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Abstract Turbulent dynamical systems with a large phase space and a high degree of instabilities are ubiquitous
in climate science and engineering applications. Statistical uncertainty quantification (UQ) to the response to the
change in forcing or uncertain initial data in such complex turbulent systems requires the use of imperfect models
due to both the lack of physical understanding and the overwhelming computational demands of Monte Carlo sim-
ulation with a large dimensional phase space. Thus, the systematic development of reduced low order imperfect
statistical models for UQ in turbulent dynamical systems is a grand challenge. This paper applies a recent math-
ematical strategy for calibrating imperfect models in a training phase and accurately predicting the response by
combining information theory and linear statistical response theory in a systematic fashion. A systematic hierar-
chy of simple statistical imperfect closure schemes for UQ for these problems are designed and tested which are
built through new local and global statistical energy conservation principles combined with statistical equilibrium
fidelity. The forty mode Lorenz 96 (L-96) model which mimics forced baroclinic turbulence is utilized as a test
bed for the calibration and predicting phases for the hierarchy of computationally cheap imperfect closure models
both in the full phase space and in a reduced three dimensional subspace containing the most energetic modes.
In all of phase spaces, the nonlinear response of the true model is captured accurately for the mean and variance
by the systematic closure model while alternative methods based on the fluctuation dissipation theorem alone are
much less accurate. For reduced order model for UQ in the three dimensional subspace for L-96, the systematic
low order imperfect closure models coupled with the training strategy provide the highest predictive skill over
other existing methods for general forced response yet have simple design principles based on a statistical global
energy equation. The systematic imperfect closure models and the calibration strategies for UQ for the L-96 model
serve as a new template for similar strategies for UQ with model error in vastly more complex realistic turbulent
dynamical systems.

Keywords turbulent systems · low-order statistical closure models · linear response theory · information metric

1 Introduction

Turbulent dynamical systems characterized by both a high dimensional phase space and a large number of insta-
bilities are ubiquitous among many complex systems in science and engineering. The Earth’s climate is a perfect
example of such an extremely complex and only partially known system coupling physical processes for the at-
mosphere, ocean, and land over a wide range of spatial and temporal scales (Majda (2003); Emanuel et al (2005);
Neelin et al (2006)). The existence of a strange attractor in the turbulent systems containing a large number of
positive Lyapunov exponents results in a rapid growth of small uncertainties from imperfect modeling equations
or initial values, requiring naturally a probabilistic characterization for the evolution of the system. Uncertainty
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quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical esti-
mates such as the change in mean and variance for key physical quantities in their nonlinear response to changes
in external forcing parameters or uncertain initial data.

In the development of a proper UQ scheme for systems of high or infinite dimensionality with instabilities,
significant model errors compared with the true natural signal are always unavoidable due to both the imperfect
understanding of the underlying physical processes and the limited computational resources available at hand. One
central issue in contemporary climate science is the development of a systematic methodology that can recover the
crucial features of the natural system in equilibrium/climate (model fidelity), and then improve the imperfect model
prediction skill in response to external perturbations like the climate change (model sensitivity). A conceptual
framework intermediate between detailed dynamical physical modeling and purely statistical analysis based on
empirical information theory has been proposed (Majda and Gershgorin (2011a, 2010); Gershgorin and Majda
(2012)) to address imperfect model fidelity and sensitivity problems. This information-theoretic framework based
on the relative entropy, which offers an unbiased and invariant measure for model distributions (Kullback and
Leibler (1951); Majda et al (2002, 2005)), has been utilized to systematically improve model fidelity and sensitivity
(Majda and Gershgorin (2010, 2011a)), and to make an empirical link between model fidelity and forecasting
skill (DelSole (2005); DelSole and Shukla (2010)). However equilibrium statistical fidelity is a necessary but
not sufficient condition for imperfect model predictive skill. Simple examples (Majda and Gershgorin (2011a);
Majda and Branicki (2012); Majda et al (2005)) with perfect model equilibrium fidelity can demonstrate the large
intrinsic barrier for capturing the correct sensitivity to perturbed dynamics under imperfect models. In Majda
and Gershgorin (2011b), a direct link by utilizing fluctuation dissipation theorem (FDT) for complex systems
together with the framework of empirical information theory for improving imperfect models is developed. The
FDT utilizes the linear response theory (Leith (1975); Majda et al (2005, 2010a); Hairer and Majda (2010)) to
predict linear first order responses to perturbations, requiring only measurements in the unperturbed system. The
potential validity of the FDT for idealized climate models with various approximations and numerical procedures
has been widely studied both in developing theory (Majda et al (2010b); Majda and Wang (2006); Bell (1980))
and algorithms (Abramov and Majda (2007, 2008, 2009); Gritsun and Branstator (2007); Gritsun et al (2008);
Carnevale et al (1991)). Despite some success in complex systems, this method is hampered by the fundamental
limitation to parameter regimes with linear statistical response. Furthermore one important practical problem is
that FDT needs to be applied on a reduced subspace for realistic complex systems (Majda et al (2010c)) where
various approximations are utilized with reasonable accuracy for the mean but deteriorating skill for the variance
(Bell (1980); Majda et al (2005, 2010c)). The information barrier with climate consistent models and skill in linear
FDT predictions are displayed on simple models with intermittent instabilities (Branicki and Majda (2012); Majda
et al (2010c)) through various moment closure approximations for systems with model error. Thus, new strategies
for imperfect low order models on subspaces are important and are a main theme of the present research (Sapsis
and Majda (2013c)).

In this paper, we investigate and develop systematic strategies for improving the imperfect model prediction
skill for complex turbulent dynamical systems by employing ideas in both the information-theoretic framework
and linear response theory mentioned above. Following the direct link between the linear response and empirical
information theory demonstrated in Majda and Gershgorin (2011b) for models with equilibrium fidelity, it is shown
that they can be seamlessly combined into a precise systematic framework to improve imperfect model sensitivity
through measuring the information error of the linear response operator in the training phase with unperturbed
statistics. Without dependence on the specific perturbation form, this framework in general can be applied to any
turbulent dynamic systems with model error for predicting any perturbed responses. Instead of seeking for practi-
cal implementations of high-dimensional realistic systems such as atmospheric global circulation models (GCMs),
we begin with a hierarchy of simpler second-order models (with only statistical mean and covariance involved)
mimicking increasingly complex features of the vastly more complex true natural systems. The simplified, mathe-
matical tractable models offer more controllable scenarios for concentrating on the core mathematical mechanisms
in turbulent systems, and for developing systematic methodology for model improvement. We focus on a generic
class of turbulent dynamical systems characterized by quadratic nonlinearity associated with conservative energy-
transfer mechanisms. Specifically, the 40 dimensional Lorenz 96 (L-96) system first introduced in Lorenz (1996)
is taken as one typical testbed for the illustration of this class of dynamical systems. With the help of the simplified
structure in the L-96 system, exact statistical dynamical equations for the first two order moments are derived for
both the perfect system and imperfect systems with model error. Important statistical features then are analyzed
for a deeper understanding of the strengths and limitations of second-order schemes, and the potential information
barrier with imperfect consideration of the entire energy spectra is also discussed for constructing better closure
schemes. Based on the understanding about energy transfer mechanism as well as the potential information barrier,
several second-order closure methods with increasing accuracy and complexity are then proposed. Despite the un-
avoidable model error from replacing higher order statistics by the low order closure approximations, we display
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the uniform ability of the proposed information-response framework to improve imperfect model prediction skill
with various types of external perturbations.

One very important further issue arises when the large dimension of the active variables in turbulent dynamical
systems makes the UQ scheme computationally impossible to resolve statistics in the entire phase space. This is
called the ‘curse of dimensionality’ that has been investigated from various points of view (Bengtsson et al (2008);
Majda and Branicki (2012)). Reduced order truncation models for UQ (Sapsis and Majda (2013c)) have been de-
veloped focusing on the key physical quantities including statistics in leading order empirical orthogonal functions
(EOFs). However, as discussed in Section 3, the energy transfers between unresolved modes (or between resolved
mode and unresolved mode) play an important role in stabilizing the nonlinear system. Several additional system-
atic corrections according to the previous analysis of the statistical dynamics will be suggested for more careful
quantification about the unresolved statistics in the low-order closure models. And we generalize the imperfect
model optimization framework for tuning parameters to the reduced subspatial case by minimizing the informa-
tion error in the resolved low-dimensional subspace of interest. Again we test the reduced order methods on the 40
dimensional L-96 testbed with only 2 resolved modes, and compare the improvement from the correction ideas.

In the following part of this paper, first in Section 2 we will introduce several theoretical toolkits including
the information theory and the linear response theory which are important foundations for the development of the
methods. Then the statistical features of the nonlinear dynamical systems with quadratic terms are investigated in
Section 3. Without loss of generality, we use the L-96 system with 40 grid points as a standard test bed to illustrate
the statistical dynamics. Knowing the statistical structures of the true dynamical system, imperfect models with
statistical closure strategies are then proposed in Section 4 and 5. Parameters of the imperfect models need to be
tuned in a training phase to guarantee statistical equilibrium fidelity and optimal responses to external perturbations
under the information measure. Statistical closure models in full phase space are described in Section 4. And
further for genuinely high dimensional systems, resolving the statistics in the entire phase space is computational
forbidden and unnecessary. Reduced order models are then developed in Section 5 aiming at capturing only the
most important statistics in the primary directions. Performances of these closure models in response to various
external forcing perturbations are compared for both full spatial models and reduced order models using the L-96
system. Conclusions and future works are summarized in Section 6.

2 Theories for improving imperfect model prediction skill

Before investigating the specific statistical features of the turbulent dynamical systems, we propose one system-
atical framework for improving and optimizing systems with model error in general. Usually among one class of
proposed imperfect models with several parameters, the problems include selecting the optimal model with statisti-
cal consistency in the equilibrium steady state, and more importantly with accurate sensitivity to different external
perturbations. Particularly, we would like one unified strategy that can improve the model performance uniformly
for all kinds of perturbations rather than an impractical process to tune the parameters individually for each specific
case. The information theory offers a least biased measure for quantifying the error between the imperfect model
prediction and the truth; and the linear response theory gives an important tool relating the model responses to
stationary state statistics of the dynamical system. We will describe the basic ideas for these useful mathematical
tools in the first place. Then with the help of these theories (Majda and Gershgorin (2011a,b)), one systematical
process to tune model parameters in a training phase to possibly achieve the optimal model with sensitivity to all
kinds of perturbations is discussed.

2.1 Empirical information theory

A natural way to measure the lack of information in one probability density from the imperfect model, πM , com-
pared with the true probability density, π , is through the relative entropy or information distance (Kullback and
Leibler (1951); Majda et al (2002)), given by

P
(
π,πM)= ˆ π log

π

πM . (1)

Despite the lack of symmetry in its arguments, the relative entropy, P
(
π,πM

)
provides an attractive framework for

assessing model error like a metric. Importantly, the following two crucial features are satisfied: (i) P
(
π,πM

)
≥ 0,

and the equality holds if and only if π = πM; and (ii) it is invariant under any invertible change of variables. The
most practical setup for utilizing the framework of empirical information theory arises when only the Gaussian
statistics of the distributions are considered. By only comparing the first two moments of the density functions, we
get the following fact (Majda et al (2002)):
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Fact 1: If the density functions π , πM involve only the first two moments, that is, π ∼N (ū,R) and πM ∼
N (ūM,RM), the relative entropy in (1) has the explicit formula

P
(
π,πM)= 1

2
(ū− ūM)T R−1

M (ū− ūM)+
1
2
(
tr
(
RR−1

M
)
− J− logdet

(
RR−1

M
))

. (2)

The first term on the right hand side of (2) is called the signal, reflecting the model error in the mean but weighted
by the inverse of the model variance RM , whereas the second term is the dispersion, which involves only the model
error covariance ratio RR−1

M , measuring the differences in the covariance matrix.

Remark. Sometimes it might be useful to only measure the information distance P
(
π |Vs ,π

M |Vs

)
between the

marginal distributions inside a subspace Vs (say, when we want to check the uncertainty along the principal EOFs).
If we are only interested in the relative entropy in a subspace spanned by basis P = [v1, · · · ,vs], we only need
replace the covariance matrix R by the reduced order covariance Rs = PT RP in the above formula (2).

