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Abstract. The ensemble Kalman filter (EnKF) and ensemble square root filter (ESRF)

are data assimilation methods used to combine high dimensional, nonlinear dynamical

models with observed data. Despite their widespread usage in climate science and oil

reservoir simulation, very little is known about the long-time behavior of these methods

and why they are effective when applied with modest ensemble sizes in large dimensional

turbulent dynamical systems. By following the basic principles of energy dissipation and

controllability of filters, this paper establishes a simple, systematic and rigorous framework

for the nonlinear analysis of EnKF and ESRF with arbitrary ensemble size, focusing on

the dynamical properties of boundedness and geometric ergodicity. The time uniform

boundedness guarantees that the filter estimate will not diverge to machine infinity in

finite time, which is a potential threat for EnKF and ESQF known as the catastrophic

filter divergence. Geometric ergodicity ensures in addition that the filter has a unique

invariant measure and that initialization errors will dissipate exponentially in time. We

establish these results by introducing a natural notion of observable energy dissipation. The

time uniform bound is achieved through a simple Lyapunov function argument, this result

applies to systems with complete observations and strong kinetic energy dissipation, but also

to concrete examples with incomplete observations. With the Lyapunov function argument

established, the geometric ergodicity is obtained by verifying the controllability of the filter

processes; in particular, such analysis for ESQF relies on a careful multivariate perturbation

analysis of the covariance eigen-structure.

1. Introduction

An important problem in scientific computing is the effective assimilation of observational

data with high dimensional nonlinear forecast models. The classical filtering tools, such as

the Kalman filter and extended Kalman filter, are poorly suited to these problems, due both

to the nonlinearity of the models and the cost of computing covariance matrices for high

dimensional state vectors. The ensemble Kalman filter (EnKF) and ensemble square root

filter (ESRF) were designed to overcome these difficulties [1, 2, 3, 4]. The basic idea of these

methods is to propagate an ensemble {V (1)
n , . . . , V

(K)
n } to describe the forecast distribution
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of the underlying system Un, and then assimilating the new observation via a Kalman-type

update using the ensemble mean and covariance. The state estimate remains useful even

when the ensemble size is several orders of magnitude smaller than the state dimension,

leading to a considerable benefit in computational cost. Due to their efficiency, EnKF

and ESRF are broadly used, notably in ocean-atmosphere science [5, 4] and oil reservoir

simulations [6].

Despite the ubiquitous application of EnKF and ESRF, little is known of their dynamical

behavior beyond that provided by numerical experiments. Existing theoretical studies of

EnKF and ESRF focus mainly on either error estimation of one single assimilation step

[7, 8], or in the case of linear model dynamics, convergence to the classical Kalman filter

as the ensemble size tends to infinity [9, 10]. The aim of this article is to address a more

practical scenario, namely by looking at the long-time behavior of the ensemble when the

ensemble size is fixed and where the underlying model is nonlinear. To be specific, we seek

to address the following questions:

(i) Under what model conditions does the ensemble remain bounded on an infinite time

horizon?

(ii) Are the filter processes ergodic and how quickly do they lose memory of initial

conditions?

These two questions are of great practical importance. Boundedness of the ensemble

prohibits the state estimate from diverging to infinity, thereby precluding the disastrous

phenomena of catastrophic filter divergence [11, 12, 13, 4]. Ergodicity of the ensemble

ensures that errors in the initialization of the filter will not affect the performance of the

filter in the long run [14, 15, 16], geometric ergodicity further insures that the error will

dissipate exponentially fast in time. To the best of our knowledge, the only article in a

similar setting is [17], where the authors show well-posedness of EnKF with bounds which

can grow exponentially in time and accuracy under variance inflation.

In the study of dynamical systems, boundedness can be demonstrated through the

construction of a Lyapunov function E , which is a positive function statisfying the dissipation

criterion

En−1E(Un) ≤ (1− β)E(Un−1) +K . (1.1)

Here En−1 denotes the conditional expectation with respect to the information at time n−1,

and 0 < β < 1 is a constant. Using the discrete Grönwall inequality, we immediately find

that

EE(Un) ≤ (1− β)nEE(U0) +Kβ−1,

which shows that, under expectation of the Lyapunov function E , the state Un is bounded

uniformly in n. In geophysically relevant models, such as the Lorenz equations and Navier-

Stokes equations, the corresponding E can be chosen as the kinetic energy E(·) = | · |2. In

this scenario, the relation (1.1) is known as an energy principle.
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A natural strategy for proving boundedness of EnKF and ESRF is to check whether the

energy principles of the nonlinear system are inherited by the ensemble. In other words, if

E is a Lyapunov function of the original system Un, can we use E to construct a Lyapunov

function for the ensemble processes {V (k)
n }Kk=1.

In Theorems 3.2 and 3.3 we will show that this construction is quite straight-forward,

provided that the underlying model satisfies a so-called observable energy criterion. To

be specific, suppose the model is observed linearly via Zn = HUn + ζn, then the observable

energy criterion states that the underlying model satisfies (1.1) with the choice E(u) = |Hu|2,
that is

En−1|HUn|2 ≤ (1− β)|HUn−1|2 +K . (1.2)

Under this assumption, it is shown in Theorems 3.2, 3.3 that the ensemble {V (k)
n }Kk=1 satisfies

a related energy principle. Hence, if the model satisfies (1.2) with full rank H, then the

ensemble {V (k)
n } must remain bounded on an infinite time horizon. When H is not of full

rank, one still obtains an energy principle from (1.2), but can only conclude boundedness of

the observable ensemble {HV (k)}Kk=1.

With a Lyapunov function established, the EnKF and ESRF are shown to be

geometrically ergodic by Theorems 5.5, 5.6 and 5.8, assuming the nonlinear system is

propagated with non-degenerate noise. The proofs are conceptually simple, as it suffices

to check to the controllability of the filters, thanks to the classical work of [18, 19, 20].

The only technical challenge lies in the eigenvalue decomposition of matrices required in

the assimilation step of ESRF. This can be resolved by a careful multivariate perturbation

analysis of the underlying matrices.

With a short discussion in Section 4, we will demonstrate a few sufficient conditions that

imply the observable energy criterion (1.2). When H is of full rank, the observable energy

criterion holds provided that the dynamics have an energy principle with strong contraction

parameter, depending on the condition number of H. When H is not of full rank, the

observable energy criterion does not hold in general, but is verifiable in several concrete

examples through direct calculation. This dichotomy of observational rank agrees with

known numerical evidence, where the ensemble behaves stably when full rank observations

are available, but can experience filter divergence when the observations are sparse [12, 4],

or even reach machine infinity in finite time, which is known as catastrophic filter divergence

[11, 4, 13]. Using the same philosophy in this paper, the authors have found a concrete

dynamical system that satisfies the kinetic energy criterion but not the observable energy

criterion, and whose EnKF ensemble (provably) experiences catastrophic filter divergence

with large probability. The authors have also found a general adaptive covariance inflation

scheme, which always insures that the ensemble remains bounded on an infinite time horizon,

without hurting the accuracy of original filters. These results will be reported in two separate

papers [21, 22].

The article is structured as follows. In Section 2.1 we formulate the EnKF and ESRF

methods and also introduce the notion of Lyapunov functions and energy principles. In
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Section 3 we establish a simple framework to verify energy principles for EnKF and ESRF

using the observable energy. Section 4 discusses the applicability of this framework by

studying a few sufficient conditions that guarantee the observable energy condition. In

Section 5 we prove the geometric ergodicity of the filter processes assuming the stability

results in Section 3 hold. In Section 6 we conclude this paper and discuss possible extensions.

2. Models setup and fundamental concepts

2.1. Model setup

In this paper, we assume the signal sequence Un ∈ R
d is generated through a nonlinear

mapping Ψh plus a mean zero noise ζn, and the observation is a linear one plus some mean

zero noise in R
q:

Un = Ψh(Un−1) + ζn, Zn = HUn + ξn. (2.1)

Here {ξn} is an i.i.d. noise sequence, and ζn is independent of ζ1, . . . ζn−1 conditioned on

the realization of Un−1. In many cases, the model may be generated by the solution of a

stochastic differential equation (SDE)

dut = ψ(ut)dt+ ΣdWt (2.2)

by taking Un = unh for some fixed h > 0. A short discussion of this discrete time formulation

is attached in Appendix B.

At this stage, we impose no restrictions on ζn except that it is mean zero with a

conditional covariance depends on Un−1:

E(ζn|Un−1) = 0, E(ζn ⊗ ζn|Un−1) = Rh(Un−1). (2.3)

As for the observation part, we will assume in this paper that

rank(H) = q ≤ d, E(ξn|Un−1) = 0, E(ξn ⊗ ξn|Un−1) = Iq.

The seemingly restrictive choice of observational noise covariance can be made without loss

of generality. Indeed, any observational covariance can be reduced to the identity via a

simple coordinate change on the filtering problem. To apply the results of this article

to a filtering problem with non-trivial observational covariance, one must first apply the

coordindate change and then check the assumptions in the new system of coordinates. Details

are contained in the remark below.

Remark 2.1. Suppose that ξn has a nonsingular covariance matrix Γ and Γ−1/2H has an

SVD decomposition Γ−1/2H = ΦΛΨT , then we change the coordinate system and consider

Ũn = ΨTUn, ξ̃n = ΦTΓ−1/2ξn, Z̃n = ΦTΓ−1/2Zn = ΛŨn + ξ̃n. (2.4)

Hence this change of coordinates also reduces the observation matrix to a diagonal matrix.

If the observation dimension q is larger than the model dimension d, the last d− q diagonal
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entries of Λ are zero, so the last d− q rows of Z̃n are independent of the signal and useless

for filtering purpose, which we can ignore and set d = q. Moreover ξ̃n will have covariance

matrix Iq. Since all the transformations above are linear and bijective, filtering Ũn with Z̃n

is equivalent to filtering Un with Zn. On the other hand, if the covariance Γ is singular, then

certain linear subspace can be observed exactly, and may cause the filtering operation to be

singular. We do not consider such pathological cases in this paper.

2.2. Ensemble Kalman filter

In the standard Kalman filtering theory, the conditional distribution of the signal process Un

given the observation sequence Z1, . . . , Zn is given by a Gaussian distribution. EnKF inherits

this idea by using a group of ensembles {V (k)
n }Kk=1 to represent this Gaussian distribution,

as the mean and covariance can be taken as the ensemble mean and covariance. The EnKF

operates very much like a Kalman filter, except its forecast step requires a Monte Carlo

simulation due to the nonlinearity of the system. In detail, the EnKF is an iteration of

following two steps, with (for instance) V̂
(k)
0 being sampled from the equilibrium measure of

Un.

• Forecast step: from the posterior ensemble at time n−1, {V (k)
n−1}Kk=1, a forecast ensemble

for time n is generated by

V̂ (k)
n = Ψh(V

(k)
n−1) + ζ(k)n ,

where ζ
(k)
n are independent samples drawn from the same distribution as ζn. Then the

prior distribution for time n is described by the ensemble mean and covariance:

V̂ n :=
1

K

K∑
k=1

V̂ (k)
n , Ĉn :=

1

K − 1

K∑
k=1

(V̂ (k)
n − V̂ n)⊗ (V̂ (k)

n − V̂ n). (2.5)

• Analysis step: upon receiving the new observation Zn, random perturbations of it are

generated by adding ξ
(k)
n :

Z(k)
n = Zn + ξ(k)n ,

where ξ
(k)
n are independent samples drawn from the same distribution as ξn. Each

ensemble member is then updated to

V (k)
n = V̂ (k)

n − ĈnH
T (I +HĈnH

T )−1(HV̂ (k)
n − Z(k)

n ) .

