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Abstract

Modelling extreme events is a central issue in climate science and engineering.
The capacity of imperfect models to capture intermittent behavior with fat-tailed
probability distributions of a passive scalar field advected by turbulent flow sys-
tems is investigated here. We consider the effects with complicated flow systems
including strong nonlinear and non-Gaussian interactions, and construct much
simpler and cheaper imperfect models with model error to capture the crucial
statistical features in the stationary tracer field. The Lorenz 96 (L-96) system is
utilized as a test model to generate the turbulent advection flow field. Tracer statis-
tics under this L-96 flow field are analyzed both theoretically and numerically,
and strong intermittent fat tails can be observed in different dynamical regimes of
the flow system with distinct statistical features. The complexity and large com-
putational expense in resolving the true advection flow require the introduction
of simpler and more tractable imperfect models which still maintain the ability
to capture the key intermittent features in the tracer field. The simplest linear
stochastic models containing no positive Lyapunov exponents are proposed here
to approximate the tracer advected by the original L-96 system with large degrees
of internal instabilities. It is demonstrated that the prediction skill of this im-
perfect linear model can be greatly improved through fitting the autocorrelation
functions by empirical information theory. A systematic framework of measuring
the autocorrelation function under spectral representation with the help of empiri-
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cal information theory is developed, and the optimal model parameters under this
unbiased information measure can be achieved easily in a training phase before
running the predictions. This imperfect model using optimal parameters achieved
through the information-theoretic framework is tested in a variety of dynamical
regimes of the L-96 system. Uniformly high skill of the optimal model is dis-
played in accurately capturing the crucial tracer statistical features in a stationary
statistical steady state, especially in getting accurate intermittent fat tails in tracer
density distributions. This information framework for tuning autocorrelation func-
tions can be further generalized to more complicated turbulent models and should
have many applications.

Keywords: Turbulent diffusion, passive scalar field, intermittency, Gaussian
velocity model, information metric

1. Introduction

Turbulent diffusion models of passive tracers have numerous applications in
geophysical science and engineering. These applications range from, for example,
the spread of contaminants or hazardous plumes in environmental science, to the
behavior of anthropogenic and natural tracers in climate change science, and many
related areas [1, 2, 3, 4]. The scalar field T (x, t) describes the concentration of the
passive tracer immersed in the fluid which is carried with the local fluid velocity
but which does not itself significantly influence the dynamics of the fluid. We will
consider this issue in the context of the evolution of this scalar field through the
joint effect of turbulent advection, diffusion, and usually uniform damping

∂T
∂ t

+v ·∇T =−dT T +κ∆T. (1.1)

The tracer field is passively advected by a velocity field v(x,y, t) which could be
the solution of the Navier-Stokes equation with high Reynolds number, and it will
typically also have some intrinsic self-diffusivity κ due to microscopic Brownian
motion and a linear damping dT due to the friction. One key feature of great in-
terest in the tracer turbulent model (1.1) is the existence of intermittency, which
can be observed in atmosphere observation data [3], laboratory experiments [5],
and numerical simulations of idealized models [4, 6, 7, 8], resulting in fat tails in
the density distribution functions and random large spikes during time evolution
of the passive tracers. It is challenging to understand the true mechanisms behind
the intermittent phenomena due to the involvement of many complex factors in
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the real advection flow system v. So it is useful and necessary to develop sim-
plified models which still have the ability to create intermittency and fat tails in
distribution.

A special form of the velocity field v which is a superposition of a spatially
uniform but possibly temporally fluctuating cross-sweep in the x direction, and a
random shear flow (with fluctuations possibly in both time and spatial x direction)
in the y direction

v(x,y, t) = (U (t) ,v(x, t)) , (1.2)

has been proposed by Majda et al. [4, 8] and tested on simple mathematical
models [9, 10, 11, 12]. Assume the existence of a background mean gradient for
the tracer varying in only y variable and a tracer fluctuation component dependent
with only x variable

T (x, t) = T ′ (x)+αy. (1.3)

Together with the tracer dynamics (1.1) and the simplified flow field (1.2), the
fluctuation part of the tracer T ′ satisfies the following dynamics

∂T ′

∂ t
+U (t)

∂T ′

∂x
=−αv(x, t)−dT T ′+κ

∂ 2T ′

∂x2 . (1.4)

Despite their simplicity, the model (1.4) in random shear flow with a mean sweep
can capture and preserve key features for various inertia range statistics for tur-
bulent diffusion [13, 14, 6, 15, 16] including intermittency. Even for roughly
Gaussian velocity fields v in (1.2) as observed in turbulent flows, the linear scalar
field can experience rare but very large fluctuations in amplitude, and its statistics
can depart significantly from Gaussianity displaying fatter tails representing the
intermittency [17, 18, 19, 20, 21]. Explicit formulations about the statistical solu-
tions of the tracers have been derived in [8] under this simplified flow system, and
a rigorous mathematical proof about the intermittent fat tails in tracer distributions
has been achieved recently in [15].

Although important and instructive in investigating the tracer intermittency
advected by a background flow v with Gaussian random functions, nonlinear and
non-Gaussian features in the flow components are unavoidable and ubiquitous es-
pecially in realistic turbulent flows. In this paper, we investigate the effects from
a nonlinear advection flow on the steady state passive tracer intermittency, and es-
pecially the errors and performances of various imperfect approximation models
are tested in a variety of turbulent regimes. As a representative testbed, we take
the 40-dimensional Lorenz 96 (L-96) system first introduced in [22] to simulate
the background flow. The L-96 system is designed to mimic baroclinic turbulence
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in the midlatitude atmosphere with the effects of energy conserving nonlinear ad-
vection and dissipation, displaying a wide range of distinct dynamical regimes
from Gaussian to extremely non-Gaussian features, which makes it a desirable
test model to begin with. With the nonlinear L-96 system as the background ad-
vection system, we analyze and compute the tracer energy spectra and distribution
functions under a variety of distinct statistical regimes. Transition between nearly
Gaussian behavior and fat tailed highly intermittent distributions can be observed
as the tracer parameter and flow structure vary. Additionally the high dimensional
turbulent system including an irreducible attractor in real applications adds ex-
tra difficulties in resolving the exact high-order statistics in the system from a
wide range of scales. Therefore in constructing practical models for the turbu-
lent systems, proper Galerkin truncation with a high wavenumber cutoff is always
introduced to the true system and only the statistics in a finite number of large-
scale modes are calculated. It is important to notice the conflict between the small
truncation size which may add severe model error, and the limited ensemble size
which adds an impractical computational load. The inherent difficulties in trunca-
tion size and ensemble size set unavoidable obstacles in resolving the exact flow
field with accuracy. We show and discuss these difficulties also under the L-96
example.

The difficulties in resolving the complex advection flow raise the questions
about whether we can propose simpler imperfect models to approximate the ad-
vection flow field v, and what is the prediction skill for tracer statistics given this
imperfect field with model error. Due to the central quantity of interest is the tracer
statistics rather than the advection field, the replacement of v by a simpler imper-
fect flow field is practical and advantageous in real applications. Here we begin
with the simplest possible approximation model with only Gaussian linear dynam-
ics in the advection flow, and check its ability in capturing tracer statistical struc-
tures. The Gaussian velocity stochastic models display attractive characteristics
that are much more controllable with explicit solutions and require much smaller
ensemble size to achieve accuracy in statistics. On the other hand, it is also chal-
lenging by applying the Gaussian linear models with no positive Lyapunov expo-
nents to estimate the non-Gaussian flow field including various degrees of internal
instabilities. Therefore a systematic procedure in calibrating the imperfect model
parameters are required. It turns out through theoretical analysis that the imperfect
model prediction skill about the autocorrelation function plays an important role
in determining the structure of tracer statistics. An information-theoretic frame-
work [9, 23, 24, 25] is then proposed to train the imperfect model parameters in a
training phase so that the model predicted stationary process can possess the least
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biased estimation in energy and autocorrelation function compared with the truth.
Through experiments with the L-96 system in various regimes, it proves that the
performance of these linear stochastic models can be greatly improved through
this proposed tuning strategy under a proper information metric.

The following part of this paper is summarized as follows. Section 2 dis-
cusses some theoretical approximations and numerical experiments about the true
model under the exact L-96 system. The passive tracer statistics including the
steady state energy spectra and probability distributions are analyzed and com-
puted. Also the errors from pure Galerkin truncation model and the effects with
ensemble size are shown and discussed. We turn to the issue about using imperfect
approximation models to estimate the true tracer distributions in Section 3. Sim-
ple linear stochastic systems are proposed. Two different strategies to estimate
the model parameters are applied. Importantly, we show that the optimal model
parameters through the information framework can be achieved by adopting the
spectral representation of the stationary random field and autocorrelation function.
In Section 4, the improvement in models’ skill of capturing intermittency through
this information-theoretic framework is tested using the L-96 model under vari-
ous dynamical regimes. We conclude this paper with simple discussion about the
future research directions in Section 5.

2. Passive tracer statistics with nonlinear advection flow

In the first place, we begin with some discussion and analysis about the exact
statistical features about the scalar tracer fields advected by the flow generated by
the L-96 system. It is interesting to see that strong non-Gaussian distributions with
fat tails can be generated in the tracer modes despite the sub-Gaussian statistics in
the L-96 flow. Besides, it is also useful to check the possible errors when Galerkin
truncation and limited number of particles are applied in resolving the complex
turbulent system, which is actually common strategies that are used in realistic
applications.

2.1. L-96 system as the advection flow
We consider the situation when the passive tracer field is advected by a non-

linear non-Gaussian flow field generated from the Lorenz 96 (L-96) system. The
L-96 system [22] is a 40-dimensional dynamical system with state variables u =
(u0,u1, ...,uJ−1)

T such that

du j

dt
=
(
u j+1−u j−2

)
u j−1−d (t)u j +F (t) , j = 0,1, ...,J−1, J = 40. (2.1)
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Periodic boundary condition uJ = u0 is applied to simulate flows at a constant
latitude circle. Nonlinearity comes from the bilinear quadratic form B j (u,u) =(
u j+1−u j−2

)
u j−1 as the first term on the right hand side of (2.1), which con-

serves energy through u ·B(u,u) = 0 (note that this property is crucial in the
energy analysis below and will be exploited further in the tracer statistics). A lin-
ear damping term and a deterministic forcing part are also applied at each grid
point in the system. Especially, by changing the amplitude of the external forcing
F , the L-96 system displays a wide range of different dynamical regimes ranging
from weakly chaotic (F = 5), strongly chaotic (F = 8), to finally full turbulence
(F = 16) with varying statistics, which makes it a desirable test model to simulate
the turbulent flow in the first place (see next subsection for various illustrations
about the statistical features of L-96 system in different dynamical regimes). Due
to a variety of interior instabilities (which can be illustrated by the number of pos-
itive Lyapunov exponents) as well as the uncertainty in the initial condition, it is
proper to use a random field u rather than one deterministic trajectory to describe
the time evolution of this system.

