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Grand Challenge in Climate Science as Extremely
Complex System

I Important societal impacts: predicting long range weather forecasting
(intraseasonal to interannual) and short term (decadal) climate change.

I Turbulent dynamical system: huge phase space and large dimension of
instabilities.

I Other examples, engineering turbulence, neural science, material science.
I Need statistical, stochastic, thinking combined with nonlinear dynamics ideas.

Central Applied Math/Science Issues

1. Accurate prediction and representation of suitable statistics for observations from
nature.

2. Model error: lack of physical understanding and inadequate resolution due to
curse of ensemble size, computational overload in generating even small number
of ensemble members is overwhelming.

3. Uncertainty quantification (UQ) accurate bounds for 1) and 2).

4. Low order models which achieve 1) and 3) while coping with 2) in an optimal
fashion.

5. Rapid data assimilation or filtering to aid prediction.
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Modern Applied Math Paradigm

Rigorous Math Theory

Qualitative or
Quantitative
Models

Novel Numerical
Algorithm

Crucial Improved Understanding of
Complex System
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Physics Constrained Nonlinear Regression Models
for Time Series

Often we have a low-dimensional physical variable to observe and would like a
low-order nonlinear stochastic model for its behavior.

Example: Low-frequency teleconnection patterns in the atmosphere.

1. Systematic Physical Derivation of Model.

Physically constrained model by energy principles and exchange (Majda,
Timofeyev & Vanden-Eijnden, 1999, PNAS).

Problem: Requires sufficient separation of time scales, not always satisfied;
need to know detailed models.

2. Ad hoc Quadratic Multi-Level Regression Model.

Use data outcome to fit a quadratic regression model (Kravtsov, Ghil 2005; Wikle
and Hooten 2010); allows nonlinearity and memory in time.

Problem: No physical info in model. Majda and Yuan (DCDS 2012) show
rigorously that such ad hoc nonlinear regression strategies can exhibit finite time
blow-up and pathological invariant measures even though they fit the data with
high precision.
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1. Systematic Physical Derivation of Model.

2. Ad hoc Quadratic Multi-Level Regression Model.

Remedy: Systematic Physics Constrained Multi-level Quadratic Regression Models
(Majda & Harlim, Nonlinearity, 2012).

Combine attractive features of (1) and (2) systematically to avoid pathology of (2) by
physical constraints while allowing memory in effects.

Many more accessible mathematical issues and problems for systems!! blow-up and
non-blow-up Thms.
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A Hierarchy of Models for Predicting and
Understanding

I. The Madden-Julian Oscillation (MJO)

the dominant component
of tropical intraseasonal variability
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Global impact of MJO

The MJO affects

I El Niño-Southern Oscillation

I Monsoons

I Tropical cyclones

I Midlatitude predicability

from Moncrieff, Shapiro, Slingo, & Molteni, “Collaborative research at the intersection of
weather and climate”, WMO Bulletin, 2007.
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Novel Nonlinear Time-Series Techniques
to Capture both Intermittency & Low-Frequency Variability

in Massive Data Sets

Nonlinear Laplacian Spectral Analysis (NLSA)
(Giannakis and Majda, PNAS 2012)

NLSA combines:

I Lagged embedding

I Machine learning

I Adaptive weights

I Spectral entropy criteria

NLSA is applied to the data sets of dimensions O(106)!

I Applications with W. Tung and E. Szekely to OLR for cloud patterns from tropics,
MJO and Monsoon.

I Applications with M. Bushuk to Arctic sea ice reemergence.
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Predicting Cloud Patterns of MJO
through Low-Order Stochastic Models

(Nan Chen, Majda, Giannakis, GRL 2014)
(Nan Chen, Majda, MWR 2015)

NLSA Time-Series Techniques =⇒ 2 components of MJO Cloud Patterns
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Physics-Constrained Low-Order Stochastic Model

du1 = (−du u1 + γ (v + vf (t)) u1−(a + ωu) u2)dt + σu dWu1 ,

du2 = (−du u2 + γ (v + vf (t)) u2+(a + ωu) u1)dt + σu dWu2 ,

dv = (−dv v−γ (u2
1 + u2

2))dt + σv dWv ,

dωu = (−dωωu + ω̂u)dt + σω dWω ,

with
vf (t) = f0 + ft sin(ωf t + φ).

