10 (Decay of congestus) 7.426 (11.155) 1.761 (0.224)

τ12 (Conversion of congestus  

to deep)

0.208 (0.006) 0.238 (0.001)

τ02 (formation of deep) 17.950 (3.507) 11.821 (0.211)

τ23 (conversion of deep to  

stratiform)

0.359 (0.001) 0.2570 (0.0001)

τ20 (decay of deep) 10.126 (15.674) 9.551 (13.146)

τ30 (decay of stratiform) 1.444 (0.021) 1.021 (0.002)
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regime, as reported in Table 5. We note that the 4 × 4 parti-

tion parameters, corresponding to a GCM resolution of 50 

km, are used mainly because they have an overall smaller 

variance, according to Table 3.

As in KBM10, the deterministic ODEs in (9) are inte-

grated with a third order Adams-Bashforth and the stochas-

tic SMCM is simulated by the exact algorithm of Gillespie 

(1975). The integration is carried over a period of 200 days 

to allow convergence toward a statistical radiative convec-

tive equilibrium.

In Fig. 11, we plot the solution times series of the prog-

nostic, climate model variables (θ1, θ2, θeb, q) and the heat-

ing rates Hc, Hd , Hs as well as the simulated cloud area 

fractions time series and the associated large scale predic-

tors, CAPE, CAPEl and dryness. After a transient period 

of about 50 days, the solution enters its statistical steady 

state. The times series in Fig. 11a exhibit some interest-

ing chaotic dynamics, reminiscent of tropical convection. 

From the closeup plots in Fig. 11b, we can see some coher-

ence between the oscillations in large scale variables and 

the fluctuations of the area fractions suggesting some kind 

of resonance between the stochastic and the deterministic 

models as observed in KBM10. More importantly, although 

chaotic, the area fractions display a clear pattern charac-

terized by clear sky periods followed by congestus activ-

ity which in turns triggers deep convection followed by 

extended stratiform events.

It is worthwhile noting that while the Giga-LES infer-

ence was conducted with a value of CAPE0 = 1500 J/kg, 

the simulations in Fig. 11 are obtained with CAPE0 = 200 

J/kg. The simulation with CAPE0 = 1500 J/kg is numeri-

cally unstable, probably because of the extra-stiffness 

Table 4  Parameters and constants for the single column GCM coupled to the SMCM parameterization

The overbars indicate the radiative-convective equilibrium (RCE) values, while the primes indicate the deviation from the RCE. The subscripts b 

and m correspond to atmospheric boundary layer (ABL) and mid-troposphere values, respectively

Variable/Constant Name Closure Equation/Value

Difference between RCE boundary layer equivalent potential temperature and its 

saturation value
θ∗

eb − θ̄eb = 10 K

Difference between RCE boundary layer and midtropospheric equivalent poten-

tial temperatures
θ̄eb − θ̄em = 11 K

First and second baroclinic radiative cooling rate Q0
R,1 = 1K day−1, Q0

R,2 (determined at RCE, see KBM10)

Deep convective heating
Hd =

[
σd

Hm

√
CAPE + σd

σdτc

(a1θ
′
eb + a2q′ − a0(θ

′
1 + γ2θ

′
2))

]+

Stratiform heating dHs

dt
= 1

τs

(αsσsHd/σd − Hs)

Congestus heating Hc = σc

Hmαc

√
CAPEl

Precipitation rate P = 2
√

2
π

Hd

Downdrafts Dc = m0(1 + μ(Hs − Hc)/Q0
R,1)

+(θeb − θem)

Mid-troposphere equivalent potential temperature
θem = q + 2

√
2

π
(θ1 + α2θ2)

CAPE integrated over the whole troposphere CAPE = [
CAPE + R(θ ′

eb − γ (θ ′
1 + γ2θ

′
2))

]+

CAPE integrated over the lower troposphere CAPEl = [
CAPE + R(θ ′

eb − γ (θ ′
1 + γ ′

2θ
′
2))

]+

Stratiform, congestus adjustment timescale τs = 3 h, τc = 2 h

Newtonian cooling, surface evaporation timescale τR = 75 days, τe (determined at RCE, see KBM10)

ABL depth, free troposphere depth, mid—troposphere height hb = 500 m, HT = 16 km, Hm = 5 km

