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Recent observational studies show a strong link between large-scale wind convergence,

precipitation and convective cloud fraction. However, using this as a physical

assumption in a model typically leads to deleterious wave-CISK behaviour such as

grid-scale noise. The quasi-equilibrium (QE) schemes ameliorate these issues, but still

inadequately represent convection. This controversy is revisited here in the context

of a simple stochastic one baroclinic mode theoretical model which mimics aspects

of operational QE parameterisations. A version of this model is implemented which

couples the stochastic formation of convection to the wind convergence. Linearised

analysis shows that using the local convergence results in a classic wave-CISK standing

instability where the growth rate increases with the wavenumber. However, using

a large-scale averaged convergence restricts the instability to physically plausible

scales and provides a physically-motivated mechanism for non-local interactions in

a simple convection scheme. In nonlinear stochastic simulations with a non-uniform

imposed sea surface temperature (SST) field, the non-local convergence coupling

introduces desirable intermittent variability on intraseasonal time scales. Moreover, the

convergence coupling leads to a circulation with a similar mean but higher variability

than the equivalent parameterisation without convergence coupling. Finally, the model

is shown to retain these features on fine and coarse mesh sizes.

Key Words: Stochastic convective parameterisation, wave-CISK, tropical atmospheric dynamics, convectively coupled

waves
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1. Introduction

The realistic representation of cumulus convection in coarse

resolution models is a central problem in tropical meteorology,

climate modelling, and numerical weather prediction. These

flows are characterised by the cooperation of multiple spatial

and temporal scales from mesoscale convective systems to

synoptic scale convectively coupled waves to the planetary scale

Madden Julian Oscillation (Nakazawa 1988; Kiladis et al. 2009;

Lau and Waliser 2012). The multiscale nature of the problem

remains a key obstacle to the development of accurate convective

parameterisations, and the current generation of coarse resolution

General Circulation Models (GCMs) still poorly represents

dynamics in tropical regions (Slingo et al. 1996; Moncrieff and

Klinker 1997; Scinocca and McFarlane 2004; Lau and Waliser

2012; Zhang 2005). That said, there have been some recent

improvements in a few GCMs (Khouider et al. 2011; Del Genio

et al. 2012; Crueger et al. 2013; Deng et al. 2015; Ajayamohan

et al. 2013, 2014).

Conventional cumulus parameterisations are typically based on

the quasi-equilibrium (QE) assumption (Arakawa and Schubert

1974; Zhang and McFarlane 1995; Emanuel et al. 1994), the

moist convective adjustment idea (MANABE et al. 1965), or

a large-scale moisture convergence closure (Kuo 1974; Tiedtke

1989). In all of these, the mean response of unresolved modes on

resolved variables is formulated according to various prescribed

deterministic closures (Kain and Fritsch 1990; Betts and Miller

1986; Zhang and McFarlane 1995). Of particular relevance to

modern parameterisation, the QE hypothesis assumes that the

ensemble of clouds within a particular grid box approximately

balances the creation of conditional instability by large-scale

processes. The QE hypothesis has proved especially useful for

coarse resolutions, and it underpins many operational convection

schemes (Betts and Miller 1986; Zhang and McFarlane 1995;

Arakawa 2004). See Raymond and Herman (2011) for a more

contemporary perspective on QE.

These convective schemes are accompanied by distinct theories

for the large-scale instability and organisation of tropical flows.

The moisture convergence closures are closely related to the

theory of Convective Instability of the Second Kind (CISK)

(Charney and Eliassen 1964). CISK is based on the idea

that small-scale convection cooperates to induce boundary-layer

convergence on large scales, which then supplies moisture for

additional convection. While the original theory was developed

for the purposes of tropical cyclones, wave-CISK is an alternate

theory which is relevant in the absence of rotation (Lindzen

1974). Unfortunately, wave-CISK predicts a small-scale standing

instability with growth rates that increase with wave-number,

which is a highly unrealistic result. In simulations using a moisture

convergence closure, this can manifest as grid-scale precipitation.

As a whole, the moisture convergence closures and CISK

have been criticised in favour of QE-based schemes and a

QE-compatible instability mechanism known as wind induced

surface heat exchange (WISHE) (Emanuel et al. 1994). WISHE

is a mechanism where ocean surface sensible and latent heat

fluxes depend on the magnitude of the surface winds. This non-

linearity drives a positive feedback loop between evaporation,

deep convection, and wind convergence due to convective

updraughts. On the other hand, the CISK hypothesis states that

convergence in the boundary layer directly results in convective

heating of the atmosphere regardless of ocean surface fluxes. Both

WISHE and CISK were originally introduced as mechanisms

for the development and intensification of tropical cyclones;

however, their importance for organised convection is debatable

(Grabowski et al. 2000).

In spite of these concerns, there is substantial observational

evidence highlighting the strong link between convection and

moisture convergence. Comparing radar data from Darwin,

Australia to large-scale fields from a reanalysis product indicates

that convection better correlates with large-scale vertical velocity

at 500 hPa than it does with humidity or convectively available

potential energy (CAPE) (Davies et al. 2013). These data also

show that a stochastic multicloud model has more realistic

statistics when using vertical velocity versus CAPE as a predictor

for convection (Peters et al. 2013)—a conclusion which is

shared by a systematic study of trigger functions in operational

convective schemes (Suhas and Zhang 2014). However, because

these studies are performed diagnostically using data from a single

location, they cannot make statements of causality or address the

dynamical criticisms of Emanuel et al. (1994).
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These criticisms, however, do not take into account the

advances in convective parameterisations of the last decade. One

of these improvements has come from relaxing the QE assumption

through the addition of a stochastic perturbation (Buizza et al.

1999; Lin 2003; Majda and Khouider 2002; Khouider et al. 2003;

Majda et al. 2008; Majda and Stechmann 2008). Of these, a

simple and promising approach has been the use of Markov-chain

lattice models to represent unresolved sub-grid variability (Majda

and Khouider 2002; Khouider et al. 2003, 2010; Crommelin

and Vanden-Eijnden 2008). The simplified stochastic model for

convective inhibition (CIN) introduced in Majda and Khouider

(2002); Khouider et al. (2003) (hereafter MK02 and KMK03) is of

particular relevance here. In that work, a coarse-resolution 1-1/2

layer model that mimics aspects of QE-based GCM convective

schemes was coupled to a stochastic lattice model within each

coarse-grid cell. For a clear description and linearised analysis

of the corresponding deterministic model, the reader should refer

to Majda and Shefter (2001b) (hereafter MS01). Each element

of this lattice is either convectively active or in a state of

convective inhibition (CIN). The lattice elements, which are called

CIN sites, are allowed to interact with each other and with the

large-scale environment through the boundary-layer equivalent

potential temperature. This stochastic process, which is known

as a continuous time Markov chain, is closely related to the

Ising spin-flip models used to study phase-transitions in material

science (Majda and Khouider 2002; Katsoulakis et al. 2003b).

