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We assess the limits of predictability of the large scale cloud patterns in4

the boreal winter Madden-Julian Oscillation (MJO) as measured through5

outgoing longwave radiation (OLR) alone, a proxy for convective activity.6

A recent advanced nonlinear time series technique, Nonlinear Laplacian Spec-7

tral Analysis, is applied to the OLR data to define two spatial modes with8

high intermittency associated with the boreal winter MJO. A recent data9

driven physics constrained low-order stochastic modeling procedure is ap-10

plied to these time series. The result is a four dimensional nonlinear stochas-11

tic model for the two observed OLR variables and two hidden variables in-12

volving correlated multiplicative noise defined through energy conserving non-13

linear interaction. Systematic calibration and prediction experiments show14

the skillful prediction by these models for 40, 25 and 18 days in strong, mod-15

erate and weak MJO winters, respectively. Furthermore, the ensemble spread16

is an accurate indicator of forecast uncertainty at long lead times.17
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1. Introduction

The dominant mode of tropical intraseasonal variability is the Madden-Julian Oscilla-18

tion (MJO) which is a slow moving planetary scale envelope of convection propagating19

eastward typically from the Indian Ocean through the Western Pacific. The MJO ef-20

fects tropical precipitation, the frequency of tropical cyclones, and extratropical weather21

patterns [Lau and Waliser , 2012]. Understanding and predicting the MJO is a central22

problem in contemporary meteorology with large societal impacts [Zhang et al., 2013].23

Predicting the MJO is a major enterprise through either low-order statistical models24

[Jiang et al., 2008; Seo et al., 2009; Kang and Kim, 2010; Kondrashov et al., 2013] or25

operational dynamical models [Gottschalck et al., 2010; Vitart and Molteni , 2010; Zhang26

et al., 2013]. The popular metric for assessing large scale skill in MJO predictions [Wheeler27

and Hendon, 2004] involves both the winds at the top and bottom of the troposphere and28

the outgoing longwave radiation (OLR) which is a proxy for convective activity. While29

the use of this index has stimulated significant improvements and developments in MJO30

prediction, recent case studies [Straub, 2013; Kiladis et al., 2014] have pointed out its31

limitations in measuring the OLR activity in some MJO events.32

Here we assess the limits of predictability of the large scale cloud patterns in the boreal33

winter MJO [Kang and Kim, 2010] as measured through OLR activity alone. This is34

achieved in two steps. In the first step, a recent advanced nonlinear time series technique,35

Nonlinear Laplacian Spectral Analysis (NLSA) is applied directly to the OLR data to36

define two spatial modes associated with the boreal winter MJO. NLSA by design requires37

no ad hoc detrending or spatial-temporal filtering of the full OLR data set and captures38

D R A F T June 11, 2014, 1:56pm D R A F T



X - 4 CHEN ET AL.: PREDICTING CLOUD PATTERNS OF MJO

both intermittency and low frequency variability [Giannakis and Majda, 2012a, b, 2013;39

Giannakis et al., 2012]. The resulting time series for the two spatial modes representing40

the boreal winter MJO are depicted in Figure 1 and are highly intermittent with large41

variation in amplitude from year to year in the winter season. In the second stage, a recent42

systematic strategy for data driven physics constrained low-order stochastic modeling of43

time series [Majda and Harlim, 2013; Harlim et al., 2014] is applied to the time series44

in Figure 1. The result is a four dimensional nonlinear stochastic model for the two45

variables in Figure 1 and two hidden variables. This low-order model involves correlated46

multiplicative noise defined through energy conserving nonlinear interactions between the47

observed and hidden variables as well as additive stochastic noise. The remainder of the48

paper as well as the auxiliary material demonstrate that this low-order stochastic model49

has high predictive skill and captures the limits of prediction for the OLR patterns of the50

boreal winter MJO as depicted in Figure 1.51

2. The Boreal Winter MJO through NLSA

We analyze multi-satellite infrared brightness temperature (Tb) data from the Cloud52

Archive User Service (CLAUS) Version 4.7 (e.g., [Hodges et al., 2000]). Brightness tem-53

perature is a measure of the earth’s infrared emission in terms of the temperature of a54

hypothesized blackbody emitting the same amount of radiation at the same wavelength55

(∼ 10-11 µm in CLAUS). It is a highly correlated variable with the total terrestrial long-56

wave emission. In the tropics, positive (negative) Tb anomalies are associated with reduced57