The advection flow field v = (U (t) ,v(x, t)) then is constructed from the L-96
system solution. Note that the system is homogeneous and transition invariant

along each grid point, so standard Fourier basis ek =
{

e2πik j/J
}J−1

j=0
naturally be-

comes the empirical orthogonal functions (EOFs) of the system [25]. The state
variables of the system can be decomposed under Fourier basis as

u(x, t) = ū(t)+
J/2

∑
k=−J/2+1

ûk (t)ek (x) , 〈ûk〉= 0, û−k = û∗k . (2.2)

Here 〈·〉 can be viewed as the ensemble average. We construct the passive tracer
fields (1.1) nonlinearly advected by the flow generated through the L-96 system.
The gradient cross-sweeping component U (t) is from the mean state with ran-
domness from zero mode, while the shearing component v

(
x j, t
)

simulated by
the flow fluctuation modes with varying values at each grid point. Therefore, the
advection flow field with proper nonlinear dynamics can be defined from the com-
ponents in L-96 system as

U (t) = ū(t)+ û0 (t) , v
(
x j, t
)
= ∑

k 6=0
ûk (t)e2πikx j . (2.3)

In the following parts of the paper, we will focus on the statistical features of the
scalar tracer field in stationary steady state. To make sure the system converges to
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the final stationary state, that is, ū(t)→ ū∞,rk (t) =
〈
|ûk|2 (t)

〉
→ rk,∞ as t → ∞,

we consider the simplified dynamics of (2.1) with constant damping and forcing
terms d ≡ d (t) ,F ≡ F (t). Before investigating the imperfect model approxima-
tions of the true system, we would like to investigate the general mathematical
properties for both the advection flow v and the passive tracer field T in the first
place. Hopefully, this can reveal the contributions of each mode in the steady state
flow system for the non-Gaussianity and the possible sources of fat tail structures
in the tracer probability distributions.

2.1.1. Advection flow in steady state
The exact dynamical equations for each mode in the shearing flow ûk and the

mean gradient U can be derived from the L-96 system (2.1) as

dU
dt

= −dU (t)+ ∑
k 6=0

Γk |ûk|2 (t)+F, (2.4)

dûk

dt
= −dûk +

(
e2πi k

J − e−2πi 2k
J

)
U (t) ûk

+ ∑
m 6=0

ûk+mû∗m
(

e2πi 2m+k
J − e−2πi m+2k

J

)
, k = 1, · · · ,J/2, (2.5)

where we define the energy transfer rate Γk = cos 4πk
J −cos 2πk

J . The derivation of
the above formulas is from the standard procedure for systems with uncertainties
by projecting the original equations (2.1) onto each EOF mode, and exploiting the
properties in homogeneous solutions. We neglect the detailed steps and the stan-
dard solutions for general systems can be found in [26, 25]. The cross-sweep field
U is forced by the combined effects from each fluctuation mode ∑k 6=0 Γk |ûk|2,
and conversely the shearing flow is advected by the mean drift through the second
term in the first line in (2.5). One important property of the above system is the
conservation of the quadratic form u ·B(u,u) = 0, therefore the last part in (2.5)
will vanish as we calculate the dynamics for the total fluctuations ∑k |ûk|2. Specif-
ically, by multiplication of ûk on both sides of (2.5) and taking summations about
all the modes, the total energy in the shearing flow follows the dynamics

d
dt ∑

k
|ûk|2 =−2d ∑

k
|ûk|2−2ū∑

k
Γk |ûk|2 .
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Similarly, by multiplication of U on both side of (2.4), the corresponding energy
in the cross-sweep becomes

d
dt

U2 =−2dU2 +2U ∑
k

Γk |ûk|2 (t)+2UF.

Considering the two above formulas together, it is convenient to define the chaotic
energy E = U2 +∑k 6=0 |ûk|2 as a combination of mean and fluctuation energy in
the flow (U,v). The dynamical equation for the chaotic energy E can be derived
as

dE

dt
=−2dE +2û0 ∑

k 6=0
Γkrk +2UF. (2.6)

Note that the defined chaotic energy E is still a random process with uncertainties
contained in each mode ûk, k = 0,1, · · · . And if we further define the statistical
energy of the system as the ensemble average over each realization of the chaotic
energy E = 〈E 〉 = ū2 +∑k rk, we come back to the same energy equation as de-
rived in [25]

dE
dt

=−2dE +2ūF. (2.7)

The dynamical equation (2.6) illustrates a crucial property that the uncertainty in
E can be uniquely determined by the zero mode since the only source of ran-
domness come from û0 on the right hand side of (2.6). To check this property
in detail, we can calculate the formal solution of the chaotic statistical energy
equation (2.6).

As stated above, we want to focus on the model statistics in stationary steady
state. Then solve the system (2.6) from time t0 to t through Duhamel’s formula
and next let the initial time t0→−∞, the stationary solution for the chaotic energy
can be achieved

E =U2 + ∑
k 6=0
|ûk|2→2∑

k
Γkrk,∞

∫ t

−∞

e−2d(t−s)û0 (s)ds+2F
∫ t

−∞

e−2d(t−s)U (s)ds

=2(dū∞−F)
∫ t

−∞

e−2d(t−s)û0 (s)ds+2F
∫ t

−∞

e−2d(t−s)U (s)ds

=2dū∞

∫ t

−∞

e−2d(t−s)û0 (s)ds+
ū∞F

d
. (2.8)

The first equality in the second row just applies the statistical relation ∑k 6=0 Γkrk,∞ =
dū∞−F between the mean and variances in steady state, and the second equal-
ity separates U = ū+ û0. Explicitly from the stationary steady state solution, it
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can be concluded that the total uncertainties including all the higher order non-
Gaussian statistics due to the nonlinear dynamics in the shearing flow ∑k 6=0 |ûk|2
(or the one-point statistics in the shearing flow) can be solely determined by the
randomness in the zero mode û0. We summarize the results from above analysis
as the following proposition.

Proposition 1. Define the chaotic statistical energy of the advection flow system
(2.4) and (2.5) of v = (U (t) ,v(x, t)) from the L-96 system as E =U2+∑k 6=0 |ûk|2.
The dynamical evolution of the chaotic statistical energy can be described by (2.6)
as

dE

dt
=−2dE +2û0 ∑

k 6=0
Γkrk +2UF,

with uncertainty only from the random cross-sweeping part in zero mode U =
ū+ û0. And in the stationary state with uniform damping d and forcing term F,
the random field of chaotic statistical energy E approaches the statistical steady
state (2.8)

E =U2 + ∑
k 6=0
|ûk|2→ 2dū∞

∫ t

−∞

e−2d(t−s)û0 (s)ds+
ū∞F

d
,

almost surely as t0 → −∞. The randomness and non-Gaussianity in the one-
point statistics of the shearing flow v(s, t) then is determined by the probability
distribution of the sweeping part U in stationary steady state.

2.1.2. Tracer structure in steady state
Now we turn to the advection-diffusion equation of the scalar tracer (1.4) un-

der the Fourier expansion T ′ = ∑k T̂ke2πikx passively advected by the nonlinear
flow v as described above in (2.4) and (2.5). Under the Fourier representation,
the dynamical equation for each Fourier component of the tracer can be written
componentwisely as [8]

dT̂k

dt
= (−γTk + iωTk) T̂k−α ûk, k = 1,2, · · · ,J/2, (2.9)

with γTk = κk2+dT , and ωTk =−U (t)k. The solution for the tracer component in
each Fourier mode can be achieved through the standard procedure with the help
of the Green’s function

T̂k =−α

∫ t

t0
Gk (s, t) ûk (s)ds, (2.10)
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where the Green’s function is defined as

Gk (s, t) = exp(−γTk (t− s)− ikJ (s, t)) , J (s, t) =
∫ t

s
U (τ)dτ. (2.11)

Note that under construction, the energy in the zero mode of the tracer T̂0 goes to
zero quickly, as a result, in steady state then we can just focus on the energy in
each fluctuation mode k > 0. Explicit statistical solutions of (2.9) together with
the corresponding probability density functions with fat tails under linear Gaus-
sian flow field (U,v) have been investigated extensively in detail from different
directions [8, 15, 6]. Whereas when it come to the case including non-Gaussian
features in the advection flow, the situation becomes more sophisticated. First,
explicit solutions for each flow mode ûk as well as the sweeping component U
are unavailable for further analysis. Second, the effects from higher order mo-
ments (about U , v, and their cross-corelations) need to be taken into account in
the analysis, which could play quite significant roles in the final tracer distribu-
tions. Furthermore, resolving the exact nonlinear statistical characteristics of each
mode ûk with accuracy is expensive or computational forbidden even under nu-
merical approaches. So in the following sections, we would like to investigate
the accuracy of various methods with Galerkin truncations and different kinds of
imperfect Gaussian stochastic models. Of course with the cut-off of higher or-
der statistics in these imperfect approximations, model errors will be introduced
into final estimates of the tracer statistics in T̂k and more careful manipulations
are required. In this section, we first check the contributions of each mode in de-
termining the stationary one-point statistics of the tracer T and estimate proper
bounds for this random field, which can serve as a guideline for the designing of
imperfect approximation models in the following sections.

In the one-point statistics of the scalar field T (x) = ∑k T̂ke2πikx, we focus on
the statistics at each grid point x j and ignore the covariances between different
points xi,x j, i 6= j. Due to the translation invariant property of the flow field v,
one-point statistics at different points share the same distribution. Specifically,
conditional on each realization of the horizontal sweep Us<t up to time t and using
the expression in (2.10), the one-point energy in variance follows

E
(
T 2 (x, t) |Us<t

)
= E

(
∑
k,l

T̂kT̂ ∗l e2πi(k−l)x |Us<t

)

= ∑
k
E
(∣∣T̂k

∣∣2 |Us<t

)
= E

(
∑
k

∣∣T̂k
∣∣2 |Us<t

)
.