While the lattice dynamics can be computationally expensive,

there is a suitable cheap coarse-graining which produces a

stochastic process for the cloud area fractions in each coarse

grid cell (Katsoulakis et al. 2003a; Khouider et al. 2003). These

stochastic dynamics are not amenable to theoretical analysis,

but, as the number of lattice elements increases, the dynamics

approach a deterministic limit known as the mean-field limit

equations (DMFLEs). Therefore, the stochastic scheme can be

studied in a similar fashion as MS01 by performing linearised

analysis of the DFMLEs.

As suggested in Palmer (2001), successful stochastic parame-

terisations should be non-local in nature. In the context of con-

vective parameterisation, this essentially means that the stochastic

process for the cloud fractions in a particular grid-box should

depend on other grid boxes. The triggering of convection by large-

scale wind-convergence, viewed in this light, is a fundamentally

non-local interaction (Peters et al. 2013). Therefore, coupling a

coarse-resolution stochastic model to the large-scale convergence

field could yield substantial improvements over related determin-

istic parameterisations.

In this paper, we extend the work of Peters et al. (2013) to a

fully prognostic and spatially extended convection model using

the stochastic modelling tools described above. The aim here

is to develop a prototype stochastic convection parameterisation

that takes into account the effects of large-scale convergence and

avoids the pitfalls of moisture convergence closures and wave-

CISK. For the sake of simplicity, this study is carried out using

the stochastic CIN model described in KMK03. As described

above, this model lacks the second baroclinic structure necessary

for the realistic representation of organised convection, and is

designed to mimic aspects of traditional QE-based GCMs. This

allows us to unambiguously study the dynamical consequences of

convergence coupling and to suggest a path towards improving

standard operational schemes.

In detail, a version of the stochastic CIN parameterisation

with non-local convergence coupling is studied. As in MS01 and

KMK03, the parameterisation is coupled to a vertical truncation

of the primitive equations. Emphasis is placed on elucidating the

role of non-local interactions and differentiating the model from

typical wave-CISK behaviour. Linear analysis of the DMFLEs

shows that the local version of the model has small-scale

instability associated with wave-CISK. On the other hand, the

scale-selective bands of instability with diminishing growth rates

introduced by non-local convergence coupling can be associated

with the multiscale nature of convection. Spatially extended

simulations confirm the predictions of this linear theory and reveal

low-frequency variability on a time scale associated with the

convergence coupling. This low-frequency variability manifests as

intermittent convectively coupled waves (CCWs) that are similar

to those observed in CRM and high resolution GCMs, even though

the model here only has one mode of vertical resolution. A key

finding here is that a stochastic parameterisation with non-local

convergence coupling can be thought of as a powerful surrogate
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for unresolved horizontal and vertical convective organisation, as

argued by Peters et al. (2013).

The remainder of the paper is organised as follows. A self-

contained review of the stochastic CIN parameterisation is

presented in Section 2. Emphasis is placed on the connection with

deterministic mass flux parameterisations and the introduction

of the non-local stochastic convergence coupling. In Section 3,

linear analysis of the DMFLEs is used to compare the effects

of local and non-local convergence coupling. The sensitivity to

the key parameters is also studied. In Section 4, the modified

parameterisation is used to generate flows above the equator on

grids of varying resolution (40–160 km) in a series of idealised

Walker cell simulations. Some discussion and concluding remarks

are given in Section 5.

2. Model formulation

The stochastic model in this paper is an extension of a

deterministic model which was analysed in MS01. The model

only has one vertical heating mode, which can be interpreted

as a mass flux, and is a simplified version of QE-based mass-

flux schemes like that of (Zhang and McFarlane 1995) which is

amenable to theoretical analysis.

The vertical structure is determined by projection of primitive

equations on a first baroclinic heating mode (Majda and Shefter

2001b,a). The prognostic variables are the zonal component of

the fluid velocity, the tropospheric potential temperature, and

the equivalent potential temperatures in the boundary layer and

the mid-troposphere. The non-dimensional dynamic equations for

these in variables are given by

∂u
∂t

− ∂θ
∂x

= − 1
τD

u (1)

∂θ
dt

− ∂θ
∂x

= Qc −Q0
R − 1

τR
θ (2)

hb
∂θeb
∂t

= −D(θeb − θem) +E (3)

H
∂θem
∂t

= D(θeb − θem)−H

(

Q0
R +

1
τR

θ

)

. (4)

The typical dimensional scales of these variables is contained in

Table 1. The u and θ equations together comprise a singled force

shallow water equation, which is forced by radiation, Q0
R + τ−1

R θ,

convective heating, Qc, and velocity drag, τ−1
D u. The convective

heating, Qc = σcwc is the product of the convective area fraction

and convective mass flux. The mass flux for convective regions

is approximated by wc =
√
Rc · CAPE+, where CAPE = θeb −

γθ, and Rc is a fixed constant (Majda and Shefter 2001b, see eq.

(2.13)).

The equations for the moist variables θeb and θem are forced by

evaporation, radiation, and downdraughts. The constants hb and H

respectively denote the depth of the boundary layer and the typical

height of penetrative clouds. The mass-flux due to downdraughts

is given by the sum of the net environmental subsidence and

convective downdraughts,

D
hm

= (Qc + ux)
+ +

1− µ
µ

Qc,

where 0 ≤ µ ≤ 1 is the precipitation efficiency (Majda and Shefter

2001a; MS01). The mid-tropospheric height, hm, is used because

downdraughts only exchange mass between the lower troposphere

and the boundary layer. The evaporation is modelled as a wind-

dependent drag-law with the form given by

E
hb

=

(

τ−1
e +

Cθ

hb
|u|

)

(θ⋆eb − θeb). (5)

This evaporation depends on the magnitude of the velocity and

therefore gives rise to WISHE. The velocity associated with a

convectively coupled wave (CCW) increases the evaporation of

moisture from the boundary layer and has a positive feedback

effect on convection. Moreover, in the presence of a mean wind

field, WISHE leads to propagating unstable disturbances. Since

this behaviour has been explored in MS01, we will disable

WISHE in the linear analysis of Section 3 by setting Cθ = 0.