In summary, the EnKF is generated by the following dynamics

V (k)
n = V̂ (k)

n − ĈnH
T (I +HĈnH

T )−1(HV̂ (k)
n − Z(k)

n ),

V̂ (k)
n = Ψh(V

(k)
n−1) + ζ(k)n , V̂ n :=

1

K

K∑
k=1

V̂ (k)
n , Z

(k)
n+1 = Zn + ξ(k)n ,

Ĉn :=
1

K − 1

K∑
k=1

(V̂ (k)
n − V̂ n)⊗ (V̂ (k)

n − V̂ n) .

(2.6)
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From this formulation, it is clear that the augmented process {Un, V
(1)
n , . . . , V

(K)
n } is a Markov

chain. In the following discussion, we will denote the natural filtration up to time n as

Fn = σ{Um, V
(1)
m , . . . , V

(K)
m ,m ≤ n}, and denote the conditional expectation with respect to

Fn as En.

2.3. Ensemble square root filters

One drawback of EnKF comes from its usage of artificial noise ξ
(k)
n , as this introduces

unnecessary sampling errors, particularly when the ensemble size is small [23]. The

motivation behind the artificial noise is to make the posterior ensemble covariance

Cn :=
1

K − 1

K∑
k=1

(V (k)
n − V n)⊗ (V (k)

n − V n), V n :=
1

K

K∑
k=1

V (k)
n ,

satisfy the covariance update of the standard Kalman filter

Cn = Ĉn − ĈnH
T (HT ĈnH + I)−1HĈn, (2.7)

when the left hand is averaged over ξ
(k)
n [24, 25, 7] . ESRFs, including the ensemble transform

Kalman filter (ETKF) and the ensemble adjustment Kalman filter (EAKF), aim to resolve

this issue by manipulating the posterior spreads to ensure that (2.7) holds. Both ETKF and

EAKF algorithms are described by the following update steps, with the only difference

occurring in the assimilation step for the spread. As with EnKF, the initial ensemble

{V (k)
0 }Kk=1 is (for instance) sampled from the equilibrium distribution of Un.

• Forecast step: identical to EnKF, the forecast ensembles at time n is generated from

posterior ensembles at time n− 1:

V̂ (k)
n = Ψh(V

(k)
n−1) + ζ(k)n .

The forecast ensemble covariance Ĉn is then computed using (2.5).

• Assimilation step for the mean: upon receiving the new observation Zn, the posterior

ensemble mean is updated through

V n = V̂n − ĈnH
T (I +HĈnH

T )−1(HV̂ n − Zn), V̂ n =
1

K

K∑
k=1

V̂ (k)
n . (2.8)

• Assimilation step for the spread: The forecast ensemble spread is given by the d × K

matrix

Ŝn = [V̂ (1)
n − V̂ n, . . . , V̂

(K)
n − V̂ n] .

To update the spread, first find a matrix Tn ∈ R
d×d (for ETKF) or An ∈ R

K×K (for

EAKF) such that

1

K − 1
TnŜn ⊗ T Ŝn =

1

K − 1
ŜnAn ⊗ ŜnAn = Ĉn − ĈnH

T (HT ĈnH + I)−1HĈn . (2.9)
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The posterior spread is updated to Sn = TnŜn (for ETKF) or Sn = ŜnAn (EAKF), and

the ensemble members are updated to

V (k)
n = V n + S(k)

n ,

where S
(k)
n denotes the k-th column of the updated spread matrix Sn. By construction,

the posterior covariance Cn = (K − 1)−1ST
n Sn satisfies (2.7).

At this stage it suffices to know that such An and Tn exist, their finer properties play

no role in the discussion concerning stability. Their formulation will become important

when we want to study ergodicity in Section 5, and a detailed formulation will be given

there. Based on our description above, the augmented process {Un, V
(1)
n , . . . , V

(K)
n } is

again a Markov chain. As above, we will denote the natural filtration up to time n as

Fn = σ{Um, V
(1)
m , . . . , V

(K)
m ,m ≤ n}, and denote the conditional expectation with respect to

Fn as En.

2.4. Covariance inflation

When applying EnKF and ESRF, the forecast ensemble covariance Ĉn often underestimates

the uncertainty in the forecast model. An ad hoc solution is to use inflated or modified

forecast ensemble covariance in the assimilation step. We will discuss three types of such

methods in this paper:

• Additive inflation: replace Ĉn with Ĉn + λI for a proper λ > 0;

• Uniform inflation: replace Ĉn with (1 + λ)Ĉn for a proper λ > 0.

It should be noted that additive inflation is only used in EnKF and not in the square root

filters since it is not clear how an additive inflation should be applied at the level of the

matrix square root. There are other ad hoc ways of modifying ESRF methods with additive

inflation, see page 147 of [4] for more details.

2.5. Energy principles and Lyapunov functions

Stability for nonlinear systems can be studied through energy principles. That is, certain

types of energy are preserved or dissipated by the dynamics. In a stochastic setting, this

idea is formalized using Lyapunov functions. In this paper, we say that E is a Lyapunov

function for a Markov chain Xn if there exists positive constants 0 < β < 1 and K such that

E(E(Xn)|Xn−1) ≤ (1− β)E(Xn−1) +K (2.10)

for all n ∈ Z
+. For a continuous time Markov process Xt with generator L, the previous

relation is replaced by

LE(x) ≤ −βE(x) +K , (2.11)
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where we only require β,K > 0. As a simple consequence of Grönwall’s inequality, the

existence of a Lyapunov function implies (respectively) that

EE(Xn) ≤ (1− β)nEEX0 +K/β, or EE(Xt) ≤ e−βt
EEX0 +K/β. (2.12)

In other words, EE(Xn) (or respectively EE(Xt)) can be bounded uniformly in time. In this

case, we say that Xn (or Xt) is E-bounded.
When the sub-level sets of E are compact, we will call E a strong Lyapunov function.

This additional requirement implies that an E-bounded Markov chain revisits a large enough

compact set arbitrarily many times and that the distribution Xn forms a tight sequence.

Existence of strong Lyapunov functions will be crucial when proving geometric ergodicity.

In this paper, we will assume the kinetic energy of the process, E(·) = | · |2, is a strong

Lyapunov function. Based on our formulation of the random sequence Un, this is equivalent

to the following.

Assumption 2.2 (Kinetic energy principle). There exist constants 0 < βh < 1, Kh > 0,

such that

|Ψh(u)|2 + tr(Rh(u)) ≤ (1− βh)|u|2 +Kh ,

for all u ∈ R
d where Rh is the conditional covariance of the system noise defined in (2.3).

When the random sequence Un is generated from discrete time solutions of an SDE ut,

this kinetic energy principle can be verified directly by computing the generator (2.11) or

simply checking the drift of the SDE, see Appendix B for more details. Using this convenient

argument, we can easily verify that the following examples all satisfy Assumption 2.2.

Example 2.3 (Stochastic turbulence models). When Un is a time discretization of the SDE

(2.2), it suffices to require that for certain β,K > 0

L|u|2 = ψ(u) · u+
1

2
tr(ΣΣT ) ≤ −β|u|2 +K, (2.13)

since then Assumption 2.2 would hold with βh = 1 − e−βh, Kh = Kh. Relation (2.13) holds

for many stochastic turbulence models, which generally take the form

dUt = −DUtdt+B(Ut)dt+ f + ΣdWt.

The linear operator D represents damping, so its symmetric part 1
2
(DT + D) is positive

semidefinite. The nonlinear interaction term B is energy preserving, with 〈Ut, B(Ut)〉 = 0.

Then it is easy to verify that (2.13) holds for β = 1
4
λmin(D

T + D) and K = |f |2/β. For

more information on these models and their application to turbulence, see [26, 4, 27].

In the following, we present two well known turbulent systems that all satisfy relation

(2.13). Hence, Assumption 2.2 holds for their discrete time formulation.
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Example 2.4 (Lorenz 96). Let Ut = (u1,t, . . . , uN,t) be an N ≥ 4 (usually N = 40)

dimensional system, with its dynamics given by

u̇i,t = −ui−2,tui−1,t + ui−1,tui+1,t − ui,t + F,

with the periodic boundary condition ut,k = ut,k−N = ut,k+N for all k and where F is a

constant forcing. One can easily show that

˙|Ut|2 = −2|Ut|2 + 2F
N∑
i=1

ui,t ≤ −|Ut|2 +NF 2.

Example 2.5 (Truncated stochastic Navier-Stokes system). The incompressible stochastic

Navier-Stokes equation on a two dimensional torus can be described through the vorticity

field

dvt = νΔvtdt− B(Kvt, vt)dt+
∑
k∈Z2

σkekdWk,t.

Here ek is the Fourier basis for square integrable functions on the torus, so that ek(x) = eik·x,
K is the linear Biot-Savart integral operator, mapping ek to ekik

⊥/|k|2, B is the advection

effect B(u, v) := (u · ∇)v and (Wk,t)k∈Z2 is a sequence of independent Wiener processes. It

is well known that for this process the L2-norm is dissipative in time.

For practical numerical implementation, one needs to truncate the infinite dimensional

object vt. For example, one can ignore the high Fourier modes and assume the truncated vt
has the following Fourier decomposition:

ṽt =
∑
k∈I

vk,tek + v∗k,te−k.

Here ∗ denote complex conjugacy, and

I = {k = (k1, k2) ∈ Z
2 : |k| ≤ N, k 
= 	0, arg(k1 + k2i) ∈ [0, π)}.

Note by formulation, ṽt is real valued, and the dynamics of ṽk,t can be specified by the

dynamics of vk,t as follow:

dvk,t = −ν|k|2vk,tdt−PkB(Kṽt, ṽt)dt+ σkdWk,t.

where Pk : v �→ 〈v, ek〉 evaluates the k-th Fourier coefficient. Then the full dynamics

Ut = (vk,t)k∈I follows a energy principle:

L|Ut|2 =
∑
k∈I

L|vk,t|2 = −2ν
∑
k∈I

|k|2|vk,t|2 +
∑
k∈I

σ2
k ≤ −2ν|Ut|2 +

∑
k∈I

σ2
k.

Here we used the identity 〈v, B(Kv, v)〉 = 0, so∑
k∈I

vk,tPkB(Kṽt, ṽt) = 〈
∑
k∈I

vk,tek, B(Kṽt, ṽt)〉 = 1

2
〈ṽt, B(Kṽt, ṽt)〉 = 0.
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In some other nonlinear models, the stability can be demonstrated only after first

applying a linear coordinate change.

Example 2.6 (Lorenz 63). Let Ut = (xt, yt, zt) be a three dimensional system following an

ordinary differential equation (ODE):

d

dt
xt = σ(yt − xt),

d

dt
yt = xt(r − zt)− yt,

d

dt
zt = xtyt − bzt.

Then we can define

E(Ut) = rx2
t + σy2t + σ(zt − 2r)2,

so using Young’s inequality and β := min{2, 2σ, b},
d

dt
E(Ut) = −2σ(rx2

t + y2t + b(zt − r)2) + 2bσr2

≤ −2σ(rx2
t + y2t +

1
2
b(zt − 2r)2) + 4bσr2

≤ −βE(Ut) + 4bσr2.

One should note here that |Ut|2 does not satisfy relation (2.13) for all choices of parameters.