I Observed variables u1, u2: MJO 1 and MJO 2 indices from NLSA.

I Hidden variables v , ω: stochastic damping and stochastic phase.

I Energy-conserving nonlinear interactions between (u1, u2) and (v , ωu) (Majda
and Harlim, Nonlinearity 2012).

I Effective data assimilation algorithm incorporating into prediction scheme.
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Calibration of parameters using Information Theory (Robust parameters)
Model vs. Observations: Non-Gaussian statistics match
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Skillful prediction at 15- and 25-days lead times
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Varying Start Date of Prediction
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II. Hierarchy of Models for MJO

A New Model for the MJO

Majda and Stechmann 2009 PNAS
“The Skeleton of Tropical Intraseasonal Oscillations”

Majda and Stechmann 2009 JAS
“Nonlinear Dynamics and Regional Variations in the MJO Skeleton”

Simultaneously captures all three fundamental features of the MJO skeleton:

1. Eastward propagation speed of ≈ 5 m/s

2. Peculiar dispersion relation of dω
dk ≈ 0

3. Horizontal quadrupole vortex structure
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Fundamental mechanism proposed for MJO skeleton

Minimal, nonlinear oscillator model

Neutrally stable interactions between

1. planetary-scale, lower-tropospheric moisture: q

2. sub-planetary-scale, convection/wave activity: a

Based on multi-scale concepts

Synoptic fluctuations within envelope

orx

Amplitude of
convective activity

Planetary envelope: a

t

Tacit assumption: primary instabilities/damping occur on synoptic scales
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Minimal nonlinear oscillator model

ut − yv = −px

yu = −py

0 = −pz + θ

ux + vy + wz = 0

θt + w = H̄a− sθ

qt − Q̃w = −H̄a + sq

at = Γqa

Linearized primitive equations

I Equatorial long-wave scaling

I Coriolis term: equatorial β-plane approx.

+

Dynamic equation for convective activity

I q: lower tropospheric moisture anomaly

I a: amplitude of convective activity envelope

Key mechanism: positive q creates a tendency to enhance convective activity a
Minimal number of parameters: sθ, Q̃, Γ

Observational evidence, Waliser 2003
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Linear Theory

Simultaneously captures all three
fundamental features of the MJO skeleton:

1. Eastward propagation speed of ≈ 5 m/s

2. Peculiar dispersion relation of dω
dk ≈ 0

3. Horizontal quadrupole vortex structure

low−level pressure contours
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MJO Skeleton Index for identifying & monitoring MJO activity
Theoretical prediction of MJO structure

low−level pressure contours
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I Kelvin wave structure on equator I Rossby gyre structure off equator

Observed MJO structure

Hendon & Salby 1994
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Motivation for Stochastic Skeleton Model

Need to capture:

1. intermittent generation of MJO events

2. organization of MJO events into wave trains
(with growth and demise of wave trains)

Wave train of 2–3 MJO events −→

MJO events during
DYNAMO/CINDY 2011–2012

Yoneyama et al 2014
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A Stochastic Skeleton Model for the MJO
Thual, Majda, & Stechmann 2014 JAS

Replace ∂t a = Γqa

with stochastic jump process for growth/decay of a,

which satisfies ∂t 〈a〉 = Γ〈qa〉 in the mean

Intuition:
Growth/decay of convective activity is stochastic,

due to unresolved synoptic/mesoscale fluctuations
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Space-time variability

I intermittent generation of
MJO events

I organization of MJO events into
wave trains

(Geometric ergodicity, Majda and Xin Tong, CPAM 2015)
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MJO event statistics in skeleton model and observations
(Stachnik, Waliser, Majda, Stechmann, Thual)

Number of MJO events:

Event Type Observations Stochastic Skeleton Model
1979–2012 Idealized warm pool, 34 yrs

Primary 154 106
Continuing 330 381
Circumnavigating 15 27
Terminal 154 106

Average Duration of MJO events:

Observations: 39.7 days
Stochastic Skeleton Model: 34.8 days

Stochastic Skeleton Model reproduces Observed MJO Statistics
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Rigorous Mathematical Models
with Intermittency and Extreme Events

Neelin et al, GRL, 2011, CO and CO2, probability distribution function (PDF) exhibit
intermittency and extreme event in observations.
– Fat tails (nearly exponential) compared with Gaussian.