In this case, evaporation occurs with a fixed time scale of τe =

8 hrs. While there is scant observational evidence that WISHE

drives large-scale CCWs (Lin and Neelin (2000); Holloway and

Neelin (2009) and references therein), it is commonly used to

generate instabilities in deterministic GCM parameterisations

that otherwise lack variability. Likewise, WISHE is used in the

nonlinear simulations of Section 4.

Having described all of the deterministic closures, it remains

to describe how the convective area fraction σc is given by a

c⃝ 0000 Royal Meteorological Society Prepared using qjrms4.cls

Page 4 of 20Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Non-local stochastic convergence coupling 5

stochastic process, and, specifically, how non-local convergence

coupling enters this formulation.

2.1. Stochastic CIN model

Here, we briefly review the stochastic model for convective

inhibition (CIN) introduced in Majda and Khouider (2002). CIN

can be thought of as a barrier for deep penetrative convection

in the tropics, and it is known to have important fluctuations on

the order of 1 km, which is much smaller than typical GCM

resolution. Changes in CIN can be attributed to a multitude of

different mechanisms in the turbulent boundary layer, such as

gust fronts, gravity waves, turbulent fluctuations in equivalent

potential temperature, and surface heat fluxes (Mapes 2000, and

references therein). To model CIN, Majda and Khouider used an

Ising lattice model, where each coarse grid cell is subdivided into a

microscopic lattice grid. The lattice elements, which we also refer

to as CIN sites, interact with each other and with the coarse-grid

deterministic flow variables according to the following rules:

1. If a CIN site is surrounded by mostly CIN sites it has higher

probability to remain a CIN site.

2. If a non-CIN site is surrounded by mostly CIN sites it has

higher probability to switch to a CIN site.

3. The coarse grid-cell values supply an external potential

which either promotes CIN or active convection according

to reasonable physical assumptions.

Evolving the full microscopic lattice system is computationally

expensive, so in KMK03, the authors start with the microscopic

dynamics, and derive a coarse-grained birth-death process for

the total fraction of CIN within a coarse-grid cell. A systematic

approach to coarse-graining such processes has been developed

in Katsoulakis et al. (2003b,a). Here, we briefly describe the

birth-death process that was derived in KMK03. In that work,

the stochastic dynamics are coupled to the boundary layer

temperature θeb through the external potential (c.f. item 3 above).

The main modification in the current study is to extend this

potential to include dependence on the large-scale averaged wind

convergence field.

For each cell of the numerical PDE discretisation △xk, k =

1, ..,m, the CIN fraction, σk(t) , can be treated as a birth-death

process, which takes values from 0 to 1 with increments of

△σ = 1/q, where q is the number of elements in the underlying

microscopic lattice. The convective cloud fraction can be obtained

by a simple relation σc = (1− σ)σ+
c , where σ+

c is a maximum

convective cloud fraction, σ+
c = .01. The birth-death process

evolves according to the following transition rates

Prob{σk(t+△t) = σk(t)−△σ} = Cd(t)△t+O(△t), (6)

Prob{σk(t+△t) = σk(t) +△σ} = Ca(t)△t+O(△t). (7)

The birth-death rates are given by

Ca(σk) =
1
τq

(1− σk), (8)

Cd(σk) =
1
τq

σke
−V (σk), (9)

where τq = τI/q is the time scale associate with the transitions

of the sum of the micro-lattice sites. Here V is a coarse-

grained Hamiltonian function that includes contributions from

the interactions between microscopic CIN sites and an external

potential which depends on the large scale dynamics. It is given

by the form

V (σk) = 2β
qσk − 1
q − 1

+ hext, (10)

where hext is the external potential. The term proportional to

the constant β comes from averaging the self-interactions of the

microscopic CIN elements within the coarse cell and acts as

an energy barrier. The formulation of rates above comes from

the Arrhenius-like dynamics potential of the microscopic model

(Majda and Khouider 2002).

For the purposes of the linear analysis below, it is necessary to

use a deterministic limit of these stochastic dynamics. Subtracting

(6) from (7), normalising by △t, and taking the limit as q

goes to infinity gives a small fluctuation deterministic limit of

the stochastic process. The resulting system is known as the

deterministic mean field limit equations (DMFLEs) (Katsoulakis

et al. 2003b,a; MK02; KMK03), and is comprised of (1)–(4) along

with a deterministic equation for the cloud fraction which is given

by

∂σk
∂t

=
1
τq

(1− σk)−
1
τq

σk exp(−2βσk − hext). (11)
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Parameter Value Description

T 8.33 hr Equatorial time scale

L 1500 km Equatorial Rossby radius

Θ 15 K Temperature fluctuation scale

c 50 m s−1 Velocity scale

hb 500 m Boundary layer depth

hm 5 km Middle tropospheric height

H 8 Km Average depth of convective cloud

Q0
R 1 K day−1 First baroclinic radiative cooling rate

θ0 300 K Reference temperature

θ⋆eb 380 K Saturation equivalent potential temp. in boundary layer

σ+
c .01 Maximum convective area fraction

cp 1.00 kJ K kg−1 Specific heat capacity of dry air

Γm 6 K km−1 Moist lapse rate

γ 1.6 Ratio of dry and moist lapse rates

Rc 2HcpΓm(hmg)−1 s−2 CAPE coefficient

τD 2.8 days Momentum relaxation time scale

τR 50 day Newtonian cooling time scale

τe 8 hours Surface evaporation time scale

Cθ 1.3 · 10−3 WISHE coefficient

q 12 Number of stochastic lattice elements

τI 2 hr Transition time scale

β 1 Self-interaction parameter

γ̃ .1 Strength of θeb coupling

α̃ 30 days Strength of convergence coupling

R 320 km Interaction radius

Table 1. Parameters and constants for the stochastic CIN model with non-local convergence coupling. The horizontal rules separate the basic physical scales
(top), deterministic parameters, stochastic parameters from KMK03, and newly introduced non-local convergence coupling parameters (bottom). Many of these
parameters are given with units, but non-dimensional forms can be obtained using the basic scales.

This is obtained by noting that the limit of the coarse-grained

Hamiltonian given in (10) is

lim
q→∞

V (σk) = 2βσk + hext.