Section 4 will have a detailed discussion of this type of Lyapunov function, where it will

be shown that the Lyapunov dissipation relation (2.10) can be preserved through constant

shifts for quadratic functions, but not through linear transformations in general.

3. Bounding the observable energy

In the analysis of ensemble Kalman filters, one natural strategy is obtaining a control over

the configuration of the ensemble members. However, such control is very difficult in general,

as nonlinear dynamics are known be chaotic and turbulent. In this section, we will discuss

one type of condition which circumvents this problem. Generally speaking, this condition

requires that the energy of the observable part, E(·) = |H · |2, be a Lyapunov function for

the model Un. In another words, we assume there is a βh ∈ (0, 1) and Kh > 0 such that

En−1|HUn|2 ≤ (1− βh)|HUn−1|2 +Kh, a.s.

This condition can be formulated in terms of the propagation equation (2.1).

Assumption 3.1 (Observable energy criterion). There exists a βh ∈ (0, 1) and a Kh, such

that

|HΨh(u)|2 + tr(HRh(u)H
T ) ≤ (1− βh)|Hu|2 +Kh ,

for all u ∈ R
d. Here Rh again is the conditional covariance of the system noise in (2.3).

The objective of the current section is to show that this property is inherited by

the ensemble and square root Kalman filters, so the observable energy of the ensembles,∑
k |HV

(k)
n |2 has uniformly bounded expectation in time.
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Under the assumption of full observations H = Id, as made in [7, 17], it is clear that

Assumption 3.1 is equivalent to Assumption 2.2, hence the observable energy assumption is

quite natural. When rank(H) = q = d, the observable energy is actually equivalent to the

standard kinetic energy, as

|v| = |(HTH)−1HT ·Hv| ≤ |(HTH)−1HT ||Hv|, |Hv| ≤ |H||v|.

However, Assumption 2.2 does not in general imply Assumption 3.1. To achieve this

implication, one requires that the dissipation in Assumption 2.2 be ‘strong enough’. Section

4 will provide a detailed discussion of when and how Assumption 3.1 can be verified.

3.1. Boundedness of the observable energy for EnKF

The advantage of the observable energy |HUn|2 over the kinetic energy |Un|2 is that it is

preserved in the assimilation step (2.6). To see this, left multiply the assimilation equation

by H and rearrange to obtain

HV (k)
n = (I +HĈnH

T )−1HV̂ (k)
n +HĈnH

T (I +HĈnH
T )−1Z(k)

n .

The first term on the right can be bounded in terms of HV
(k)
n−1 using Assumption 3.1 and the

second term can similarly be bounded in terms of |HUn|2 and an additive constant. This

simple observation is the crux of the following result.

Theorem 3.2. Assume that the signal process Un satisfies the observable energy criterion,

Assumption 3.1, and let {V (k)
n }Kk=1 be the EnKF ensemble process. Then

(i) There exist constants D,M > 0 such that

En−1(|HV (k)
n |2 +M |HUn|2) ≤ (1− 1

2
βh)(|HV

(k)
n−1|2 +M |HUn−1|2) +D (3.1)

for each k = 1 . . . K and uniformly in n ≥ 1. In particular, the function

E(U, V (1), . . . , V (K)) =
K∑
k=1

|HV (k)
n |2 +KM |HUn|2

is a Lyapunov function for the Markov chain (Un, V
(1)
n , . . . , V

(K)
n ) and hence the signal-

ensemble process is E-bounded.
(ii) When rank(H) = q = d, E is a strong Lyapunov function and

E|Un|2 +
K∑
k=1

E|V (k)
n |2

is bounded uniformly in n ≥ 0. The precise upper bound can be read off directly from

(2.12)
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(iii) Finally, all the claims above hold for any positive semi-definite choice of Ĉn, in particular

any covariance inflation scheme from Section 2.4 satisfies the same relation.

Proof. Left multiply the first equation of (2.6) with H,

HV (k)
n = HV̂ (k)

n −HĈnH
T (I +HĈnH

T )−1(HV̂ (k)
n − Z(k)

n )

= (I +HĈnH
T )−1HV̂ (k)

n +HĈnH
T (I +HĈnH

T )−1Z(k)
n . (3.2)

Then based on elementary Lemma Appendix A.1 and Young’s inequality, Lemma Appendix

A.2

|HV (k)
n |2 ≤ (1 + 1

2
βh)|HV̂ (k)

n |2 + (1 + 2β−1
h )|Ẑ(k)

n |2.
Using Assumption 3.1 and the conditional independence of ζ

(k)
n

En−1(|HV̂ (k)
n |2) = En−1(|HΨh(V

(k)
n−1) +Hζ

(k)
n−1|2) ≤ (1− βh)|HV

(k)
n−1|2 +Kh .

Furthermore, by Young’s inequality

En−1(|Ẑ(k)
n |2) = En−1(|HUn + ξn + ξ(k)n |2) ≤ 2En−1(|HUn|2) + 4q ≤ 2|HUn−1|2 + 2(Kh + 2q).

Combining these inequalities and using (1− βh)(1 +
1
2
βh) < (1− 1

2
βh) we have

En−1|HV (k)
n |2 ≤ (1− 1

2
βh)|HV

(k)
n−1|2+(2+4β−1

h )|HUn−1|2+(1+ 1
2
βh)Kh+2(1+2β−1

h )(Kh+2q).

On the other hand, by Assumption 3.1, for any M > 0 we have

MEn−1|HUn|2 ≤ M(1− βh)|HUn−1|2 +MKh.

Hence, by fixing M such that 1
2
βhM > (2 + 4β−1

h ) and adding the previous two inequalities,

we see that we can always find a constant D such that

En−1(|HV (k)
n |2 +M |HUn|2) ≤ (1− 1

2
βh)(|HV

(k)
n−1|2 +M |HUn−1|2) +D.

This completes the proof of the first claim. The second claim is simply summing the result of

the first claim over all k. And when H is of rank d, the observable energy |Hv|2 is equivalent
to the square energy |v|2

|v| = |(HTH)−1HT ·Hv| ≤ |(HTH)−1HT ||Hv|.

Finally, notice that we have not used any properties of Ĉn other than it is positive semi-

definite.
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3.2. Boundedness of the observable energy for ESRF

The boundedness of ESRF ensembles is not too different from EnKF, since the assimilation

step for mean (2.8) is similar to the assimilation step of EnKF, while the posterior ensemble

spread in the observable space can be bounded a.s.

Theorem 3.3. Assume that the signal process Un satisfies the observable energy criterion,

Assumption 3.1, and let {V (k)
n }Kk=1 denote either the EAKF or ETKF ensemble. Then

(i) The observable posterior covariance HCnH
T  Id a.s., where

Cn :=
1

K

K∑
k=1

(V (k)
n − V n)⊗ (V (k)

n − V n).

(ii) There exist constants D,M > 0 such that the ensemble mean V n = 1
K

∑K
k=1 V

(k)
n satisfies

En−1(|HV n|2 +M |Un|2) ≤ (1− 1
2
βh)(|HV n−1|2 +M |HUn−1|2) +D , (3.3)

for all integers n ≥ 2. In particular, the function

E(U, V (1), . . . , V (K)) =
K∑
k=1

|HV (k)
n |2 +KM |HUn|2.

is a Lyapunov function for the signal-ensemble process (Un, V
(1)
n , . . . , V

(K)
n ) and hence

the process is E-bounded.
(iii) When rank(H) = d, E is a strong Lyapunov function and

E|Un|2 +
K∑
k=1

E|V (k)
n |2

is bounded uniformly in n ≥ 0. The precise bound can be read off directly from (2.12).

(iv) Again the claims above hold for any choice of positive semi-definite covariance matrix

Ĉn, in particular the uniform covariance inflation scheme in Section 2.4.

Proof. From the definition of Cn in both ESRF methods, we have that

HCnH
T = HĈnH

T −HĈnH
T (HT ĈnH + I)−1HĈnH

T

= HĈnH
T (HT ĈnH + I)−1(I +HĈnH)−HĈnH

T (HT ĈnH + I)−1HĈnH
T

= HĈnH
T (HĈnH

T + I)−1.

By Lemma Appendix A.1, we clearly have 0  HCnH
T  Id. As a consequence,

K∑
k=1

|HV (k)
n |2 = tr(HCnH

T ) +K|HV n|2 ≤ K|HV n|2 + d. (3.4)
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The inequality (3.3) follows almost identically to the proof of (3.1). Indeed, the ensemble

mean assimilation step (2.8) implies that

HV n = HV̂n −HĈnH
T (I +HĈnH

T )−1(HV̂ n − Zn)

= (I +HĈnH
T )−1HV̂n +HĈnH

T (I +HĈnH
T )−1Zn.

The only difference between this and the proof of (3.1) is that we need to bound En−1|HV̂n|2,
but by Jensen’s inequality and (3.4) we have

En−1|HV̂n|2 ≤ 1

K

K∑
k−1

En−1|HV̂ (k)
n |2 ≤ 1− βh

K

K∑
k=1

|HV
(k)
n−1|2+Kh ≤ (1−βh)|HV n−1|2+d+Kh.

Therefore the argument after (3.2) applies to the process V n verbatim.

To show that E is a Lyapunov function, it suffices to apply Young’s inequality

|HV (k)
n |2 ≤ (1 + 1

4
βh)|HV n|2 + (1 + 4β−1

h )|HV
(k)

n −HV n|2,

and also see that

K∑
k=1

|HV (k)
n −HV n|2 = tr(ST

nH
THSn) = tr(HSnS

T
nH

T ) = tr(HCnH
T ) ≤ tr(Iq) ≤ q,

where Sn is the posterior spread matrix, which is given by TnŜn or ŜnAn as in (2.9). Therefore

En−1E(Un, V
(1)
n , . . . , V (K)

n ) ≤ (1 + 1
4
βh)KEn−1(|HV n|2 +M |HUn|2) + (1 + 4β−1

h )q

≤ (1− 1
4
βh)K(|HV n−1|2 +M |HUn−1|2) +KD + (1 + 4β−1

h )q

≤ (1− 1
4
βh)(

K∑
k=1

|HV
(k)
n−1|2 +KM |HUn−1|2) +KD + (1 + 4β−1

h )q

= (1− 1
4
βh)E(Un−1, V

(1)
n−1, . . . , V

(K)
n−1 ) +KD + (1 + 4β−1

h )q.

Here we applied Jensen’s inequality inequality in the penultimate step. The proofs for the

second two claims are identical to Theorem 3.2.

4. Validity of the observable energy criterion

In Section 3, we have established a series of uniform boundeness results based on the

observable energy criterion, Assumption 3.1. This criterion is different from the usual energy

principle for dynamical systems, Assumption 2.2, although they share similar formulations.

In this section, we will demonstrate a few sufficient conditions that lead to Assumption

2.2 when the observation is of full rank, and discuss a few concrete examples where the

observation is rank deficient and Assumption 2.2 still holds.
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4.1. Full rank observation

As stated earlier, even when H is of full rank, Assumption 2.2 does not necessarily imply

Assumption 3.1. Indeed, even though the norms |·|2 and |H ·|2 are equivalent, the constants of
proportionality may preclude the dissipation relation of Assumption 3.1. In a separate work

[21], the authors have constructed a concrete nonlinear system which satisfies the kinetic

energy principle, Assumption 2.2, but not the observable energy principle, Assumption

3.1, and which exhibits catastrophic filter divergence [11, 13] with large probability. This

indicates the importance of verifying the observable energy criterion over the typical energy

criterion.