10



Therefore we consider the distributions of T 2
1pt ∼ ∑k

∣∣T̂k
∣∣2 (‘∼’ defined as mean-

square equivalence) to analyze the statistical properties and non-Gaussian features
for the one-point statistics of T . From the pathwise solution of the tracer compo-
nent in (2.10), we can write the steady state fluctuation in each component as

∣∣T̂k
∣∣2 = α

2
∣∣∣∣∫ t

−∞

∫ t

−∞

Gk (s, t)Gk
(
s′, t
)

ûk (s) û∗k
(
s′
)

dsds′
∣∣∣∣

= α
2
∣∣∣∣∫ t

−∞

∫ t

−∞

exp
(
−γTk

(
2t− s− s′

))
exp
(
−ik

∫ s′

s
U (τ)dτ

)
ûk (s) û∗k

(
s′
)

dsds′
∣∣∣∣

≤ α
2
∫ t

−∞

∫ t

−∞

∣∣∣∣exp
(
−γTk

(
2t− s− s′

))
exp
(
−ik

∫ s′

s
U (τ)dτ

)∣∣∣∣ ∣∣ûk (s) û∗k
(
s′
)∣∣dsds′

≤C
∫ t

−∞

exp(−γTk (t− s))
∫

∞

0
exp(−γTkr) |ûk (s) û∗k (s+ r)|drds∼ C̃

∫
∞

0
|ûk (0) û∗k (r)|dr.

(2.12)

The last line above just uses a change of variable r = s′− s, and in stationary state∣∣ûk (s) û∗k (s+ r)
∣∣ and

∣∣ûk (0) û∗k (r)
∣∣ are equivalent in distribution. This implies that

the statistics in T̂k is non-local in time involving the lagged-covariance of ûk (or the
autocorrelation function) besides the energy in each mode. The above inequality
holds for each realization of ûk and T̂k. Note that the inner integrand is related to
the absolute decorrelation time defined as

Td =
∫

∞

0

E
∣∣ûk (0) û∗k (r)

∣∣
rk

dr. (2.13)

So it is reasonable to assume that there exists a constant C′ > 0 so that the random
process is bound by∫

∞

0
exp(−γTkr) |ûk (s) û∗k (s+ r)|dr ≤C′ |ûk (s)|2 Td, (2.14)

almost surely. Combining the pathwise estimation (2.12) and the bound (2.14),
we get the estimate for tracer fluctuation in each mode∣∣T̂k

∣∣2 ≤CTd

∫ t

−∞

exp(−γTk (t− s)) |ûk (s)|2 ds, a.s.

Now we come to the one-point statistics of the tracer ∑k
∣∣T̂k
∣∣2, and note from

Proposition 1 that stationary steady state statistics of ∑k |ûk|2 is only a function of
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U . Therefore, the one-point statistics of the tracer are bounded from above only
dependent on the fluctuations in the mean sweep U as

∑
k

∣∣T̂k
∣∣2 ≤CTd

∫ t

−∞

e−dT (t−s)
∑
k
|ûk (s)|2 ds

=C1ū∞Td

∫ t

−∞

e−dT (t−s)
∫ s

−∞

e−2d(s−s′)û0
(
s′
)

ds′ds+C2 (U)Td, (2.15)

almost surely. In [15], estimated bounds for intermittency about the one-point
fluctuations in T through simpler models are investigated. Finally we summarize
the one-point tracer statistics we achieved by the following proposition.

Proposition 2. (Tracer variance statistics) Consider the passive tracer field (2.9)
advected by nonlinear flow (2.4) and (2.5) from L-96 system. Then in the station-
ary steady state, the fluctuations T 2

1pt ∼ ∑k
∣∣T̂k
∣∣2 of the one-point statistics of the

tracer can be bounded by the statistics in the sweeping flow U = ū+ û0. That is,

∑
k

∣∣T̂k
∣∣2 ≤C1ū∞Td

∫ t

−∞

e−dT (t−s′)
∫ s′

−∞

e−2d(s′−s)û0 (s)dsds′+C2 (U)Td, a.s.

if the estimation in (2.14)∫
∞

0
exp(−γTkr) |ûk (s) û∗k (s+ r)|dr ≤C′ |ûk (s)|2 Td,

holds almost surely with some positive constant C′.

2.2. Intermittency in tracer probability density functions
In the previous subsection, we estimate the possible bounds for the single-

point statistics of the passive tracer distributions in a statistically steady state with
the help of the energy equation. Still it is necessary to check whether intermittency
can be generated in the tracer probability density functions in both physical do-
main and the spectral modes under the advection flow generated by the L-96 sys-
tem. As we have described previously, L-96 offers an desirable testbed in the first
stage with varying dynamical regimes for both Gaussian and non-Gaussian statis-
tics. Specifically, we choose three representative statistical regimes with F = 5
(weakly chaotic), F = 8 (strongly chaotic), and F = 16 (fully turbulent). Strong
non-Gaussianity with skewed distributions is displayed in F = 5 regime, while the
statistics appear increasingly like Gaussian in more turbulent regimes F = 8,16
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(see [27, 28] for more discussions about the model statistics). To capture the
statistical characteristics in the true flow with accuracy, we run a Monte-Carlo
simulation with large enough ensemble size of 10000. In all these dynamical
regimes, we choose fixed mean gradient α = 2 and diffusivity κ = 0.001, and
the damping rate is chosen as dT = 1,5,10 correspondingly for each dynamical
regime. Following we observe the corresponding tracer variance spectra and the
intermittencies in tracer pdfs given distinct statistical structures in the advection
flow v.

In Figure 2.1, 2.2, and 2.3, we compare the tracer statistics in these three rep-
resentative dynamical regimes F = 5,8,16 in comparison with the flow statistics.
The steady state energy spectra in Fourier domain for both the flow and tracer
are compared in the first row with the representative probability density functions
following. We also draw a Gaussian distribution with the same variance to em-
phasize the non-Gaussianity in each case. For the strongly non-Gaussian regime
F = 5, there is one dominant mode k = 7 which contains most of the energy in the
system. Therefore this mode is also dominant in the tracer spectrum. The distri-
bution for the horizontal cross-sweep U (represented by k = 0 mode) is strongly
skewed. Correspondingly, strong non-Gaussian features with fat tails are gener-
ated in the tracer distributions especially for the dominant mode. In regimes F = 8
and F = 16, the statistics in the flow become increasingly more Gaussian-like (or
sub-Gaussian) companied with more uniform energy spectra. Still obvious inter-
mittencies are observed in the tracer pdfs with fat tails in both physical domain and
the principal modes in spectral domain despite the near-Gaussian advection flow
in û0 (note this distinct statistical feature in comparison with the regime F = 5).
In the spectral domain, the first two modes T̂1, T̂2 perform like Gaussian while the
most energetic ones T̂7, T̂8, T̂9 display strong intermittencies in the pdfs. And in
the one-point statistics in the physical domain, the flow distributions are all sub-
Gaussian while fat tails are generated in the tracer distributions for all the cases.

Finally, we check the change in the tracer spectra and pdfs as the tracer damp-
ing rate dT changes. We choose the typical regime with F = 8 and change the
damping rate in the range dT = 0,0.1,0.5,5,20. The results for the steady state
energy spectra and the pdfs in one-point statistics in physical domain as well as
the most energetic spectral mode are compared in Figure 2.4. As expected, the
tracer modes are more energetic and the spectrum is dominant by the first few low
frequency modes as dT � 1, while the energy reduces and the spectrum becomes
similar to that of the advection flow as dT � 1. Intermittency is generated with
moderate damping rates and the pdfs becomes Gaussian or sub-Gaussian in the
two limits dT → 0 and dT → ∞.
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Figure 2.1: Steady state statistics for the background flow u from L-96 system (left column)
and the passive tracer T (right column) in weakly chaotic regime F = 5 with tracer parameters
dT = 1,α = 2,κ = 0.001. The first row shows the steady state energy spectra under each Fourier
mode for both u and T . The following rows display the pdfs for both pointwise values in physical
domain as well as the typical modes in spectral domain. The steady state distribution functions are
compared with corresponding Gaussian distributions with the same variance in dashed lines. Note
that the zero mode û0 is used as the zonal sweep for the tracer dynamics, and the first two modes
û1, û2 and the most energetic modes û7, û8, û9 always have the most important roles in the tracer
statistics.
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Figure 2.2: Steady state statistics for the background flow u from L-96 system (left column)
and the passive tracer T (right column) in strongly chaotic regime F = 8 with tracer parameters
dT = 5,α = 2,κ = 0.001. The first row shows the steady state energy spectra under each Fourier
mode for both u and T . The following rows display the pdfs for both pointwise values in physical
domain as well as the typical modes in spectral domain. The steady state distribution functions are
compared with corresponding Gaussian distributions with the same variance in dashed lines. Note
that the zero mode û0 is used as the zonal sweep for the tracer dynamics, and the first two modes
û1, û2 and the most energetic modes û7, û8, û9 always have the most important roles in the tracer
statistics.
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Figure 2.3: Steady state statistics for the background flow u from L-96 system (left column) and
the passive tracer T (right column) in turbulent regime F = 16 and tracer parameters dT = 10,α =
2,κ = 0.001. The first row shows the steady state energy spectra under each Fourier mode for both
u and T . The following rows display the pdfs for both pointwise values in physical domain as well
as the typical modes in spectral domain. The steady state distribution functions are compared with
corresponding Gaussian distributions with the same variance in dashed lines. Note that the zero
mode û0 is used as the zonal sweep for the tracer dynamics, and the first two modes û1, û2 and the
most energetic modes û7, û8, û9 always have the most important roles in the tracer statistics.
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Figure 2.4: Comparison of tracer statistics with different damping rate in regime F = 8. The
parameters are set to be the same as the cases before while the tracer damping rates are changing
in the range dT = 0,0.1,0.5,5,20. The steady state tracer energy spectra for each case as while as
the pdfs in the physical domain and the most energetic Fourier mode are compared. The same as
before, tracer distributions are compared with Gaussian with the same variance in dashed lines.
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2.3. Model errors from Galerkin truncation and ensemble size
In the above examples with the simple L-96 system as the background flow,

it is observed that strongly non-Gaussian features with fat tails can be generated
in the passive tracer distribution functions even under a near Gaussian advection
flow. Further to cases about high or infinite dimensional turbulent flows in real-
istic applications, it becomes impossible to resolve the detailed statistics in small
scale dynamics considering both the limited available computational resources
and the insufficient understanding of the turbulent systems. Due to these prac-
tical restrictions, a high wavenumber truncation is usually applied ignoring the
effects from the small scale modes with high frequency and small amount of en-
ergy. However it is noticed [29, 30] that the inverse energy cascade from the
neglected small scales to large scales also plays an crucial role in the dynamical
structures in many situations. Furthermore for practical implementation, only lim-
ited small ensemble size is affordable for resolving the statistical structures along
each direction especially in the case of large dimensional models. The so-called
‘curse of dimensionality’ is a well-known obstacle for the development of statis-
tical models with accuracy in capturing non-Gaussian features [31, 32]. Using
the 40-dimensional L-96 system as an example, we illustrate the difficulties about
the possible errors from the truncation of high wavenumber modes and the effects
from small ensemble size. It can help us get a more thorough understanding about
the statistical structures of the turbulent systems and help construct the much sim-
pler linear models in the next section. It is also useful for offering useful hints
about modeling the realistic turbulent systems.