In a more complex model, such as Frenkel et al. (2012), the

DMFLEs can be used as a stand-alone parameterisation which

exhibits highly chaotic behaviour. However, here we only use the

DMFLEs to perform the linear theory analysis of the next section.

The framework also allows for interactions between different

coarse-grid cells (Katsoulakis et al. 2003b), but using non-local

convergence coupling is a simpler and better physically-motivated

alternative. The next section is dedicated to developing an external

potential, hext, that couples the birth-death process for σk to the

large-scale wind convergence.

c⃝ 0000 Royal Meteorological Society Prepared using qjrms4.cls

Page 6 of 20Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Non-local stochastic convergence coupling 7

2.2. Non-local convergence coupling

In KMK03, the external potential, hext, which promotes the

formation of convection, only depends on the boundary layer

equivalent potential temperature, θeb. Specifically, hext = −γ̃θeb,

which implies that high values of θeb increase Cd, which in

turns promotes the formation of convective sites. At first glance,

this physical hypothesis meshes well with the boundary layer

quasi-equilibrium idea (Emanuel et al. 1994). However, in this

formulation, both CAPE and hext depend strongly on θeb. This

means that CAPE and CIN are tightly coupled in this model,

and that the resultant cloud fractions are closely related to

convective heating rates. Therefore, this formulation fails to

separate processes which increase heating per cloud from those

that increase the overall number of clouds.

A simple way to eliminate this restrictively tight coupling is to

allow hext to depend on some variable other than θeb. In this case,

we will introduce dependence on a functional of the convergence-

field. This approach is motivated by the observations (Mapes et al.

2006; Davies et al. 2013; Peters et al. 2013) and classic moisture

convergence based parameterisations (Kuo 1974; Tiedtke 1989).

In particular, the external potential is the sum of two

contributions from the large-scale variables, and is given by

hext = hθeb + hw. (12)

The first contribution, heb = −γ̃θeb, is identical to the thermo-

dynamic coupling of KMK03 (as stated above). The second

part of the external potential, hw is a functional of the large-

scale convergence field. The intuitive idea is that positive wind

convergence should promote convection by increasing the CIN

death rate, which tends to decrease the overall CIN fraction.

Because the local wind convergence is typically evaluated

as the difference of the neighbouring grid cells, it implicitly

depends on the resolution of the scheme. To avoid this resolution

dependent behaviour, and to allow for seamless scaling between

various coarse-grid resolutions, hw is coupled to a large-scale

averaged convergence field. In particular, hw at a given location

x is assumed to be proportional to the divergence field averaged

around x. Therefore, the functional form is given by

hw(x) = α̃
1
2R

∫ R

−R

ux(x+ x′, t)dx′

= α̃
u(x+R)− u(x−R)

2R
,

where the proportionality constant α̃ is key parameter which

describes the strength of the convergence coupling; the interaction

radius, R, is the radius of the averaging domain. Because the unit

of velocity convergence is inverse time, the parameter α̃ can be

interpreted as a time scale. The external potential can be rewritten

using the shift operator, TRu = u(x+R), so that

hw =
α̃
2R

(TR − T−R)u. (13)

A similar averaging approach is used to allow for resolution

independence in the stochastic scheme of (Plant and Craig 2008).

This averaging procedure provides for a non-local coupling

between coarse-grid cells, and it is necessary to the avoid the

deleterious effects of wave-CISK such as grid-scale noise. This

will be shown in subsequent sections.

Since we are interested in varying the model resolution in this

study, some care is required to translate the continuous formation

in (13) to discrete numerical context. In particular, the interaction

radius must be an integer multiple of the grid size so that R = r∆x

where r ∈ N. If this is true, then the interaction radius will be

consistent for simulations with different numerical resolutions.

To illustrate the effect of this large-scale averaged non-

local convergence coupling, the following three special cases of

convergence coupling will be explored:

1. No convergence coupling: setting α̃ = 0 recovers the

KMK03 scheme, which does not have any convergence

coupling.

2. Local convergence coupling: taking the limit R → 0 gives

hw = α̃ux.

3. Non-local convergence coupling: set α̃, R > 0 with typical

parameter values of α̃ = 30 days, and R = 320 km unless

stated otherwise.
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In the next section, linear analysis of these three cases is

performed. All calculations are performed using the default

parameters contained in Table 1 unless otherwise stated.

3. Linear Analysis

Linearised analysis is typically performed on a set of deterministic

equations, although the notion can be extended to stochastic

processes (Steinbrecher and Garbet 2012). For the present

purposes, it suffices to perform the analysis on the DMFLE

equations described above, which are given by dynamical core

equations (1)–(4) coupled to the mean-field limit equation for

the CIN fraction (11). Here, we take a continuous limit of the

CIN fraction field so that the set of coarse-grid CIN fractions,

{σk(t)}0≤k<n becomes a continuous field σ(x, t). This is trivially

accomplished since (11) is just an ODE for the local CIN fraction.

As mentioned before, the goal here is to study the linear effect of

convergence coupling unambiguously, and WISHE is disabled in

this analysis by setting the constant Cθ = 0.

We linearise these equations about a radiative convective

equilibrium state (RCE) and numerically investigate the resulting

dispersion relation. In particular, we study the differences between

no, local, and non-local convergence coupling. Finally, the effect

of varying the interaction radius, R, and convergence coupling

strength, α̃, is analysed.

3.1. Radiative convective equilibrium and linearisation

For the purposes here, RCE is defined as a spatially homogeneous

steady-state solution to the large-scale DMFLEs. In particular, we

assume that the prognostic variables can be written as the sum

of a constant equilibrium value and a small perturbation so that

u = ū+ u′, θ = θ̄ + θ′, θem = θem + θ′em, θeb = θeb + θ′eb, and

σ = σ̄ + σ′. We assume the velocity field vanishes at RCE, so

that u = u′. In particular, we note that u = ux = 0, so that the

convergence field vanishes at RCE. Throughout the paper, X is

value of variable X at RCE.