(increased) cloudiness, hence suppressed (enhanced) deep convection. The global CLAUS58

Tb data are on a 0.5◦ longitude by 0.5◦ latitude fixed grid, with three-hour time resolution59
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from 00 UTC to 21 UTC, spanning July 1, 1983 to June 30, 2006. The values of Tb range60

from 170 K to 340 K at approximately 0.67 K resolution.61

We apply the NLSA algorithm to the full CLAUS data set restricted to the tropical belt62

15◦N–15◦S, with a lagged embedding window of 60 days. A variety of extended spatial63

cloud patterns emerge from the analysis but the focus here is on the two spatial cloud64

patterns with time series depicted in Figure 1. It is evident from Figure 1 that these65

patterns are active from December through April of each year corresponding to boreal66

winter. Animation 1 in the auxiliary material presents the evolution of the cloud patterns67

from NLSA associated with these two time series from November 1992 through March68

1993. The video shows two large scale MJO-like cloud patterns coinciding in time with69

the two boreal winter MJO’s observed during the TOGA-COARE field experiment of70

1992-1993 [Webster and Lukas , 1992; Yanai et al., 2000]. This indicates that the time71

series depicted in Figure 1 give a reasonable representation of the movement of global cloud72

patterns associated with the boreal winter MJO. The details of the NLSA algorithm are73

not provided here since they are readily available [Giannakis and Majda, 2012a, b, 2013]74

and there is even a similar application of NLSA to study the MJO which utilizes the same75

lagged embedding window and compressed symmetric meridional averages of the CLAUS76

data [Giannakis et al., 2012]. We use the terminology, MJO indices, for the two time77

series in Figure 1.78

3. The Low-Order Nonlinear Stochastic Model

Denote by u1 and u2 the two components, MJO 1 and MJO 2, depicted in Figure 1. The79

probability distribution functions (PDFs) for u1 and u2 are highly non-Gaussian with fat80
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tails indicative of the temporal intermittency in the large scale cloud patterns associated81

with boreal winter MJO. We propose the following family of low-order stochastic models82

to describe the intermittent variability of the time series u1 and u2:83

du1
dt

= (−du u1 + γ (v + vf (t))u1 − (a+ ωu)u2) + σu Ẇu1 , (1)

du2
dt

= (−du u2 + γ (v + vf (t))u2 + (a+ ωu)u1) + σu Ẇu2 , (2)

dv

dt
= (−dv v − γ (u21 + u22)) + σv Ẇv, (3)

dωu
dt

= (−dωωu + ω̂u) + σω Ẇω, (4)

with

vf (t) = f0 + ft sin(ωf t+ φ). (5)

Besides the two observed MJO variables, u1, u2, the other two variables v and ωu are84

hidden unobserved variables which represent the stochastic damping and stochastic phase,85

respectively. In (1)–(4), Ẇu1 , Ẇu2 , Ẇv and Ẇω are independent white noise. The time86

periodic damping in the equations in (1) and (2) is utilized to crudely model the active87

phase of the boreal winter MJO and the quiescent summer season in the seasonal cycle.88

The hidden variables v, ωu interact with the observed MJO variables u1, u2 through energy89

conserving nonlinear interactions following the systematic physics constrained nonlinear90

regression strategies for time series developed recently [Majda and Harlim, 2013; Harlim91

et al., 2014]. The low-order stochastic nonlinear models in (1)–(4) are fundamentally92

different from those utilized earlier [Kondrashov et al., 2013; Kravtsov et al., 2005] which93

allow for nonlinear interactions only between the observed variables u1, u2 and only special94

linear interactions with layers of hidden variables. Further motivation for the models in95
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(1)–(4) is provided by the stochastic skeleton model which predicts key features of the96