Model CO2 as passive tracer with a mean gradient.
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Exactly solvable test models with realistic features in climate change science

∂T
∂t

+ ~v(~x , t) · ∇T = κ∆T .

Turbulent velocity
~v(~x , t) = (U(t), v(x , t))T

U(t), v(x , t) known random field.

Passive tracer with mean gradient

T = αy + T ′(x , t)

(Research expository: Majda and Gershgorin, Phil. Roy. Soc. 2013; Bourlioux and
Majda, Phys Fluids 2002; Majda and Gershogorin, PNAS 2011, 2012)

I Model error and stochastic parameterization

∂T M

∂t
+ ~̄vM · ∇T M = (κ+ κeddy )∆T M + σT Ẇ .

I Extreme event prediction with model error (Di Qi and Majda, Phys. D 2015)
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Rigorous analysis of extreme events
(Majda and Xin Tong, Nonlinearity 2015)

Rigorous PDF v.s. Simulation

T
/
√ Σ

Intermittent bursts occur when the random mean flow, U(t), gets close to a certain
resonant set, rigorous analysis. 25 / 51



Information-Theoretic Framework, Information Barrier
and Improving Predictive Skill with Model Error

(Majda and Gershgorin, PNAS, 2011, 2012)

Information-theoretic framework is extensively applied in the study of model error,
predictive skill and data assimilation. The following three information-theoretic
measures are widely used,

1. The Shannon entropy of the residual S(u− uM ) measures the uncertainty in the
model uM compared with the truth u. It is the surrogate for the RMS error in the
path-wise sense.

S(U) := −
∫

p(U) ln p(U)dU, U = u− uM .

2. The mutual information M(u,uM ) measures the dependence between u and uM .
It is the surrogate for the anomaly pattern correlation in the path-wise sense.

M(u,uM ) :=

∫ ∫
p(u,uM ) ln

p(u,uM )

π(u)πM (uM )
duduM .

3. The relative entropy P(π, πM ) quantifies the lack of information or model error in
the statistics of uM relative to that of u. It is also an indicator of assessing the
disparity in the amplitudes and peaks between uM and u.

P(π, πM ) :=

∫
π(u) ln

π(u)

πM (u)
du.
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A simple example with an intrinsic barrier for improving model sensitivity

Perfect model:
du
dt

= au + v + F ,

dv
dt

= qu + Av + σẆ .

Imperfect model:
duM

dt
= −γM uM +FM +σM ẆM , γM > 0.

Smooth Gaussian measure if
a + A < 0, aA− q > 0.

I Climate fidelity for imperfect model

FM

γM
= −

AF

aA− q
,

σ2
M

2γM
=

σ2

2(a + A)(aA− q)
≡ E.

I Response to change in forcing

δu = −
A

aA− q
δF , δuM =

1

γM
δF .

I Information model error in response to change in forcing

P(πδ, π
M
δ ) =

1
2

E−1
∣∣∣∣− A

aA− q
−

1
γM

∣∣∣∣2 |δF |2 for perfect model fidelity.

With A > 0, the attempt to minimize the information theoretic model error is futile
because no finite minimum over γM is achived and necessarily γM →∞ in the
approach to the minimum – intrinsic information barrier.
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Improving the predictive skill of imperfect models for complex systems
in their response to external forcing

Perfect system: ut = F (u) + σ(u)Ẇ ,

Perturbed system: uδt = F (uδ) + δf (t) + σ(uδ)Ẇ .

I Equilibrium statistical fidelity – a necessary condition.

I Combining the information theory with linear response theory in improving the
predictive fidelity.