Introducing the above expansions into the model equations

yields at lowest order an algebraic set of equations for θ, θeb, θem,

and σ which is given by

Qc = Q0
R +

1
τR

θ (14)

1
hb

D(θeb − θem) = τe(θ
⋆
eb − θeb) (15)

1
H

D(θeb − θem) = Q0
R +

1
τR

θ (16)

1
τq

(1− σ) =
1
τq

σ exp(−2βσ + γ̃θeb). (17)

Here, the RCE diagnostic quantities D, E, and Qc are obtained

by substituting the RCE values of the prognostic variables into

the closures described in Section 2. Of the above, (14) is obtained

from the temperature equation and is a straightforward statement

of equilibrium between convection and radiation. The equations

above are nonlinear and are solved for θ, θeb, θem and σ. In

practice, this is done using the fsolve nonlinear solver available

in the scipy package for the python programming language.

The parameter regime studied in this paper, which are stated in

Table 1, has an unique RCE.

Linearising (1)–(4) about the RCE conditions above is done

in a straightforward fashion, and very similar calculations are

performed in MS01. The main difficulty lies in linearising

the nonlinear diagnostic quantities Qc and D(θeb − θem). The

perturbation vertical mass flux per cloud is given by

w′
c =

Rc

2wc
(θ′eb − γθ′),

so that that the overall convective heating is determined by the

product rule,

Q′
c = −σ+

c σ′wc + σ+
c (1− σ)w′

c. (18)

At RCE, Qc > 0 so for an infinitesimal perturbation, we can

assume that Qc + u′x > 0. Therefore, the downdraught mass flux

is given by

D
hm

= (Qc + ux)
+ +

1− µ
µ

Qc =
Qc

µ
+ u′x.
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In particular, this shows that Qc = D at RCE. The perturbation

downdraughts are then given by

D′

hm
= Q′

c + µu′x. (19)

The corresponding exchange of boundary layer and tropospheric

equivalent potential temperature is then given by the product

rule, Dϵ = (D(θeb − θem))′ = D′(θeb − θem) +D(θ′eb − θ′em).

Finally, the evaporation term is linear and does not require

special treatment because we ignore the WISHE effect by setting

Cθ = 0. Using these quantities, the overall linearised versions of

dynamical core equations (1)–(4) can be written as

∂u′

∂t
− ∂θ′

∂x
= − 1

τD
u′ (20)

∂θ′

∂t
− ∂u′

∂x
= Q′

c −
1
τR

θ′ (21)

hb
∂θ′eb
∂t

= −Dϵ −
θ′eb
τe

(22)

H
∂θ′em
∂t

= Dϵ − H
τR

θ′ (23)

It remains to linearise the DFMLE cloud fraction equation (11).

This is accomplished using the expression

σe−V = (σ + σ′)e−V−V ′

= e−V (

σ̄ + σ′ − σ̄V ′) ,

which is accurate to first order. The stochastic potential V is given

in (10). Finally, the linearised form of the DFMLE cloud fraction

equation is given by

τq
∂σ′

∂t
= −σ′ − σ′e−V + σe−V V ′ (24)

where V̄ = βσ − γ̃θeb, and V ′ = βσ′ − γ̃θ′eb + h′w .

3.2. Plane-wave solutions

Let U = (u′, θ′, θ′eb, θ
′
em,σ′)T , and assume that U =

Ûei{kx−ω(k)t}+d(k)t where the phase ω(k) and growth rate d(k)

are both assumed to be real. The plane wave is then substituted

into (20)–(24). This procedure is relatively straightforward, and is

largely omitted from the discussion here. The main novelty here

is the form of the convergence coupling potential hw for a plane

wave, which is different from an ordinary Fourier derivative.

For plane waves, the action of the shift operator, TR, is a simple

phase shift, which can be written mathematically as TRu′ =

eikRu′. Therefore, for a plane wave, the convergence coupling

potential becomes

h′w = α̃
eikR − e−ikR

2R
u′ = α̃ik · sinc(kR) · u′, (25)

where sinc(x) = sin(x)/x. For the case of local convergence

coupling, taking the limit as R → 0 gives h′w = α̃iku′ = α̃u′x for

plane-waves.

After substituting the plane-wave solutions, the linearised

system can be collected into a linear matrix equation given by

dÛ
dt

= A(k)Û. (26)

The wave structures, growth rates, and phase speeds are found by

solving for the eigenvalues and eigenvectors of A(k). Specifically,

matrix is diagonalised to obtain A(k) = V (k)−1Λ(k)V (k), where

V (k) are right eigenvectors of A(k), and Λ(k) is a diagonal matrix

of the corresponding eigenvalues. From this diagonal form, it

is trivial to extract the desired information. Let vi be the ith

column of V (k) and λi = Λii its corresponding eigenvalue. Then,

vi, which is a right eigenvector of A(k), describes the structure

of a wave with a phase speed and growth rate given by cp =

−Im{λi}/k and d = Re{λi}, respectively.

In the results below, this procedure is carried out numerically

using the numpy linear algebra package for the python

programming language. All the analyses are performed with a

fixed transition time scale of τq = 2 hr.

3.3. Instability with high wavenumber cutoff by non-local

convergence coupling

The most interesting result of this linear analysis is that the

non-local averaging operation in (13) stabilises high-wavenumber

linear modes. In so doing, it allows for a convergence coupling

that avoids the negative features of wave-CISK. This result can be

seen in Figure 1, which plots linear phase speeds and growth rates

for the cases with local and non-local convergence coupling as

well as the case without any convergence coupling (KMK03). All

cases feature two standing and two travelling branches with phase
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Figure 1. Generalised phase speeds (left) and growth rates (right) for the cases with
no, local, and non-local convergence coupling. Note, the different scaling for the
growth rate axes. For non-local convergence coupling, the wavenumber associated
with the length of averaging region, kcrit = (2R km)−1 is indicated (dashed).
Unstable modes are highlighted in the phase speed diagrams with a thick grey line.

speeds less than 20 m s−1, however the stability of the standing

mode differs between the three cases.

Without convergence coupling, there is no instability about the

RCE, but with local convergence coupling, there is a standing

instability for all wavenumbers. Moreover, the growth rates of this

instability increase with wavenumber to some asymptote. This

is classic wave-CISK behaviour, and would likely manifest as

grid-scale precipitation in a GCM-type simulation. On the other

hand, using non-local convergence coupling stabilises the higher

wavenumbers and restricts the instability to physically plausible

scales larger than kcrit = (2R km)−1, which is the wavenumber

associated with the length of the averaging region.

Figure 2. Structure of the unstable mode for non-local convergence coupling with
wavenumber, k = 13, corresponding to the peak growth rate in the lower panel of
Figure 1. The vertical–horizontal structure of the winds (arrows) and temperature
(contours) are shown in the upper panel. Red (blue) contours indicate positive
(negative) temperature anomalies. The lower panel shows the horizontal structure
of the fields in non-dimensional units.