If the condition number of the matrix H is small enough, a kinetic energy principle

implies an observable energy principle. To be specific, define the condition number

CH := max{|Hu||v| : |u| = 1, |Hv| = 1},
which must be finite since H is of full rank. Then we have the following.

Theorem 4.1. If the kinetic energy principle, Assumption 2.2, holds, then

|HΨh(u)|2 + tr(HRh(u)H
T ) ≤ (1− βh)C2

H |Hu|2 + |H|2Kh

where CH is the condition number of matrix H. In particular, if (1 − βh)C2
H < 1, then

the observable energy criterion, Assumption 3.1, also holds; therefore the average square

norms of the ensemble members for EnKF and ESQF are bounded uniformly in time as a

consequence of Theorems 3.2 and 3.3.

Proof. By Assumption 2.2

|HΨh(u)|2 + tr(HRh(u)H
T ) ≤ |H|2[|Ψh(u)|2 + tr(Rh(u))]

≤ (1− βh)|H|2|u|2 + |H|2Kh,

≤ (1− βh)C2
H |Hu|2 + |H|2Kh.

Another situation in which a dissipation criterion implies Assumption 3.1 is when the

dissipation is of a higher polynomial order. This is an immediate consequence of Theorem

4.1.

Corollary 4.2. Suppose that the stochastic system Un is generated through the solution of

the SDE

dut = ψ(ut)dt+ ΣdWt,

as Un = unh, while for some δ,K > 0

〈u, ψ(u)〉 ≤ −δ|u|1+δ +K.

Then the kinetic energy principle, Assumption 2.2, holds with any fixed βh ∈ (0, 1). By

Theorem 4.1, if rank(H) = d, then the expected square norms of the ensemble members for

EnKF and ESQF are bounded uniformly in time.
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Proof. Since

L|ut|2 = 2〈ut, ψ(ut)〉+ tr(ΣΣT ) ≤ −2δ|u|1+δ + 2K + tr(ΣΣT ).

By Hölder’s inequality, for any α > 0, there is a constant D such that

L|ut|2 ≤ −α|ut|2 +D.

By Grönwall’s inequality and Dynkin’s formula we obtain that

E|U1|2 = E|uh|2 ≤ e−αh|u0|2 +Dα−1 = e−αh|U0|2 +Dα−1.

So letting α = − ln(1− βh)h
−1 we conclude our proof.

The higher order dissipation described in Corollary 4.2 has been used in many stochastic

turbulence models to obtain better stability, like the canonical scalar model with cubic

nonlinearity [28, 29] and the conceptual dynamical model for turbulence in [30]. Moreover,

this corollary indicates that in the full rank case EnKF can be stabilized if we are willing

to filter with a model error that stabilizes the system. For example instead of running the

EnKF with vector field ψ of Lorenz 63 or 96, we can run EnKF with the altered system

ψ̃ = ψ − λ|u|u, with any strictly positive λ, then by the above results the filter will have

bounded observable energy on an infinite time horizon.

We now address the situation where an energy principle holds for a linearly translated

version of the typical energy. That is

En−1|HUn − u∗|2 ≤ β|HUn−1 − u∗|2 +K

for some fixed u∗ ∈ R
q. Then by Young’s inequality Lemma Appendix A.2

En−1|HUn|2 ≤ (1 + ε)En−1|HUn − u∗|2 + (1 + ε−1)|u∗|2
≤ (1 + ε){β|HUn−1 − u∗|2 +K}+ (1 + ε−1)|u∗|2
≤ (1 + ε)2β|HUn−1|2 + (1 + ε−1)2(K + 2|u∗|2). (4.1)

Therefore our framework can be applied to the Lorenz 63 system, Example 2.6, as long as

H/diag{r, σ, σ} satisfies the condition number requirement of Theorem 4.1.

4.2. Observation with rank deficiency

In the case where H is rank deficient we do not expect the observable energy criterion to

hold for broad classes of models. This constraint is in a sense not surprising, since EnKF

and ESQF with sparse observations can potentially diverge to machine infinity, in a well

documented phenomena known as catastrophic filter divergence [11, 4, 13]. Nevertheless,

under certain scenarios one can verify Assumption 3.1 through explicit calculation. We will

now verify the observable energy criterion for two concrete examples.
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Example 4.3. Consider a stable linear dynamical system given by Un = AUn−1 + ζn, where

A produces a contraction,

|Au| ≤ (1− β)|u| for all u,

with a β ∈ (0, 1). For simplicity, we assume that ζn are i.i.d. random variables with mean 0

and covariance R. Suppose that H commutes with A, AH = HA, then

E(|HUn|2|Un−1 = u) = |HAu|2 + E|Hζn|2
= |AHu|2 + tr(HRHT )

≤ (1− β)2|Hu|2 + tr(HRHT ).

Hence Assumption 3.1 holds.

Example 4.4. Recall the Lorenz 63 model, Example 2.6, where Un is given by unh =

(xnh, ynh, znh), where the dynamics of ut is specified by

d

dt
xt = σ(yt − xt),

d

dt
yt = xt(r − zt)− yt,

d

dt
zt = xtyt − bzt.

Suppose that we have direct noisy observations of the latter two coordinates, that is

H = diag{0, 1, 1}. We can define the linearly translated observable energy as EH(ut) =

y2t + (zt − r)2. Direct computation yields

d

dt
EH(ut) = −2y2t − 2bz2t + 2brzt ≤ −γEH(ut) + r2,

where γ = min{2, b}. Therefore by Grönwall’s inequality,

EH(ut+h) ≤ e−γhEH(ut) + hr2.

Following our manipulation for linearly translated energy, (4.1), we can conclude that

Assumption 3.1 holds by taking a sufficiently small ε ≤ 1 in the following application of

Lemma Appendix A.2

|HUn|2 = y2nh + z2nh ≤ (1 + ε)EH(unh) + (1 + ε−1)r2

≤ (1 + ε)e−γtEH(u(n−1)h) + (1 + ε)hr2 + (1 + ε−1)r2

≤ (1 + ε)2e−γt(y2(n−1)h + z2(n−1)h) + 3(1 + ε−1)r2 + (1 + ε)hr2

= (1 + ε)2e−γt|HUn−1|2 + 3(1 + ε−1)r2 + (1 + ε)hr2.

5. Geometric ergodicity of the ensemble based Kalman filters

The objective of this section is to verify geometric ergodicity for the signal-ensemble process.

In particular, if P denotes the Markov transition kernel for the signal ensemble process, then

we will show that there exists a constant γ ∈ (0, 1) such that

‖P nμ− P nν‖TV ≤ Cμ,νγ
n ,
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where μ, ν are two arbitrary initial probability distributions, Cμ,ν is a time uniform constant

that depends on μ, ν, and ‖ · ‖TV denotes the total variation norm. Furthermore the

nonlinear filter has a unique invariant attracting state, the analogue of the asymptotic filter

for linear Kalman filters [31, 4]. Hence, geometric ergodicity implies that discrepancies in

the initialization of the ensemble filters, which is usually inevitable in practice, will dissipate

exponentially with time.

To prove the ergodicity of the signal-ensemble process, we invoke a standard result of

Markov chain theory [18]. Here we use a simple adaptation of the form given in [19, Theorem

2.3].

Theorem 5.1. Let Xn be a Markov chain in a space E such that

(i) There is a strong Lyapunov function E : E �→ R
+ for the Markov process Xn

(ii) For any fixed M > 0, the compact set C = {x : E(x) ≤ M} satisfies the minorization

assumption. That is, there is a probability measure ν with ν(C) = 1, and a η > 0 such

that for any given set A

P(Xn ∈ A|Xn−1 = x) ≥ ην(A)

for all x ∈ C.

Then there is a unique invariant measure π and constants r ∈ (0, 1), κ > 0 such that

‖Pμ(Xn ∈ · )− π‖TV ≤ κrn
(
1 +

∫
E(x)μ(dx)

)
.

In the following we discuss the conditions we require in order to apply Theorem 5.1. In

the previous sections, we established the existence of Lyapunov functions for signal-ensemble

processes. In particular, when H is of full rank, Theorems 3.2, 3.3 and 4.1 provide simple

criteria which guarantee that the filtering process satisfies the following assumption

Assumption 5.2 (Existence of a strong Lyapunov function). There is a function E :

R
d × R

d×K → R
+ with compact sublevel sets and constants Kh, βh > 0 such that

En−1E(Un, V
(1)
n , . . . , V (K)

n ) ≤ (1− βh)E(Un−1, V
(1)
n−1, . . . , V

(K)
n−1 ) +Kh .

Although Assumption 5.2 may be difficult to hold in general scenarios, the authors have

found an adaptive covariance inflation scheme that always guarantees Assumption 5.2, which

will be reported in a separate paper [22]. This assumption provides the first hypothesis of

Theorem 5.1.

In order to verify the minorization condition of Theorem 5.1, we need to assume there

is a density for the noise ζn appearing in the time discrete model (2.1) .

Assumption 5.3 (Nondegenerate system noise). For any M1,M2 > 0, there is a constant

α > 0 such that

P(ζn ∈ · |Un−1 = u) ≥ αλM2(·)
for all |u| ≤ M1, where λM2(dx) is the Lebesgue measure of Rd restricted to {u : |u| ≤ M2}.
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Assumption 5.3 holds for many practical examples. When Un is produced by time

discretization of an SDE (2.2), it suffices to require Σ being nonsingular, please see Appendix

B for a detailed discussion. In other situations where Un is produced genuinely as a random

sequence, ζn is usually a sequence of random Gaussian variables, which Assumption 5.3 also

satisfies.

5.1. Controllability

In this subsection, we establish a framework which verifies the minorization condition using

Assumption 5.3 and controllability of the Kalman update map. The signal-ensemble process

Xn := (Un, V
(1)
n , . . . , V

(K)
n ) is a Markov chain taking values in X = R

d ×R
d×K . For all three

ensemble filters, the evolution of Xn is described by the composition of two maps. The first

is a random map from X to a signal-forecast-observation space Y , described by a Markov

kernel Φ : X ×B(Y) → [0, 1]. The second is a deterministic map Γ : Y → X , which combines

the forecast with the observed data to produce the updated posterior ensemble. The details

of these maps, as well as the definition of the intermediate space Y , differs between EnKF,

ETKF and EAKF.

For EnKF, the intermediate space is Y := R
d ×R

d×K ×R
q×K and the random mapping

is

(Un−1, V
(1)
n−1, . . . , V

(K)
n−1 ) �→ Yn := (Un, V̂

(1)
n , . . . , V̂ (K)

n , Z(1)
n , . . . , Z(K)

n ) .

The deterministic map Γ is given by

Γ(Un, V̂
(1)
n , . . . , V̂ (K)

n , Z(1)
n , . . . , Z(K)

n ) = (Un,Γ
(1), . . . ,Γ(K))

where

Γ(k) = V̂ (k) − ĈHT (I +HĈHT )−1(HV̂ (k) − Z(k)) (5.1)

Ĉ =
1

K − 1

K∑
k=1

(V̂ (k) − V̂ )⊗ (V̂ (k) − V̂ ) V̂ =
1

K

K∑
k=1

V̂ (k) .

The corresponding formulas for ETKF and EAKF will be given in Sections 5.3 and 5.4

respectively.

Given this formuation, it suffices to show that the push-forward kernel Γ∗Φ(x, ·) =

Φ(x,Γ−1(·)) satisfies the minorization condition. It is easy to see that, given the assumptions

on the noise, the kernel Φ(x, ·) has a density with respect to Lebesgue measure, so we simply

need to show that the pushforward inherits the density property from Φ. To achieve this,

we use the following simple fact.