2.2 Kicked response theory

Assume the perfect model of a dynamical system is

ut = f(u) , (3)

with equilibrium measure assumed as πeq. We are interested in the model’s response to an external spatially uniform
perturbation δ f′ = δw(u) f ′ (t) added to the system in the form of

fδ = f+δ f′. (4)

Therefore the resulting perturbed probability density πδ can be asymptotically expanded as

π
δ (t) = πeq +δπ

′ (t) ,
ˆ

δπ
′ = 0. (5)

And the corresponding statistics of some functional A(u) under this perturbed density function can be expressed
as

Eδ A(u) = Eeq (A)+δE ′A, (6)

where Eeq (A) =
´

A(u)πeq (u) is the expectation of A according to equilibrium distribution πeq, while δE ′A =´
A(u)δπ ′ (u) is according to δπ ′. Linear response theory states the following fact (Majda et al (2005)):

Fact 2: If δ is small enough, the leading order correction to the statistics in (6) in response to the spatially
uniform perturbation in (4) becomes

δE ′A =

ˆ t

0
RA (t− s)δ f ′ (s)ds+O

(
δ

2) , (7)

where RA (t) is called the linear response operator that is only related to the statistics in the unperturbed equilib-
rium state.

Generally the linear response operator can be computed through correlation functions in the unperturbed sta-
tionary climate through the Fluctuation Dissipation Theorem (FDT) (Majda et al (2005))

RA (t) = 〈A(u(t))B(u(0))〉 , B(u) =−
divu

(
wπeq

)
πeq

. (8)

The problem in calculating the leading order response using (7) and (8) is that the equilibrium distribution πeq is
expensive to calculate for general systems. A variety of Gaussian approximations for πeq (Leith (1975); Gritsun and
Branstator (2007); Gritsun et al (2008); Bell (1980); Carnevale et al (1991)) and improved algorithms (Abramov
and Majda (2007, 2008, 2009); Bell (1980); Majda et al (2010c); Majda and Wang (2006); Majda et al (2005))
have been developed for response via FDT and a rigorous proof of its validity is available (Hairer and Majda
(2010)). FDT can have high skill for the mean response and some skill for the variance response for a wide variety
of turbulent dynamical systems (Gritsun and Branstator (2007); Gritsun et al (2008); Abramov and Majda (2007,
2008, 2009); Majda et al (2010b,c, 2005)). One strategy to approximate the linear response operator which avoids
direct evaluation of πeq through the FDT formula is through the kicked response of an unperturbed system to a
perturbation δu of the initial state from the equilibrium measure, that is,

π |t=0= πeq (u−δu) = πeq−δu ·∇πeq +O
(
δ

2) . (9)
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One important advantage of adopting this kicked response strategy is that higher order statistics due to nonlinear
dynamics will not be ignored (compared with other linearized strategy using only Gaussian statistics Majda et al
(2010a)). The kicked response theory gives the following fact (Majda et al (2005); Majda and Gershgorin (2011b))
for calculating the linear response operator:

Fact 3: For δ small enough, the linear response operator RA (t) can be calculated by solving the unperturbed
system (3) with a perturbed initial distribution in (9). Therefore, the linear response operator can be achieved
through

δRA (t)≡ δu ·RA =

ˆ
A(u)δπ

′+O
(
δ

2) . (10)

Here δπ ′ is the resulting leading order expansion of the transient density function from unperturbed dynamics
using initial value perturbation. The Monte Carlo algorithm to approximate (10) is sketched in Appendix B.

2.3 Dynamical calibration strategy for model improvement

As hinted by Fact 2 and Fact 3, the prediction skill of imperfect models can be improved by comparing the informa-
tion distance through the linear response operator with the true model. The following fact offers a convenient way
to measure the lack of information in the perturbed imperfect model requiring only knowledge of linear responses
for the mean and variance δ ū ≡ δRu,δR ≡ δR

(u−ū)2 . For this result, it is important to tune the imperfect model

to satisfy equilibrium model fidelity (Majda and Gershgorin (2011a,b)) in the first place, P
(
πG,π

M
G

)
= 0.

Fact 4: Under assumptions with diagonal covariance matrices R = diag(Rk) and equilibrium model fidelity
P
(
πG,π

M
G

)
= 0, the relative entropy in (2) between perturbed model density πM

δ
and the true perturbed density

πδ with small perturbation δ can be expanded componentwisely as

P
(
πδ ,π

M
δ

)
= S

(
πG,δ

)
−S (πδ )

+
1
2 ∑

k

(
δ ūk−δ ūM,k

)
R−1

k

(
δ ūk−δ ūM,k

)
+

1
4 ∑

k
R−2

k

(
δRk−δRM,k

)2
+O

(
δ

3) . (11)

Here in the first line S
(
πG,δ

)
−S (πδ ) is the intrinsic error from Gaussian approximation of the system. Rk is

the equilibrium variance in k-th component, and δ ūk and δRk are the linear response operators for the mean and
variance in k-th component. Proof of this result can be found in Majda and Gershgorin (2011b); Majda et al (2002).

The above facts about empirical information theory and linear response theory together provide a convenient
and unambiguous way of improving the performance of imperfect models in terms of increasing their model
sensitivity regardless of the specific form of external perturbations δ f′. The formula (7) in Fact 2 as well as (6)
illustrates that the skill of an imperfect model in predicting forced changes to perturbations with general external
forcing is directly linked to the model’s skill in estimating the linear response operators RA for the mean and
variances (that is, use the functional A = u,(u− ū)2) in a suitably weighted fashion as dictated by information
theory (11). This offers us useful hints of training imperfect models for optimal responses for the mean and variance
in a universal sense. From the linear response theory in Section 2.2, it shows that the system’s responses to various
external perturbations can be approximated by a convolution with the linear response operator RA (which is only
related to the statistics in the unperturbed equilibrium statistics). It is reasonable to claim that an imperfect model
with precise prediction of this linear response operator should possess uniformly good sensitivity to different
kinds of perturbations. On the other hand, the response operator can be calculated easily by the transient state
distribution density function using the kicked response formula as in (10). Considering all these good features
of the linear response operator, information barrier due to model sensitivity to perturbations can be overcome by
minimizing the information error in the imperfect model kicked response distribution relative to the true response
from observation data (Majda and Gershgorin (2011b)).

To summarize, consider a class of imperfect models, M . The optimal model M∗ ∈M that ensures best infor-
mation consistent responses to various kinds of perturbations is characterized with the smallest additional infor-
mation in the linear response operator RA among all the imperfect models, such that∥∥∥P (

πδ ,π
M∗
δ

)∥∥∥
L1([0,T ])

= min
M∈M

∥∥P (
πδ ,π

M
δ

)∥∥
L1([0,T ]) , (12)

where πM
δ

can be achieved through a kicked response procedure (10) in the training phase compared with the
actual observed data πδ in nature, and the information distance between perturbed responses P

(
πδ ,π

M
δ

)
can be

calculated with ease through the expansion formula (11). The information distance P
(
πδ (t) ,πM

δ
(t)
)

is measured
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at each time instant, so the entire error is averaged under the L1-norm inside a proper time window [0,T ]. Some
low dimensional examples of this procedure for turbulent systems can be found in Branicki et al (2013); Branicki
and Majda (2012); Majda and Branicki (2012).

3 L-96 system as a test bed and its statistical dynamics

Now we consider turbulent dynamical systems with state variables u ∈ RN in the abstract form with quadratic
nonlinearity as

ut = Lu+B(u,u)+F, (13)

where the linear operator L represents the linear effects in the system, F is the external forcing term (which can
either be deterministic or include random effects), and B(u,u) is a bilinear form representing quadratic nonlinear
interactions which conserves energy u ·B(u,u) = 0. The structure in (13) for turbulent dynamical systems can
be found in many applications in geosciences and other areas of engineering (Majda (2003); Majda et al (2005);
Majda and Wang (2006); Branicki et al (2013)).

Even though this system (13) may only be driven by a deterministic forcing F, uncertainties can still be intro-
duced by different degrees of internal instabilities as well as errors from the initial condition. To quantify these
uncertainties, we are interested in resolving the statistical features of this dynamical system, especially the first two
order moments. By a proper choice of basis {vk}, the state variables u(t) can be decomposed into the statistical
mean state and the fluctuations along each direction vk as

u(t) = ū(t)+∑
k

Zk (t)vk. (14)

Here ū(t) can be viewed as the statistical ensemble mean at each time instant, while Zk represents the (complex)
stochastic coefficient measuring the uncertainty in each direction vk. The dynamical equations for the statistical
mean and covariance matrix can be derived as (Sapsis and Majda (2013d))

A)
dū
dt

= L(t) ū+B(ū, ū)+∑
i, j

Ri jB(vi,v j)+F(t) , (15a)

B)
dR
dt

= LvR+RL∗v +QF +Qσ . (15b)

with
Ri j (t) =

〈
ZiZ∗j (t)

〉
,

Lv,i j = (L(t)v j +B(ū,v j)+B(v j, ū)) ·v∗i ,

QF,i j = ∑
m,n

〈
ZmZ∗nZ j

〉
B(vm,vn)

∗ ·vi + 〈Z∗mZnZ∗i 〉B(vm,vn) ·v∗j ,

and Qσ (possibly 0) from the random component of F. The quasilinear operator Lv describes the linear effects (due
to the factor L) and the energy transfers between the mean ū and each mode vk (due to B). Instabilities come from
the directions with positive eigenvalues (that is, positive Lyapunov coefficients) of Lv. The increase in energy due
to the unstable modes is balanced by the nonlinear energy transfer from the nonlinear flux term QF . Importantly,
the term QF satisfies trQF = 0 as a consequence of energy conservation for the nonlinear term u ·B(u,u) = 0,
and acts as a dissipative mechanism for the unstable modes and external noise for the stable modes bringing all of
them into a statistical equilibrium state (Sapsis and Majda (2013a,b,d,c)). Note that third order moments

〈
ZmZ∗nZ j

〉
are included in QF coming from the quadratic interactions between modes B(vm,vn), where we should take the
conjugate of the second coefficient component with complex cases included. And to make the matrix unitary
Q∗F = QF , the conjugate part is added in the formula.

This structure in (15a) and (15b) is ubiquitous in a variety of turbulent systems, and in general the state variable
u lives in a high dimensional phase space roughly of order 10,000 or larger. However a genuinely high dimensional
system containing all kinds of complex structures becomes too difficult to analyze. Instead in the first place, we
would rather focus on the dominant core dynamical features, therefore it is useful to begin with simpler systems
focusing on the key mechanism. For illustration, the Lorenz 96 (L-96) system is the simplest but nevertheless
representative paradigm of a complex turbulent dynamical system possessing properties found in realistic turbulent
systems such as, energy-preserving advection, damping and forcing, a large number of persistent instabilities,
and strong nonlinear energy transfers between modes. In the following part of this paper, we will focus on this
simplified system and check the model improvement strategies based on this system.
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3.1 Homogeneous statistical dynamics of L-96 system

3.1.1 General moment equations for L-96 system

The L-96 system is a 40-dimensional dynamical system with state variables u = (u0,u1, ...,uJ−1)
T such that

du j

dt
=
(
u j+1−u j−2

)
u j−1−d j (t)u j +Fj (t) , j = 0,1, ...,J−1, J = 40. (16)

Periodic boundary condition uJ = u0 is applied. The model is designed to mimic baroclinic turbulence in the
midlatitude atmosphere with the effects of energy conserving nonlinear advection and dissipation. By changing the
amplitude of the external forcing Fj, the system shows a wide range of different dynamical regimes ranging from
weakly chaotic, strongly chaotic, to finally full turbulence with varying statistics, which makes it a desirable test
model. More detailed discussion about the L-96 system in various dynamical regimes can be found in (Abramov
and Majda (2007); Lorenz (1996); Majda and Wang (2006)).

To compare with the abstract form (13) above, we can write the linear operator for L-96 system as

L(t) = diag(−d0 (t) , · · · ,−dJ−1 (t)) ,

and define the quadratic form as
B(u,v) =

{
u∗j−1

(
v j+1− v j−2

)}J−1
j=0 .

As we will see in the next part with homogeneous assumption, it is convenient to express the equations in Fourier
domain. Choose the Fourier basis as {vk}

J/2
k=−J/2+1 with

vk =

{
1√
J

e2πık j
J

}J−1

j=0
,

and the decomposition as in (14) can be expressed under the Fourier basis

u(t) = ū(t)+
J/2

∑
k=−J/2+1

Zk (t)vk, Z−k = Z∗k .