2.3.1. Errors from truncation of non-energetic modes
As discussed above, to effectively reduce the computational costs in resolving

the entire spectrum of high dimensional turbulent systems, one direct strategy is
to apply the standard Galerkin truncation method ignoring all the high frequency
modes leaving only the large-scale modes in consideration. Deficiencies in ignor-
ing these less energetic modes have been noticed and discussed in [33, 34]. To
investigate the possible errors introduced in this truncation and seek proper way
to improve the imperfect model performance, we investigate the possible errors
from this simple Galerkin truncation method using the finite dimensional L-96
system. Use the model (2.1) with J = 40 as the perfect system with full spectrum
of Fourier modes N = J/2. Then introduce the imperfect truncated model by ig-
noring the high Fourier modes with wavenumber larger than K (K < N). With
this high frequency truncation for the relatively simple system, we can test and
analyze the performance with this imperfect model and the amplitude of errors
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introduced by truncation. In the following parts of the paper, we will always refer
K as the resolved number of modes and N as the total number of modes.

Denote the set of resolved Fourier modes as VK = {ek,k ∈ ΛK}, with index set
ΛK = {|k| ≤ K,K < N}. The truncated expansion (2.2) of the state variable under
the Fourier basis inside ΛK becomes

u(x, t) = ū(t)+ ∑
k∈ΛK

ûk (t)ek (x) .

Therefore the corresponding background flow (2.4) and (2.5) for the cross-sweep
U (t) and shearing v(x, t) in Galerkin truncated dynamics becomes

dU
dt

=−dU (t)+ ∑
k∈ΛK

Γk |ûk|2 (t)+F, (2.16)

dûk

dt
=−dûk +

(
e2πi k

J − e−2πi 2k
J

)
U (t) ûk

+ ∑
k+m,k∈ΛK−{0}

ûk+mû∗m
(

e2πi 2m+k
J − e−2πi m+2k

J

)
, k = 1, · · · ,K, (2.17)

with only the first K Fourier modes under consideration in the interaction term
between modes. In Figure 2.5, we compare the model predicted mean ūM and sin-
gle point variance trRM/J under different truncation wavenumber K = 10,15,19
(note that the most energetic modes are always contained in ΛK within these trun-
cation numbers) together with the truth K = N = 20. Large model errors appear
in all these truncated models even with only one Fourier mode k = 20 neglected.
Further by checking the steady state energy spectra captured by these truncated
models, the prediction skill in the variances of each mode also appears quite poor
even with K = 19 out of the total 20 modes resolved. The reason for the large
errors through the truncation models can be explained by the crucial role in the
higher order interactions between the large scale and small scale modes. In the
L-96 system, nonlinearity mostly comes from the interaction between modes rep-
resented by the second line in equation (2.5). Whereas under the truncated models,
only the low frequency mode interactions are included in the dynamics as shown
in (2.17). By checking the third order moments in Figure 2.6, it appears obviously
that the most important contribution of the interactions happens between modes
û7, û8 with û20, which is neglected in the truncated model (2.17). This becomes
the inherent obstacle that we always need to keep in mind when the truncated
methods are applied to true systems.
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Figure 2.5: Model prediction of the mean state ūM (left upper row) and averaged energy trRM/J (or
1-point statistic on each grid point, left lower row) from Galerkin truncated L-96 models in regime
F = 8 with number of positive Fourier modes K = 19,15,10, compared with the true model with
total number of modes K = 20. The steady state spectra achieved through these truncated models
are compared with the state variables ûk from the true L-96 system (right).

Remark. Third order moments in Figure 2.6 show the possible errors we may
face in Galerkin truncation models. However rather than the nonlocal third order
moments in the spectral domain, the moments in physical domain (shown in the
second row) are quite localized with major values near the center. Therefore one
possible correction for the truncation method is to get the higher order moments
locally near the grid points in the physical domain and then transfer them to the
spectral domain to update the system. See [34, 33] for some applications about
this idea, and we will also investigate this further in future researches.

2.3.2. Errors from insufficient ensemble size
Here we check the other issue about the model performance with chang-

ing ensemble size for Monte-Carlo method. It is useful to estimate the error
from insufficient number of particles especially when the high dimensionality of
the system makes it impossible to run large ensemble members. From central
limit theorem (CLT), the i.i.d. Monte-Carlo particles ui with mean µ and vari-
ance σ2 tend to have a Gaussian distribution as the particle number N increases
∑

N
i=1 ui−Nµ/

√
Nσ2→ N(0,1) . Therefore we can estimate the uncertainty of the sta-
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Figure 2.6: Third order moments of the flow variable u in steady state in both spectral and physical
domain in regime F = 8. The left panels show the 3D scatter plot for values of

〈
û′mû′nû′k

〉
or〈

uiu jul
〉
; and the right panels display one cross-section of the third moments of

〈
û′mû′nû′8

〉
or〈

uiu ju1
〉
. The size and color of the dots represent the values of third order moments and only

large values are plotted.
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MC 50 100 500 1×103 5×103 1×104 1×105

ūM 2.3952 2.3921 2.3939 2.3966 2.3958 2.3961 2.3958

std(ūM) 0.0453 0.0311 0.0156 0.0120 0.0043 0.0041 0.0010

Table 1: Time averaged mean from models with varying ensemble size, and the standard deviation
for the time series of the ensemble mean.
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Figure 2.7: Model predictions with different ensemble size MC = 1×105,1×103,1×102.

tistical mean from Monte-Carlo simulation at one time instant as

√
var(ū) =

√√√√var

(
1
N

N

∑
i=1

ui

)
∼ σ√

N
. (2.18)

This shows the extremely slow convergence rate and the high computational re-
quirement as the scale of the problem increases. Table 1 and Figure 2.7 below
show the model prediction for the mean and total variance with varying ensemble
size. We can see that the time averaged mean and variance can always offer good
approximation for the truth. On the other hand, the uncertainty in the ensemble
prediction at one time instant keeps increasing as the number of particles used de-
crease. The uncertainty for this ensemble mean at each time step can be estimated
through CLT in order O

(
N−1/2

)
.

3. Gaussian velocity stochastic models for passive tracer statistics

As we have displayed in the previous section 2.3, the accuracy in the steady
state passive tracer statistics is limited by the modeling and computation skill
of the complex background advection flow v. Several difficulties cannot be by-
passed if we directly go with the true flow system with nonlinearity. First, simple
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Galerkin truncation of high-frequency wavenumbers in the dynamical equations
may introduce large errors to the flow system due to strong nonlinear interac-
tions between the (truncated) small scale and large scale modes. Second, even
with a low dimensional Galerkin truncation model, large ensemble size may still
be required to resolve the flow if non-Gaussian features and intermittencies are
important and of interest. On the other hand, returning to our original problem,
the central issue of major interest is the turbulent fluctuation and statistical struc-
ture of the passive tracer T rather than the background flow field v. Considering
both sides of the problem, the question that is worth asking is whether we can
predict the crucial features (such as, intermittency) in steady state tracer statistics
advected and forced by nonlinear non-Gaussian background flow v using simpler
imperfect models with error for the background dynamical field.

In this section, we begin with the simplest approximation about the advection
flow with imperfect models using linear stochastic dynamics along each spectral
mode from the Ornstein–Uhlenbeck process [16, 12, 8, 7], and check whether we
can predict the steady state tracer statistics using this simplified Gaussian model
for the background flow. The advantages of this choice are obvious: i) The dy-
namics and statistical structure become much more tractable with explicit solu-
tions that enable us to design the model and tune parameters with ease. Thus the
truncation error from the Galerkin method can be converted into consideration
in the linear model parameters; ii) the computational difficulty and cost are also
greatly reduced considering the simple and controllable structure of this model.
Therefore, much smaller ensemble size is needed to get the exact statistical dis-
tributions from the linear models, or even we can get the exact analytical solution
for the linear system. However, the difficulty that comes with this simplification is
the accuracy of the prediction skill for the tracer distributions using only Gaussian
velocity models. It is important to guarantee that the intermittency (or the fat tails
in the pdfs) in the tracer can still be captured under this simplified methods. To
achieve this, one systematic framework using information theory is proposed to
train the imperfect models so that the optimal parameters with information consis-
tent statistics can be reached. Following we first introduce the Gaussian velocity
stochastic model and present the exact solution for this model. Then the idea for
tuning model parameters under information metric is introduced.

3.1. Gaussian velocity stochastic models as the background flow
We model the advection flow dynamics under each Fourier mode (2.4) and

(2.5) through simple Gaussian stochastic models. The state variables u is decom-
posed into mean ū and fluctuation terms for each mode ûk (and û0 measures the
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variance in ū), with 〈ûk〉= 0,k = 0, · · · ,J/2 as in [7, 16, 12]. The correlations and
interactions between different modes are totally neglected in this coarse approxi-
mation model, thus each mode is assumed to be independent with Gaussian linear
dynamics from an Ornstein-Uhlenbeck process. Also we can apply the Galerkin
truncation strategy by resolving only the first K leading modes in Fourier space.
The truncated linear stochastic models for each mode can be written as

dûM
k

dt
= (−γuk + iωuk) ûM

k +σukẆk, |k| ≤ K, (3.1)

with γuk ,ωuk ,σuk as parameters to be determined, together with the dynamics for
the mean

dūM

dt
=−dūM + ∑

k∈ΛK

ΓkrM
k + ∑

k∈Λc
K

Γkrk,∞ + F̂ , (3.2)

with Γk = cos 4πk
J − cos 2πk

J . Here ΛK = {|k| ≤ K,K ≤ J/2} representing the first
K resolved Fourier modes with J/2 the total number of spectral modes in the
system. And Λc

K is the set of unresolved modes and steady state statistics r j,∞ are
used here as a correction (possibly Λc

K can be an empty set if we apply the full
spectrum with every mode resolved). Under this approximation model (3.1) and
(3.2), the background flow vM =

(
UM (t) ,vM (x j, t

))
can be constructed as before

for the mean cross-sweep UM and the shearing flow vM in the tracer model (1.1)

UM (t) = ūM (t)+ ûM
0 (t) , vM (x j, t

)
= ∑

k 6=0
ûM

k (t)e2πix j .