Lemma 5.4. Let Φ be a Markov transition kernel from R
n → R

n × R
m with a Lebesgue

density p(x, y) = p(x, (y1, y2)) and let Γ : Rn × R
m → R

n. Given a compact set C, suppose

that there is a point y∗ = (y∗1, y
∗
2) ∈ R

n × R
m and β > 0 such that

(i) For all x ∈ C, the density function p(x, y) > β for y around y∗ ,
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(ii) Γ is C1 in a neighborhood of y∗ and det(Dy1Γ)|y∗ > 0 .

Then there is a δ > 0 and a neighborhood O1 of Γ(y∗) such that for all x ∈ C

Γ∗Φ(x, ·) ≥ δλO1(·)

where λO1 is the Lebesgue measure restricted to the set O1. In other words, the minorization

condition holds for the transition kernel Γ∗Φ.

Proof. By continuity and compactness, we can find a small neighborhood O of y∗, a

neighborhood O′ of (Γ(y∗), y∗2), and a small positive number ε > 0 such that for all

x ∈ C, (y1, y2) ∈ O

p(x, (y1, y2)) > ε, ε−1 > | det(Dy1Γ(y1, y2))| > ε .

such that Γ is a C1 diffeomorphism from O to O′. Let D0 = {(y1, y2) : Γ(y1, y2) ∈ A, y2 ∈
B, (y1, y2) ∈ O} then, using the change of variables (y1, y2) �→ (Γ(y1, y2), y2), we have by the

change of variables formula

Φ(x,D0) :=

∫
1A(Γ(y1, y2))1B(y1, y2)p(x, y1, y2)dy1dy2

=

∫
1(A×B)(z, y2)1O′(z, y2)q(x, (z, y2))dzdy2

where

q(x, (z, y2)) = p(x, y1, y2)

∣∣∣∣ det
[
Dy1z Dy2z

Dy1y2 Dy2y2

] ∣∣∣∣−1

= p(x, y1, y2)| det(Dy1Γ(y1, y2))|−1.

with z = Γ(y1, y2). By construction, q is strictly above ε2 for x ∈ C and (z, y2) ∈ O′. Pick

neighborhood O1 of z∗ = Γ(y∗) and O2 of y2 such that O1 × O2 ⊂ O′. Then, since the set

Γ−1(A) ∩ O is of the form D0 (with B = R
m) we can apply the above change of variables

formula to obtain

Φ(x,Γ−1(A)) ≥ Φ(x,Γ−1(A) ∩O) =

∫
1A(z)1O′(z, y2)q(x, z, y2)dzdy2

≥
∫
O1×O2

1A(z)q(x, z, y2)dzdy2

≥ ε2λ(O1)λ(O2 ∩ A) .

Then taking δ = ε2λ(O2) satisfies our requirement.

5.2. Ergodicity for the EnKF

In the application of Lemma 5.4 to the signal-ensemble process, we will use the variables

x = (Un−1, V
(1)
n−1, . . . , V

(K)
n−1 )
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y1 = (Un, V̂
(1)
n , . . . , V̂ (K)

n )

y2 = (Zn, Z
(1)
n , . . . , Z(K)

n )

The choice of the intermediate point (y∗1, y
∗
2) can be quite delicate. Although the non

degeneracy of the Jacobian should in principal be verifiable for general Γ, a well chosen

intermediate point can simplify the computation significantly.

With Theorem 5.1 and Lemma 5.4, the verification of EnKF becomes rather straight

forward.

Theorem 5.5. If the unfiltered signal process Un has an kinetic energy principle with

nondegenerate system noise, and the EnKF signal-ensemble process has a strong Lyapunov

function, in other words Assumptions 2.2, 5.3 and 5.2 hold, then the EnKF signal-ensemble

process is geometrically ergodic in total variation distance.

Proof. Fix any M1 > 0, we apply Lemma 5.4 to the compact set

C =

{
(u, v(1), . . . , v(K)) : |u|2 +

K∑
k=1

|v(k)|2 ≤ M1

}
.

Pick the intermediate point y∗ with all its components at the origin. It is easy to see that

the first condition of Lemma 5.4 holds. Indeed the random variable (ζn, ζ
(k)
n , ξn, ξ

(k)
n ) satisfies

the density condition by assumption and (y1, y2) is obtained from this random variable via

an onto linear transformation, hence (y1, y2) inherits the density condition.

It is also elementary to verify the differentiability and nondegeneracy of Γ at y∗,
where Γ is defined by (5.1). Indeed, using the formula for gradients of inverse matrices

DL−1 = −L−1DLL−1, it is clear that Γ is a polynomial combination of several continuously

differentiable functions and in particular must be C1 near y∗. To prove non-degeneracy,

notice that both Ĉ and Dy1Ĉ vanish at y∗. Using this fact, a simple calculation yields

Dy1Γ|y∗ = I ,

which proves non-degeneracy and hence the Theorem follows from Lemma 5.4 and Theorem

5.1.

5.3. Ergodicity of ETKF

For both ETKF and EAKF, the intermediate space is slightly different since there are no

longer perturbed observations. In particular we have Y := R
d ×R

d×K ×R
q and the Markov

kernel Φ : X × B(Y) → [0, 1] is described by

(Un−1, V
(1)
n−1, . . . , V

(K)
n−1 ) �→ (Un, V̂

(1)
n , . . . , V̂ (K)

n , Zn) .

The deterministic step is given by the map Γ(U, V, Z) = (U,Γ(1), . . . ,Γ(K)) where

Γ(k) = V̂ − ĈHT (I +HĈHT )−1(HV̂ − Z) + S(k) (5.2)
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where V̄ = 1
K

∑K
k=1 V̂

(K) and Ĉ = 1
K−1

∑K
k=1(V̂

(K) − V̄ ) ⊗ (V̂ (K) − V̄ ) and S(k) is the k-th

column of the updated spread matrix S = ŜT (Ŝ) where Ŝ is the forecast spread matrix

Ŝ = (V̂ (1)− V̂ , . . . , V̂ (K)− V̂ ) and T (Ŝ) is the transform matrix. We have not yet defined the

transform matrix T (Ŝ), other than to require that it yields the covariance condition (2.9).

One reasonable choice for the transform matrix, which we will adopt, is the matrix square

root

T (Ŝ) =
(
IK + (K − 1)−1ŜTHTHŜ

)−1/2
=

(
IK − (K − 1)−1ŜTHT (I +HĈHT )−1HŜT

)1/2
.

(5.3)

Note that the square root is well defined and unique since the argument is symmetric and

positive semi-definite. We will now apply Lemma 5.4 with

x = (Un−1, V
(1)
n−1, . . . , V

(K)
n−1 ) y1 = (Un, V̂

(1)
n , . . . , V̂ (K)

n ) y2 = Zn .

and the intermediate point y∗ = (y∗1, y
∗
2) = (0, 0).

Theorem 5.6. If the unfiltered signal process Un has an kinetic energy principle with

nondegenerate system noise, and the ETKF signal-ensemble process has a strong Lyapunov

function, in other words Assumptions 2.2, 5.3 and 5.2 hold, then the ETKF signal-ensemble

process is geometrically ergodic.

Proof. Fix any number M1 > 0 and define the compact set

C =

{
(u, v(1), . . . , v(k)) : |u|2 +

K∑
k=1

|v(k)|2 ≤ M1

}
.

As with Theorem 5.5, we pick the intermediate point y∗ to be the origin. Showing that Φ

satisfies the first condition of Lemma 5.4 is identical to Theorem 5.5, hence it suffices to

show differentiability and non-degeneracy.

By Lemma Appendix D.1, the transform matrix T (Ŝ) is continuously differentiable and

hence it follows trivially that Γ is C1 near y∗. For the non-degeneracy condition, we have

that

Dy1Γ
(k) = Dy1V̂ −Dy1

(
ĈHT (I +HĈHT )−1(HV̂ − Z)

)
+Dy1S

(k) . (5.4)

Precisely as in Theorem 5.5, the second term on the right hand side vanishes at y∗. For the
third term, we have by Leibniz rule

Dy1S = Dy1ŜT (Ŝ) + ŜDy1T (Ŝ) .

But by the definition of T (Ŝ), it is clear thatDy1(T (Ŝ)T (Ŝ)) vanishes as y
∗ and that T (Ŝ) = I

at y∗. Hence we have

0 = Dy1(T (Ŝ)T (Ŝ))|y∗ = 2Dy1T (Ŝ)|y∗ ,
thus Dy1S|y∗ = Dy1Ŝ|y∗ . Returning to (5.4), we see that

Dy1Γ
(k)|y∗ = Dy1V̂ |y∗ +Dy1Ŝ

(k)|y∗ = Dy1V̂
(k)|y∗ .
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It follows that Dy1Γ|y∗ = I and as in Theorem 5.5, this completes the proof.

Remark 5.7. ETKF has different formulations to (5.3), where T (Ŝ) is obtained by

multiplying the original formula by a rotation matrix on the right. The same principles

apply to these ETKF, as long as the rotation matrix is differentiable around the intermediate

point. However, the origin may not be good choice of intermediate point, since the rotation

map can be singular to perturbations around the origin. In this case, one must use the

methods in the following section for EAKF, where we deal with the same issue.

5.4. Ergodicity of EAKF

In this section, we apply the same strategy as EnKF and ETKF to obtain geometric

ergodicity for EAKF. For EAKF, the intermediate space Y and the Markov kernel Φ are

identical to those of ETKF. The deterministic map Γ is still defined by (5.2), but now the

spread matrix S is defined by S = A(Ŝ)Ŝ where A(Ŝ) is an adjustment matrix. As with

ETKF, the adjustment matrix can be any matrix that ensures the covariance condition (2.9).

In the next section, we will discuss how to construct such an adjustment matrix.

5.4.1. Detailed formulation of EAKF We adopt the formulation of EAKF from [3, 4],

described by the following steps.

(i) Compute the SVD decomposition of Ŝ, denoted by Ŝ = QΛR. When there is rank

deficiency, i.e. Λ is not square or not invertible, we can further decompose Q and R into

parts corresponding to null and complementary subspaces:

Ŝ =
[
Q1 Q2

] [Λ1 0

0 0

][
R1

R2

]
= Q1Λ1R1 (5.5)

where Λ1 is a square diagonal invertible k× k matrix with k ≤ min(d,K). Without loss

of generality, we assume Λ1 has its diagonal entries descending.

(ii) Let GTDG be the eigenvalue decomposition of (K − 1)−1ΛTQTHTHQΛ where D is

positive semi-definite with decreasing diagonal entries. As in the first step, in the rank

deficient case we can write

GT
1D1G1 = (K − 1)−1Λ1Q

T
1H

THQ1Λ1

where G1, D1 are k × k matrices.

(iii) In the general (rank deficient) case, the assimilation matrix is given by

A(Ŝ) = Q1Λ1G
T
1 (I +D1)

−1/2Λ−1
1 QT

1 (5.6)

or equivalently updating the spread matrix to be

S = Q1Λ1G
T
1 (I +D1)

−1/2R1.
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In the full rank case this reduces to the more well known formulation

A(Ŝ) = QΛGT (I +D)−1/2Λ†QT . (5.7)

In existing EAKF literature, the rank deficient case is rarely examined except as a

footnote in [32]. However, rank deficiency is unavoidable when the ensemble size K is less

than the model dimension d. As a matter of fact, in these degenerate scenarios, the choice

of the eigen-basis is very subtle, and simply following the classical formulation (5.7) with

different choice of G could end up with inaccurate posterior covariance. The assimilation

matrix formulation (5.6) we used here guarantees that the posterior covariance follows the

Kalman update relation (2.7). In practice, direct application of (5.7) in most mathematical

programs with default settings will generate the same update rule. A more detailed discussion

of these issues are presented in Appendix C.