First, the dynamical equation for the mean state can be achieved through taking ensemble average over both sides
of (16). It needs to be noticed that second order moments rmn = 〈ZmZ∗n〉 will come into the mean dynamics due to
the quadratic form B

dū j

dt
=−d j (t) ū j + ū j−1

(
ū j+1− ū j−2

)
+

1
J ∑

m,n
rmne−2πım j−1

J

(
e2πın j+1

J − e−2πın j−2
J

)
+Fj (t) . (17)

Then, subtracting equation (17) from the original dynamics (16), and projecting the resulting fluctuation parts to
each orthonormal Fourier basis vk, we can get the dynamical equations for each stochastic coefficient Zk. Finally
the dynamics for the second order moments ri j can be calculated by multiplying Zk on both sides of the coefficient
equation and taking expectations, therefore

dri j

dt
= (LvR+L∗vR)i j +QF,i j, (18)

with R = (ri j). The quasilinear interaction Lv and nonlinear flux term QF for L-96 can be derived in the form with
δi j the standard Kronecker delta function

Lv,i j = −d j (t)δi j +
1
J

(
e2πı j

J − e−2πı 2 j
J

)
∑
m

ūm−1e2πım j−i
J

+
1
J

e2πı j
J ∑

m
(ūm+1− ūm−2)e−2πı j+i

J .

QF,i j =
1√
J ∑

m,n

〈
ZmZ∗nZ j

〉
e−2πı m

J

(
e−2πı n

J − e2πı 2n
J

)
δn−m,i

+
1√
J ∑

m,n
〈Z∗mZnZ∗i 〉e2πı m

J

(
e2πı n

J − e−2πı 2n
J

)
δn−m, j.

We neglect the tedious calculations for these dynamical equations and put the details in Appendix A.



8 Andrew J. Majda, and Di Qi

Remark. 1. Under the discrete Fourier basis {vk}
J/2
k=−J/2+1, we have J−2 complex modes which are conjugate in

pairs, v−k = v∗k ; and the other two modes v0 , vJ/2 contain only real parts. Here and after we will always use the
convention of J even with one more positive Fourier mode k = J/2 in the spectra.

2. Note that the equations (17), (18) are still not closed since third order moments are included in the dynamics
for the covariance in the term QF,i j. Further if we go on calculating the dynamical equations for the third order
moments, forth order moments will again enter the equations. As a result the equations will never be closed under
this process by calculating the dynamical equations for each order moments.

3. The quasilinear operator Lv also includes the nonlinear effects due to the nonlinear interactions between
the mean state ū and the Fourier modes v j besides all the linear damping and dissipation. For systems whose
nonlinearity largely comes from these kinds of interactions, quasilinear closure models only including Lv in the
covariance equations (18) can perform well with good prediction skill (Branicki and Majda (2012); Majda and
Branicki (2012)).

3.1.2 Moment equations with homogeneous assumption

Still the mean and covariance equations (17) and (18) derived above are cumbersome for both analyzing the sta-
tistical properties and applying for closure models. As a further simplification, we assume uniform damping and
forcing for the L-96 system (16). That is, the damping and forcing terms d (t) and F (t) are assumed only func-
tions of time and stay the same value at different grid points j. With this assumption and noting that the quadratic
term

(
u j+1−u j−2

)
u j−1 is also translation invariant in space, homogeneous solutions can be generated in this case.

Specifically, the statistics of state variables u become homogeneous meaning invariant under translation over the
entire duration of the process

〈ui1ui2 · · ·uin〉=
〈
ui1+lui2+l · · ·uin+l

〉
, ∀ l ∈ N,

with periodic boundary condition uJ = u0 and spatially homogeneous initial conditions assumed. Under the homo-
geneous assumption, Fourier basis becomes eigenfunctions (or the EOFs) for the L-96 operator, and the first three
moments can be further simplified as (derivation in Appendix A)

ū(t) = ū(t)(1,1, ...,1)T , (19a)
R(t) = diag

(
r−J/2+1 (t) , · · · ,r0 (t) , ...,rJ/2 (t)

)
, (19b)〈

ZiZ jZk
〉
6= 0, only if i+ j+ k = 0. (19c)

That is, we only need to focus on the scalar mean ū and the variances rk along each eigen-direction vk.
Under these properties, the stochastic coefficients Zk from (14) satisfy a simplified dynamics

dZk

dt
=−d (t)Zk +

(
e2πi k

J − e−2πi 2k
J

)
ūZk +

1√
J

J/2

∑
m=−J/2+1

Zk+mZ∗m
(

e2πi 2m+k
J − e−2πi m+2k

J

)
. (20)

Following the same procedure as before, moment equations in (17) and (18) for the mean and covariance matrix
can be then simplified under homogeneous assumption simplifications in (19a)-(19c). Thus we arrive at the major
equations of interest of this paper

Exact Low Order Moment Equations
dū(t)

dt =−d (t) ū(t)+ 1
J ∑

J/2
k=−J/2+1 rk (t)Γk +F (t) , (21a)

drk(t)
dt = 2 [−Γkū(t)−d (t)]rk (t)+QF,kk, k = 0,1, ..., J/2. (21b)

Note that we denote Γk = cos 4πk
J − cos 2πk

J , r−k =
〈
Z−kZ∗−k

〉
=
〈
ZkZ∗k

〉
= rk, and the nonlinear flux QF becomes

diagonal

QF,kk′ =
2√
J ∑

m
Re
{
〈ZmZ−m−kZk〉

(
e−2πi 2m+k

J − e2πi m+2k
J

)}
δkk′ ,

with energy conservation trQF = 0.

Remark. Even though we derive the moment equations above from the L-96 system under homogeneous assump-
tion for the sake of analysis and will focus on them in the following discussions, the equations (21a) and (21b) are
actually quite representative and are easy to be extended to general nonlinear systems with conservative quadratic
forms.
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3.2 Properties of single point statistics and statistical energy conservation

Now we can focus on the simplified moment equations (21a) and (21b) and investigate the statistical properties
inside this system. Note that still these moment equations above are not closed and not easy to solve directly. The
most difficult and expensive part in solving the above system for the mean and covariance comes from evaluat-
ing the nonlinear flux term QF where higher order statistics are involved. Thus the central issue in developing
closure models becomes to find proper approximation about the nonlinear flux term QM

F ∼ QF which can offer a
statistically consistent estimation. Consideration about accuracy and computational efficiency should be balanced
in determining the explicit form of QM

F , and we leave the detailed discussions about choosing and testing this term
for numerical simulations in the next section.

Here in the first place, we check some statistical properties of the perfect and imperfect models, and as we
will see in the next section they can serve as the guideline for the designing of proper approximation methods.
Of particular interests in both theory and application, the statistical mean and variance at each individual grid
point play an important role as key statistical quantities to predict. In this section, we focus on this single point
mean and variance of the system which ignore the cross-correlation between different grid points. With homoge-
neous assumption of the system as described above, the moments at each grid point become translation invariance.
Therefore the single point mean ū1pt and variance R1pt can be defined by averaging each Fourier mode, that is,

ū1pt =
1
J

J−1

∑
j=0

u j = ū, R1pt =
1
J

J/2

∑
k=−J/2+1

rk =
1
J

trR. (22)

Furthermore, as we will see in the following discussion, the conservation of energy in the nonlinear flux QF plays
an important role in model prediction for single point statistics. Thus we define

symmetryofnonlinearenergy⇔ trQF = 0. (23)

With all the above definitions, we can claim the single point statistics consistency: for any closure QM
F satisfying

dynamics with the same statistical symmetry in (23), the equilibrium consistency for single point statistics ūM,∞ =
ū∞, trRM,∞ = trR∞ can be arranged by only tuning for the mean state in equilibrium. Furthermore, the model
response of the single point variance δ trRM to perturbations can be predicted accurately if we predict the response
of the mean δ ūM accurately.

The claim can be seen by simple manipulations of equations (21a) and (21b). By multiplying ū on both sides
of the mean equation (21a), we get

dū2

dt
=−2dū2 +2ūF +

2
J ∑

k
Γkrkū.

And by summing up all the modes in the variance equation (21b)

dtrR
dt

= 2

(
−∑

k
Γkrkū

)
−2dtrR+ trQF .

It is convenient to define the statistical energy including both mean and total variance as

E (t) =
J
2

ū2 +
1
2

trR =
J
2
(
ū2

1pt +R1pt
)
. (24)

With this definition the corresponding dynamical equation for the statistical energy E of the true system can be
easily derived as

dE
dt

=−2dE + JFū+
1
2

trQF =−2dE + JFū, (25)

with symmetry of nonlinear energy conservation (23) assumed. Correspondingly, if we have some imperfect model
with approximated nonlinear flux QM

F in (21b), with a similar process we can derive EM from the imperfect model
as

dEM

dt
=−2dEM + JFūM +

1
2

trQM
F . (26)

First considering the statistical stationary state, the left hand side of (25) and (26) vanishes and under a weaker
constraint for imperfect nonlinear energy conservation in equilibrium trQM

F,∞ = 0 we have

E∞ =−JF
2d

ū∞, EM,∞ =−JF
2d

ūM,∞.
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It is direct conclusion that we can achieve equilibrium consistency for single point variance trRM,∞ = trR∞ once
that we have the consistency for the mean ūM,∞ = ū∞. Next considering the model responses to perturbations, we
can write the solution for (25) and (26) formally as

E (t) = E0 exp
(
−2
ˆ t

t0
d (s)ds

)
+ J
ˆ t

t0
exp
(
−2
ˆ t

s
d (τ)dτ

)
F (s) ū(s)ds,

EM (t) = EM,0 exp
(
−2
ˆ t

t0
d (s)ds

)
+ J
ˆ t

t0
exp
(
−2
ˆ t

s
d (τ)dτ

)
F (s) ūM (s)ds

+
1
2

ˆ t

t0
exp
(
−2
ˆ t

s
d (τ)dτ

)
trQM

F (s)ds.

The last part in the right hand side of EM comes from the error in the approximation for nonlinear flux QM
F . Use the

previous asymptotic expansion with perturbation, and assume the same equilibrium statistics and initial distribution

Eδ = E∞ +δE, Eδ ,M = E∞ +δEM, E0 = EM,0.

Therefore the error in the response to perturbations can be estimated as

δE−δEM = J
ˆ t

t0
exp
(
−2
ˆ t

s
d (τ)dτ

)
F (s)(δ ū−δ ūM)(s)ds− 1

2

ˆ t

t0
exp
(
−2
ˆ t

s
d (τ)dτ

)
trQM

F (s)ds.

‖δE−δEM‖ ≤ C̃0 ‖δ ū−δ ūM‖+C1
∥∥trQM

F
∥∥ . (27)

Also through the definition of the statistical energy E = J
2 ū2 + 1

2 trR, we have

‖δE‖ ≥ ‖δ trR‖− J ‖ū‖‖δ ū‖ . (28)

We get the error estimation for the single point variance through the error from the mean and nonlinear flux by
combining (27) and (28)

‖δ trR−δ trRM‖ ≤C0 ‖δ ū−δ ūM‖+C1
∥∥trQM

F
∥∥ , (29)

with C0,C1 constants. Usually by construction of imperfect models we need to require at least
∥∥trQM

F

∥∥∼O(δ )� 1,
the error in the statistical variance response can be then controlled by the error in the mean with a good approxi-
mation for the nonlinear flux term. In summary, the following proposition is achieved:

Proposition 1. Consider a system with homogeneous statistical solution and an imperfect closure model with flux
QM

F satisfying symmetry of nonlinear energy conservation in equilibrium trQM
F,∞ = trQF,∞ = 0. Then (i) Statistical

equilibrium fidelity for one point statistics (22) of the variance trRM,∞ = trR∞ is satisfied if consistent mean state
ūM,∞ = ū∞ is achieved at equilibrium; (ii) Furthermore, with equilibrium consistency for the mean and variance,
the error in the response for single point variance

∥∥trRδ ,M− trRδ

∥∥ can be bounded by the error from the response
for the mean

∥∥ūδ ,M− ūδ

∥∥, given an accurate approximation for the nonlinear flux
∥∥trQM

F

∥∥∼ 0.

Remark. Proposition 1 states that we can achieve agreement in both equilibrium fidelity and responses to per-
turbations in single point statistics (and the total variance of the system) through tuning the models only for the
statistical mean state. And also we can see from (29) that the model approximation for the nonlinear flux with
energy conservation

∥∥trQM
F

∥∥∼ 0 plays an important role in model sensitivity to perturbations. In Section 4 we will
illustrate these crucial aspects in designing approximation models with a hierarchy of closure methods.

3.3 Information barrier in single point statistics

Proposition 1 above shows that we can achieve both equilibrium consistency and sensitivity in responses in single
point statistics by tuning at most one parameter of the imperfect model. However, pointwise statistics by only
considering the variance at each grid point, and ignoring the correlations between different grids may not be
sufficient for accurate model predictions. In this section, we display that single point simplification is not enough
for desirable model performance by measuring the information barrier (Majda and Gershgorin (2011a,b); Majda
and Branicki (2012)) with this simplification despite the fact that practitioners in climate science have proposed
such a strategy (DelSole and Shukla (2010)).