I Leading order correction to the statistics of functional A(u) for small δ,

δ〈A(u)〉 =

∫ t

0
RA(t − s)δf (s)ds,

RA(t) – the linear response operator calculated through correlation
functions in the unperturbed climate.

I Improving the predictive skill by minimizing the model error to response,

P
(
πδ, π

M
δ

)
= S(πG,δ)−S(πδ)+

1
2
σ̄−2

(∫ t

0
(Rū(t − s)− RM

ū (t − s))δf (s)ds
)2

+
1
4
σ̄−4

(∫ t

0
(Rσ̄2 (t − s)− RM

σ̄2 (t − s))δf (s)ds
)2

+ O(δ3).
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Examples and applications.

I Improving response in the turbulent tracer model: Majda and Gershgorin, PNAS
2011; Di Qi and Majda, 2015

I Low order models and climate change forcing: Majda and Di Qi, JNLS, 2015

I Intermittent models: Branicki and Majda, Nonlinearity 2012

I Model error in data assimilation: Branicki and Majda, Comm. Math. Sci., 2014

I Low order model prediction: Nan Chen and Majda, GRL 2014, MWR 2015,
MCWF 2015

I Prediction of Rogue waves: Cousins and Sapsis, Phys D 2014, JFM 2015.
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UQ: Strategy Blending Info Theory with Statistical
Response Theory and Statistical Energy Principle

Goal: Build a low order model for UQ for the change in response to external forcing.

Model⇐⇒ Calibration phase⇐⇒ Prediction.

1. Model:

A. Low order stochastic model with coefficients depending on total energy of
system

B. Utilize new statistical energy constrained principle (Majda, PNAS 2015)

2. Calibration phase: Combines info theory and kicked statistical response. One (or
a few) expensive runs needed of full model.

3. Prediction for UQ: By solving low order stochastic model, achieve accurate UQ
estimates for mean and variance in response of system to change in general
forcing.

(Majda and Di Qi, JNLS 2015; Sapsis and Majda, PNAS 2013; Di Qi and Majda,
Complex Geophysical Model, 2016)
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Inverse Problems and Data Assimilation

Lagrangian Tracers: Oceanography

C. Jones, A. Apte, A. Stuart, ...
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Inverse Problem: Noisy Lagrangian Tracers in
Filtering Geophysical Flows

First rigorous math theory
(Nan Chen, Majda, Xin Tong, Nonlinearity 2014, JNLS 2015)

Observing L noisy trajectories Xj (t),

dXj

dt
= v(Xj (t), t) + σj Ẇj .

Recover or estimate the velocity ~v .

I Inherent nonlinearity in measurement.

I Build exact closed analytic formulas for
the optimal filter for the velocity field.

I Prove a mean field limit at long times.

1. Recovering random incompressible
flows

I Show an exponential increase in the
number of tracers for reducing the
uncertainty by a fixed amount – a
practical information barrier.
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2. Noisy Lagrangian tracers
for filtering random rotating compressible flows

(Nan Chen, Majda, Xin Tong, JNLS 2015)

I Rotating shallow water models with multiscale features:

I Slow modes – random incompressible geostrophically balanced (GB)
flows.

I Fast modes – random rotating compressible gravity waves.

I Highly nonlinear observations mixing GB and gravity modes.

I Proposing different filters.

I Full filter – full forecast model & tracer observations.
I Ideal reference GB filter – GB forecast model & GB observations.
I Reduced filter – GB forecast model & mixed observations – a practical

inexpensive imperfect filter.

I Rigorous math theory: Comparable high skill in recovering GB modes for all the
filters in the geophysical scenario with small Rossby number.
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Lessons for UQ and Failure of Polynomial Chaos

– Research expository: Majda and Branicki, DCDS, 2012.
– Exactly solvable test models for polynomial chaos: Branicki and Majda, Comm. Math.
Sci., 2013.

Failure of PC and even Monte Carlo with very large ensemble size.
I Simplest example: Linear ODE with parametric uncertainty

u̇ = −(γ + σγξ)u + f (t).

where parametric uncertainty is Gaussian random variable σγξ, ξ is N (0, 1).