MJO [Majda and Stechmann, 2009, 2011; Thual et al., 2013]; these are coupled nonlinear97

oscillator models of the MJO where if we identify the OLR variables with the envelope of98

synoptic scale convective activity, the hidden variables v, ωu and their dynamics become99

phenomenological surrogates for the energy conserving interactions in the skeleton model100

involving the synoptic scale activity and the equatorial convective dynamic equations for101

temperature, velocity, and moisture.102

3.1. Calibration of the Nonlinear Stochastic Models

The parameters of the stochastic model in (1)–(5) are calibrated by fitting the highly103

non-Gaussian PDFs and autocorrelations of the two MJO variables u1, u2. Table 1 records104

the optimal parameter values while Figure 2 displays the skill of the stochastic model with105

these parameters in recovering the statistics of the two MJO indices. Panels (a) and (b)106

show that the stochastic model from (1)–(4) succeeds in capturing the autocorrelations107

almost perfectly for a three month duration and even the wiggles that appears with lags108

around one year. Panel (c) shows that the stochastic model captures the fat tailed highly109

non-Gaussian PDF’s of the two MJO indices due to intermittency. Panel (d) shows that110

the power spectrum of the two MJO indices from the data and those from the stochastic111

model match very well. The optimal parameters in the stochastic model from Table112

1 have been determined by systematically minimizing the information distance of the113

equilibrium PDF of the stochastic model compared with that of the actual data [Majda114

and Gershgorin, 2010, 2011]. Details are presented in the auxiliary material which also115

demonstrates the robustness of these optimal parameters to their variation.116
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3.2. Prediction algorithm and Data Assimilation of the Hidden Variables

As shown in Figure 1, the stochastic model in (1)–(4) is trained on the first seventeen117

years of data from 1983 through 1999 and forecasts are made for the last six years of118

data from January 1, 2000 until the end of 2005. The estimates of the hidden parameters119

v, ωu during the training period and initialization of these parameters during the predic-120

tion phase exploit the special structure of the low-order nonlinear stochastic model; the121

equations in (1)–(4) are a conditional Gaussian system with respect to the observation122

of u1 and u2, meaning that once u1 and u2 are given, there are closed analytic equations123

for the conditional Gaussian distributions of the hidden parameters v, ωu [Liptser and124

Shiryaev , 2001]. Thus, we have conditional Gaussian distributions for the hidden vari-125

ables, v, ωu, during the training phase. The auxiliary material contains the details and126

explicit equations. We utilize this fact to construct an initial ensemble for forecasting in127

the prediction phase. Take the initial data ~U0 = (u1, u2) which is given at time t from128

the observed data; consider all data in the training period ~Uε so that |~U0 − ~Uε| < ε with129

their corresponding conditional Gaussian distribution for the hidden variables p0(Γ|~Uε)130

where Γ = (v, ωu). Construct an ensemble PDF p0(Γ|~U0) by collecting all the PDF’s for131

p0(Γ|~Uε) with equal weights; make an initial ensemble for prediction for (1)–(4) by using132

~U0 from the observations and drawing N -samples for Γ0 from the distribution p0(Γ|U0).133

In practice, we start with ε = .01; if there is no ~Uε in the historic training period with134

|~U0 − ~Uε| < ε, increase ε to ε = .02, etc. Typically ε = .01 or .02 is large enough to135

generate a few ~Uε in the historic training period while occasionally ε = .05 is needed for136
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the active MJO phase. In the predictions below with (1)–(4) we use N -ensemble members137

with N = 50.138

4. Results and Discussion

We report the prediction skill of the stochastic model in (1)–(4) with the optimal pa-139

rameters from Table 1 and the ensemble initialization scheme described above for the six140

year prediction period from January 1, 2000 to the end of December, 2005. The compar-141

ison of the ensemble mean prediction and the truth at lead times of 15 and 25 days for142

MJO index 1 for all six years are shown in Figure 3. The 15 day predictions are very143

skillful and even the 25 day predictions have highly significant skill. It is evident from144

Figure 3 that the years 2001, 2002, 2004 have strong boreal winter MJO’s while the years145

2003 and 2005 have moderate MJO’s and the year 2000 has weak boreal winter MJO’s.146

Figure 4 presents the RMS errors in prediction of the two MJO indices as a function of147

lead time in the six years as well as the bivariate correlation patterns. In the strong MJO148

years, 2001, 2002, 2004, there is significant prediction skill out to roughly forty days; for149

the moderate MJO years, 2003, 2005, there is skillful prediction until 25 days while for150

the weak MJO years, 2000, there is skillful prediction out to 18 or 19 days. Figure 5151

shows the ensemble predictions including the ensemble spread for the six years, beginning152

at the three dates, November 1, January 10 and March 1. November 1 is a time at the153

transition between the quiescent phase and the active phase of the boreal winter MJO in-154