Here in this section, we generalize the system a little to a vector field u j ∈ Rn at each grid point rather than a
simpler scalar field as in L-96. So we use R j rather than the previous r j to represent the covariance matrix at each
grid point, and ignore the cross-covariance between different grids in the single point simplification. Let the density
function from the true model be π (u) as before, and consider imperfect models where we only measure pointwise
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marginal distribution πM
1pt (u j) ≡ πM

1pt, j at each grid point j = 0,1, · · · ,J − 1. Construct the probability density
function with only single point statistics from the marginal distribution as πM

1pt = ∏
J−1
j=0 πM

1pt, j. By Proposition 4.1
of Majda et al (2002), the information distance between the truth and imperfect model prediction has the form

P
(
π,πM

1pt
)
= [S (πG)−S (π)]+P

(
πG,

J−1

∏
j=0

π
G
1pt, j

)
+

J−1

∑
j=0

P
(
π

G
1pt, j,π

M
1pt, j
)
, (30)

with πG
1pt, j =N (ū j,R j). The first part on the right hand side of (30) is the intrinsic information barrier in Gaussian

approximation. And the third part with homogeneous assumption of the system can be written as

J−1

∑
j=0

P
(
π

G
1pt, j,π

M
1pt, j
)
= JP

(
π

G
1pt,π

M
1pt
)
.

Proposition 1 tells that the mean and single point statistics can be approximated with accuracy in the imperfect
models. Therefore this part will also vanish (or at least be minimized) since only ū and trR are included in π1pt. The
error from single point approximation (and ignoring the cross-covariance) then comes only from the information
barrier in marginal approximation as shown in the second part on the right hand side of (30). To get the lack
of information in the marginal distribution, it is useful to introduce the random field representations for both the
Gaussian approximation and the uncorrelated spatial random field with correct one-point statistics (Yaglom (2004))

uG = ū+
J/2

∑
k=−J/2+1

R1/2
k eikx j Ŵk, (31)

uG
1pt = ū+

J/2

∑
k=−J/2+1

(
∑

J−1
j=0 R j

J

)1/2

eikx j Ŵk. (32)

Note here we assume both Gaussian distributions for uG and uG
1pt with the same pointwise mean ū in (31) and

(32), so only the dispersion part in (2) is non-zero when comparing the information distance. Using the notation

R1pt =
∑

J−1
j=0 R j

J , the information barrier due to single point statistics simplification becomes

P

(
πG,

J−1

∏
j=0

π
G
1pt, j

)
=

J/2

∑
k=−J/2+1

[
− logdet

(
RkR−1

1pt

)
+ tr

(
RkR−1

1pt− I
)]

= −
J/2

∑
k=−J/2+1

logdet
(

RkR−1
1pt

)
+ tr

[
J/2

∑
k=−J/2+1

(
RkR−1

1pt− I
)]

= − log

(
J/2

∏
k=−J/2+1

detRk

detR1pt

)

= J log

 det
(

∑
J−1
j=0 R j/J

)
(

∏
J−1
j=0 detR j

)1/J

 .
The second equality just applies the definition of R1pt so that ∑

J/2
k=−J/2+1

(
RkR−1

1pt− I
)
= 0. Then the following

proposition can be achieved via this decomposition:

Proposition 2. The information barrier between the Gaussian random field (31) and the uncorrelated one point
statistics random field (32) is given by

P

(
πG,

J−1

∏
j=0

π
G
1pt

)
= J log

 det
(

∑
J−1
j=0 R j/J

)
(

∏
J−1
j=0 detR j

)1/J

 . (33)

Remark. Jensen’s inequality guarantees the non-negativeness of (33) knowing that logdet(·) is concave as an
independent check. The information distance in (30) vanishes only for the case with equipartition of energy, i.e.
r j =

trR
J . For general situations, always we need to face situations like detR� trR. This will end up with large

information barrier when only one point statistics are considered in the imperfect model.
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Finally in order to offer a clearer illustration about the possible information barrier from Proposition 2, we
estimate the lower bound of the error in (33). Returning to the scalar case, note that the ratio on the right hand
side of (33) is between the arithmetic mean A = ∑ j r j/J = R1pt and geometric mean G =

(
∏ j r j

)1/J of a positive
sequence r0, · · · ,rJ−1. A nice lower bound for the difference between the arithmetic and geometric mean can be
estimated (Tung (1975)) as

0≤ J−1 (σmax−σmin)
2 ≤ A−G, (34)

where σ2
max = max{rk}, σ2

min = min{rk} are the largest and smallest variances. Therefore we have the estimation
for the ratio

A
G
−1≥ (σmax−σmin)

2

JG
≥ (σmax−σmin)

2

JA
.

Substituting this into the information distance in (33) yields the bound

P

(
πG,

J−1

∏
j=0

π
G
1pt

)
= J log

A
G
≥ log

(
1+

(σmax−σmin)
2

JA

)J

→ R−1
1pt (σmax−σmin)

2 , asJ→ ∞.

This shows that for high dimensional systems the information barrier due to single point approximation can be
measured between the largest and smallest variance in the energy spectra

P

(
πG,

J−1

∏
j=0

π
G
1pt

)
∼ O

(
(σmax−σmin)

2
)
. (35)

In general, this gap between the largest and smallest variance (or standard deviation) could become quite large
considering the common rapidly decaying energy spectra in turbulent systems. This information barrier can only
be broken by introducing more careful calibration about the dynamics in each eigen-direction of the system indi-
vidually. See Figure 2 for an example.

4 Statistical closure methods in full phase space

In this section, we begin to develop statistical closure models for uncertainty quantification with consideration in
both accuracy and computation efficiency according to the statistical properties discussed previously. As shown
in Section 3.3, large information barrier in (33) may still exist if we only tune the statistical mean for consistency
in single point statistics. To overcome such barriers using the closure models, more precise calibration about the
nonlinear flux QF accounting for more degrees of freedom must be used. Starting with the simplest possible closure
ideas, our goal here is to compare the advantages and limitations of different levels of imperfect models and check
how the theories from Section 2 and 3 can help with improving the model prediction skill, especially the model
sensitivity to various perturbations.

We may consider the closure ideas by taking another look at the dynamics for stochastic coefficients in (20)

dZk

dt
=−d (t)Zk +

(
e2πi k

J − e−2πi 2k
J

)
ūZk +

1√
J

J/2

∑
m=−J/2+1

Zk+mZ∗m
(

e2πi 2m+k
J − e−2πi m+2k

J

)
.

Major nonlinearity comes from the last term above representing interactions between different modes. The basic
idea here is to model the effect of the nonlinear energy transfers on each mode by adding additional damping dM,k
balancing the linearly unstable character of these modes, and adding additional (white) stochastic excitation which
will model the energy received by the stable modes (Sapsis and Majda (2013d)). We want to constrain ourselves
to second order models considering computational expense, hence the additional parts dM,k,σM,k only include
statistics up to second order moments. Specifically we replace this nonlinear term by

1√
J

J/2

∑
m=−J/2+1

Zk+mZ∗m
(

e2πi 2m+k
J − e−2πi m+2k

J

)
→−dM,k (R)Zk +σM,k (R)Ẇk,

with R =
〈
ZkZ∗k

〉
. Accordingly, the mean and variance dynamics for the (imperfect) closure method can be derived

with the same form as (21a) and (21b)

dūM (t)
dt

= −d (t) ūM (t)+
1
J

J/2

∑
k=−J/2+1

rM,k (t)Γk +F (t) , (36a)

drM,k (t)
dt

= 2 [−ΓkūM (t)−d (t)]rM,k (t)+QM
F,kk, k = 0,1, ..., J/2. (36b)
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only with the nonlinear flux QF replaced by

QM
F,kk = QM

F−,kk +QM
F+,kk =−2dM,k (R)rM,k +σ

2
M,k (R) . (37)

Here QM
F− =−2dM,k (R)rM,k represents the additional damping to stabilize the unstable modes with positive Lya-

punov coefficients, while QM
F+ = σ2

M,k (R) is the additional noise to compensate for the overdamped modes. Now
the problem is converted to finding expressions for dM,k and σ2

M,k. Following by gradually adding more detailed
characterization about the statistical dynamical model we display the general procedure of constructing a hierarchy
of the closure methods step by step.

4.1 Hierarchy of closure models

We denote the equilibrium states for the mean and variance with unperturbed uniform forcing as ū∞ ≡ 〈ū〉, r j.∞ ≡〈
r j
〉
. And with a little abuse of notation, let d = 〈d (t)〉, and F = 〈F (t)〉. Following step by step, we bring in more

and more considerations in characterizing the uncertainties in each mode. Finally three different sets of closure
methods with increasing complexity and accuracy in prediction skill will be proposed, illustrating one important
statistical feature in each category.

1. Quasilinear Gaussian closure model: The simplest approximation for the closure methods (Epstein (1969)) at
the first stage should be simply neglecting the nonlinear part entirely. That is, to set

dM,k (R)≡ 0, σ
2
M,k (R)≡ 0, QQG

F ≡ 0. (38)

Obviously this crude approximation will not work well due to the cutoff of the energy flow when strong
nonlinear interactions between modes occur. Actually, it can be proved (Sapsis and Majda (2013d)) that for
L-96 system with QG closure model, in final equilibrium state there exists only one active mode with critical
wavenumber

kcr = argmaxk (−Γkūcr−d) .

And the critical mean and the only non-zero variance for k = kcr always converge to the only critical point no
matter what value F takes

ūcr =−max
k

(d/Γk) , rkcr = (ūcr−F)/Γkcr .

Such closures are only useful in the weakly nonlinear case.
2. Models with consistent equilibrium single point statistics: Here we want to construct the simplest closure model

with consistent equilibrium single point statistics (22). So the direct way is to choose constant damping and
noise term at most scaled with the total variance. We propose two possible choices for (37) below.
Gaussian closure 1 (GC1-1pt): let

dM,k (R) = dM ≡ const., σ
2
M,k (R) = σ

2
M ≡ const., QGC1

F =−(dMR+RdM)+σ
2
MI; (39)

Gaussian closure 2 (GC2-1pt): let

dM,k (R) = εM
J
2

(trR)1/2

(trR∞)
3/2 ≡ εM d̄, σ

2
M,k (R) = εM

(trR)3/2

(trR∞)
3/2 , QGC2

F =−εM
(
d̄R+Rd̄

)
+ εM

(trR)3/2

(trR∞)
3/2 I.

(40)
GC1-1pt is the familiar strategy of adding constant damping and white noise forcing to represent nonlinear in-
teraction (Majda et al (2005)). In GC2-1pt, the term multiplying dissipation scales with (trR)1/2 while the term
multiplying noise scales with (trR)3/2; these are dimensionally correct surrogates for the quadratic nonlinear
terms.
Note that GC1-1pt includes parameters

(
dM,σ2

M
)

and the nonlinear energy trQGC1
F = −2dMtrRM + Jσ2

M may
not be conserved, while GC2-1pt has one parameter εM and nonlinear energy conservation is enforced by
construction trQGC2

F = 0. Single point statistics consistency can be fulfilled through tuning the control param-
eters according to Proposition 1. Still as discussed in Section 3.3, it is not sufficient with only single point
statistics consistency for desirable model forecasts (see Figure 2 for the inherent information barrier of these
approaches). Thus for better approximation, we need to consider changing damping and noise amplitudes for
each mode.
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3. Models with consistent equilibrium statistics for each mode: Next we improve the previous closure methods
to ensure equilibrium statistical consistency in each mode. Simply this can be achieved through changing the
damping rate for each mode according to the stationary state statistics. Specifically for the above GC1 and GC2
in (39) and (40), the models can be improved by a slight modification in the damping rates along each mode.
GC1:

dM,k (R) = dM,k, σ
2
M,k (R) = σ

2
M, dM,k = [−Γkū∞−d]+ σ2

M/2rk,∞; (41)

GC2:

dM,k (R) = ε1,kd̄, σ
2
M,k (R) = εM

(trR)3/2

(trR∞)
3/2 ,

ε1,k =
2 [−Γkū∞−d]rk,∞ + εM

Jrk,∞/trR∞

, d̄ =
J
2

(trR)1/2

(trR∞)
3/2 . (42)

Above dM,k or ε1,k is chosen so that the system in (36) converges to the same equilibrium mean ū∞ and variance
rk,∞ as the true model, therefore the values of these parameters ensuring equilibrium consistency can be calcu-
lated by finding the steady state solutions of (36) through simple algebraic manipulations (see Appendix C).
Still in (41) and (42) the damping and noise are chosen empirically (depending on the one additional parameter
σ2

M or εM) without consideration about the true dynamical features in each mode. A more sophisticated strat-
egy with slightly more complexity in computation is to introduce the damping and noise judiciously according
to the linearized dynamics (that is, the operator Lv in (15b)). Then climate consistency for each mode can be
satisfied automatically. That is the modified Gaussian closure model (MQG) introduced in Sapsis and Majda
(2013d). We can also include this model into our category as
MQG:

dM (R) =
f (R)

f (R∞)
N∞, σ

2
M (R) =−

trQMQG
F−

trQMQG
F+,∞

[
(Γkū∞ +d)rk,∞δI+ +qs

]
, (43)

with
N∞,kk = [Γkū∞ +d]δI− −

1
2

qsr−1
k,∞.