Since the above EAKF formulation relies on a singular value decomposition, the choice

of singular vectors and hence the map Γ has a non-unique definition. To show geometric

ergodicity, we rely on differentiability properties of this map Γ. Hence we must rely on a

rigid definition of the map Γ involving a fixed choice of singular value decomposition. From

here on, any function Γ that fits into the above formulation will be called an EAKF update

map. The following theorem, which is the main result of the section states that there exists

a choice of EAKF update map that renders the EAKF process geometrically ergodic. Due

to the complexity in defining Γ, statements concerning the ergodicity of an arbitrary EAKF

algorithm seem out of reach.

Theorem 5.8. There exists an EAKF update mapping Γ such that if the signal-ensemble

process generated by it has a strong Lyapunov function, and the unfiltered signal process Un

has an kinetic energy principle with nondegenerate system noise, in other words Assumptions

2.2, 5.2 and 5.3 hold, then the EAKF signal-ensemble process is geometrically ergodic in total

variation distance.

5.4.2. The choice of intermediate point Unlike the ETKF case, we cannot pick the

intermediate point to be the origin. This is because at the origin, the spectrum of ŜTHTHŜ

clusters at 0 and a perturbation of Ŝ may split the eigenvalues into branches while leaving

the eigenvector basis matrices G and R to be singular [33]. We will instead choose an

intermediate point that has simple nonzero spectrum.

The intermediate point y∗ = (y∗1, y
∗
2) will be defined using a matrix M0 constructed

below. Precisely, we choose

y∗1 = (U∗, V̂ ∗(1), . . . , V̂ ∗(K)) = (0,M
(1)
0 , . . . ,M

(K)
0 ) y∗2 = Z∗ = 0 , (5.8)

where M
(j)
0 denotes the j-th column of M0. By construction of M0, this choice will satisfy

V̂ ∗ = 0 and hence Ŝ∗ = M0 and moreover will attain the highest possible rank for such a

matrix. As we shall see, these properties ensure that the EAKF map is (locally) well behaved

under perturbations.
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In the sequel, we assume that the observation matrix H is diagonal with rank q ≤ d.

Using the change of coordinates described in Remark 2.1 as well as the fact that Assumptions

5.2, 5.3 and the statement of geometric ergodicity hold equivalently in both coordinate

systems, this can be achieved without loss of generality.

Lemma 5.9. If M is a d × K matrix such that M	1 = 0 then the rank of M is at most

r := min{K − 1, d}. Moreover, if we define the d×K matrix M0 by

M0 :=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

[
	1 Ξ0 0

]
if d ≤ K − 1

[
	1 Ξ0

0 0

]
if d ≥ K − 1

where 	1 is the d× 1 vector of 1’s and Ξ0 is the r × r matrix

Ξ0 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 . . . 1 −r
...

...
... . .

.
0

1 1 −3 . . . 0

1 −2 0 . . . 0

−1 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎦
then M0 has the following properties

(i) M0
	1 = 0, rank(M0) = r and all nonzero eigenvalues of M0 are simple.

(ii) M0 has the SVD M0 = Q0Λ0R0 where Q0 is the d× d identity matrix and the last row

of R0 is 	1T .

(iii) When H is a diagonal matrix with descending diagonal entries, (K−1)−1Λ0Q
T
0H

THQ0Λ0

has eigen-decomposition GT
0D0G0, where D0 has descending diagonal entries and is of

rank rH := min(q,K − 1), and G0 is the r × r identity matrix.

Proof. It is elementary to see that rank(M) ≤ d. Also, since M has the same rank as MTM ,

while MTM has 	1 as a null right vector, so rank(M) ≤ K − 1. For the claims for M0, direct

verification will be sufficient, where the orthogonality between different rows of M0 easily

leads to

M0M
T
0 = diag{r(r + 1), . . . , 2× 3, 1× 2, 0 . . .}

Clearly their spectrums are as requested. The claims for G0 and D0 easily follow from direct

verification.

5.4.3. Differentiability of EAKF near the intermediate point The intermediate point y∗ was
chosen to ensure stability of the eigenvalues of ŜT Ŝ and Λ1Q

T
1H

THΛ1Q1 as a function of y,

in a neighborhood of the intermediate point. We will now demonstrate this.
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Lemma 5.10. We can construct an EAKF update map Γ which is continuously differentiable

in a neighborhood of the intermediate point y∗.

Proof. Recall that Γ is defined by Γ = (U, V (1), . . . , V (K)) where

V (k) = V̄ + S(k)

for each k = 1, . . . , K where S(k) is the k-th column of S and

S = Q1Λ1G
T
1 (I +D1)

−1/2R1, V = V̂ − ĈHT (I +HT ĈH)−1[HV̂ − Z] .

The only unspecified parts of the map are the matrices Q,Λ, R and G (and thus Q1,Λ1, R1

and G1), hence these must be constructed. It suffices to show that all terms appearing in

the above map, including the constructed terms G1, R1, are continuously differentiable as a

function of y = (U, V̂ (1), . . . , V̂ (K), Z) in some neighborhood of y∗.
Clearly V , Ŝ and ŜT Ŝ depend smoothly on y, differentiability of V is shown in the proof

of Theorem 5.5. The latter two can be directly seen from the definitions of the mean and

spread update maps in (2.8) and (5.7).

We claim that there is a C1 extension of Q,R as Q(y), R(y) in a neighborhood of y = y∗

such that

(i) Q(y) and R(y) are the eigenbasis matrices in the decomposition of Ŝ(y)ŜT (y) and

ŜT (y)Ŝ(y) respectively.

(ii) There is a diagonal matrix Λ(y) such that Ŝ(y) = Q(y)Λ(y)RT (y).

To verify the first claim, note that all r nonzero eigenvalues of ŜT (y)Ŝ(y) are by construction

simple at y∗, hence they are smooth with respect to y by II.2.2 of [33], and in particular stay

positive, distinct and maintain the same descending order for y near y∗. Moreover, because

the rank of ŜT (y)Ŝ(y) is at most r, 0 will be an eigenvalue of multiplicity K − r for y near

y∗. By Lemma Appendix D.2, there is a transformation matrix U(y) that transforms the

simple nonzero eigenvectors and null space of ŜT (y∗)Ŝ(y∗) to the ones of ŜT (y)Ŝ(y). So

R(y) := R0U(y)T provides an eigenbasis matrix for Ŝ(y)T Ŝ(y) for y near y∗. Likewise we

can also find a Q(y) as the eigenbasis matrix for Ŝ(y)ŜT (y) for y near y∗.
We will now check the second point of the claim. If there is another SVD, Ŝ(y) = Q̃Λ̃R̃

at y close to y∗ with Λ̃ having descending eigenvalues, then R̃ has its first r rows being the

eigenvectors of Ŝ(y)T Ŝ(y) associated with descending nonzero eigenvalues, and the remaining

K − r rows correspond to the basis of the null space. Therefore, R(y) has the first r rows

being either identical to the ones of R̃ or their additive inverse. Likewise we have the

same conclusion for Q(y). Then because the choice of eigenvectors for the null space are

unimportant, which can be told from the fact that Q2, R2 play no role in (5.5), we have

Λ(y) := Q(y)T Ŝ(y)R(y)T
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is diagonal, and each component is either the same as Λ̃ or the additive inverse. Yet Λ(y) is

continuous with respect to y, so for there exists a neighborhood of y∗ so that they remain

nonnegative, this indicates Λ(y) = Λ̃ and completes the proof of the two claims.

Similarly, we can find a C1 function G1(y) defined in a neighborhood of y∗ such that

G1(y
∗) = Ir and such that G1(y) is an eigen-basis matrix for Λ1(y)Q1(y)

THTHQ1(y)Λ1(y)

with corresponding diagonal matrix D1(y), as in part (ii) of the EAKF formulation.

Finally, the function (I +D1)
1/2 is always C1 in y. To see this, note that

D1 = (K − 1)−1G1Λ1Q
T
1H

THQ1Λ1G
T
1 ,

which is C1 in y. But sinceD1 is diagonal with entries nonnegative, it follows that (I+D1)
−1/2

must also be C1 in y. Hence all terms involved in Γ are C1 in a neighborhood of y∗ and the

proof is complete.

5.4.4. Controllability of EAKF at the intermediate point

Lemma 5.11. The EAKF update map Γ constructed in Lemma 5.10 has its Jacobian at y∗

being non-degenerate.

Proof. Before proceeding, we recall some notation. Let Ŝ = Ŝ(y) be the spread matrix

constructed from y, similarly let Q1,Λ1, R1, G1, D,D1 be the matrix valued functions of y

that were constructed for the purposes of the EAKF map in Lemma 5.10. In the proof below,

we will frequently use the subscript 0 to denote a matrix valued function being evaluated at

the intermediate point y = y∗.
Recall from Lemma 5.9 that the SVD of Ŝ(y∗) = M0 is given by

Ŝ(y∗) = IdΛ0R0 = Id

[
Λ0,1 0

0 0

][
R0,1

R0,2

]
.

Since the last row of R0,2 is 	1 by Lemma 5.9, we can also write the SVD decomposition as

IdΛ0R0 = Id

[
ΛS 0

0 0

][
RS

	1T

]
,

where RS is the first K − 1 rows of R0, and ΛS is the upper (K − 1)× (K − 1) sub-block of

Λ0. We are only interested in the derivatives of Γ in the directions y1 = [U, V̂ (1), . . . , V̂ (K)],

these directions clearly form a d(K + 1) dimensional subspace. We can always write this

subspace as

M := {[u, v ⊗	1K +BRS] : u, v ∈ R
d, B ∈ R

d×(K−1)}.
Indeed, it suffices to see that any spread matrix Ŝ can be decomposed Ŝ = BRS for some

suitable B.
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To prove the lemma, suppose that there exists a direction M ∈ M such that the

derivative of [U, V (1), . . . , V (K)] in the direction M vanishes at y∗. We will show that M

must be zero. Write M = [u, v ⊗ 	1K + BRS]. If the derivative vanishes at y∗, we must also

have

DMU = DMV = 0, DMS = 0.

at y∗. Through the following steps, we will show that M must be zero. In steps 1 − 3 we

show u = v̄ = 0 and in steps 4)− 9) we show that B = 0.

Step 1) u = 0: This is a direct consequence of DMU = u.

Step 2) If Ĉ = ŜŜT then DM Ĉ = 0 at y∗: Note that since DMS = 0 at y∗,

DM [Ĉ − ĈHT (HT ĈH + I)−1HĈ] = DM(SST ) = 0,

where Ĉ = ŜŜT is clearly differentiable. Using the formula of the derivative of an

inverse, we find the previous equation is equivalent to

0 =DM Ĉ −DM ĈHT (HT ĈH + I)−1HĈ − ĈHT (HT ĈH + I)−1HDM Ĉ

+ ĈHT (HT ĈH + I)−1HTDM ĈH(HT ĈH + I)−1HĈ. (5.9)

Now let cij denote the entries of DM Ĉ and let λi, hi denote the diagonal entries of

the diagonal matrices Λ0 and H respectively. Since the right hand side of (5.9) has

all matrices being diagonal except DM Ĉ, we can compute it explicitly, and find the

ij-th entry is

(λ2
ih

2
i + 1)−1(λ2

jh
2
j + 1)−1cij.