Downdraft mass flux scale m0 (determined at RCE, see KBM10)

Relative contribution of θeb, q to deep convection a1 = 0.5, a2 = 0.5

Contribution of θ1 to deep convective heating anomalies a0 = 2

Contribution of θ1 to CAPE anomalies γ = 1.7

Contribution of θ2 to deep convective heating anomalies γ2 = 0.1

Contribution of θ2 to low level CAPE anomalies γ ′
2 = 2

CAPE constant R = 320 J kg−1 K−1

Unit scale of temperature α ≈ 15 K

Contribution of CAPE to stratiform, congestus heating αs = 0.25, αc = 0.1

Value of CAPE at RCE Q0
R,1 = σd

α
Hm

√
CAPE (determined at RCE, see KBM10)

Congestus, deep, and stratiform cloud area fractions at RCE σc, σd , and σs (determined at RCE, see KBM10)
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induced by the large CAPE0 value. While at first glance this 

seems inconsistent, it is important to note that firstly, from 

Fig. 11b, the simulated cloud area fractions are in rough 

agreement with the Giga-LES time series, both qualita-

tively and quantitatively, and secondly, the CAPE approxi-

mation used by the simple single column model (9) is very 

distinct from the accurate calculation performed for the 

Giga-LES inference, based on the parcel lifting method. 

One would expect some discrepancy in performance by 

some parameters depending whether one is using one 

CAPE calculation or another. The (large scale) dynamical 

models are also very different.

The large scale variables exhibit periods of CAPE and 

moisture buildup during the clear sky and congestus activ-

ity periods, respectively, as in the Giga-LES simulation of 

Figs. 4 and 6. CAPE (and low level CAPE) is consumed 

quickly during the convective active phase sending the 

system to its next suppressed (clear sky) phase. The sup-

pressed periods last between 6 and 12 h, as seen around 

times 131 days and around 133 days, for example. Beside 

this intermittency, the simulated dynamics occurs at time-

scales of a few hours, comparable to that of the Giga-LES 

time series in Fig. 4. Also, the cloud area fractions fluctu-

ate within ranges of values around a few percents, with the 
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(b) Zoom on a 4 day period.

Fig. 11  Simulation of the single column GCM in (9) using an inte-

gration time step of 1 min, and the values CAPE0 = 200 J, T0 = 10 K

. The closure equations, parameter et constant values used for the 

simulation are reported in Table 4. Left panels (a) show the full sim-

ulation time series and the right panels (b) display a zoom in on a 

short 4 day period

Table 5  Cloud timescale parameter values used in Khouider et al. 

(2010) (KBM10, 2 cases), Frenkel et al. (2012) (FMK12), and Peters 

et al. (2013) (P2013; from Darwin dataset using scaled CAPE)

The mean estimated values obtained using the 4 by 4 partition are 

reported as “G-LES”

G-LES KBM10 FMK12 P2013

Parameter Transition time (h)

τ01 (Formation of congestus) 31.789 1,  3 1 1

τ10 (Decay of congestus) 1.761 5,  2 1 1

τ12 (Conversion of congestus to 

deep)

0.238 1,  2 1 3

τ02 (Formation of deep) 11.821 2,  5 3 4

τ23 (Conversion of deep to strati-

form)

0.257 3,  0.5 3 0.13

τ20 (Decay of deep) 9.552 5,  5 3 5

τ30 (Decay of stratiform) 1.021 5,  24 5 5
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stratiform one dominating by almost 10 %, consistent the 

Giga-LES time series in Fig. 6.

As can be seen, from the time series of q and dryness, 

D, on the second and forth panels, respectively, the mois-

ture variations are weak when compared to those of θeb and 

CAPE. However, a close look at the second panel, shows 

that, although small, the variations in q are consistent with 

our physical intuition as it shows clear moistening trends 

during the suppressed phase, around 131 days and 132.5 

days, for example.