Above I− represents the unstable modes with Γkū∞ +d > 0 while I+ is the stable ones with Γkū∞ +d ≤ 0. We
usually choose f (R) =

√
trR, and qs = dsλmax (QF,∞) (λmax the largest eigenvalue of QF,∞) as one additional

tuning parameter to control the model responses.
4. Improve forecast skill with kicked response operator: The above methods (41), (42), and (43) construct closure

models with consistent equilibrium statistics. Still equilibrium fidelity of imperfect models is a necessary but
not sufficient condition for model prediction skill with many examples (Majda and Gershgorin (2011a,b);
Majda and Branicki (2012)). In order to get precise forecasts for various forced responses, it is also crucial to
seek models that can correctly reflect the system’s ‘memory’ to its previous states. The linear response operator
RA represents the lagged-covariance of certain functions (and thus can describe the ‘memory’ of the system
to previous states). Also note that for all the methods above, there is still one more free parameter (σ2

M , εM ,
or qs) for us to control the model performance. Adopting the general strategy suggested in Section 2.3, we
can improve model sensitivity through tuning imperfect models in a training phase before the prediction step.
Thus the optimal model parameter can be selected through minimizing the information distance in the linear
response operators in (12) between the imperfect closure model and the truth.

Therefore we reach three different ideas for the closure methods with increasing complexity, namely, GC1, GC2,
and MQG in abbreviation. As we have discussed in Section 3.2, it is useful to check the energy conservation prop-
erties of these schemes which can imply the prediction skill of the models in advance. Proposition 1 states that good
performance of the closure schemes can be expected only if the nonlinear energy is conserved sufficiently well,
that is,

∥∥trQM
F

∥∥� 1. From the construction of these models, GC1 may not guarantee the symmetry of nonlinear
energy, while GC2 is constructed with better nonlinear energy conservation property. And symmetry of nonlinear
energy is always enforced for MQG by the scaling factor in (43). On the other hand, increasing computational
costs are required in GC1, GC2, and MQG. To be specific, we can calculate trQM

F for each scheme explicitly, then

trQGC1
F =−σ

2
M ∑

k

δ rk

rk,∞
, trQGC2

F = ε

(
trR

trR∞

)1/2
(

∑
k

δ rk

rk,∞
− J

δ trR
trR∞

)
, trQMQG

F = 0. (44)

The error for GC1 from the nonconservative nonlinear interactive could be large as the perturbation increases, while
GC2 offers much better conservation property due to the cancellation in the second parenthesis. MQG conserves
nonlinear energy exactly, and as an expense requires more detailed calibrations in each mode. These properties
will be further checked in the following parts with numerical tests.
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4.2 Algorithm for full space models

Here we summarize the closure methods resolving the entire phase space of the system.

Algorithm. (Statistical closure methods for full space models)

– Set up the dynamical equations for the first two moments with proper model nonlinear flux closure scheme QM
F

in (37) {
dū
dt =−d (t) ū(t)+ 1

J ∑
J/2
k=−J/2+1 rk (t)Γk +F (t) ,

drk
dt = 2 [−Γkū(t)−d (t)]rk (t)+QM

F,kk, k = 0,1, ...,J/2;
(45)

– Calibration step:
– Decide the closure form to use and calculate the equilibrium consistent parameters according to equilibrium

statistics as in (41), (42), or (43) for GC1, GC2, or MQG respectively;
– Calculate kicked response operators of the model through (9) and (10), and train parameters to achieve the

optimal linear response (12) for imperfect models under the information metric using the first order relative
entropy expansion (11);

– Prediction step:
– Make predictions for the statistics of the dynamical system in response to different kinds of external forcing

perturbations using the optimal parameters.

4.3 Forecast skill of the closure models for forced responses

Now we display the imperfect model prediction skill applying the closure methods described in the algorithm
above for the homogeneous L-96 testbed in (16)

du j

dt
=
(
u j+1−u j−2

)
u j−1−u j +F (t) , j = 0,1, ...,J−1, J = 40.

The statistics are resolved under Fourier spectral domain where the system is diagonalized under this homogeneous
setup. We are mostly interested in checking the imperfect models’ sensitivity in capturing responses as the system
is perturbed away from the steady state with homogeneous external forcing perturbation F (t) = F̄ +δF (t). First
we will illustrate several important issues as discussed in the previous sections through simple examples. Then
the imperfect model prediction skill as well as the improvement through the information-response framework will
be compared through checking the models’ ability to capture the responses to several different types of perturbed
external forcing terms.

4.3.1 Information barrier and calibration in training phase

Comparing FDT response with dynamical model prediction It might have been noticed that the system’s responses
to perturbations can be approximated through the fluctuation-dissipation theorem (FDT) using the formula in (7)
as well as the kicked response (10) without really running the dynamical model. However, FDT together with the
linear response theory just calculates the responses in first order of the perturbation δ . It can only be viewed as a
linear expansion of the predictions and will deviate from the truth as the perturbations becomes large. In Figure 1,
we compare the prediction skill between FDT linear theory with the imperfect dynamical model. The prediction
skills for stationary mean and variance are checked with constant perturbations in the forcing term δF ∈ [−2,2]
added to the unperturbed regime F = 8. In FDT prediction, the response operator R is calculated from the perfect
model, so it should be quite accurate with little error (note that in practical applications, this accurate response
operator might always be unavailable). And we use the GC2 model with optimal parameter from the training
phase as an example for the dynamical imperfect models. As observed in the results, the FDT results appear just
linear and deviate from the (nonlinear) truth as the perturbation amplitude δF increases even though with accurate
estimation of the linear response operator and constant perturbation. On the other hand, the dynamical imperfect
model using the closure method offers more precise prediction for the nonlinear responses for both the mean and
variance. The nonlinear and large deviations from the the equilibrium statistics with perturbations also imply that
estimation in the unresolved variables using stationary statistics may not be accurate. We will discuss this in more
detail in the next section for reduced order models.
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Fig. 1: Comparison between linear FDT responses to constant forcing perturbations and the model predictions
(using GC2 model with optimal parameter here as an example). The ratios between the perturbed responses and
the equilibrium value for the mean δ ū/ū∞ and total variance δ trR/trR∞ are plotted as a function of the constant
perturbed external forcing δF under the unperturbed regime F = 8.
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Fig. 2: Information barriers for imperfect closure models GC1-1pt and GC2-1pt with only consistent equilibrium
single point statistics as constructed in (39) and (40). The steady state variances under Fourier basis from the two
imperfect model results (with consistency in single point statistics trR = trRM) are compared with the truth from
Monte-Carlo simulations in two typical dynamical regimes F = 5,8.

Information barrier with single point statistics We have displayed the information barrier when only the single
point statistics consistency is considered in Section 3.3. For a further illustration using numerical experiments,
we check the errors using simple closure models GC1-1pt and GC2-1pt as in (39) and (40) with only equilibrium
single point consistency guaranteed. Figure 2 shows the stationary state spectra in spectral domain from GC1-
1pt and GC2-1pt with the optimal parameters according to (12) compared with the true spectrum using Monte-
Carlo simulation. In this coarser version of GC1-1pt and GC2-1pt model, we only make sure the consistency
in total variance in equilibrium by enforcing symmetry of nonlinear energy trQM

F,∞ = 0. Still large errors (thus
large information barrier for these models) exist for each individual mode for both dynamical regimes F = 5
(weakly chaotic) and F = 8 (strongly chaotic), consistent with what we have calculated from (35) for single point
statistics. This example shows the necessity of improving the models further for consistency in each mode using
(41) and (42). It is interesting to remark that as the forcing F increases for F� 1, the spectrum of L-96 approaches
equipartition (Majda et al (2005); Majda and Wang (2006)), so the information barrier of the single point statistics
in (33) is reduced in this regime.

Improving imperfect model skill in training phase Finally we turn to the models (41), (42), or (43) with con-
sistent equilibrium fidelity by construction. As suggested in the algorithm, the optimal parameter σ2

M , εM , or qs
accordingly is achieved through searching for the minimized information distance in response operators under the
information measure (12). The response operators for the mean and variance can be calculated through the unper-
turbed dynamics F = F̄ with perturbed initial value u0 = ū0−δu′ using the kicked response strategy as described
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Fig. 3: Tuning imperfect model parameters in the training phase with full dimensional models. The first row shows
the time-averaged information distances in linear response operators for the three closure models GC1, GC2, and
MQG as the model parameter changes (the point where the information error is minimized is marked with a circle).
The second row compares the optimized imperfect model response operators for the mean and total variance with
the truth for all these three imperfect models.

in (9) and (10) (Check Appendix B for details about calculating the kicked response operators numerically). In
Figure 3, we plot the total information errors for each method with changing parameters in the first row, and the
optimal model predicted response operators for the mean and total variance are displayed in the second row. From
the errors, the optimized information errors for GC2 and MQG are smaller than GC1. This is consistent with our
discussion in (44) considering the symmetry in nonlinear energy of each method. The same can be observed from
the plots for the response operators. For GC2 and MQG, good agreements for the mean state always imply good
fitting for the total variance, while large errors in the total variance with GC1 appear even though the mean state is
fit well.

4.3.2 Testing imperfect model prediction skill with different forced perturbations

We have achieved the optimal model parameters by tuning response operators in the training phase with the help of
information theory. As we have shown in Section 2 and 3, this optimal model can minimize the information barrier
in model predictions and offer uniform performance in response to various perturbations. To validate this point,
we compare and check the model improvement in prediction skill according to various forcing perturbations. Par-
ticularly here, we choose four different perturbed external forcing forms representing distinct dynamical features.
In Figure 4, the four different external forcing terms that will be tested are plotted. The first two are the ramp-type
perturbations of the external forcing driving the system smoothly from equilibrium to a perturbed state with higher
or lower energy. This could be viewed as a simple model mimicking a climate change scenario. Next considering
the simulation about a seasonal cycle, we would also like to check the case with periodic perturbations. And finally,
the case with random white noise forcing is applied to test the models’ ability for random effects. All perturbations
δF are of an amplitude (or variance) of 10% of the equilibrium value F = 8.

Figure 5-8 compare three imperfect model performances under the four different forcing perturbations. To il-
lustrate the improvement in prediction skill through this information-response framework, the model predictions
with optimal parameters from the training phase are displayed together with another prediction result using non-
optimal parameter by fitting the mean only in the training phase. We can regard this imperfect model as a familiar
sophisticated version of the strategy from climate science when only the mean is tuned. In the beginning two rows,
we show the model outputs for the mean and total variance with closure methods GC1, GC2, MQG compared
with the truth from Monte-Carlo simulation. As expected, the model prediction skill increases as more and more
detailed calibration about the nonlinear flux are proposed from GC1 to GC2, MQG. For a clearer comparison of
the three models, we can check the information distance in signal part (for the mean state) and dispersion part
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Fig. 4: Different perturbed forcing terms δF used to test the model prediction skill under unperturbed test regime
F = 8.

(for variances) separately in the following two rows. Logarithmic coordinate in y-direction is adopted for clarity in
distinguishing the three model errors. In the signal part, the error in the mean can be minimized to small amount
for all three models under optimal parameter; while for dispersion part, MQG and GC2 have much better predic-
tion for the prediction in variance compared with GC1. And MQG performs slightly better than the GC2 model.
This can be explained through the analysis in Proposition 1 as well as the nonlinear energy conservation property
summarized in (44). With exact symmetry in nonlinear energy trQMQG

F = 0, MQG can give exact prediction for
the variances once the accurate prediction for the mean is achieved. And GC2 only includes small errors in the
nonlinear flux term (importantly through the scaling factor in the additional damping and excitation), thus offers
nearly the same accuracy in prediction. However, for GC1 without the nonlinear energy conservation, good predic-
tion in the mean state cannot be a guarantee for the precision in variance predictions. Besides, GC1 is also a good
example illustrating that one model with equilibrium fidelity may lack the ability in model sensitivity, proving that
equilibrium fidelity is only necessary but not sufficient for model prediction (Majda and Gershgorin (2011a,b);
Majda and Branicki (2012)).