Easy to exactly solve equations for mean, variance and any moment in time.
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Failure of polynomial chaos and straightforward Monte Carlo.

Both PC with 120 coefficients and MC with 50, 000 samples fail to predict the variance
with any accuracy!
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Filtering the Turbulent Signals

Filtering is a two-step process involving statistical prediction of the state variables
through a forward operator followed by an analysis step at the next observation time
which corrects this prediction on the basis of the statistical input of noisy observations
of the system.
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Practical Issue
I Turbulent dynamical system.

I Huge phase space, N = O(106, 108, etc).

I Nonlinearity, small ensemble size M = O(50, 100).

Applied algorithm
I Finite ensemble Kalman filter, (Evensen, 1995; C. Bishop, J. Anderson 2001;

Kalnay, 2013). See M-H book.

Applied math
I Stuart, Reich,...

Central issues
I Why does EnKF often work well to estimate the mean with M ≤ N?

Surprising pathology
I Catastrophic filter divergence. For filtering forced dissipative system with

absorbing ball property such as L-96 model, EnKF can explode to machine
infinity in finite time! (Harlim and Majda 2008; Gottwald and Majda, NPG 2013)

Well posedness of EnKF
I Kelly, Law, Stuart, Nonlinearity 2014.
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Rigorous nonlinear stability for finite ensemble Kalman filter (EnKF)
(Xin Tong, Majda, Kelly, Nonlinearity 2015)

Filter divergence – a potential flaw for EnKF:

I Catastrophic filter divergence: the ensemble members diverging to infinity,

I Lack of stability: the ensemble members being trapped in locations far from the
true process.

Finding practical conditions and modifications to rule out filter divergence with rigorous
analysis:

I Ruling out catastrophic filter divergence by establishing an energy principle for
the filter ensemble.

I Looking for energy principles inherited by the Kalman filtering scheme.

I Looking for modification schemes of EnKF that ensures an energy principle and
preserving the original EnKF performance (Xin Tong, majda, Kelly, Comm. Math.
Sci., 2015).

I Verifying the nonlinear stability of EnKF through geometric ergodicity.

Rigorous example of catastrophic divergence:

I For filtering a nonlinear map with absorbing ball property (Kelly, Majda, Xin Tong,
PNAS 2015).

Outstanding problem: Why and when is there accuracy in mean for M ≤ N?
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Need Statistically Accurate Inexpensive Forecast
Models to Beat the Curse of Ensemble Size for

Prediction, State Estimation and UQ

The MMT equation

The MMT equation (Majda, McLaughlin and Tabak, 1997; Cai and M.M.T., Phys. D
2001)

iut = |∂x |
1
2 u + λ|u|2u − iAu + F .

Here we consider the case with the focusing nonlinearity, λ = −1, which induces
spatially coherent ’solitonic’ excitations at random spatial locations.

I The instability of collapsing solitons radiate energy to large scales producing
direct and inverse turbulent cascades.

I In geophysical applications energy oftern flows from small scales to large scales
(inverse cascade) creating a challenge for reduced modelling.

I Fractional dispersion are crucial with completely different behavior from NLS
equation!
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Visualization of |ψ(x , t)| from simulation with F0 = 0.0163; darker colors indicate
higher amplitudes. Here the number of Fourier modes are 642 ≈ 4000.

From Cai etal, Physica D 2001.
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High-resolution reference simulations

Simulation (a) uses F0 = 0.0163; (b) uses F0 = 0.01625. Both simulations are
damped only for 2600 < |k | < 4096 and |k | = 1.
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Uses of MMT model:

1. Novel low order modelling: stochastic superparameterization (Majda and
Grooms, JCP 2013; Grooms and Majda, Comm. Math. Sci. 2014).

2. Novel data assimilation (Branicki and Majda, JCP 2012; Grooms, Lee and
Majda, JCP 2014)

3. Extreme event prediction (Cousins and Sapsis, Phys. D. 2014)
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Stochastic Superparameterization in MMT

Spectra from simulations with 1/64 as many points as the reference simulation (a),
with no eddy terms (b) and with eddy terms (c).