6  Concluding discussion

In this study we applied the rigorous Bayesian inference 

method developed in DKM14 to calibrate the SMCM 

(KBM10). More precisely we learn the values of some of 

its most sensitive parameters, namely the timescales, τjk , 

from the data. These timescale parameters modulate the 

rates at which a convective cell of the SMCM stochastic 

Markov lattice switches from one cloud state (congestus, 

deep, stratiform, or cloud free) to another. In the coarse-

grained version of the model, the lattice cloud coverage is 

governed by a birth-death process whose equilibrium prob-

ability distribution is largely determined by the timescales 

τjk. Several studies (FMK12, KBM10, De La Chevrotière 

and Khouider (2015, in preparation) using the SMCM cou-

pled with an idealized GCM show that the dynamics of the 

lattice cloud area fractions and the associated large-scale 

flow circulation is extremely sensitive to the choice of the 

cloud transition timescales.

The data used here for the inference is the Giga-LES 

dataset of Khairoutdinov et al. (2009), a 24-h large-eddy 

simulation of deep tropical convection over a large hori-

zontal domain of 205 × 205 km2. The simulation covers a 

wide range of scales of motion, from turbulent eddies to 

mesoscale circulations, in a domain comparable to a typical 

grid cell size in a GCM. One of the very few studies that 

applies the LES technique to deep convection in the atmos-

phere, the Giga-LES captures the multiscale organization 

of convection and exhibits a tri-modal cloud distribution of 

deep, middle, and shallow clouds similar to that observed 

in the tropics (Khairoutdinov et al. 2009). This makes the 

Giga-LES a suitable dataset for the SMCM cloud timescale 

parameter estimation problem.

The Bayesian procedure draws inference about the 

model parameters based on a posterior distribution of the 

parameters given cloud coverage data, constrained on the 

large-scale convective state. The posterior distribution is 

obtained by updating a prior distribution by a model like-

lihood function. The likelihood function is essentially 

given as the product of hundreds of thousands of large 

sparse matrix exponentials, which are approximated using 

a parallel version of a preconditioning technique known as 

the Uniformization Method, developed in DKM14.

Because of the limited number of data points (the resolu-

tion of 15 min yields a time series of length 96), the Giga-

LES numerical domain is partitioned into a 2 by 2 and 4 by 

4 grids, and data time series obtained on each grid cell are 

used to train the Bayesian procedure incrementally follow-

ing the sequential learning strategy introduced in DKM14. 

Provided each subdomain is statistically self-similar, this 

technique can potentially increase the information capacity 

by a factor equal to the number of grid cells.

The cloud area fraction time series are obtained follow-

ing a simple scheme in which each vertical column of the 

horizontal domain is binarized using a zero threshold of the 

total cloud condensate (cloud water and ice mixing ratio) 

and compared to reference profiles for the four SMCM 

cloud/no cloud states. These reference profiles are con-

structed using the lifted convection level (LCL), freezing 

level, and level of neutral buoyancy (LNB): e.g. the LCL 

and LNB are used as estimated cloud base and cloud top of 

the deep cloud, respectively.

The large-scale convective state is based on three indi-

cators, the convective available energy (CAPE) integrated 

over the whole and lower troposphere, C and Cl, and the 

mid-troposphere dryness D. These are calculated from the 

horizontally averaged temperature fields, averaged over 

the last 20 h of simulation. The large-scale variables C, Cl , 

and D are defined in terms of scaling “activation” param-

eters CAPE0 and T0, which are additional parameters to the 

model.

The sequential Bayesian procedure is trained using the 

cloud area fractions and large-scale convection indicator 

time series obtained using both a 2 × 2 and a 4 × 4 grids. 

The high-dimensional posterior distributions are explored 

using the Markov Chain Monte Carlo standard technique, 

and posterior marginal densities for each of the seven 

parameters are plotted as the parameters are sequentially 

learned from one subdomain to the next. For a given grid, 

the sequence of densities appear to reach a limiting dis-

tribution for all seven parameters. However when the two 

grids are compared, not all parameter values agree. In fact, 

the second quartile of τ12 and τ20 only agree within one 

quartile deviation (see Fig. 9).