The structure of this unstable wave for wavenumber 13,

which has the maximum growth rate over all wavenumbers,

is plotted in Figure 2. It is a standing wave where positive

(negative) temperature anomalies occur in ascent (descent)

regions. Ascending motion is most strongly associated with

positive anomalies in θem and negative anomalies in the CIN

fraction σ. Beyond this, it is only weakly associated with

θeb and θ. This indicates that tropospheric moistening due to

moisture convergence and convective triggering through mean

updraughts are cooperating to produce this instability. Notably,

there is actually a slight cooling of the boundary-layer below the

updraught, which stands in contrast to the WISHE mechanism.

The success of the non-local convergence coupling idea in a

plausible range of parameters has been demonstrated. However,

it is informative to study the sensitivity to the key convergence

coupling parameters: the convergence coupling strength, α̃, and

interaction radius, R. This will be done in the following sections.
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Figure 3. Linear analysis for varying α̃ with fixed interaction radius, R = 320 km. As the convergence coupling strength is increased, propagating and “gap instabilities”
appear. Refer to the caption of Figure 1 for a description of these diagrams.

Figure 4. Stability diagram for linearised analysis. The type of instability is
indicated in the regions with a solid colour. Contours indicate the maximum growth
rate (day−1) for all wavenumbers and solution branches. The regions of parameter
space above the dashed horizontal line have “gap instabilities”. These values are
generated on a discretised grid of α̃–R space.

3.4. Sensitivity to convergence coupling strength

We remind the reader that the convergence coupling strength

parameter α̃ changes the relative importance of the large-scale

averaged convergence in the CIN death rate Cd. In Figure 3, we

have plotted the dispersion relation diagrams for various levels of

α̃, and it is clear that increasing this parameter tends to increase

the growth rates of the unstable mode.

As mentioned in Section 2.2, setting α̃ = 0 days is equivalent

to using the KMK03 scheme (c.f. Figure 1), which has no

explicit convergence coupling. For 10 ≤ α̃ ≤ 30, we see that

instability has a high wavenumber cutoff, and that the growth

rates are increased with α̃ = 30. However, for α̃ = 100, 300

days, some new effects occur. First, scale-selective bands of

instability appear above this high wavenumber cutoff. These

appear as bands of positive growth rates, that occur at regular

intervals in wavenumber space associated with the convergence

coupling radius R; we will, hereafter, call this behaviour “gap

instability”. However, for all α̃, the primary large-scale unstable

band is constrained below kcrit, and the amplitude of the

subsequent bands decrease rapidly with the wavenumber. In

addition, a propagating instability with much larger growth rates

than the standing instability appears for larger α̃. This propagating

instability band is bounded by kcrit for all α̃. For a more

complete picture, the diagram in Figure 4 shows the regions in

α̃−R space, corresponding to standing, propagating, and “gap”

instability. Finally, the phase-speeds in stable propagating bands
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are increasingly effected for large values of the convergence

coupling strength.

The wave number bands for frequencies higher than kcrit

correspond to the sinc(kR) factor in the plane-wave formulation

of hw (c.f. equation 25), and could be ameliorated by using a

spatial averaging operation which does not have an oscillatory

response in wavenumber space. A Gaussian-weighted averaging

in space is one such candidate filter. Even so, gap instabilities

are not present for our best-case parameter values, and have very

small growth rates compared to the large scale instability. The α̃ =

100, 300 results are only presented here as illustrative examples.

In summary, it is clear convergence coupling alters both the

growth rates of the unstable waves and the phase-speeds of both

stable and unstable propagating waves. In the next section, we

demonstrate that the interaction radius, R, controls the permissible

scales of instability.

3.5. Sensitivity to radius of interaction

Here, the interaction radius R is varied for a large value of

convergence coupling strength, α̃ = 60 days. With this value, the

linear solutions show unstable stationary and propagating modes,

as well as bands of gap instability. This value of α̃ is chosen for

illustrative value rather than physical plausibility.

The linear analysis diagrams for this experiment is shown in

Figure 5. As R is increased, the magnitude of the growth rates is

decreased, which occurs because R approaches the decorrelation

scale of the underlying wind field. Finally in all cases, it is clear

that kcrit = (2R)−1 is a high wavenumber cutoff for the primary

branches of positive growth rates, and that R controls the locations

of the higher gap instability bands. Therefore, for lower values of

α̃ without the instability bands (not shown), kcrit is a true high

wavenumber cutoff as seen in Figures 1 and 3.

4. Idealised Walker-cell simulations

The linearised analysis of the past section points to a new

scale-selective instability, and in this section, we explore the

consequence of this in set of nonlinear stochastic simulations.

Because classic CISK theory points to convergence coupling as

an interaction mechanism between large-scale and convective

flows, it is important to test these ideas in context of simulations

which feature a large scale background circulation. Unlike the

linearised analysis above, WISHE is allowed in these simulations

for the purpose of generating waves in the absence of convergence

coupling; this corresponds to setting Cθ > 0 in (5). Therefore,

the focus here is on investigating the interaction of non-local

convergence coupling and WISHE in a model which replicates

aspects of conventional QE-based parameterisations such as

Arakawa and Schubert (1974); Betts and Miller (1986); Zhang

and McFarlane (1995).

A large-scale Walker cell is forced here by imposing a

non-uniform SST background pattern which mimics the Indian

Ocean/western Pacific warm-pool. The simulations are performed

in a single ring of latitude about the equator and do not include

any meridional dependence. For the present context, this is

accomplished by letting the sea surface saturation equivalent

potential temperature take the form

θ∗eb(x) = 5 cos
( 4πx
40000

)

+ 10K, (27)

within the central 20,000 km interval of the 40,000 km domain,

and θ∗eb = 5 K elsewhere. A similar setup has been used to

as dynamical test-bed in KMK03, for the stochastic multicloud

model (Frenkel et al. 2012, 2013), and in a cloud resolving model

(Slawinska et al. 2014, 2015). Especially in the latter two, this

computationally inexpensive setup generates very interesting time

series with rich convectively coupled waves and intraseasonal

variability.