43 / 51



Stochastic Superparameterization

1. A general framework for stochastic subgridscale modelling with no scale
separation and no small-scale equilibration based on the Gaussian closure
approximation and the point approximation.

2. Success in a difficult test problem with no scale separation (k−5/6 spectra),
coherent structures, dispersive waves, and an inverse cascade from unresolved
scales into the large scales.

3. Overcome curse of ensemble size with judicious model error.

– See research expository article Majda and Grooms, JCP 2013; Grooms and Majda,
PNAS, JCP 2013 for geophysical turbulence.

– See Khouider, Biello and Majda, Comm. Math. Sci. 2010; Deng, Khouider and
Majda, JAS 2015 for stochastic multi-cloud model.
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Multiscale Data Assimilation in Complex Turbulent
System

Superparameterization (SP) and Multiscale Data Assimilation.
I Tremendously large dimension of turbulent signals requires cheap and robust

coarse models for real prediction skills.

I SP is a cheap and robust under-resolved forecast model; approximates the large
scale dynamics and provides small-scale statistics to estimate both the resolved
and unresolved components of the true signal.

I Multiscale data assimilation framework – provides the estimate for the
large-scale dynamics using SP as a coarse forecast model and partial
observations of the true signal.

I Multiscale data assimilation shows robust filtering performance with a huge
computational savings; better performance than other ad hoc approaches in the
conventional (single-scale) data assimilation such as covariance inflation.

(Harlim & Majda, SIAM. J. MMS, 2013; Grooms, Lee & Majda, JCP 2014, MWR 2015;
Lee & Majda, SIAM. J. MMS, 2015)
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Blended particle filters for large dimensional chaotic dynamical
systems.

Goal: Developing statistically accurate particle filters to capture non-Gaussian features
in large dimensional chaotic dynamical systems.

I Space decomposition u = (u1,u2), uj ∈ RNj , N1 + N2 = N, N1 � N.

I Blended filters:

I Particle filter – non-Gaussian statistics of u1.
I Kalman filter – conditional Gaussian statistics u2 given u1.

I Attractive feature – adaptively change of the subspaces as time evolves in
response to the uncertainty without a separation of time scales using nonlinear
statistical forecast models.

Nonlinear statistical forecast models:

I QG-DO – quasilinear Gaussian dynamical orthogonality method.

I MQG-DO – more sophisticated modified QG-DO method.

(Majda, Di Qi & Sapsis, PNAS 2014; Di Qi & Majda, Phys D. 2015; Sapsis & Majda,
Phys D. 2012; PNAS 2013)
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Lorenz 96 system
The Lorenz 96 system is a discrete periodic system described by the equations

duj

dt
= (uj+1 − uj−2)uj−1 − uj + F , j = 0, . . . , J − 1,

with j = 40 the number of grids and Fi the deterministic forcing. See Majda & Harlim
book (2012). The quadratic part conserves energy. We will study the case of weakly
chaotic turbulence (F = 5), strongly chaotic turbulence (F = 8).
5 dim subspace of particles is used.
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Figure: Energy Spectra
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Capturing non-Gaussian statistics F = 5, r0 = 2,∆t = 1, p = 4.
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Regime scatter plot: mode u7, u8
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Stochastic Parameterized (Nonlinear) Extended Kalman Filter (SPEKF)
and Dynamic Stochastic Superresolution (DSS)

I Cheap stochastic forecast models with judicious model error which are
statistically exactly solvable and learn stochastic parameters “on the fly” from
data

I DSS exploits SPEKF together with aliasing to achieve superresolution for
subgrid scale filtering

References:

I Majda and Harlim, Filtering Complex Turbulent Systems (Cambridge press 2012)

I Keating, Majda and Smith, Ocean turbulence (MWR 2012)

I Branicki and Majda, Intermittency, black swans, wave turbulence (JCP 2012)

I Nan Chen, Giannakis, Majda and Herbei, MCMC algorithm for intermittency
(SIAM/ASA JUQ 2014)

I Branicki and Majda, Turbulent Navier-Stokes (JCP 2016)
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Thank you
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