Finally we check the model improvement in prediction skill in the last row. We compare the full information
errors for these three models separately with optimal parameter and non-optimal one for comparison. Clearly, the
information barrier can be reduced uniformly with optimal parameter for all these three closure methods and all
these four perturbation scenarios regardless of any specific perturbation forcing applied, proving the uniform im-
provement through tuning the linear response operators in the training phase. Further MQG model can achieve the
best and largest minimization in error as the optimal parameter is applied, and GC2 model also displays excellent
improvement. Again the improvement from GC1 model is the smallest and limited. This is due to its inherent
model error with crude estimation about the closure form. But on the other hand, it also needs to be noticed that
more computational complexities are included for MQG and GC2 models in order to achieve the more precise
calibration.

5 Low order models in a reduced subspace

The closure methods above will become impractical when it comes to really high dimensional turbulent dynamical
systems, for example, climate systems with dimensionality of order 103. In this situation, the covariance matrix
R will be too huge that it becomes computational intractable to evolve the entire matrix in time. Therefore one
alternative practical strategy is to develop reduced order methods that only explicitly calculate variances in a
low-dimensional subspace spanned by primary empirical orthogonal functions (EOFs) {v0, · · · ,vs} with s� J (J
the dimensionality of the system), see for example Sapsis and Majda (2013c). The corresponding reduced order
representation of the state variables under these resolved basis becomes u = ū+∑

s
k=0 Zkvk. To see the possibility

of achieving this, first note that the dynamical equations for variances (21b) in each mode rk =
〈
ZkZ∗k

〉
are rather

independent with each other according to the previous closure strategies with higher order interactions replaced.
Thus it is realizable to restrict the variance equations inside the chosen subspace. Actually following the same
strategy by replacing the high order interaction terms by proper damping and noise as in Section 4, the equivalent
counterpart of the closure models can be formulated as a low-order stochastic system

dūM

dt
= −d (t) ūM (t)+

1
J ∑
|k|≤s

rM,k (t)Γk +F (t)+G∞, (46)

dZk

dt
= −d (t)Zk +

(
e2πi k

J − e−2πi 2k
J

)
ūMZk−dM,k (R)Zk +σM,k (R)Ẇk, k = 0,1, ...,s, (47)

with R = diag
{〈

ZkZ∗k
〉}

for k =−J/2+1, · · · ,J/2, the full covariance matrix. The mean dynamics is the same as
the closure models with an additional correction term G∞ to compensate the unresolved modes (see the following
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Fig. 5: Model predictions with upward ramp-type forcing. Predicted mean and total variance for the closure meth-
ods GC1 (blue), GC2 (green), and MQG (red) are compared with the truth (black) from Monte-Carlo simulation
in the first two rows. The information errors in signal part and dispersion part separately for these three models
are followed in the next two rows (note that we use logarithmic coordinate in y-direction for distinguishability
between models). Results with optimal parameter (left column) and one nonoptimal case by fitting only the mean
in the training phase (right column) are compared. Finally to display the improvement from training the response
operators for each model, we show the total information errors for each model with optimal and nonoptimal pa-
rameters in the last row.

section for detail); and the dynamical equations for the stochastic coefficients in the above model only solve the
dominant modes (and as we will see in the numerical tests, it is possible to have only 1 or 2 resolved modes in our
test case). Note that the constructed stochastic system is nonlocal due to the inclusion of the global variance R in the
artificial damping dM (R) and noise σM (R). Through proper choice of the parameters according to GC1 (41), GC2
(42), or MQG (43) as before, these stochastic system should converge to the same first two order statistics with
the moment closure model. This stochastic system sets up the foundation for constructing reduced order moment
closure methods. Still several problems need to be taken into account for the above model reduction process: i)
How to ensure climate consistency and optimal linear response as before in the reduced model; ii) How to include
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Fig. 6: Model predictions with downward ramp-type forcing. Predicted mean and total variance for the closure
methods GC1 (blue), GC2 (green), and MQG (red) are compared with the truth (black) from Monte-Carlo sim-
ulation in the first two rows. The information errors in signal part and dispersion part separately for these three
models are followed in the next two rows (note that we use logarithmic coordinate in y-direction for distinguisha-
bility between models). Results with optimal parameter (left column) and one nonoptimal case by fitting only the
mean in the training phase (right column) are compared. Finally to display the improvement from training the re-
sponse operators for each model, we show the total information errors for each model with optimal and nonoptimal
parameters in the last row.

the nonlocal scale factor (which always includes the total energy trR) in the nonlinear flux approximation QM
F if

only a subspatial variances are resolved; iii) How to get the unresolved parts of ∑
J/2
k=−J/2+1 rk (t)Γk in the mean

dynamics.
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Fig. 7: Model predictions with periodic forcing. Predicted mean and total variance for the closure methods GC1
(blue), GC2 (green), and MQG (red) are compared with the truth (black) from Monte-Carlo simulation in the first
two rows. The information errors in signal part and dispersion part separately for these three models are followed in
the next two rows (note that we use logarithmic coordinate in y-direction for distinguishability between models).
Results with optimal parameter (left column) and one nonoptimal case by fitting only the mean in the training
phase (right column) are compared. Finally to display the improvement from training the response operators for
each model, we show the total information errors for each model with optimal and nonoptimal parameters in the
last row.

5.1 Reduced order models

Here we address the problems raised above for reduced order models with only a small portion of the dynamical
system resolved. We begin with the above low-order stochastic model (46) and (47) for consistent moment closure
methods. The resolved basis {v0, · · · ,vs} can be chosen from the equilibrium EOFs with largest variances (and
the number of resolved basis s is chosen rather empirically depending on the uncertainty of the system). That
is, we run the original closure model (36a) and (36b) but under constraint in the subdimensional phase space of
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Fig. 8: Model predictions with random forcing. Predicted mean and total variance for the closure methods GC1
(blue), GC2 (green), and MQG (red) are compared with the truth (black) from Monte-Carlo simulation in the first
two rows. The information errors in signal part and dispersion part separately for these three models are followed in
the next two rows (note that we use logarithmic coordinate in y-direction for distinguishability between models).
Results with optimal parameter (left column) and one nonoptimal case by fitting only the mean in the training
phase (right column) are compared. Finally to display the improvement from training the response operators for
each model, we show the total information errors for each model with optimal and nonoptimal parameters in the
last row.

dimensionality s so that the computation expense can be affordable

dūM

dt
= −d (t) ūM (t)+

1
J ∑
|k|≤s

rM,k (t)Γk +F (t)+G∞, (48)

drM,k

dt
= 2 [−ΓkūM (t)−d (t)]rM,k (t)+QM

F,kk (trRs) , k = 0,1, ...,s. (49)

The major differences in this reduced model include two points. The unresolved variances required in the mean
dynamics (48) is amended by an additional forcing term represented by G∞ that balances the contribution from
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the truncated modes (Sapsis and Majda (2013c)). This additional part can be determined through equilibrium data
from statistical steady state

G∞ = 1/J ∑
|k|>s

rk,∞Γk = dū∞−1/J ∑
|k|≤s

rk,∞Γk−F.

And the (linear) scaling factor trR required in the variance dynamics (49) in QM
F is replaced by the avalible resolved

part trRs = ∑
s
k=1 rk. We will refer this as the original model in the following simulations.

Still as shown in the plot for responses in Figure 1, the changes in variance as the perturbation amplitude
varies are rather significant and nonlinear. As a result, using only unperturbed statistics to estimate the unresolved
variances rk,∞, |k| > s may not be accurate and desirable for both the mean and variance dynamics. Keeping all
these shortcomings in mind, we propose the following further corrections to the reduced order methods, and refer
the resulting model as the corrected model.

– Ensuring climate consistency and optimal linear response in the reduced subspace:
We have shown in Fact 1 and 4 in Section 2 that the information distance can be calculated within a subspace,
and the kicked response operator can be calculated individually for each mode as in Fact 3. So the models can
be tuned in the same way as the previous full space case but minimizing the information distance instead in the
low-dimensional subspace in the training phase.

– Getting total variance of the system through energy equations:
In closure schemes (42) and (43) one important scaling factor which always includes the total variance trR of
the system is utilized for the artificial damping and noise. This can be solved with efficiency by introducing
one additional scalar equation as described in (25)

dE
dt

=−2d (t)E + JF (t) ū.

Then trR can be achieved by solving E = J
2 ū2 + 1

2 trR.
– Corrections for mean dynamics:

In the mean dynamical equation, it requires one term ∑
J/2
k=−J/2+1 rk (t)Γk containing variances for each mode.

For reduced models, we can only have access to the resolved leading variances r1, · · · ,rs. To estimate the values
for unresolved modes rk,un, additional correction G∞ using steady state information rk,∞ is added to equation
(48). We can further improve it from the equilibrium statistics by adding finer first-order corrections in response
to the perturbation by making use of the linear response operator (7)

rk,un ∼ rk,∞ +δ r′k = rk,∞ +

ˆ t

0
Rrk (t− s)δF ′ (s)ds, k > s (50)

Finally we can summarize the reduced order model algorithm as follows

Algorithm. (Statistical closure methods for reduced order models)

– Set up the dynamical equations for the first two moments in the reduced order subspace which is spanned by
the leading order EOFs {v1, · · · ,vs}, s� J, together with the scalar energy equation for total statistical energy
E 

dū
dt =−d (t) ū(t)+ 1

J ∑|k|≤s rk (t)Γk +F (t)+G∞ +δG,
drk
dt = 2 [−Γkū(t)−d (t)]rk (t)+QM

F,kk (trR) , k = 0,1, ...,s,
dE
dt =−2d (t)E + JūF (t) .

(51)

– Calculate the total variance for the parameter in nonlinear flux approximation QM
F from the entire statistical

energy formula
trR = 2E (t)− Jū2.

– Calculate the unresolved variances in the mean dynamics from the equilibrium statistics rk,∞ and linear
response (50)

G≡ G∞ +δG = G∞ +
1
J ∑
|k|>s

δ r′kΓk, (52)

with G∞ = dū∞− 1
J ∑|k|≤s rk,∞Γk−F .

– Calibration step:
– Decide the closure form and calculate the equilibrium consistent parameters according to equilibrium statis-

tics as in (41), (42), or (43) for the reduced order GC1, GC2, or MQG model respectively;
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– Get the kicked response of the model from (9) and (10), and train the parameters to achieve optimal linear
response (12) for imperfect models under the information metric using (11) in the reduced subspace with
dimensionality s;

– Prediction step:
– Make predictions for the statistics in principal directions of the dynamical system in response to different

kinds of external forcing perturbations using the optimal parameters.

Remark. 1. The reduced order MQG model (ROMQG) needs some more sophisticated calibrations about the
nonlinear fluxes in the unresolved directions. We neglect these specific techniques and detailed explanations can
be found in Sapsis and Majda (2013c).

2. In the correction term for the mean (52), we may not need to calculate the linear response for all the unre-
solved modes (which may still be expensive for large systems). Only adding the linear corrections δ r′k up to a large
enough wavenumber K should be enough for practical implementation. We will illustrate this with simple example
in the final part of this section.

5.2 Forecast skill of the reduced models for forced responses

Now we check the prediction skill of the reduced order models in capturing uncertainties in principal directions
using the L-96 testbed. We will only take a three dimensional subspace (compared with the 40 dimensional model)
under the zero base mode v0 = 1/

√
J (1, · · · ,1)T , and the most energetic Fourier mode v1 (including real and

complex part) with largest variance in equilibrium spectrum. We are interested in checking whether these correction
strategies for the reduced methods can actually improve the model prediction skill. Particularly, for the reduced
GC1 model (41), no scaling factors but constant damping and excitation forms are used in the closure scheme QGC1

F
(so we can only improve the model from the mean equation and the energy equation cannot help in this model),
while GC2 and MQG are a good examples to display the combined improvement from both corrections in mean
and covariance equations. We will see below that a calibrated GC2 model by the training method will be easy to
design systematically and yet will be superior to ROMQG from Sapsis and Majda (2013c).

5.2.1 Calibration in training phase for optimal response

As before in the full space case, we need to first tune the reduced model parameters in a training phase for optimal
responses. In Figure 9, we show the full information distance in the resolved subspace {v0,v1} for the three reduced
models GC1, GC2, MQG, together with their errors in the signal part and dispersion part separately. Improvements
from adopting the corrected method with energy and linear response corrections can be observed for all these
three strategies by comparing with the results with the original method. Furthermore larger improvements can be
achieved through GC2 and MQG model due to the energy correction in the variance equations, while for the less
accurate GC1 model the improvement is limited due to the lack of precision in this closure strategy. Observing the
errors in signal and dispersion part separately for the original model in the second row, it can be found that large
inherent information barrier (especially for the mean prediction) exists for improving the model prediction skill no
matter how well we tune the parameters in the training phase. On the other hand, for the corrected model results
shown in the third row, the information barrier can be overcome with the signal error effectively reduced. We also
compare the optimal response operators for the mean and resolved variances in Figure 10 for both original model
and the corrected one. Better agreement with the truth can be observed for both parts by using the corrected model.