The numerical method used is an operator-splitting strategy

where the conservative terms are discretised and solved by a

non-oscillatory central scheme while the remaining convective

forcing terms are handled by a second-order Runge Kutta scheme

(Khouider and Majda 2005a,b). The stochastic component of the

scheme is evolved using an approximation to Gillespie’s exact

algorithm (Gillespie 1975), which is accurate for the small time

steps used here. In particular, at most one birth/death occurs per

time step in each in coarse-grid cell with probabilities given by

Ca ·∆t and Cd ·∆t. See KMK03 for more details.

To replicate a typical resolution of a coarse-resolution GCM,

the domain is divided into n = 250 grid points, unless otherwise

stated, which corresponds to a grid spacing of ∆x = 160 km. A
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Figure 5. Same as Figure 3 but for varying interaction radius R with fixed convergence coupling strength α̃ = 60 days. For all values of R, the reference wavenumber
kcrit = (2R km)−1 (dashed) controls the scales of the standing, propagating, and gap instabilities.

time step of ∆t = 5 minutes is used for this resolution. The other

main numerical parameter, which did not factor into the linearised

analysis above, is the the number of convective elements per

coarse grid cell. This is fixed at q = 12 in all but last subsection.

The transition timescale is fixed at τI = 2 hr. To remind the reader,

the stochastic dynamics approach the DFMLE for large q, but q =

12 is a small number of lattice elements. Stochastic fluctuation,

then, plays an important role in these simulations, which are

far from the linear deterministic equations studied in Section

3. The following results highlight how instability due to non-

local convergence coupling manifests in a nonlinear stochastic

setting. In all the simulations below, time series of 1000 days are

generated, and the first 300 days are excluded from analysis.

4.1. Effect of convergence coupling in nonlinear simulations

Following the linearised analysis in Section 3.4, we now explore

the effect of varying the convergence coupling strength parameter

α̃. The interaction radius parameter is fixed here at R = 320 km,

which for intermediate values of α̃ only allows synoptic scale

linear instabilities with wavelengths greater than 640 km. The

strength parameter is varied from α̃ = 0, which corresponds to

the case without convergence coupling (e.g. KMK03), to α̃ = 300

days. The climatological velocity field, u, is shown in Figure 6,

and space-time diagrams of precipitation for the final 200 days of

the simulations are available in Figure 7.

Overall, the time-averaged circulation is quite similar for

all values of α̃, with a magnitude change of ∼ 1m s−1 for

larger values of α̃. On the other hand, the convergence coupling

drastically alters the variability outside of the warm-pool region

between 15,000 km and 25,000 km. By examining, the Hovmoller

diagrams in Figure 3, it is clear that this increased variability is

associated with the propagation of convectively coupled waves

(CCWs) in the dry regions of domain.

The basic KMK03 case, α̃ = 0, shows a peak of precipitation in

the center of the domain–where the SSTs are highest. The CCWs

are generated in the warm-pool region and propagate into the dry

region, rapidly decaying as they do so. Apart from these waves, the

precipitation field is quite noisy, does not feature much coherent

activity, and lacks low-frequency content.

The effect that convergence coupling has on the intrinsic

variability of the system is best seen in the case where the

convergence coupling strength parameter α̃ is associated with

an intraseasonal to seasonal time scale, α̃ = 10, 30 days. In

the linearised analysis, these values allowed for an instability
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Figure 6. Temporal mean of (top) and standard deviations from the mean (bottom)
of the velocity, u, for simulations with different values of α̃ (indicated in the
legend). Recall that α̃ = 0 is the reduction to the KMK03 case without convergence
coupling. The non-local convergence coupling simulations using α̃ =30 – 300 days
have the strongest variability and slightly stronger mean circulations.

with a physically plausible high wavenumber cutoff. In the

corresponding nonlinear simulations, batches of CCWs are

generated in the warm pool at irregular intervals, and propagate

much more coherently in the dry regions of the domain. The

resulting variability is characterised by intermittently alternating

periods of strong and weak circulation on intraseasonal and

seasonal time scales. These results qualitatively resemble the

CRM study of Slawinska et al. (2014) and results using the

stochastic multicloud model (Frenkel et al. 2012, 2013). In

particular, CCWs in the simulation with α̃ = 30 and 100 days are

highly intermittent and have rich low-frequency content. From the

perspective of intermittency, the results with α̃ = 300 days are less

attractive because they feature more regular waves; nonetheless,

these simulations still display low frequency content.

To quantitatively demonstrate the intraseasonal variability of

the dynamics seen in Figure 7, normalised power spectra of

the velocity time series for three representative spatial locations

are shown in Figure 8. These power spectra are calculated

using Welch’s method with a segment length of 128 days. For

the driest region of the domain, x = 0 km, the convergence

coupled simulations show more power overall, but especially at

lower frequencies. The enhanced low frequency variability of

the convergence coupled simulations is most distinctly visible at

x = 10, 000 km, which marks the edge of the warm-pool—the

region with the most CCW activity. In the very centre of the warm

pool, x = 20, 000 km, the overall power is less in the convergence

coupled simulations than in the KMK03 case (e.g. α̃ = 0), but

there is strong shift towards lower frequency.

These results are not particular sensitive to the interaction

radius parameter, R, (not shown) and show remarkable robustness

over several orders of magnitude of the parameter α̃. Of these, the

most interesting case is α̃ = 30 days, a regime which has standing,

but not propagating, linear instabilities according to Figure 4. In

the following section, the sensitivity of these results to numerical

resolution is studied.

4.2. Effect of varying resolution

One of the key reasons for introducing stochasticity in convective

parameterisations is to allow a seamless scalability from coarse

to fine resolutions. Indeed, the non-local convergence coupling

formulated in Section 2.2 is specifically designed with this in

mind, and uses a spatial averaging operation along the lines of

(Plant and Craig 2008). Here, we test the scalability of the scheme,

by performing simulations with our most interesting case (non-

local convergence coupling with α̃ = 30 days and R = 320 km)

on 40, 80 and 160 km grids. In addition to the resolution, the

number of convective elements per coarse grid cell, q, is also

varied in an effort to deduce a proper scaling—a similar analysis

is done in Frenkel et al. (2012).