Now the problem is converted to finding systematic strategies of assigning
values to three undetermined coefficients γuk ,ωuk ,σuk so that the tracer structure
(intermittency) can be reconstructed from this imperfect model. They should be
chosen in an unambiguous way according to the true steady state statistics of the
system (which is available from observations). In comparison with the original
equation for each mode described in (2.5), the linear Gaussian approximation of
L-96 system replaces the nonlinear interaction part in the second line of (2.5) by
linear damping and rotation together with a white noise

∑
m 6=0

ûk+mû∗m
(

e2πi 2m+k
J − e−2πi m+2k

J

)
∼ (−γuk + iωuk) ûM

k +σukẆk.

The white noise σukẆk is added to each Fourier mode in order to make sure that
the system converges to the consistent equilibrium steady state spectra. γuk rep-
resents the damping that neutralizes the additional energy from the white noise.
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The imaginary component ωuk is the additional degree of freedom for tuning the
autocorrelation function (or in other words, to control the ‘memory’ of this mode
of its previous history). Note that the quasi-linear part with U (t) in the first line
of the formula (2.5) is also included in the coefficients γuk ,ωuk . The exact statis-
tical solutions together with the passive tracer under this linear flow are solved
and discussed in details in [8, 32], and the intermittencies in the tails of the tracer
distributions are investigated theoretically with computational tests in [15]. It is
discovered that even under this linear flow field with Gaussian statistics, inter-
mittency with fat-tailed distributions can be generated in the steady state tracer
distributions [8, 15]. Still here in our situation with a nonlinear true advection
field with strong non-Gaussianity like in the L-96 system (2.1), the challenge is
whether we can still capture the correct structure in the tracer spectra and density
functions, especially for the intermittency, under these imperfect linear models.
Therefore, judicious choice of the model parameters needs to be investigated.

3.1.1. Mean stochastic model for the background advection flow
One of the simplest and most direction way to estimate the undetermined co-

efficients γuk ,ωuk ,σuk is through the mean stochastic model (MSM) introduced
in [35] and Chapter 12 of [7]. Noticing that the random flow field is a Gaus-
sian process, each random coefficient ûk can be characterized by the energy and
autocorrelation function defined as follows

Ek ≡ var(ûk (t)) =
〈
|ûk (t)−〈ûk〉|2

〉
, (3.3)

Rk (t)≡
〈
(ûk (τ)−〈ûk〉)(ûk (τ + t)−〈ûk〉)∗

〉
var(ûk (τ))

. (3.4)

Here 〈·〉 can be viewed as ensemble averages. If we integrate the autocorrelation
function (3.4) in time, the resulting quantity is called the decorrelation time,

Tk + iθk =
∫

∞

0
R (t)dt, (3.5)

which quantifies the memory of the system. For clarification, we decompose the
decorrelation time (3.5) into the real part and imaginary part. The mean stochastic
model determines the model parameters {γuk ,ωuk ,σuk} using the characterizing
energy Ek and decorrelation time Tk+ iθk. The true values can be achieved through
observation data, while the imperfect model predictions of Ek,Tk,θk for the linear
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system (3.1) can be calculated exactly as (this is through the standard process of
solving the stochastic system, detailed deviations can be found in [7] or [26])

Ek =
σ2

uk

2γuk

, Tk + iθk =
γuk + iωuk

γ2
uk
+ω2

uk

.

Solving the corresponding values in this equation, we get the values for MSM
parameters

γ
MSM
uk

=
Tk

T 2
k +θ 2

k
, ω

MSM
uk

=
θk

T 2
k +θ 2

k
, σ

2,MSM
uk

=
2TkEk

T 2
k +θ 2

k
. (3.6)

Despite the simplicity in this mean stochastic model, we can obtain reason-
ably skillful prediction in uncertainty quantification as well as filtering under this
strategy for turbulent systems [7, 35]. However MSM still suffers several short-
comings when strong nonlinearity takes place in the system. Most importantly,
the decorrelation time Tk + iθk involves only the time-integrated effects in each
mode. This works well when the system is strongly mixing within a nearly Gaus-
sian regime. Whereas when non-Gaussian features become crucial in the system,
the pointwise decaying process of the entire autocorrelation function R (t) be-
comes important and we need take into account the temporal performance of the
autocorrelation in the linear model approximation (for example, when the auto-
correlation function becomes strongly oscillatory, see the examples in Section 4).
We will illustrate this with the L-96 system in the next section.

3.1.2. Explicit statistical solutions under Gaussian linear approximations
One advantage of the linear stochastic approximation (3.1) for the flow system

is that it makes it possible to calculate the exact statistical solutions for each mode
in the system. Hopefully, this can offer us hints about the true structure of the
tracer statistics. Following we derive the exact formulas for the tracer statistics
advected by the linear model in two steps with increasingly stronger assump-
tion about each mode. These formulas can be viewed as special cases among
the results derived in [8] under more generalized framework. First, the pathwise
solution for the tracer is achieved in (2.10)

T̂k =−α

∫ t

t0
exp(−γTk (t− s)− ikJ (s, t)) ûk (s)ds,

with J (s, t) =
∫ t

s U (τ)dτ . So the mean of each mode decays to zero in steady state〈
T̂k
〉
→ 0, as t0→−∞. For the second order moments, the lagged covariance of
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the flow mode ûk enters so that in steady state t0→−∞, the equation can be first
simplified as〈∣∣T̂k (t)

∣∣2〉= α
2
∫ t

−∞

ds
∫ t

−∞

ds′e−γTk (t−s)−γTk (t−s′)
〈

e−ik
∫ s′

s U(τ)dτ ûk (s) û∗k
(
s′
)〉

= α
2
∫ t

−∞

ds
∫ t−s

−∞

dre−2γTk t+γTk (r+2s)
〈

e−ik
∫ s+r

s U(τ)dτ ûk (s) û∗k (s+ r)
〉
.

The second line of the above equation is a simple change of variable r = s′− s.
If we consider the stationary joint distribution of û0, ûk in steady state which is
invariant under time shifting, the expectation above inside 〈·〉 is always valid in
domain [0,r], that is,〈

e−ik
∫ s+r

s û0(τ)dτ ûk (s) û∗k (s+ r)
〉
=
〈

e−ik
∫ r

0 û0(τ)dτ ûk (0) û∗k (r)
〉
.

Further under the linear stochastic model, û0 and ûk are decoupled and the explicit
form for the autocorrelation

〈
ûM

k (0) ûM∗
k (r)

〉
∼ exp(−(γuk− iωuk)r) can also be

calculated. Therefore, we can get the following two estimations for the energy
spectra of T̂k under increasingly stronger assumptions.

Proposition 3. Estimations for tracer energy spectra:

• Assume that û0 is independent with other modes ûk, and the zero mode û0
has pure Gaussian distribution. This can be viewed as a first order expansion
of the exact formula by expanding the expectation in 〈·〉. Therefore, we get〈∣∣T̂k

∣∣2〉=
α2

γTk

Re

∫
∞

0
e−γTk re−ikūr

〈
e−ik

∫ r
0 û0(τ)dτ

〉
〈ûk (0) û∗k (r)〉dr+h.o.t.

=
α2

γTk

Re

∫
∞

0
e−γTk re−ikūre−

1
2 k2varJ0(r) 〈ûk (0) û∗k (r)〉dr. (3.7)

Here we further assume the mean is time independent in stationary steady
state 〈u〉(t) = ū for simplicity. And denote J0 (r) =−

∫ r
0 û0 (τ)dτ , which is

still Gaussian as a finite integration of a Gaussian process û0 by assump-
tion. Then with a simple application of the property of the characteristic
function, we have

〈
e−ikJ0

〉
= e−

1
2 k2varJ0 , and it is easy to calculate

varJ0 (r) = 2varû0

[
r

γu0

+
1

γ2
u0

(
e−γu0 r−1

)]
.

Here γu0 is the equivalent damping rate for zero mode û0 if a Gaussian
process is assigned to this variable.
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• Assume further that each mode ûk is Gaussian following the linear stochas-
tic model (3.1). Under this assumption, the explicit form of the autocorre-
lation in (3.7) can also be calculated. The steady state energy spectrum can
be further simplified as〈∣∣T̂k

∣∣2〉=
α2

γTk

Re

∫
∞

0
e−(γTk+γuk−iωuk−ikū)re−

1
2 k2varJ0(r)dr. (3.8)

The two above approximation formulas (3.7) and (3.8) for steady state tracer
spectra are useful for understanding the contribution of each part in the final
energy spectra by comparing with the truth, then estimating the intrinsic barri-
ers from adopting Gaussian velocity models. By comparing (3.7) with the true
spectra, the difference illustrates the error from ignoring the cross-correlation and
higher order moments between modes û0 and ûk if imperfect models with inde-
pendent modes are applied. By comparing (3.7) and (3.8) (note that in (3.7), we
can still apply the true autocorrelation function from the true system in the for-
mula, whereas (3.8) uses the autocorrelation predicted from a Gaussian process),
the errors by using a Gaussian process to approximate the original autocorrelation
function can be displayed. It shows the potential improvement through fitting the
autocorrelation function as we will discuss in the next part.

3.2. Spectral Information criterion for improving imperfect model prediction skill
Results in both (2.15) and (3.7) imply that the accurate estimate with the au-

tocorrelation function
〈
ûk (0) û∗k (r)

〉
plays a crucial role in model predictions of

both steady state pdfs and the energy spectrum of the tracer. The true structure
of this autocorrelation is determined by the nonlinear interactions between modes
in the true system (2.5), but still we can try to access the optimal fitting of the
autocorrelation structure through our linear stochastic model. The MSM with
integrated form of the decorrelation time is sometimes insufficient for poitwise
agreement with the true autocorrelation (see examples under L-96 system in Sec-
tion 4.1). This leads to the requirement for tuning the imperfect model parameters
under more detailed calibration about the autocorrelation function. As an unbiased
measure between the two probability measure, information theory [23, 24] can of-
fer a balanced estimation for the distance between the truth and imperfect model
prediction. Here applying information theory for the autocorrelation functions,
we try to develop one systematic strategy that can optimize the linear stochastic
model with information consistent prediction skill in the autocorrelation function.
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Consider u(t) as a mean zero (〈u〉 = 0) stationary process in the statistical
steady state and focus on its second order statistics. For simplicity, in this subsec-
tion we neglect the hat ‘ ·̂ ’ and subscript k in the modes ûk. Consider the goal
to construct a linear stochastic model (3.1) with state variable uM (t) to approx-
imate the truth u(t) with optimal agreement in the first two order of moments.
By comparing the information distance between the two random processes u and
uM, the optimal parameter σ can be found with consistent equilibrium energy E
in (3.3) for the model. σ then can be chosen by fitting the climatology spectrum
for the variances E as σ =

√
2γE. Next including the entire second order statis-

tics of the stationary processes, the random field u is further characterized by the
autocorrelation function, measuring how fast the system can forget its previous
information. Assuming the process is ergodic, the true autocorrelation function
(3.4) with exact dynamics can be calculated as a time average

R (t) = lim
T→∞

1
T

∫ T

0

u(t + τ)u∗ (τ)〈
|u|2
〉 dτ. (3.9)

The autocorrelation function of corresponding linear model (3.1) can be calculated
in explicit form making use of the simple dynamical structure

RM (t) = e(−γu+iωu)t . (3.10)

Therefore the task now is about how to find the information consistent model
with parameters {γ,ω} (γ > 0) which offer the optimal approximation of the true
autocorrelation function R (t) in stationary state.