5.2.2 Testing imperfect model prediction skill in principal directions

Again we check the reduced models’ ability in capturing the most important statistics in response to various exter-
nal forcing perturbations. The setting-ups for the L-96 system is the same as before in the full model case but we
will only run the models in the subspace spanned by {v0,v1}. The same four different types of perturbation forms
are checked as before in Figure 4. Improvement for all the four cases in predicting the statistical mean and variance
in the leading mode v1 through the corrected model can be observed in Figure 11-14. The results from reduced
order GC1, GC2, and MQG are shown separately in the first three rows and the following three rows display the
difference in full information distance as well as the errors in signal part and dispersion part separately for these
three methods. As expected, GC1 always gives the smallest improvement for all cases since we can do nothing
about improving its variance equations. Especially observe that there is nearly no improvement for the dispersion
error in the reduced GC1 model, compared with the large improvement from GC2 and MQG results (This empha-
sizes the crucial role of energy equation correction in (51) by comparing GC1 and GC2). Improvements in GC2 and
MQG model are larger with better agreement in both mean and principal variance predictions. Surprisingly, GC2
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Fig. 9: Tuning imperfect model parameters in the training phase within a reduced subspace. The time-averaged
information distances for reduced order GC1 (first column), GC2 (second column), MQG (third column) are com-
pared inside the subspace spanned by the base mode v0 and most energetic mode v1. The improvement from the
correction strategies for each method is shown by comparing the the original reduced order schemes. The informa-
tion error for the signal part and dispersion part are also compared individually for each model in the second and
third row.
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Fig. 10: Comparison of the optimal linear response operators for the mean (first column) and variance (second
column) in v0,v1 using closure different closure models. The improvements by adopting the correction strategies
can be seen by comparing the optimal fitting for and original method (first row) and the corrected method (second
row).
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Fig. 11: Reduced model prediction for upward ramp-type forcing. Only the subspace spanned by the base mode
and most energetic mode {v0,v1} is resolved under the 40-dimensional L-96 model. The first three rows compare
mean and variance predictions from the three reduced order closure methods GC1 (blue), GC2 (green), MQG
(red) separately. The improvement from corrected model (solid) in comparison with the original method (dashed)
is displayed. For further illustration for the improvement, the next three rows show the total information error
measured in the resolved subspace as well as the signal and dispersion part for all three closure methods using
original reduced order strategy (left, dashed) and the corrected strategy with energy and linear response corrections
(right, solid).

can even offer better prediction in the reduced order case than ROMQG model considering that it’s also cheaper in
computation. Finally it is useful to emphasize that even though the prediction skill in GC1 is relatively poor among
all the three cases, it can still serve as an effective strategy when the requirement for the accuracy is not that high,
especially considering that it is the cheapest and easiest model to construct for all the situations.
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Fig. 12: Reduced model prediction for downward ramp-type forcing. Only the subspace spanned by the base
mode and most energetic mode {v0,v1} is resolved under the 40-dimensional L-96 model. The first three rows
compare mean and variance predictions from the three reduced order closure methods GC1 (blue), GC2 (green),
MQG (red) separately. The improvement from corrected model (solid) in comparison with the original method
(dashed) is displayed. For further illustration for the improvement, the next three rows show the total information
error measured in the resolved subspace as well as the signal and dispersion part for all three closure methods using
original reduced order strategy (left, dashed) and the corrected strategy with energy and linear response corrections
(right, solid).

5.2.3 Mean correction for high dimensional systems

As a final comment, we discuss a little more about the case when realistic high dimensional dynamical systems are
applied. As pointed out in Remark 2 in Section 5.1, the dimensionality of the unresolved subspace could become
so large that even calculating all the unresolved linear response variances becomes impractical. In that case, a
further simplification is just to replace parts of the unresolved variances using the linear response correction, and
leave the rest with small energy for original steady state ideas with total energy correction. Therefore, in the most



28 Andrew J. Majda, and Di Qi

0 2 4 6 8 10 12 14 16 18 20
50

55

60

65

70

75
GC2, Variance in principal direction, F = 8

0 2 4 6 8 10 12 14 16 18 20
2

2.2

2.4

2.6

GC2, State of the Mean, F =8

truth original GC2 corrected GC2

time
0 2 4 6 8 10 12 14 16 18 20

50

55

60

65

70

75
GC1, Variance in principal direction, F = 8

time
0 2 4 6 8 10 12 14 16 18 20

2

2.2

2.4

2.6

GC1, State of the Mean, F =8

truth original GC1 corrected GC1

time
0 2 4 6 8 10 12 14 16 18 20

50

55

60

65

70

75
ROMQG, Variance in principal direction, F = 8

time
0 2 4 6 8 10 12 14 16 18 20

2

2.2

2.4

2.6

ROMQG, State of the Mean, F =8

truth original ROMQG corrected ROMQG

(a) Model predictions for the mean and variance

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025
signal error, original model

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025
signal error, corrected model

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01
dispersion error, original model

0 2 4 6 8 10 12 14 16 18 20
0

0.002

0.004

0.006

0.008

0.01
dispersion error, corrected model

time
0 2 4 6 8 10 12 14 16 18 20

0

0.005

0.01

0.015

0.02

0.025
total information error, original model

GC1
GC2
ROMQG

time
0 2 4 6 8 10 12 14 16 18 20

0

0.005

0.01

0.015

0.02

0.025
total information error, corrected model

GC1
GC2
ROMQG

(b) Information errors

Fig. 13: Reduced model prediction for periodic forcing. Only the subspace spanned by the base mode and most
energetic mode {v0,v1} is resolved under the 40-dimensional L-96 model. The first three rows compare mean and
variance predictions from the three reduced order closure methods GC1 (blue), GC2 (green), MQG (red) separately.
The improvement from corrected model (solid) in comparison with the original method (dashed) is displayed. For
further illustration for the improvement, the next three rows show the total information error measured in the
resolved subspace as well as the signal and dispersion part for all three closure methods using original reduced
order strategy (left, dashed) and the corrected strategy with energy and linear response corrections (right, solid).

complicated case, the mean correction term G may take the form

G≡ G∞ +δGK =
1
J

K

∑
k=s+1

(
rk,∞ +δ rk

)
Γk +

1
J

J

∑
k=K+1

rk,∞Γk
f (R)

f (R∞)
. (53)

In this formula, the mean correction for unresolved modes δG is further decomposed into two parts. The first part
up to a proper wavenumber cutoff K with relatively more importance in variance is still corrected using the linear
response theory, while the rest of the less important modes returns to the original approximation with only steady
state information with only a total variance scale factor included.
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Fig. 14: Reduced model prediction for random forcing. Only the subspace spanned by the base mode and most
energetic mode {v0,v1} is resolved under the 40-dimensional L-96 model. The first three rows compare mean and
variance predictions from the three reduced order closure methods GC1 (blue), GC2 (green), MQG (red) separately.
The improvement from corrected model (solid) in comparison with the original method (dashed) is displayed. For
further illustration for the improvement, the next three rows show the total information error measured in the
resolved subspace as well as the signal and dispersion part for all three closure methods using original reduced
order strategy (left, dashed) and the corrected strategy with energy and linear response corrections (right, solid).

As one illustrative example, Figure 15 compares the skills of the reduced models with truncated number of
linear response corrections K in (53). We use the previous case with upward ramp-type forcing, and use GC2
model with the same optimal parameter from the training phase. Therefore, it can be observed that little degeneracy
for the prediction skill appears with linear corrections for the first 5 most energetic unresolved modes compared
with the results with corrections for all unresolved modes. This shows the possibility that we need only correct the
variances of the most important ones for applications in the really high dimensional models. Also for comparison,
we show the results of corrected model retaining G∞ but with K = 0 (and with correction from total energy equation
for trR) and the original model even without the energy correction. Poorer prediction skills of these models are
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displayed illustrating the indispensable roles of these correction strategies (for both mean correction δG and energy
correction trR ) in model improvements.
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Fig. 15: Comparison of prediction skills with linear corrections for only first 5 unresolved modes in the mean
dynamics. The upward ramp-type forcing and GC2 model with optimal parameter are used as the test case here.
The corrected model results with linear correction for the mean dynamics using all the unresolved modes K = 40
as before are shown in green lines, while the further simplified model results with linear correction only for the first
five most important modes K = 5 among all the unresolved modes are shown in blue dotted dashed lines, together
with the original model (dashed red lines) and the model without mean correction K = 0 (dotted magenta lines).
There is little degeneracy appearing in the further simplification method with fewer unresolved modes K = 5 using
linear correction. This shows the possibility that we need only correct the variances of the most important ones for
applications in the really high dimensional models.

6 Conclusion and future work

Imperfect models with statistical equilibrium fidelity may still suffer inherent information barrier for capturing
correct responses to external perturbations in turbulent dynamical systems. We display a generic systematic frame-
work combining the merits from linear response theory and empirical information theory (Majda and Gershgorin
(2011a,b); Branicki and Majda (2012)) to improve the imperfect model sensitivity to various perturbation forms.
The advantage is that the optimal parameters can be achieved in a training phase only according to the unperturbed
statistics, therefore the model parameters don’t need to be tuned each time for every specific perturbation form
which is rather impractical for realistic predictions for changing external perturbation terms. Here to get deeper
understanding about the central characterization about the nonlinear turbulent systems, we begin with models with
simple structures and focus on second-order closure schemes in the first place. The improvement in the second-
order closure models is checked under the homogeneous 40-dimensional L-96 system, which offers a desirable
testbed with tractable statistical features and conservative nonlinear interaction. We further consider proper re-
duced order strategies which have improved ability in capturing the most important statistics in the leading EOFs
when the dimensionality of the systems increases. Corrections to the unresolved statistics are proposed according
to the statistical features of the dynamical system, and the same optimization framework is applied to the reduced
order models to get the optimal response in the resolved subspace. Several important points can be concluded from
the theoretical analysis and numerical tests using the L-96 testbed:

– The second-order statistical closure models outperform the linear FDT predictions for capturing responses to
external perturbations, especially in regimes with larger perturbations and stronger nonlinearities. This shows
the importance and necessity of adopting dynamical methods in getting correct model sensitivity for UQ pre-
dictions;

– Single point statistics which concentrate on the statistics on each grid point and ignore cross-correlations be-
tween points are useful quantities for illustrating the basic statistical features of the turbulent systems. Imperfect
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statistical closure models with symmetry in nonlinear energy can predict accurate single point variance once
accurate prediction for the mean is achieved. This is an important result showing that higher order moments
can be determined by the lower order approximations and offers important guideline for designing imperfect
closure schemes;

– Still accurate single point statistics prediction is not sufficient for the imperfect models to break information
barriers (Majda and Gershgorin (2011a,b); Majda and Branicki (2012)). An imperfect model with perfect
recovery of the single point statistics may still display large errors in the predictions for statistics in each
EOF mode;

– The information-response framework by tuning imperfect models in the training phase for optimal model re-
sponse operators shows promising skill in breaking information barriers in model sensitivity to perturbations.
Imperfect model prediction skill can be improved uniformly regardless of the specific perturbation form ap-
plied;

– It is important for practical applications that the information-response framework can also be applied systemat-
ically to reduced order models which focus on capturing the uncertainties in the dominant modes. Importantly,
the prediction skill in reduced order methods can be improved effectively by introducing corrections from a
simple scalar energy equation and linear corrections for the unresolved modes.