dices; January 10 is a starting date in the active mature phase while March 1 is a starting155

date in the decaying phase of MJO activity. As shown in Figure 5, the ensemble mean156

predictions for the November 1 starting date do not have any long range skill but the157
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ensemble spread automatically predicts this lack of skill and the envelope of the ensemble158

predictions contains the true signal for all years and forecast times including the return to159

skill in the summer quiescent phase. The forecasts from January 10 obviously have skill160

from both the mean and ensemble spread for all years for long lead times. The forecasts161

starting from March 1 have both an accurate mean and small ensemble spread for all six162

years and for very long times. The auxiliary material shows that the prediction skill of163

the nonlinear stochastic model is robust to suboptimal parameters.164

The auxiliary material also contains the results of twin prediction experiments with the165

perfect nonlinear stochastic model in (1)–(4) where 17 year training segments of the data166

generated from the model are utilized to make 6 year forecasts. It is significant that this167

internal prediction skill of the stochastic model is comparable to its skill in predicting the168

two boreal winter MJO indices from observations. This lends support to the fact that the169

nonlinear stochastic model in (1)–(4) can accurately determine the predictability limits170

of the two OLR MJO indices for boreal winter developed here.171

5. Conclusions

A recently developed technique for nonlinear time series analysis NLSA [Giannakis172

and Majda, 2012a, b, 2013] has been utilized to define two MJO indices of the boreal173

winter MJO for the large scale cloud patterns based only on OLR from the CLAUS da-174

ta set without detrending or spatial-temporal filtering. The observed time series have175

non-Gaussian fat-tailed PDF’s as a consequence of intermittency. Both systematic strate-176

gies for physics constrained regression models [Majda and Harlim, 2013; Harlim et al.,177

2014] and the dynamic stochastic skeleton model for the MJO [Majda and Stechmann,178
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2009, 2011; Thual et al., 2013] suggest a four dimensional stochastic model with two hid-179

den variables representing stochastic damping and random phasing with energy conserving180

nonlinear feedback interaction. In a calibration phase, these models can successfully cap-181

ture the observed non-Gaussian PDFs and autocorrelations (Figure 2). The models have182

a special structure which leads to efficient data assimilation and ensemble initialization183

algorithms for the hidden variables. The low-order nonlinear stochastic model has been184

applied to prediction of the OLR-based indices for boreal winter MJO’s with forecasting185

skill up to 40 days in strong MJO years, 25 days in moderate MJO years and roughly 18186

or 19 days in weak MJO years (Figure 3, 4 and 5); furthermore, the ensemble spread in187

the stochastic model has been shown to be an accurate predictive indicator of forecast188

uncertainty at long range (Figure 5). It is shown in the auxiliary material that perfect189

twin experiments with the stochastic model have the comparable skill as with the ob-190

served data suggesting that the low-order nonlinear stochastic model has significant skill191

for determining the predicability limits of the large scale cloud patterns of the boreal192

winter MJO.193
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Figure 1. Left: MJO indices from NLSA (modes 8 and 9) ranging from 1983/09/03 to

2006/06/30. The time-series before 2000/01/01 is utilized as training period to get the statistics

and that after 2000/01/01 represents the prediction period using the low-order stochastic model.

Right: The associated PDF of each index and the Gaussian fit. The small panel inside each

subplot shows the PDF in the logarithm scale.
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R21(τ), R12(τ) from 0 to 3 months. (c) Equilibrium PDFs of the signal u1, u2 from stochastic

model compared with that of the MJO indices. (d) Spectrum of u1, u2 compared with that of

MJO indices. Here, the black dashed line indicates the frequency a/(2π).
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Figure 3. Prediction of MJO 1 at a 15 (top) and 25 (bottom) days lead. The blue line

shows the true signal and the red line shows the ensemble average of the predicted signal with

50 ensemble members.
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Figure 4. Skill scores with RMS error (top) and bivariate correlation (bottom) for prediction

in different years.
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Figure 5. First and second rows: Prediction of MJO 1 starting from November 1 for different

years. Each panel show the prediction skill of 8 months with the label in x-axis indicating the

month. Third and forth rows: Same but starting from January 10. Fifth and Sixth rows: Same

but starting from March 1. The thick blue dashed line is the MJO 1 index. The thick red solid

line is the ensemble mean with 50 members, which are shown by the thin solid lines.
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