3.2.1. Formal motivation of the spectral entropy information criterion
Now consider the information metric between the two distribution functions

of the random processes u(t) and uM (t) in stationary states. The information
distance or relative entropy [36, 9, 12] offers a natural way of measuring the lack
of information in one probability density from the imperfect model, πM, compared
with the true probability density, π , given by

P
(
π,πM)= ∫ π log

π

πM . (3.11)

Despite the lack of symmetry in its arguments, the relative entropy, P
(
π,πM)

provides an attractive framework for assessing model error like a metric. Impor-
tantly, the following two crucial features are satisfied: (i) P

(
π,πM) ≥ 0, and
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the equality holds if and only if π = πM; and (ii) it is invariant under any invert-
ible change of variables. The difficulty here is that the information distance in
(3.11) only measures the difference between the distributions of the two station-
ary processes u(t) and uM (t) at fixed time instant, whereas the lagged-in-time
covariance

〈
u(0)u(t)∗

〉
(or the memory in the state variables) cannot be included

in this metric. So only tuning uM under the information metric compared with
u in the stationary phase offers no improvement for the autocorrelation function.
On the other hand, from the definition, the autocorrelation function R (t) may os-
cillate with negative values, thus it becomes improper to directly substitute R (t)
into the formula (3.11) by replacing π to measure the distance.

In order to generalize the desirable information-theoretic framework to include
autocorrelation functions, we expand the random processes u and uM using the
theory of spectral representation of stationary random fields discussed in [37] (we
put a more detailed description of the spectral theory about stationary random field
in Appendix A). It is proved by Khinchin’s formula [37], that if the autocorrelation
function R (t) is smooth and rapid-decay (which is the typical property of the
autocorrelation function for most systems), we can find a non-negative function
E (λ )≥ 0 so that

R (t) =
∫

∞

−∞

eiλ tdF (λ ) , (3.12)

with dF (λ ) = E (λ )dλ a non-decreasing function. Therefore we can construct
the spectral representation of the stationary process of u(t) as

u(t) =
∫

∞

−∞

eiλ t Ẑ (dλ ) . (3.13)

The exact spectral random measure Ẑ (dλ ) has independent increments whose
energy spectrum can be represented by E (λ ) or dF (λ )

dF (λ ) = E (λ )dλ = E
∣∣Ẑ (dλ )

∣∣2 . (3.14)

Applying the theory for spectra representation of stationary processes, we find the
one-to-one correspondence between the autocorrelation function R (t) and non-
negative energy spectra E (λ ), together with the spectral representation Ẑ (dλ ) of
the process u(t). Consider the approximation of this random process with only
second order statistics by a lattice random field with spacing ∆λ . By indepen-
dence, the true increment Ẑ

(
∆λ j
)
= Ẑ

(
λ j +∆λ

)
− Ẑ

(
λ j
)

has the second order
Gaussian probability density function approximation

Ẑ (∆λ )∼ pG (x;λ )∆λ = N (0,E (λ )∆λ ) ; (3.15)
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and the corresponding spectral representation from the Gaussian linear model
(3.1) also has the (exact) density function

ẐM (∆λ )∼ pM
G (x;λ )∆λ = N

(
0,EM (λ )∆λ

)
, (3.16)

where N
(
m,σ2) denotes a Gaussian random variable with mean m and variance

σ2. Since the spectral measure has independent increment, we approximate the
true and linear model Gaussian random fields by

pG = ∏
j

N
(
0,E

(
λ j
)

∆λ
)
, pM

G = ∏
j

N
(
0,EM (

λ j
)

∆λ
)
.

Then the normalized relative entropy between these two Gaussian fields becomes

P
(

pG, pM
G
)
= ∑

j
P
(

pG
(
x;λ j

)
, pM

G
(
x;λ j

))
∆λ

→
∫

∞

−∞

P
(

pG (x;λ ) , pM
G (x;λ )

)
dλ , as ∆λ → 0. (3.17)

Therefore, given spectral densities, E (λ ) and EM (λ ), the spectral relative entropy
is given by

P
(

pG, pM
G
)
= P

(
E (λ ) ,EM (λ )

)
,
∫

∞

−∞

P
(

pG (x;λ ) , pM
G (x;λ )

)
dλ . (3.18)

We abuse the notation above using the spectra E (λ ) to denote density functions.
Since E and EM are variances for the spectral random variables, it is well-defined
of the last part of the above formula (3.18) using the information distance formula
(3.11). Through measuring the information distance in the spectral coefficients
Ẑ (λ ), we get the lack of information in the autocorrelation function R (t) from
the model.

Recalling the dispersion and signal decomposition of two Gaussian measures
[24, 12] yields

P
(

pG (λ ) , pM
G (λ )

)
= D

(
E (λ )

EM (λ )

)
,

with D (x)≡− logx+ x− I. Thus we have

P
(
E (λ ) ,EM (λ )

)
=
∫

D

(
E (λ )

EM (λ )

)
dλ .

Let the set of parameters θ = {γ,ω} ,γ > 0 for the linear stochastic model (3.1).
Minimum relative entropy criterion implies the process of minimizing the lack
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of spectral information distance by picking the optimal parameter set θ∗ for the
imperfect Gaussian model so that

P
(
E (λ ) ,EM (λ ,θ∗)

)
= min

θ
P
(
E (λ ) ,EM (λ ,θ)

)
. (3.19)

To summarize, to include the autocorrelation function of a stationary random
process into the original information-theoretic framework for tuning model pa-
rameters, we transfer the autocorrelation function into the spectral domain with
spectral random field Ẑ (λ ). Then the information consistent solution with opti-
mal agreement in the autocorrelation function can be achieved by minimizing the
information distance in the spectral density in (3.19). Under this systematic pro-
cedure, we can then find the model parameters θ = {γ,ω} (γ > 0) in the linear
model by minimizing the spectral information distance P

(
E (λ ) ,EM (λ ,θ)

)
in a

training as shown next that guarantees high quality approximation of the autocor-
relation functions.

3.2.2. Relation between spectral information criterion and direct estimations for
the autocorrelation functions

With the general procedure to tune the model autocorrelation, one last step is
to justify the validity of the tuning process using (3.19). Specifically, we need to
show that the error in the autocorrelation between the true model results and the
linear stochastic model prediction

∥∥R (t)−RM (t)
∥∥ can be minimized if the infor-

mation distance between the spectral densities P
(
E (λ ) ,EM (λ )

)
are optimized.

The following proposition offers the validation for the optimization process (For
the proof, see Appendix A).

Proposition 4. (fitting autocorrelation function using spectral representation of
random field) The optimal distribution of a stationary random process uM which
gives the least biased approximation of the autocorrelation function R (t) from the
true state variable u can be achieved through minimizing the information distance
between the energy spectra E (λ ) and EM (λ ) of the two processes according to
(3.18). The error in autocorrelation functions

∥∥R (t)−RM (t)
∥∥ of two stationary

random processes u(t) and uM (t) is bounded by the information distance of their
energy spectra E and EM, that is,

A)

max
−∞<t<∞

∣∣R (t)−RM (t)
∣∣≤ 2
√

3
(∫ (

E2 (λ )+E2
M (λ )

)
dλ

)1/2

P
(
E (λ ) ,EM (λ )

)1/2
;

(3.20)
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B) ∫ ∣∣R (t)−RM (t)
∣∣2 dt ≤ 12 max

−∞<t<∞

∣∣E2 (λ )+E2
M (λ )

∣∣P (
E (λ ) ,EM (λ )

)
.

(3.21)

Remark. 1. We only consider simple scalar process u(t) in the above method for
fitting autocorrelation function. In fact, the above procedure is quite easy to get
generalized to a vector random field u(t). In that case, we need first decompose
the vector system into each independent eigendirection of the stationary covari-
ance matrix of u (especially in the special case for homogeneous system, (spatial)
Fourier basis will become the eigen-basis to diagonalize the system with ease).
Then we can carry out the above spectral analysis process individually for each
mode along the eigendirection.

2. The mean stochastic model (MSM) by fitting the decorrelation time can
be viewed as a special case of the procedure above. If we further assume that
we propose a Gaussian model in the white noise limit, that is, the state variable
forgets its previous information immediately, then RM and EM become{

RM (t) 6= 0, t = 0,
RM (t) = 0, t 6= 0,

and EM (λ ) = const.=
∫

RM (t)dt.

By minimizing the information distance in (3.18), the integrated decorrelation
time is fitted as in MSM.

3. In the above process, we construct a Gaussian random process to fit the true
autocorrelation function. Furthermore, we may even use this random measure to
construct non-Gaussian processes when non-Gaussianity becomes an important
issue. Without any change, the formula (3.18) is still valid for the spectral mea-
sures from any other approximation models. Then we may even propose some
more sophisticated nonlinear models to approximate the autocorrelation function
with higher accuracy. This implies the potential of this framework to much more
complicated systems.