Within this paper, we concentrate on the specific L-96 system in order to have a cleaner dynamical core containing
only essential structure for analysis and construction of models. The L-96 model is quite representative for a
wide variety of systems with large number of instabilities and conservative nonlinear operators. It is useful to
move forward to realistic high dimensional systems like the general circulation models (GCMs) and check the
effectiveness of this framework and the model reduction strategies. Blended reduced order schemes (Sapsis and
Majda (2013a,b)) have been developed that offer a promising direction for capturing principal higher order statistics
with efficiency. Furthermore, in many areas of applications, it is useful to incorporate partial observation data
from the natural system with the imperfect model prediction for combined improvement. That is, we need to
develop proper filtering or data assimilation strategies for models with high dimensional phase space and strong
nonlinearity. So it is also interesting to combine the UQ schemes developed here with the low order blended
filtering schemes we have developed previously in Majda et al (2014); Qi and Majda (2015). This is a promising
direction for real time filtering with the skill in accurate capturing of the nonlinear non-Gaussian features of the
high dimensional turbulent systems.
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Appendix A: Derivation of the moment equations for L-96 system

Here we display the detailed derivations about the moment equations and the properties under homogeneous as-
sumption in Section 3.1. Under the Fourier representation of the basis

{
v j
}

, we can write explicit formulas for
each part of the L-96 system (16) as follows

1. The quadratic interaction between Fourier mode vi and v j can be written explicitly from the definition

B(vi,v j) =
{

vl−1∗
i

(
vl+1

j − vl−2
j

)}J−1

l=0

=

{
1
J

e−2πıi l−1
J

(
e2πı j l+1

J − e−2πı j l−2
J

)}J−1

l=0

=
1√
J

e2πı i+ j
J v j−i−

1√
J

e2πı i−2 j
J v j−i

=
1√
J

e2πı i
J

(
e2πı j

J − e2πı−2 j
J

)
v j−i.

Particularly, we can find that the nonlinear interaction term vanishes if and only if its second component is only
under the zero base mode v0 =

1√
J
(1, · · · ,1)T , that is,

B(vi,v j) = 0⇔ e2πı 3 j
J = 1⇔ j =

nJ
3
, n ∈ N, J = 40⇔ j = 0.
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2. Using the expression above, we can calculate the explicit formulas for the second-order interaction form in the
mean dynamics

∑
i, j

Ri jB(vi,v j) =
1√
J ∑

i, j
ri je2πı i

J

(
e2πı j

J − e2πı−2 j
J

)
v j−i

=

{
1
J ∑

i, j
ri je−2πıi l−1

J

(
e2πı j l+1

J − e−2πı j l−2
J

)}J−1

l=0

.

Then to calculate the explicit formula for the covariance dynamics, we need to get the linear interaction part Lv
first

B(ū,v j)l =
1√
J

ūl−1

(
e2πı j l+1

J − e2πı j l−2
J

)
,

B(v j, ū)l =
1√
J

e−2πı j l−1
J (ūl+1− ūl−2) .

Therefore by definition, we get

Lv,i j = (L(t)v j +B(ū,v j)+B(v j, ū)) ·v∗i

= −d j (t)δi j +
1
J

(
e2πı j

J − e−2πı 2 j
J

)
∑

l
ūl−1e2πıl j−i

J

+
1
J

e2πı j
J ∑

l
(ūl+1− ūl−2)e−2πı j+i

J .

where the index l represents the l-th component of a vector.
3. Finally we need to calculate the formula for the nonlinear flux term QF in the covariance dynamics. Again

use the explicit formula for the nonlinear interaction term between modes B(vi,v j) and the definition of the
nonlinear flux, we have

QF,i j = ∑
m,n

〈
ZmZ∗nZ j

〉
B(vm,vn)

∗ ·vi + 〈Z∗mZnZ∗i 〉B(vm,vn) ·v∗j

=
1√
J ∑

m,n

〈
ZmZ∗nZ j

〉
e−2πı m

J

(
e−2πı n

J − e2πı 2n
J

)
δn−m,i

+
1√
J ∑

m,n
〈Z∗mZnZ∗i 〉e2πı m

J

(
e2πı n

J − e−2πı 2n
J

)
δn−m, j.

Therefore, we get the explicit forms for each part of the moment equations for the mean and covariance matrix.
Another important issue is due to the simplification of each order of moments under the homogeneous as-

sumption of the L-96 system. Specifically, it tells that if each order of moments is invariant under shifting in grid
points

〈ui1ui2 · · ·uin〉=
〈
ui1+lui2+l · · ·uin+l

〉
, ∀ l,

then the first three moments under the Fourier basis become

ū(t) = ū(t)(1,1, ...,1)T ,

R(t) = diag
(
r−J/2+1 (t) , · · · ,r0 (t) , ...,rJ/2 (t)

)
,〈

ZiZ jZk
〉
6= 0, only if i+ j+ k = 0.

The first equation for the mean state ū is direct from the definition. To get the simplified forms for the second and
third moments R and

〈
ZiZ jZk

〉
, first we write the Fourier transform as a change of basis as

u′ = V Z,
Z j = ∑

l
vl∗

j u′l .

where u′ = u− ū = (u′1,u
′
2, · · · ,u′J)

T , Z =
(
Z−J/2+1,Z−J/2+2, · · · ,ZJ/2

)T are the coefficients under natural basis and
Fourier basis separately, and V =

(
v−J/2+1,v−J/2+2, · · · ,vJ/2

)
is the transformation matrix formed by Fourier basis.
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Therefore, the components of the second order moments under the transform invariant property become

Ri j =
〈
ZiZ∗j

〉
= ∑

m,n
vm∗

i
〈
u′mu′n

〉
vn

j

= ∑
n

∑
l

〈
u′0u′n

〉
vl∗

i vn+l
j

= ∑
n

〈
u′0u′n

〉
e2πı n j

J ∑
l

e2πıl j−i
J

= J ∑
n

〈
u′0u′n

〉
e2πı n j

J δi j.

Here the second equality is using the homogeneity in physical space 〈u′mu′n〉 =
〈
u′0u′n−m

〉
. Therefore we can see

that the covariance matrix becomes diagonal under the homogeneous assumption and each component takes the
form

r j = J ∑
n

〈
u′0u′n

〉
e2πı n j

J .

In the same way, we can calculate the third moments as〈
ZiZ jZk

〉
= ∑

m,n,s

〈
vm∗

i u′mvn∗
j u′nvs∗

k u′s
〉

= ∑
m,n,s

〈
u′mu′nu′s

〉
vm∗

i vn∗
j vs∗

k

= ∑
n,s

∑
l

〈
u′0u′nu′s

〉
vl∗

i vn+l∗
j vs+l∗

k

= ∑
n,s

〈
u′0u′nu′s

〉
e−2πı n j+ks

J ∑
l

e2πıl i+ j+k
J

= J ∑
n,s

〈
u′0u′nu′s

〉
e−2πı n j+ks

J δi+ j+k.

The same we use the homogeneous property 〈u′mu′nu′s〉 =
〈
u′0u′n−mu′s−m

〉
. Therefore the third order moments can

only be non-zeros when the wavenumber satisfies i+ j+ k = 0, and the non-zeros terms can be represented as〈
Z− j−kZ jZk

〉
= J ∑

n,s

〈
u′0u′nu′s

〉
e−2πı n j+ks

J .

With all these homogeneous properties, both the linear and nonlinear flux terms Lv and QF become diagonal.
The detailed calculation is shown as follows. First, each part of the linear interaction term Lv simplifies

∑
i, j

Ri jB(vi,v j) = ∑
i

ri (t)B(vi,vi) =
1√
J ∑

i
ri

(
e2πı 2i

J − e−2πı i
J

)
v0,

B(vi, ū) = ū(t)B(vi,v0) = 0,

B(ū,vi) = ū(t)B(v0,vi) = ū(t)
(

e2πı i
J − e−2πı 2i

J

)
vi,

Lv,i j =−d (t)δi j + ū(t)
(

e2πı j
J − e−2πı 2 j

J

)
δi j.

Then the simplified form of the nonlinear flux term QF can also be calculated

QF,i j =
1√
J ∑

m,n

〈
ZmZ∗nZ j

〉
e−2πı m

J

(
e−2πı n

J − e2πı 2n
J

)
δn−m,i

+
1√
J ∑
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〈Z∗mZnZ∗i 〉e2πı m

J
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J
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J

(
e−2πı n
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J
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J ∑
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J − e−2πı 2n
J

)
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J − e2πı m+2 j
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δi j.
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Appendix B: Numerical strategies to calculate the kicked response operators

In Section 4, we use the kicked response theory to tune the imperfect model parameters in the training phase. Here
we describe the details about calculating the kicked response operators for the mean and variance numerically.
From the formula in (10), the response operators for the mean and variance can be achieved from the perturbation
part of the probability density δπ ′. And this density function is also used to measure the information distance
between the truth and imperfect model result in the training phase. Below we describe the numerical procedure to
get this distribution function δπ ′ for the true system and the imperfect closure model separately.

– Kicked response for the true model: For the true system, we want to achieve the most accurate possible es-
timation for the response operators both for comparison with the imperfect model results and for calculating
the FDT linear prediction. Therefore we use a Monte-Carlo simulation with an ensemble size of 10,000 parti-
cles to capture the response in density. The initial equilibrium ensemble is picked by sampling from a normal
distribution with consistent equilibrium mean and variance of the true system. For the kicked response to the
mean a constant perturbation with 10 percent of the equilibrium state mean δu = 0.1ū∞ is added to each initial
ensemble member (in fact, as observed in numerical experiments, this perturbation amplitude has little effect
on the results in the response distribution as long as it’s not too large); and the initial variance of the ensemble
is kept unchanged. The response distribution δπ ′ then is achieved by monitoring the decay of the ensemble
particles back to equilibrium under unperturbed dynamics and uniformly perturbed initial value (and the length
of the time window that we need to monitor depends on the mixing property of the turbulent system). See Bell
(1980); Majda et al (2005) for similar version of this alogrithm.

– Kicked response for the imperfect model: For the imperfect model, we just need to run the closure equations to
get the responses for the mean and variance. In the same way as the true model, the initial mean is taken from
the equilibrium distribution and a perturbation with amplitude δu = 0.1ū∞ is added to the mean initial state.
The initial value for the variance is taken the same as the equilibrium state value and kept unperturbed. Then
using this initial mean and variance, the imperfect model with specific closure strategies is applied to monitor
the decay of the mean and variance back to equilibrium.

One additional important point that requires attention is that even if the unperturbed equilibrium initial conditions
are applied, the system will still deviate from the equilibrium state first and reapproach equilibrium again after
some relaxation time. This is due to the insufficient characterization of the entire distribution of the true system
with a Gaussian approximation (note that nonlinearities are also included in the imperfect closure methods). To
eliminate this effect in computing the kicked response in both the true and imperfect models, we subtract the
statistics computed using the unperturbed initial value from the statistics computed using the perturbed Gaussian
initial condition to achieve more accurate characterization of the responses.

Appendix C: Calculating equilibrium consistent parameters for statistical closure models

The improved statistical closure models discussed in Section 4 require equilibrium fidelity at stationary steady
state as t → ∞ as a necessary condition. We proposed the climate consistent parameter values in (41) and (42)
correspondingly for GC1 and GC2 models calculated through simple algebraic manipulations. In stationary steady
state with uniform damping and forcing terms, each order of moments of the closure system (36) converges to the
equilibrium state such that

dūM,∞

dt
= 0,

drM
k,∞

dt
= 0, ∀k.

Applying (36) in the corresponding steady states, the equilibrium mean and variance ūM,∞, rM
k,∞ satisfies

0 = −dūM,∞ +
1
J

J/2

∑
k=−J/2+1

rM
k,∞Γk +F,

0 = 2 [−ΓkūM,∞−d]rM
k,∞ +QM

F,kk,∞, k = 0,1, ..., J/2,

with nonlinear interaction term in steady state QM
F,kk,∞ = −2dM,k (R∞)rM

k,∞ +σ2
M,k (R∞). A similar procedure like

that in Section 3 by summing up the modes in the second equations above and substituting the mean equation can
be carried out so that

∑
k

QM
F,kk,∞ = 2ūM,∞ ∑

k
ΓkrM

k,∞ +2dtrRM
∞ = 2JūM,∞ (dūM,∞−F)+2dtrRM

∞ .
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The right hand side of the above relation between the equilibrium mean and total variance should equal to zero for
climate consistent models. Furthermore, in order to enforce consistent equilibrium statistics with the truth along
each direction, that is, ūM,∞ = ū∞, rM

k,∞ = rk,∞, one necessary condition requires that

2 [ΓkūM,∞ +d]rM
k,∞ =−2dM,k (R∞)rM

k,∞ +σ
2
M,k (R∞) ,

for each mode k = 0, · · · ,J/2 from the steady state variance equations. Substituting the corresponding forms of
GC1 and GC2 in (41) and (42) into the above equation, the model parameters satisfying equilibrium fidelity with
the truth must follow the relations

−2dM,krM
k,∞ +σ

2
M = 2 [ΓkūM,∞ +d]rM

k,∞,

for GC1, and
−ε1,kJ (trR∞)

−1 rM
k,∞ + εM = 2 [ΓkūM,∞ +d]rM

k,∞,

for GC2. By solving the above equations we find the consistent parameters dM,k and ε1,k for each mode in GC1
and GC2 respectively as shown in (41) and (42).