Therefore (5.9) implies that DM Ĉ = 0 at y∗.

Step 3) v = 	0: Since DMV = 0 and V is given by

V = V̂ − ĈHT (I +HT ĈH)−1[HV̂ − Z]

so using the fact that DM Ĉ = 0 at y∗,

DMV = DM V̂ − ĈHT (I +HT ĈH)−1[HDM V̂ ]

which at y∗ can be computed explicitly because the matrices are diagonal:

(DMV )i = (1 + h2
iλ

2
i )

−1/2(DM V̂ )i ⇒ 0 = DM V̂ i = v.

Step 4) λjBij + λiBji = 0 and the diagonal terms of B are zero: From here and after, the

range of index (i, j) is in {1, . . . , d}×{1, . . . , K−1}. Our claim comes from the fact

that Ĉ = ŜŜT and DM Ŝ = BRS so at y = y∗ we have

0 = DM Ĉ = (DM Ŝ)ŜT (y∗)+Ŝ(y∗)(DM Ŝ)T = BR0Ŝ
T (y∗)+Ŝ(y∗)RT

0B
T = BΛT

0+Λ0B
T .

Then notice that B is d× (K − 1) dimensional, so its diagonal terms correspond to

the first r = min{d,K − 1} nonzero entries of λi, therefore they are zero.
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Step 5) DMQ1 = 0,DMΛ1 = 0 at y∗: Because Q1 is formed by eigenvectors of matrix

Ĉ associated with the nonzero simple eigenvalues, which are the entries of Λ1, by

Lemma Appendix D.2 and formula (D.3) we have our claim because DM Ĉ = 0.

Step 6) [DM(R1)R
T
S ]ij = (λiBij+λjBji)/(λ

2
i −λ2

j) at y
∗ for i 
= j: by Lemma Appendix D.2,

if we denote ri to be the i-th row of R0,1, while Ψi being eTi ri, then because RT
0,2R0,2

is the projection to the null space of ŜT Ŝ at y∗,

DMri = riDM(ŜT Ŝ)

[
λ−2
i RT

0,2R0,2 +
r∑

k �=i

(λ2
i − λ2

k)
−1ΨT

kΨk

]
.

So for 1 ≤ j ≤ r, because ΨT
kΨkr

T
j = 1k=jr

T
j , R

T
0,2R0,2r

T
j = 0, we find that

[DM(R1)R
T
S ]ij = DM(ri)r

T
j = (λ2

i − λ2
j)

−1riDM(ŜT Ŝ)rTj .

For r ≤ j ≤ K − 1, because ΨT
kΨkr

T
j = 0, RT

0,2R0,2r
T
j = rTj , we find that

[DM(R1)R
T
S ]ij = DM(ri)r

T
j = λ−2

i riDM(ŜT Ŝ)rTj .

Then using riR
T
S = ei, the row with zero component except being 1 on i-th

coordinate,

riDM(ŜT Ŝ)rTj = ri(R
T
SB

TΛ0RS +RT
SΛ

T
0BRS)r

T
j = λjeiB

T eTj + λieiBeTj ,

which concludes our claim.

Step 7) DMG1 = 0,DMD1 = 0 at y∗: Because GT
1D1G1 is the eigenvalue decomposition of

(K − 1)−1Λ1G
T
1H

THG1Λ1, due to Step 5), the derivative in the direction M must

vanish at y∗, so by Lemma Appendix D.2 we have our claim.

Step 8) DMD = 0 and DMD1 = 0 at y∗: recall that GTDG is the eigen-decomposition of

ŜHTHŜ and D1 is the upper r × r block of D. Notice that D has its entries being

the eigenvalues of ŜTHTHŜ, which is the same as HT ŜŜTH = HT ĈH, but from

Step 2) DM Ĉ = 0 at y∗, so we have our claim.

Step 9) B = 0: By step 4), we only need to verify non-diagonal entries. From DMS = 0,

S = Q1Λ1G
T
1 (I +D1)

−1/2R1 and results from Steps 4), 6), 7), we have

0 = Q1Λ1G
T
1 (I +D1)

−1/2DMR1

which by Q1Λ1 = Λ1 which is invertible at y∗ and G1 = Ir at y
∗ leads to

0 = (I +D1)
−1/2(DMR1)R

T
S

at y∗. Because (I +D1)
−1/2 is a diagonal matrix with entries (1 + λ2

ih
2
i )

−1/2, using

the results from Step 6), the (i, j)-th entry of the right hand side is

λiBij + λjBji√
1 + λ2

ih
2
i (λ

2
i − λ2

j)
,
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so λiBij + λjBji = 0 for i 
= j. We claim that λi 
= λj for i 
= j, this is because

λi = λj only when they are both zeros, yet either i ≤ d = r or j ≤ K − 1 = r, and

hence λi or λj is not zero. Recall that from Step 4) we have that λjBij + λiBji = 0,

combining it with our results that λiBij + λjBji = 0 and λi 
= λj, this can only be

possible when Bij = 0.

Therefore, the Jacobian of mapping Γ can not be degenerate at y∗.

We now have the ingredients required to prove our Theorem 5.8

Proof of Theorem 5.8. In light of Lemmas 5.10 and 5.11, the result follows identically to the

proof of Theorem 5.6.

6. Conclusion and Discusion

In the preceding pages, we have established a simple analytic framework for validating

two important nonlinear stability properties of ensemble based Kalman filters, namely

boundedness and geometric ergodicity for the signal-ensemble process. These are important

properties in practice, as they guarantee the filter processes will remain bounded on an

infinite time horizon and that initialization errors in the algorithm dissipate exponentially

quickly in time.

In Section 3, upper bounds for the signal-ensemble processes are obtained via a simple

Lyapnuov function argument. In particular we show that, if the signal satisfies the observable

energy criterion, introduced in Assumption 3.1, then one can construct a Lyapnuov function

for the signal-ensemble process. The sub-level sets for this Lyapnuov function are only

compact in the observed directions. Hence this can be thought of as an upper bound for

the observable ensemble {HV
(k)
n }Kk=1. This Lyapnuov function argument is used to construct

upper bounds for EnKF, ETKF and EAKF.

Section 4 discusses the applicability of the observable energy criterion. Heuristically

speaking, systems with strong dissipation in kinetic energy and complete observations as

well as suitable spatial observations will satisfy the observable energy criterion, therefore

their EnKF and ESQF ensemble will be bounded uniformly in time. On the other hand,

systems without observable energy criterion have the potential to diverge to machine infinity

in finite time, which is known as catastrophic filter divergence. This phenomenon has been

captured in previous numerical experiments [11, 4, 13]. In a separate article, the authors

have constructed a concrete nonlinear system with kinetic energy dissipation but without

observable energy dissipation, whose EnKF ensemble diverges to infinity exponentially fast

with large probability [21].

In Section 5, geometric ergodicity is established for the signal-ensemble processes of

EnKF, ETKF and EAKF. This is achieved by combining the existence of a Lyapnunov

function (with compact sub-level sets) with a minorization condition. The existence of
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a Lyapnuov function can be guaranteed using the results from Section 5, but any other

Lyapnuov function would suffice.

While our results have shown that systems with dissipative observable energy will

produce stable filter processes, it is hard to believe that Assumption 3.1 is necessary for

stability. As discussed earlier, numerical evidence suggests that ensemble based Kalman

filters are typically very stable and catastrophic filter divergence only happens when the

observations are sparse. The stability and ergodicity of the filter processes here are inherited

from the original nonlinear system. This type of inheritance phenomenon generally exists

for many filter processes, for example Kalman filter preserves linear stability, and optimal

filters preserves absolute regularity of general Markov processes [31, 34, 15, 16]. In order to

extend our results, one might seek new dynamical properties that can be inherited through

the Kalman assimilation step.

In obtaining our results, we use few properties of the forecast covariance matrix other

than positivity. On the one hand this lends generality to our results, in that the upper

bounds hold for a broad class of ensemble methods, including covariance inflation schemes.

On the other hand, if we had more control over the covariance one might hope to gain more

control over the filter ensemble. Thus, it is quite natural to ask whether one can “inflate”

the covariance adaptively in order to guarantee stability properties, even in the case where

the observation H is of low rank. This question will be investigated by the authors in a

subsequent paper [22]. Similar nonlinear stability and ergodicity results as developed here

are also valid for finite ensemble Kalman filters which are continuous in time [17] and will

be reported elsewhere.
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Appendix A. Elementary claims

Lemma Appendix A.1. Let A be a positive semidefinite symmetric matrix, then the

following holds:

0  A(A+ I)−1  I, 0  (A+ I)−1  I, 0  (A+ I)−1  A−1 ,

where A  B means that B − A is positive semidefinite.

Proof. Since A(A + I)−1 + (A + I)−1 = I, it suffices to show 0  (A + I)−1  I. Since A

is positive semidefinite and symmetric, it can be diagonalized through an orthogonal matrix

Ψ, i.e. A = ΨDΨT with D being diagonal. Then based on (A+ I)−1 = Ψ(D+ I)−1ΨT , it is

elementary to conclude our lemma.
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Lemma Appendix A.2. By Young’s inequality, for any ε > 0 and x, y ∈ R
d, the following

holds:

|x+ y|2 = |x|2 + |y|2 + 2〈x, y〉 ≤ (1 + ε2)|x|2 + (1 + ε−2)|y|2.
Lemma Appendix A.3. For any two d×d positive semidefinite symmetric matrices A and

B, the following holds:

tr(A(A+B)−1) = tr((A+B)−1A) ≤ tr((A+B)−1(A+B)) = d.

Lemma Appendix A.4.

S = Ŝ[IK + (K − 1)−1ŜTHTHŜ]−1/2Θ(	F )[ŜŜT ]−1/2Ŝ

Proof. Let N be a matrix with its columns form an orthogonal basis of the null space of Ŝ,

i.e.

N = [e1, . . . , eu], ŜN = 0, n+ rank(	F ) = d.

Then we can find F and X such that

ŜŜT = [N,F ]

[
0 0

0 Σ

][
NT

F T

]
, IK + (K − 1)−1ŜTHTHŜ = [N,F ]

[
0 0

0 Σ

][
NT

F T

]

Appendix B. Discrete time formulation

In many applications, the underlying dynamical system is given by an ODE or SDE, which

in general can be written as

dut = ψ(ut) + ΣdWt.

However, the noisy observations of these systems are usually made not in continuous time,

but rather sequentially in time, with time interval h. Therefore it is natural to see the

stochastic process instead as a stochastic sequence Un = unh as we do in Section 2.1.

Theoretically speaking, we can always transform the SDE for ut into the nonlinear update

map of Un as in (2.1), since if we write the transition kernel of process ut from time 0 to

time h as Kh(u, dv), then it suffices to let

Ψh(u) = E(uh|u0 = u) =

∫
vKh(u, dv), ζn = unh −Ψh(u(n−1)h).

The reader should notice that the introduction of the nonlinear map Ψh and random sequence

ζn is just for the convenience of our formal illustration and rigorous proof. In order to do

the forecast step of EnKF or ESQF in practice, it is not necessary to find the concrete

formulation of Ψh; it suffices to simulate the SDE starting from each posterior ensemble

V
(k)
n−1 from time 0 to h, and let the forecast ensemble V̂

(k)
n be the realization of the simulation

at time h.
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It is also easy to obtain an energy principle, Assumption 2.2, for the discrete time version

Un = unh, as long as the original SDE satisfies that 〈u, ψ(u)〉 ≤ −γ|u|2+k for some γ, k > 0.