4. Numerical experiments for capturing intermittency with Gaussian stochas-
tic models

Finally in this section, we check the theories and strategies developed in the
previous sections through numerical simulations to show their skill in predicting
the fluctuations and intermittencies in the tracer statistics. The 40-dimensional
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L-96 system (2.1) is used as the truth to simulate the background advection flow,
and the linear stochastic models (3.1) and (3.2) with model error are tested as the
imperfect approximation models in the skill in capturing true tracer statistics. The
models are checked in the same three dynamical regimes as before with F = 5
(weakly chaotic), F = 8 (strongly chaotic), and F = 16 (fully turbulent). Note
that F = 5 becomes an extremely difficult regime here considering only Gaussian
statistics are included in the imperfect flow system. Through the previous discus-
sions about the effects in tracer damping strength dT in Section 2.2, we choose
relatively small damping rate dT = 0.1 for all these cases so the flow spectrum
would not be fully dominant. And the same fixed mean gradient α = 2 and dif-
fusivity κ = 0.001 are taken in the tracer equations. For resolving the statistics in
the flow dynamics, as we have discussed, much smaller ensemble size with 1000
particles (in comparison with the much larger ensemble size 10000 in the original
true system; and in experience with running the models smaller particle number
also works fine for resolving the state variables, here relatively larger number of
particles are taken to achieve smoother pdfs in presentation) is valid to get the
distributions in each Fourier mode ûk. It needs to be emphasized again that there
is no positive Lyapunov exponents in the imperfect linear stochastic models while
the true L-96 system includes all kinds of internal instabilities, making it a quite
challenging task in capturing the tracer intermittency with accuracy.

4.1. Fitting autocorrelation functions under information measures
In the first place, we check the fitting results for the autocorrelation functions

from the mean stochastic model (MSM) through (3.6) and from tuning the pa-
rameters through the information-theoretic framework (3.18). In Figure 4.1, we
compare the autocorrelation functions predicted by MSM and model with optimal
parameters, together with the truth with large Monte-Carlo particles. Results for
representative wavenumbers k = 0 (mode for the horizontal sweep) and 5≤ |k| ≤ 9
(most energetic modes in the shearing flow) are plotted. Large deficiencies appear
for MSM, especially in the weakly mixing strongly non-Gaussian regime F = 5
due to the fact that cancellations in the integrated decorrelation time in (3.5) make
it insufficient to characterize the fast oscillatory modes such as û7 and û8. As
the forcing increases to F = 8 and F = 16, the system becomes more mixing
with Gaussian-like statistics. Errors from MSM become smaller, but still with
quite distinctive difference from the truth. Whereas great improvement with uni-
formly good agreement with the truth in all regimes can be achieved through the
information-theoretic framework using optimal parameters for the linear models.
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Figure 4.1: Fitting of the autocorrelation functions for representative Fourier modes k = 0 and
5 ≤ |k| ≤ 9 of the flow state variables ûk in three dynamical regimes F = 5,8,16 (only real parts
are shown). The true autocorrelation function from the true system is plotted in thick black lines,
and the results from MSM is in blue lines, while the optimal model results from tuning parameters
in spectral density functions are shown in red lines. Note that black and red lines are largely
overlapped together.

35



In Figure 4.2, we compare the steady state tracer energy spectra in dynam-
ical regimes F = 5,8,16. We compare the results from approximation formula
(3.7) with true autocorrelation function and from approximation formula (3.8)
with optimal linear stochastic model parameters by minimizing information dis-
tance, together with the MSM results using parameters in (3.6). Note that (3.7) can
be viewed as the upper bound for using linear models with independent modes,
while (3.8) gives similar results with that through numerical simulations of the lin-
ear stochastic model using optimal model parameters. In strongly non-Gaussian
regime F = 5, there exists one dominant mode which contains most of the energy.
The major error for the approximation models comes from the non-Gaussianity
in the skewed zero mode û0 (see pdfs in Figure 2.1). So there exists a barrier in
the leading mode by using the linear models whereas the optimal parameter result
(in red) works comparably well with the result using the true autocorrelation (in
blue). MSM loses its ability in capturing the spectrum fully in this case. As the
model becomes more turbulent with F = 8 and then F = 16, still the linear model
with optimal parameter offers desirable estimation with the true energy spectra
and has little difference with the results with true autocorrelation function. For all
the cases, MSM lacks the accuracy in getting the true model spectral structure.

4.2. Skill of Gaussian velocity stochastic models in capturing intermittency
In this final part, we check the Gaussian velocity stochastic models’ skill in

capturing the fat tails and intermittencies in tracer probability density functions.
In Figure 4.3, 4.4, and 4.5, we compare the steady state tracer pdfs in both physical
and spectral domains for the three representative dynamical regimes F = 5,8,16.
The first rows of the figures display the distributions for the advection flow state
variables u in both pointwise pdfs in physical domain and the first two leading
Fourier modes in spectral domain. The linear model results for velocity fields
in red lines can only offer Gaussian approximations for the state variables in both
physical and spectral regimes even though strongly non-Gaussian statistics appear
in the true system shown by blue lines. Nevertheless, even under this Gaussian
fittings for the flow state variables, the Gaussian velocity stochastic models us-
ing optimal parameters through the information-theoretic framework display high
skill in capturing intermittency in the tracer statistics. By comparing the imper-
fect model predictions in the tracer density functions with the truth in the second
rows, good agreements especially with accurate approximations in fat tails are
achieved in all three dynamical regimes with distinct statistics. Particularly, note
that the strongly non-Gaussian case F = 5 contains skewed pdfs in the modes of
state variables, making it an extremely difficult test case for the Gaussian flow
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Figure 4.2: Steady state tracer energy spectra in regimes F = 5,8,16. The truth from Monte-Carlo
simulations with large ensemble size is shown in black lines with circles. The estimation (3.7)
using true autocorrelation function and the estimation (3.8) with optimal linear stochastic model
parameters are compared in blue with diamonds and red with triangles. The MSM results are
plotted in green with squares.
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approximation, but the optimal linear models keep the good skill in capturing the
key structure in the tracer distributions in both single-point statistics in physical
domain and the leading Fourier modes. In addition, we plot one realization of
the tracer trajectories in principal mode under both true model and the Gaussian
velocity model for these regimes. Strong intermittencies appear in all three dy-
namical regimes, and it can be observed that the imperfect model under Gaussian
advection flow keeps the high skill in capturing important patterns and intermit-
tency in the time sequences. Considering the simplicity and controllability of the
linear stochastic models, this displays the strong skill and obvious advantage in
applying tractable and information consistent models to capture nontrivial impor-
tant statistical features in the passive tracer fields.

5. Concluding discussion

In this paper, we focus on the the intermittency in turbulent diffusion described
by fat tails in the probability density functions or large spikes randomly occur-
ring in time sequence of passive tracer systems. To investigate the effects of a
nonlinear advection field with non-Gaussian features for tracer distributions, the
40-dimensional L-96 system is taken as the test model to simulate the background
flow that passively drives the tracer. Among a wide variety of dynamical regimes
ranging from strongly non-Gaussian to near Gaussian statistics with strong mix-
ing, intermittency with fat tails in the tracer pdfs can all be generated under this
simple setting-up. Another important issue of great interest is the skill of imper-
fect models in capturing the crucial structures in tracer statistics. This strategy
of adopting simple advection flow models has practical significance especially
in situations when realistic high dimensional applications are required. We test
the simplest linear stochastic models with pure Gaussian statistics as one imper-
fect approximation to the L-96 system with quite complex dynamical features.
Under a systematic manipulation about the model parameters by fitting autocor-
relation functions using information theory in a training phase, the achieved opti-
mal Gaussian velocity stochastic model displays uniformly high skill in capturing
both the steady state energy spectra and the density distribution functions espe-
cially with accuracy in the tails. Furthermore, it needs to be emphasized that the
linear stochastic models applied here are only served as a simple illustrative ex-
ample, and the information framework for tuning autocorrelation functions can be
applied to more generalized models.

In our test cases in this paper, we always apply uniform forcing terms in time
in the flow fields and focus on the tracer statistics in stationary steady state. On
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Figure 4.3: Comparison of probability density functions captured by the linear stochastic model
with optimally tuned parameters (in red) and the truth (in blue) in weakly chaotic regime F = 5
with tracer parameters dT = 0.1,α = 2,κ = 0.001. The corresponding Gaussian distributions
with the same variance are plotted in black dashed lines for comparison. We compare the pdfs of
pointwise statistics in the physical domain as well as the two most energetic Fourier modes. The
first row is the pdfs in the background flow, and the second row is the corresponding tracer pdfs.
The last two rows compare one realization of the time sequence for the tracer principal mode for
the true model (blue) and the optimal Gaussian velocity model (red).
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Figure 4.4: Comparison of probability density functions captured by the linear stochastic model
with optimally tuned parameters (in red) and the truth (in blue) in strongly chaotic regime F = 8
with tracer parameters dT = 0.1,α = 2,κ = 0.001. The corresponding Gaussian distributions
with the same variance are plotted in black dashed lines for comparison. We compare the pdfs of
pointwise statistics in the physical domain as well as the two most energetic Fourier modes. The
first row is the pdfs in the background flow, and the second row is the corresponding tracer pdfs.
The last two rows compare one realization of the time sequence for the tracer principal mode for
the true model (blue) and the optimal Gaussian velocity model (red).
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Figure 4.5: Comparison of probability density functions captured by the linear stochastic model
with optimally tuned parameters (in red) and the truth (in blue) in full turbulent regime F = 16 with
tracer parameters dT = 0.1,α = 2,κ = 0.001. The corresponding Gaussian distributions with the
same variance are plotted in black dashed lines for comparison. We compare the pdfs of pointwise
statistics in the physical domain as well as the two most energetic Fourier modes. The first row
is the pdfs in the background flow, and the second row is the corresponding tracer pdfs. The last
two rows compare one realization of the time sequence for the tracer principal mode for the true
model (blue) and the optimal Gaussian velocity model (red).
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the other hand, model sensitivity to external perturbations is another important
issue for quantifying the model prediction skill [25, 12]. In the next stage, it is
interesting to investigate the tracer field responses to various external forcing per-
turbations; and check whether the information-theoretic framework for imperfect
models still maintains its skill in predicting fat tails in response to perturbations.
Besides all these simpler versions of test models, it is also important to move on
to more realistic dynamical systems, and check the skill of this systematic frame-
work in capturing passive tracer statistics in practical applications.
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Appendix A. Spectral representation of the stationary random fields and the
information criterion

Appendix A.1. Spectral representation of general stationary random fields
For a stationary process u(t), by the definition in (3.9) its autocorrelation func-

tion R (t) is positive-definite in time, that is,

N

∑
i, j=1

R
(
ti− t j

)
aia∗j ≥ 0, ∀{a1, · · ·aN} ∈ CN .