A first attempt to preserve the statistical structure of the

variability is achieved by keeping the number of CIN sites per

unit length constant. This amounts to varying the the number of

elements, q, linearly with respect to the grid-size, ∆x. This crude

scaling law could likely be improved, but that is not the focus

here. As mentioned in Section 2.2, the interaction radius R = 320

km, is a integer multiple of each these grid sizes, which allows

for a seamless translation between the continuous and discrete

c⃝ 0000 Royal Meteorological Society Prepared using qjrms4.cls

Page 14 of 20Quarterly Journal of the Royal Meteorological Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Non-local stochastic convergence coupling 15

Figure 7. Hovmoller diagrams of precipitation for simulations with different values of α̃. The case where the convergence coupling parameter, α̃, is set to 30 days exhibits
low frequency variability. The effect we observed is robust over over the several order of magnitude range of the coupling constant.

formulations of the non-local convergence coupling. For example,

∆x = 40 km implies that the discrete radius of interaction is

r = R/∆x = 8 grid cells.

The climatological wind fields for these simulations, which are

plotted in Figure 9, shows that all simulations have nearly identical

mean states throughout the domain, but differing variability

structure. For the most part, the higher resolution simulations

have more variability inside than outside outside the warm-pool.

However, certain simulations do show good agreement throughout

the domain. For example, compare the 160 km and 80 km

simulations with q = 48 and q = 24, respectively.

Corresponding to these climatological results, space-time

diagrams of precipitation are available in Figure 10. Overall, the

low-frequency behaviour due to convergence coupling is robust

for several different resolutions and values of q. For example,

each panel in left column of Figure 10 shows a well defined

low-frequency oscillation as was discussed in Section 3.4. That

said, the scaling with resolution is imprecise. For smaller number

of lattice elements and finer resolutions, this low-frequency

behaviour is also visible; however, the simulations in the lower-

right panels, display a different zoology of CCWs. These CCWs

are generated frequently at regular time intervals in the centre of

the domain.

The impreciseness of the scaling law is possibly due to the

relatively low number of lattice elements used here, or because

the stochastic coupling uses a local rather than large-scale value

of θeb. We expect that as the number of lattice elements, q, is

increased — and the system approaches its mean field limit —

a more precise scaling law can be deduced. For example, the

scaling analysis in Frenkel et al. (2012), which used simulations

with about 900 lattice elements, suggested that the proper scaling

is not necessarily linear. However, using such a high number of

lattice elements in this simple model leads to phenomenologically

less interesting results without attractive intermittency. Because

these details are not specific to the non-local convergence coupling

introduced here, we do not consider them in further detail.
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Figure 8. Power spectrum of the velocity for three different spatial locations: the
driest region (0 km), the edge of the warm pool (10,000 km), and the centre of the
warm pool (20,000 km). As the value of convergence coupling strength parameter
is increased we observe progressive shift towards longer time scales. The effect is
most distinct in the region of active wave propagation around x =10,000 km.

5. Conclusions

In this paper, we have introduced a mechanism for non-local

convergence coupling into a simplified stochastic model that

mimics aspects of current GCM parameterisations. Because the

model consists of only one baroclinic mode it cannot represent the

effect of congestus heating, stratiform heating, nor the observed

vertical tilt of convectively coupled waves in the tropics. This

model was chosen as a simple test-bed to study the dynamical

ramifications of non-local convergence coupling and to address

Figure 9. Temporal mean (top) and standard deviations (bottom) of the velocity
field, u, for simulations associated with various number of convective elements for:
160 km (black), 80 km (dark grey) and 40 km (light grey) grid.

the criticisms of local convergence coupling raised in Emanuel

et al. (1994).

Linearised analysis of the deterministic mean-field limit

equations unambiguously shows that using non-local convergence

coupling ameliorates some of the problems of wave-CISK.

Specifically, averaging the convergence field over some radius

of interaction before coupling it to the death rate of CIN sites

imposes a high wavenumber cutoff for the instability in realistic

parameter regimes. Moreover, the high wavenumber cutoff is set

by the size of the averaging region. On the other hand, coupling

the CIN death rate to the local convergence field leads to classic

CISK-type behaviour with small-scale instability.

The nature of the instability depends on the strength of the

convergence coupling, and it is possible to obtain both stationary

and propagating instabilities for different parameter regimes.

However, the propagating instability is not present for more
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Figure 10. Hovmoller diagrams of precipitation anomalies for the various grid size/number of convective elements combinations shown in Figure 9. The grid-size, ∆x

decreases from top to bottom, and the number of lattice elements, q, decreases from left to right. In each column, the simulations obey a linear scaling between ∆x and q.
The linear scaling best preserves the qualitative structure for the case with the largest number of elements (leftmost column).

physically plausible parameter choices. The unstable stationary

wave has a structure indicating a strong feedback between

mid-tropospheric humidity and grid-averaged updraughts due to

increased cloud fractions.

The linearised analysis also showed that strong convergence

coupling leads to scale-selective bands of “gap” instability for

high wavenumbers with diminishing growth rates. This numerical

artefact is due to the oscillatory wavenumber-response of the

simple spatial averaging procedure used here, and would likely

be eliminated using a Gaussian-weighted averaging method. This

suggests that such a weighted averaging operation should be used

whenever large-scale averaged fields are used in a stochastic

convective parameterisation. However, it is questionable how

important this effect is in the full nonlinear simulations.

From the perspective of the nonlinear and stochastic idealised

Walker-cell simulations, non-local convergence coupling gives

rise to an attractive zoology of convectively coupled waves.

These waves are associated with low-frequency variability of
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the Walker circulation on intraseasonal time scales, and are

extremely intermittent in nature. This low-frequency behaviour is

qualitatively similar to that seen in a similar set of cloud resolving

simulations (Slawinska et al. 2014). On the other hand, the

simulations with WISHE alone lack any low-frequency content,

and have much more noisy precipitation fields. This contrasts with

the conventional notion that convergence coupling leads to grid-

scale noise, which may be true for the classical Kuo-type moisture

budget closures, but is not the case for the non-local convergence

coupling introduced here.

Finally, these stochastic closures show decent scalability across

different resolutions, which is an important consideration as

GCM grid-sizes begin to resolve the mesoscale. However, the

model used here is intended to replicate the behaviour of coarse-

resolution GCMs and does not account for important aspects

of mesoscale organisation such as stratiform rain. Sophisticated

mesoscale-aware parameterisations such as the multicloud models

are able to produce intraseasonal variability in idealised Walker

cell simulations (Frenkel et al. 2013), but not without additional

overhead. Therefore, it appears that the non-locality of the

convergence coupling introduced here acts as a surrogate for

unresolved horizontal and vertical structures. In so doing, it is able

to mimic aspects of more realistic models.
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