Because then the generator of the square norm |ut|2 would satisfy

L|ut|2 = 2〈ut, ψ(ut)〉+ tr(ΣΣT ) ≤ −2γ|ut|2 + 2k + tr(ΣΣT ),

which by Grönwall’s inequality and Dynkin’s formula yields

E|uh|2 ≤ e−2γh|u0|2 +
∫ h

0

e−2γ(h−s)(2k + tr(ΣΣT ))ds

≤ e−2γh|u0|2 + h(2k + tr(ΣΣT )).

Moreover, when the stochastic covariance matrix Σ is nonsingular, by [35] the transition

kernel Kh(u, dv) is equivalent to the Lebesgue measure on R
d; also by Theorem 38.16 of [36],

this density is smooth both in u and v. As a consequence, the nondegnerate system noise

condition, Assumption 5.3, holds because {(u, v) : |u| ≤ M1, |v| ≤ M2} is compact. More

generally, Assumption 5.3 should hold for discrete time formulation of hypoelliptic systems

where certain controllability conditions are satisfied, please refer to [19] and the reference

therein.

Appendix C. EAKF with rank deficiency

In this section, we demonstrate that, when there is rank deficiency, in order to achieve

the posterior covariance relation (2.7) for EAKF, it is necessary to use specific eigen-

decompositions in the formulation of EAKF. In particular, certain choices of eigen-

decomposition will result in a violation of (2.7). We will also show that the formulation

employed in Section 5.4.1 does always satisfy (2.7).

The following example illustrates that not all eigen-decompoisiton will satisfy (2.7). Let

Ŝ =

[
1 −1

0 0

]
, H =

[
0 0

0 0

]
,

then the SVD of Ŝ is given by

Ŝ = QΛR =

[
1 0

0 1

][√
2 0

0 0

][
1√
2

−1√
2

1√
2

1√
2

]

Notice that ΛQTHTHQΛ = 0, so G can be chosen as any orthonormal matrix. One possible

choice of matrix G is RT and D = 0. However, the spread update with G = RT following

the classical formulation is

S = QΛGT (I +D)−1/2Λ†QT Ŝ =

[
1 −1

0 0

][
1√
2

0

0 0

]
I2

[
1 −1

0 0

]
=

[
1√
2

−1√
2

0 0

]
.
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This posterior spread S does not match the posterior covariance relation (2.7), which requires

that SST = ŜŜT since H = 0 indicates there is no observation. It is necessary for us to

choose G = I2 here, which produces the right posterior covariance,

S = QΛGT (I +D)−1/2Λ†QT Ŝ =

[√
2 0

0 0

]
I2

[
1√
2

0

0 0

]
I2

[
1 −1

0 0

]
=

[
1 −1

0 0

]
.

In general, as long as G2R
T
1 = R2G

T
1 = 0 holds in the formulation of EAKF, then the

posterior covariance relation (2.7) holds with formulation (5.6). One can see that from

SST = Q1Λ1G
T
1 (I +D1)

−1G1Λ1Q
T
1 = Q1Λ1[I + Λ1Q

T
1H

THQ1Λ1]
−1Λ1Q

T
1

which satisfies our need because of the following algebraic identity with A = Q1Λ1

[I + (K − 1)−1ATHTHA]−1 = I − (K − 1)−1ATHT (I +HAATHT )−1HA.

On the practical side, in mathematical computing packages, directly applying the

classical EAKF formulation (5.7) will produce the same result as the formula we used (5.6).

To see this, we note that

ΛTQTHTHQΛ =

[
Λ1 0

0 0

][
QT

1

QT
2

]
HTH

[
Q1 Q2

] [Λ1 0

0 0

]
=

[
Λ1Q

T
1H

THQ1Λ1 0

0 0

]
.

In the default setting of most mathematical programs, the eigenvalue decomposition will

arrange the eigenvalues in decreasing order, and due to the block structure, producing the

orthonormal matrix G and eigenvalue matrix D to be

G =

[
G1 0

0 IK−r

]
, D =

[
D1 0

0 0

]
.

Then S is given by the following,

QΛGT (I +D)−1/2Λ†QT Ŝ = [Q1Λ1 0]

[
GT

1 0

0 I

][
(I +D1)

−1/2 0

0 I

][
Λ−1

1 0

0 I

][
QT

1

QT
2

]
Q1Λ1R1,

which is the same as Q1Λ1G
T
1 (I +D1)

−1/2R1.

Appendix D. Perturbation theory for matrices

In [33], the perturbation theory for matrices are carefully studied. Here we collect some

useful results for our study of the controllability of ESRF, where all the section numbers and

page numbers mentioned below are referring to [33] if not otherwise specified. One thing

the reader must be careful is that most results in [33] are for univariate perturbation, while

our interest lies in multivariate perturbation. So we generally follow the strategy of Section
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II.5.7, that is trying to express matrices through contour integral of the resolvent, and restrict

to cases with stable spectrum structure when eigenprojections are involved (hence why we

pick a specific 	F ∗ in Lemma 5.9).

The most fundamental tool used in [33] is the resolvent of a symmetric positive semi-

definite matrix C, given in Section I.5.2 by

R(ζ, C) = (C − ζ)−1.

Clearly R(ζ, C) is well defined at any ζ not inside the spectrum of C. Moreover if C depends

Ck upon on a multivariate 	F , using the derivative formula for matrix inversion, R(ζ, C)

depends Ck upon 	F as well. The resolvent can be used in the Dunford-Taylor integral

to give simple expression for functions of matrix C, see section I.5.6. For example in the

computation of ETKF, we need to compute (I + C)−1/2, which can be expressed as

(I + C)−1/2 =
1

2πi

∫
Γ

(1 + ζ)−1/2R(ζ, C)dζ.

Here Γ is a closed loop in the positive half of the complex plain that encloses all eigenvalues

of C. Then by the differentiability of R(ζ,C), it is very easy to see the following lemma

Lemma Appendix D.1. Let C(	F ) be a symmetric semi positive definite matrix that

depends Ck upon 	F ∈ R
n, then (I + C(	F ))−1/2 exists and depends Ck upon 	F .

When both C and its perturbation are symmetric, the projection to the eigenspace of

a particular eigenvalue λ, which is called the eigenprojection (Section I.5.3), can be defined

through a contour integral of the resolvent using Cauchy’s integral formula:

Pλ = − 1

2πi

∫
Γλ

R(ζ, C)dζ,

where Γλ is a path in the complex half-plane {z ∈ C : Re(z) > −1} that encloses λ

but not any other eigenvalues. As a reminder, when the eigenvalue λ splits into different

branches after perturbation, the perturbed eigenprojection Pλ(	F ) will be the sum of the

eigenprojections of all branches, and therefore it is also known as the total projection of

the λ-group (Section II.2.1). This is a slightly nasty case and we try to avoid it by picking

a point where the spectrum is stable. In particular, if λ is a simple eigenvalue, Pλ is the

orthogonal projection to the eigenvector, and the splitting singularity does not exist for λ.

Because R(ζ, C) is smooth or Ck w.r.t. 	F and the eigenvalues are continuous with respect to

perturbations, the eigenprojection Pλ is smooth or Ck w.r.t. 	F . In particular, the directional

derivative in a direction f can be computed as

DfPλ = Pλ(DfC)[
∑
η �=λ

(λ− η)−1Pη] + [
∑
η �=λ

(λ− η)−1Pη](DfC)Pλ. (D.1)

Here the summation of η is over all spectrum of C that is not λ. (See page 88 equation

(2.14) because all the eigenvalues are semi simple when C is symmetric, there S is given by

(5.28) and (5.32) on page 42).
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The perturbation to the eigenvectors is studied through transformation functions

(Section II.4.2). Consider a perturbation C(x) parametrized by a scalar x such that

C = C(0), then the transformation matrix is defined through an ODE:

U̇(x) =
∑
λ

Ṗλ(x)Pλ(x)U(x), U(0) = Id. (D.2)

One can similarly define U−1(x) and consequently show that U(x)Pλ(x)U
−1(x) = Pλ(0)

for all eigenvalues λ of C. Moreover, when C and M are symmetric, U(x) is actually an

orthogonal matrix (Section II.6.2), so if no eigenvalues splitting occur after the perturbation,

then U(x) actually provides a transformation of the eigenvectors of C to the ones of C(x).

Therefore, for symmetric perturbation C(	F ) small enough, we can define a transformation

matrix U(	F ) as U(1) with C	F (x) = C + x(C(	F ) − C). If C(	F ) depends Ck on 	F , then

because the coefficients of the ODE (D.2) depends Ck on 	F , then so is the solution

U(	F ) = exp

(∫ 1

0

∑
λ

Ṗλ, 	F (x)Pλ, 	F (x)dx

)
, with Pλ, 	F (x) = − 1

2πi

∫
Γλ

R(ζ, C	F (x))dζ

and Ṗλ, 	F (x) given by (D.1). Notice that C	F (εx) = Cε 	F (x), and Dε 	FC = ε−1D	FC so

Ṗλ,ε 	F = ε−1Ṗλ,ε 	F using a change of variable formula we get

U(ε 	F ) = exp

(∫ 1

0

∑
λ

Ṗλ,ε 	F (x)Pλ,ε 	F (x)dx

)
= exp

(∫ ε

0

∑
λ

Ṗλ, 	F (x)Pλ, 	F (x)dx

)
.

So the directional derivative of U(	F ) at 	F = 0 is

DfU(	F )

∣∣∣∣
	F=0

=
d

dε
exp

(∫ ε

0

∑
λ

Ṗλ,f (x)Pλ,f (x)dx

)∣∣∣∣
ε=0

=
∑
λ

Ṗλ,fPλ,f

=
∑
λ

[
Pλ(DfC)[

∑
η �=λ

(λ− η)−1Pη] + [
∑
η �=λ

(λ− η)−1Pη](DfC)Pλ

]
Pλ. (D.3)

Formula (D.3) can also be presented in a more concrete matrix form through its image over

eigenvectors. Suppose the eigenvalue decomposition of a symmetric matrix C be given as

C = ΨTΣΨ, we consider the perturbation of Ψ(	F ) = ΨU(	F )T near 	F ∗. Let ψi be one of

the left eigenvectors associated with the i-th eigenvalue λl, then Pλi
is give by matrix ΨT

i Ψi,

where Ψi is Ψ with rows not associated with λl removed. Then using ψiΨ
T
j Ψj = 1i=jψi we

have

DMψi = ψi(DfC)
∑
j �=i

(λi − λj)
−1ΨT

j Ψj. (D.4)

To conclude, we have shown that
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Lemma Appendix D.2. Let C(	F ) ∈ R
d×d be a symmetric semi positive definite matrix that

depends C1 upon 	F ∈ R
n, then around any point 	F ∗, there is an orthogonal transformation

map U(	F ) that depends C1 upon 	F with directional derivative given by (D.3) or matrix

representation (D.4). It characterizes the perturbation of eigen-projection by

U(	F )TPλ(	F )U(	F ) = Pλ(	F
∗).

In particular, when λ is a simple eigenvalue of C(	F ∗), U(	F ) transforms the eigenvector of

C(	F ∗) associated with λ to an eigenvector of C(	F ) associated with the perturbed λ.
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