In terms of the mean values, all timescale parameters, 

except from τ01, seem to decrease as the partitioning is 

refined (i.e by going from 2 by 2 to 4 by 4), and the degree 

by which each parameter decreases varies considerably 

among the τij’s. This constitutes an important challenge 

on how these timescales scale with the GCM grid resolu-

tion. FMK12 introduced an ad hoc parameter τgrid that uni-

formly scales the τij’s proportionally to GCM grid coarsen-

ing. Although, the procedure seems to be effective overall 

(FMK12), the present results constitute a serious challenge 
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to such simple strategies of changing timescale with grid 

resolution. While a proper scaling method remains to be 

found, these results suggest that a safe choice of a spatial 

scale for the parameter inference is the one given by the 

GCM resolution. The fact that τ01 is the one parameter that 

trends in an opposite direction is consistent with the recent 

work by Deng et al. (2015), who found that, in an aqua-

planet GCM simulation with a warm pool forcing, substan-

tially rising the value of τ01, from 5 to 40 h, was necessary 

in order to produce acceptable MJO simulations. This is 

somewhat consistent with the value for τ01 on the order of 

30 h inferred here.

It has to be noted here that timescales of 30 or 40 h are 

too much for cloud dynamics, especially for a simulation 

that lasted only 24 h. However, one has to bear in mind that 

the τkl’s modulate the transition rates of the microscopic 

processes, not the bulk area fractions. The coarse grained 

rates are actually compounded with the number of sites 

that are susceptible for the corresponding transition; In the 

extreme case, where all underlying sites are clear sky, for 

example, the effective timescale for congestus formation is 

given by τ01/N, where N is the total number of sites within 

the coarse cell. Thus, for N = 10 × 10, overall, the effec-

tive transition times are on the order of minutes, not hours.

The inferred parameters were tested in the context of 

a simple single column GCM, with crude vertical resolu-

tion, based on the first and second baroclinic modes and a 

boundary layer approach, coupled to the stochastic multi-

cloud model (KBM10, DKM14). As shown in Fig. 11, the 

coupled single column GCM-SMCM model produced cha-

otic dynamics in both the cloud area fractions and the large 

scale dynamics, consistent with the intermittent dynamics 

of tropical convection and with the expected coherence 

between the large scale and the stochastic cloud area frac-

tions. Clear sky periods characterized by CAPE build up 

are followed by congestus events that serve to moisten the 

environment and trigger deep convection. Deep convec-

tion leads stratiform clouds and together deplete CAPE and 

send the system to a new suppressed or clear sky period. 

Both the timescales at which these transitions occur and the 

range of values between which the area fractions oscillate 

are consistent with the Giga-LES time series used to infer 

the transition timescales. Although small, the moisture vari-

ations are also consistent with physical intuition, as charac-

terized by moisture building during the suppressed phases 

and rapid decrease when convection starts.

In De La Chevrotière and Khouider (2015), the SMCM 

is coupled to a zonally symmetric model to study the Had-

ley-Monsoon dynamics. The simulations of the meridi-

onal mean circulation and waves show complex nonlinear 

interactions between the stochastic area fractions and the 

large-scale flow that are sensitive to the choice of the con-

vective timescales. Interestingly, the Giga-LES transition 

timescales, inferred here, are found to be superior to other 

ad hoc choices, such as the ones used in KBM10, FMK12 

or P2013 listed in Table 5, in terms of reproducing both 

the right amount of wave variability and displaying a mean 

meridional flow and heating structure; The Giga-LES 

parameters yielded results that are more consistent with the 

monsoon circulation, exhibiting, for example, a clear mon-

soon trough characterized by a drop in low-level pressure, 

westerly winds, and cyclonic vorticity in lower troposphere 

surmounted by positive vorticity, in addition to a single 

Hadley cell rising in the summer hemisphere and sinking 

in the winter hemisphere. The success of the Giga-LES 

parameters in this experiment suggests some consistency 

of tropical cloud dynamics but this is not enough to claim 

universality of the SMCM’s cloud transition timescales 

throughout the tropics. Since the GATE experiment used 

as the Giga-LES mean sounding and forcing took place 

over the tropical Atlantic, one has to be cautious when 

drawing conclusions for cloud systems in other geographi-

cal locations, for instance within the MJO envelop. Fur-

ther similar studies using other tropical field experiments 

such as the Tropical Ocean Global Atmosphere–Coupled 

Ocean Atmosphere Response Experiment (Webster and 

Lukas 1992) or Dynamics of the Madden–Julian Oscilla-

tion (Yoneyama et al. 2013) need to be conducted and com-

pared to the present results.
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