Thus it is proved by Khinchin’s formula [37] that the autocorrelation function has
a spectral representation

R (t) =
∫

∞

−∞

eiλ tdF (λ ) , (A.1)

with F (λ ) a non-decreasing function. The function F (λ ) is called the spectral
distribution function of the stationary process u(t). According to the formula
(A.1), the spectral distribution function F (λ ) of the process u(t) can be deter-
mined from its autocorrelation function R (t) via Fourier transform. Conversely,
we can calculate the autocorrelation function easily from the corresponding spec-
tral distribution function. By further imposing that R (t) is smooth and rapid-
decaying (which is valid for most systems), we can find non-negative function
E (λ )≥ 0 so that

dF (λ ) = E (λ )dλ ,
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where E (λ ) is usually called the spectral density function of the stationary pro-
cess u(t). Therefore we can construct the spectral representation of the stationary
random field u(t) as

u(t) =
∫

∞

−∞

eiλ t Ẑ (dλ ) , (A.2)

with Ẑ (dλ ) a random measure which can be defined in a similar form of Fourier
transform as

Ẑ (dλ ) = lim
T→∞

dλ

2T

∫ T

−T
e−iλ tu(t)dt.

The spectral representation (A.2) of the stationary random field decomposes the
process into mutually independent spectral increments Ẑ (dλ ) ≡ Ẑ (λ +dλ )−
Ẑ (λ ), therefore offers us the flexibility of analyzing the statistics at each individ-
ual frequency λ . By combining (A.1) and (A.2) we can find that E (λ ) or dF (λ )
can be viewed as the energy spectrum of the random field u which measures the
variance in Ẑ (dλ )

dF (λ ) = E (λ )dλ = E
∣∣Ẑ (dλ )

∣∣2 . (A.3)

Note here that in general Ẑ (dλ ), which depends on the statistics of the station-
ary process u(t), is not necessarily a Gaussian random variable and may include
higher order statistical information. But here we only concern fitting this process
with consistent statistics up to second order, so a simple Gaussian approximation
uG (t) with statistics up to second order moments is considered.

Appendix A.2. Spectral information criterion for measuring the autocorrelation
functions

As we have discussed in the main text, we want to approximate the (possibly
non-Gaussian) stationary process u(t) using the linear stochastic model (3.1) of
state variable uM (t) with only Gaussian statistics. Since we only concentrate on
the second order moment at the present case, we can approximate the true spectral
random measure Ẑ (dλ ) with a Gaussian random field ẐG (dλ ) with consistent
second order moment, E

∣∣Ẑ (dλ )
∣∣2 = E

∣∣ẐG (dλ )
∣∣2. Correspondingly, the imper-

fect linear model approximation uM (t) can be naturally expressed under a Wiener
random measure dŴ (λ ). That is,

uG (t) =
∫

∞

−∞

eiλ t ẐG (dλ ) =
∫

∞

−∞

eiλ tE1/2 (λ )dŴ (λ ) , (A.4)

uM (t) =
∫

∞

−∞

eiλ t ẐM (dλ ) =
∫

∞

−∞

eiλ tE
1/2
M (λ )dŴ (λ ) . (A.5)
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Above E (λ ) is the true spectral energy, while EM (λ ) = 2γ

γ2+(λ−ω)2 is the ex-
plicit form for the density of autocorrelation function for the linear model from
(A.3). Instead of measuring the information distance between the stationary ran-
dom fields u(t) and uM (t) at fixed time t, a more favorable way is to compare the
distributions between the true spectral random measure Ẑ (dλ ) and the imperfect
model approximation field ẐM (dλ ) which can include the information about the
autocorrelation functions (thus include the ‘memory’ of the system).

First, only consider a small independent spectral increment Ẑ (∆λ )= Ẑ (λ +∆λ )−
Ẑ (λ ) between the true system u(t) and the imperfect linear model approximation
uM (t). According to the information relation derived in [9], the information dis-
tance P (p(x;λ ) , pM (x;λ )) can be decomposed into two parts

P (p(x;λ ) , pM (x;λ )) = P (p(x;λ ) , pG (x;λ ))+P (pG (x;λ ) , pM (x;λ ))

= (S (pG (x;λ ))−S (p(x;λ )))+P (pG (x;λ ) , pM (x;λ )) .
(A.6)

In (A.6), S (p) = −
∫

p log p is the absolute entropy [24, 9] of the probability
measure p, and p, pG, and pM are the probability density functions of the spectral
increments Ẑ (∆λ ), ẐG (∆λ ), and ẐM (∆λ ) correspondingly

Ẑ (∆λ )∼ p(x;λ )∆λ , ẐG (∆λ )∼ pG (x;λ )∆λ ẐM (∆λ )∼ pM (x;λ )∆λ .

Therefore, the first part S (pG)−S (p) on the right hand side of (A.6) mea-
sures the information error due to the Gaussian restriction. Here we only focus
on the prediction skills using Gaussian linear models, thus this error becomes the
inherent information barrier for these Gaussian models unless higher order statis-
tics are taken into account. Then the second part P (pG, pM) in (A.6) expresses
the information error between the true second order statistics and the imperfect
model results. Ideally this part can be minimized by tuning the imperfect model
parameters in a training phase.

Above with the help of the spectral decomposition of stationary random pro-
cess, we decompose the state variables into the spectral form in (A.4) and (A.5)
respectively under each Fourier basis

{
eiλ t
}

in time and measure the information
distance between one single spectral increment at frequency λ . Here consider the
full spectra of random measures

pG = ∏
λ

pG (x;λ )∼
{

ẐG (dλ )
}∞

λ=−∞
=
{

E1/2 (λ )dŴ (λ )
}∞

λ=−∞

,
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and

pM = ∏
λ

pM (x;λ )∼
{

ẐM (dλ )
}∞

λ=−∞
=
{

E
1/2
M (λ )dŴ (λ )

}∞

λ=−∞

,

as two random process about λ ∈ R. Due to the independent increments between
Ẑ (dλ1) and Ẑ (dλ2), the information distance between these two random pro-
cesses can be expressed as the integration between all the spectral modes

P (pG, pM)=P

(
∏
λ

pG (x;λ ) ,∏
λ

pM (x;λ )

)
=
∫

∞

−∞

dλP (pG (x;λ ) , pM (x;λ )) .

(A.7)
Actually considering two random measure Ẑ1 = Ẑ (∆λ1) and Ẑ2 = Ẑ (∆λ2) with
∆λ1 and ∆λ2 having no intersection, the chain rule for relative entropy [38] implies

P (p(ẑ1, ẑ2) , pM (ẑ1, ẑ2)) = P (p(ẑ1) , pM (ẑ1))+P (p(ẑ2 | ẑ1) , pM (ẑ2 | ẑ1))

= P (p(ẑ1) , pM (ẑ1))+P (p(ẑ2) , pM (ẑ2)) .

In the second line of the above equation, the independence between Ẑ1 and Ẑ2 is
from the definition of the random measure. We can summarize the result as the
following lemma.

Lemma 5. The information distance between the random spectra
{

ẐG (dλ )
}

and
{

ẐM (dλ )
}

of two stationary random processes uG (t) and uM (t) equals to
the information distance between the two non-negative energy spectra E (λ ) and
EM (λ ) of the two processes over the spectral domain defined as

P (pG, pM) = P (E (λ ) ,EM (λ )) =
∫

dλD

(
E (λ )

EM (λ )

)
, (A.8)

where D (x) = − logx+ x− I is the Gaussian relative entropy with a zero mean
state. Thus the stationary random field uG (t) can be fitted using a Gaussian ran-
dom process by minimizing information distance of energy spectrum E (λ ).

Appendix A.3. Proof of Proposition 4
Finally we prove Proposition 4 showing that minimum relative entropy so-

lution from (A.8) gives the best approximation for the autocorrelation function
R (t). The proof utilizes the Hellinger distance [39, 40, 41] of two probability
densities p,q

d2
H (p,q) =

1
2

∫
(
√

p−√q)2 , (A.9)
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with the relation of Hellinger distance to relative entropy

d2
H (p,q)≤P (p,q) . (A.10)

On the other hand, we have the standard formula for the autocorrelations from the
Fourier interpretation

R (t) =
∫

∞

−∞

eiλ tE (λ )dλ , RM (t) =
∫

∞

−∞

eiλ tEM (λ )dλ . (A.11)

Below we use a mean zero scalar Gaussian random variable X ∼ pG (x;λ ). So the
second moment E and fourth moment

〈
x4〉 are defined as

E (λ ) =
∫

x2 pG (x;λ )dx,
〈
x4〉(λ ) = 3E2 (λ ) . (A.12)

We need the following Lemma:

Lemma 6. For two zero mean Gaussian random variables, pG,qG, then∣∣∣∣∫ x2 pG−
∫

x2qG

∣∣∣∣≤ 2
√

3

((∫
x2 pG

)2

+

(∫
x2qG

)2
)1/2

dH (pG,qG) ,

(A.13)
with the immediate Corollary of (A.13) using the notation in (A.12)∣∣E (λ )−EM (λ )

∣∣≤ 2
√

3
(
E2 (λ )+E2

M (λ )
)1/2

dH
(

pG (λ ) , pM
G (λ )

)
. (A.14)

Proof. By applying Cauchy-Schwarz inequality and (A.12),∣∣∣∣∫ x2 pG−
∫

x2qG

∣∣∣∣= ∣∣∣∣∫ x2
(

p
1/2
G +q

1/2
G

)(
p

1/2
G −q

1/2
G

)∣∣∣∣
≤
√

2
(∫

x4
(

pG +2p
1/2
G q

1/2
G +qG

))1/2

dH (pG,qG)

≤ 2
(∫

x4 (pG +qG)

)1/2

dH (pG,qG)

= 2
√

3

((∫
x2 pG

)2

+

(∫
x2qG

)2
)1/2

dH (pG,qG) ,
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Then with this Lemma, and its Corollary, and the Fourier representation in
(A.11) together we have for A) in the proposition

max
−∞<t<∞

∣∣R (t)−RM (t)
∣∣≤ ∫ ∣∣E (λ )−EM (λ )

∣∣dλ

≤ 2
√

3
∫ (

E2 (λ )+E2
M (λ )

)1/2
dH
(

pG (λ ) , pM
G (λ )

)
dλ

≤ 2
√

3
(∫ (

E2 (λ )+E2
M (λ )

)
dλ

)1/2(∫
d2

H
(

pG (λ ) , pM
G (λ )

)
dλ

)1/2

≤ 2
√

3
(∫ (

E2 (λ )+E2
M (λ )

)
dλ

)1/2

P
(
E,EM)1/2

.

And for B) in the proposition∫ ∣∣R (t)−RM (t)
∣∣2 dt =

∫ ∣∣E (λ )−EM (λ )
∣∣2 dλ

≤ 12
∫ (

E2 (λ )+E2
M (λ )

)
d2

H
(

pG (λ ) , pM
G (λ )

)
≤ 12max

λ

(
E2 (λ )+E2

M (λ )
)
P
(
E,EM) .

This finishes the proof of Proposition 4.
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