
AN MCMC ALGORITHM FOR PARAMETER ESTIMATION IN
SIGNALS WITH HIDDEN INTERMITTENT INSTABILITY

NAN CHEN ∗, DIMITRIOS GIANNAKIS∗, RADU HERBEI† , AND ANDREW J. MAJDA∗

Abstract. Prediction of extreme events is a highly important and challenging problem in science,
engineering, finance, and many other areas. The observed extreme events in these areas are often
associated with complex nonlinear dynamics with intermittent instability. However, due to lack of
resolution or incomplete knowledge of the dynamics of nature these instabilities are typically hidden.
To describe nature with hidden instability, a stochastic parameterized model is used as the low-
order reduced model. Bayesian inference incorporating data augmentation, regarding the missing
path of the hidden processes as the augmented variables, is adopted in a Markov chain Monte Carlo
(MCMC) algorithm to estimate the parameters in this reduced model from the partially observed
signal. Howerver, direct application of this algorithm leads to an extremely low acceptance rate
of the missing path. To overcome this shortcoming, an efficient MCMC algorithm which includes
a pre-estimation of hidden processes is developed. This algorithm greatly increases the acceptance
rate and provides the low-order reduced model with a high skill in capturing the extreme events due
to intermittency.
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1. Introduction. Prediction of extreme events is an important and challenging
problem. Famously, in 1998, the Long Term Capital Management (LTCM) hedge
fund was driven into the ground as a result of the ripple effect caused by the Russian
government’s debt default [37], but none of LTCM’s forecast models were able to
predict this event and its subsequent effects. Another example is a heat wave [30],
which is a prolonged period of excessively hot weather. Albeit rare, severe heat
waves are able to cause catastrophic crop damage and significant loses. However, due
to the complexity and uncertainty of the climate system, precise prediction of heat
waves remains unavailable. Furthermore, the El Niño-Southern Oscillation (ENSO),
which is a significant climate pattern, triggers extreme weather such as floods and
droughts, and seriously affects the agriculture and fishing industry of countries around
the Pacific Ocean [7]. Here, imperfect knowledge of the mechanism of ENSO impedes
the prediction of the occurrence and duration of these extremes accurately.

Mathematically, extreme events observed in signals are often associated with in-
termittency due to complex nonlinear dynamics with instabilities. However, as men-
tioned in the heat wave and ENSO examples, the mechanisms that drive extreme
events are typically complicated and unavailable from observations. That is, the
actual dynamics consist of many hidden and unresolved processes. Due to such un-
certainties in the dynamics of nature (“the perfect model”), it is natural to construct
low-order models with adequate prediction skill, which are nevertheless able to reflect
the salient features of observed extreme events, i.e., intermittency associated with
hidden processes.

In the framework of these models, the observed signal corresponds to incomplete
observation of the full state vector. Therefore, it is important to develop systematic
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methods of parameter estimation based on incomplete observations. The ultimate
goal is to utilize these low-order models equipped with the estimated parameters for
prediction. These are the topics of the present paper.

Let {u(t), t ≥ 0} be a process of interest. We characterize the intermittency and
hidden processes in {u(t)} using the Stochastic Parameterization Extended Kalman
Filter (SPEKF) model [27], given by

du(t) =
(
(−γ(t) + iω)u(t) + f(t) + b(t)

)
dt+ σu dWu(t),(1.1a)

dγ(t) = −dγ
(
γ(t)− γ̂

)
dt+ σγ dWγ(t),(1.1b)

db(t) =
(
− db + iωb

)(
b(t)− b̂

)
dt+ σb dWb(t).(1.1c)

In SPEKF models, the process u(t) described in (1.1a) is driven by the stochastic
damping γ(t) and stochastic forcing correction b(t), both of which are specified as
Ornstein-Uhlenbeck (OU) processes as in (1.1b) and (1.1c). Physically, the variable
u(t) in (1.1a) represents one of the resolved modes (i.e., observable) in the turbulent
signal, while γ(t) and b(t) are hidden processes. In particular, γ(t) and b(t) are
surrogates for the nonlinear interaction between u(t) and other unobserved modes in
the perfect model. This nonlinear system was first introduced in [13, 14] for filtering
multiscale turbulent signals with hidden instabilities and has been used for filtering
and prediction in the presence of model error [3, 4, 5, 6, 15, 29]. The intermittency
of the observed variable u(t) is mainly a consequence of the sign switching of the
hidden variable γ(t), alternating between positive and negative phases, during which
the process {u(t)} switches between stable and unstable regimes. The strength of this
intermittency also depends on the forcing correction b(t).

In this paper, as a process model, we consider a simplified version of the unforced
SPEKF model,

du(t) = −γ(t)u(t) dt+ σu dWu(t),(1.2a)

dγ(t) = −dγ
(
γ(t)− γ̂

)
dt+ σγ dWγ(t),(1.2b)

which is complex enough to incorporate intermittency and includes the hidden process
γ(t). Our primary interest is the prediction skill of the simplified SPEKF model (1.2),
and in particular the ability to generate intermittency. This problem is tackled by first
estimating the parameters θ = (dγ , γ̂, σγ , σu) based on discrete-time observations of
the {u(t)} process. Consequently, the prediction step is performed in a probabilistic
framework.

We use a Bayesian approach, under which the estimation step is based on explor-
ing the posterior distribution of θ conditionally on observations of the {u(t)} process,
via a Markov chain Monte Carlo (MCMC) approach. As we show in the next sections,
the likelihood function is intractable in this case and thus, standard techniques are
unavailable. We suggest an innovative approach based on data augmentation [38] and
treat the unobserved path of the {γ(t)} processed as missing data.

Roberts and Stramer [33] first applied this idea successfully for parameter estima-
tion in a nonlinear diffusion model, handling certain technical issues using reparame-
terization [23] to circumvent the singularity of the dominating measures for diffusion
with different diffusion coefficients. Other related work and improved algorithms for
diffusion models are found in [8, 9, 10, 12, 24, 31, 34, 35, 36]. However, extra effort
is required to handle intermittency and unresolved processes. Various updating s-
trategies have been proposed in [11, 17, 18, 19, 20, 21] in the context of well-behaved
multivariate diffusion models.
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As mentioned above, given that u(t) may switch between different instability
regimes we expect that an off-the-shelf MCMC approach for estimating θ may fail. To
that end, we suggest an innovative sampling strategy involving a preconditioning step
which restricts the proposed paths of the missing process γ(t) to pass near a discrete
set of pre-estimated values at the observation times. In this manner, the new sampler
is able to explore efficiently and with sufficient accuracy the joint posterior distribu-
tion for the parameters and missing path, despite that γ(t) is infinite-dimensional.
Throughout, we exploit the fact that (1.2a) defines a conditional Gaussian process
given the path of {γ(t)}. We demonstrate the efficiency of the new sampler and pre-
dictive skill of the resulting simplified SPEKF models in perfect-model experiments
and experiments with model error.

The rest of the paper is organized as follows. In section 2, we describe the Bayesian
inference approach via data augmentation. For the inference procedure we are imple-
menting a standard MCMC algorithm as well as the approach of [21] and discuss their
drawbacks in the context of the model described in (1.2). Our proposed approach is
presented in section 3. Section 4 includes three numerical tests for parameter esti-
mation and prediction skill with the new algorithm, The first of which is in a perfect
model setting while the other two deal with model error. Concluding remarks are
given in Section 5.

2. Preliminaries. We consider the simplified SPEKF model (1.2) and assume
that we observe the process {u(t)} at a collection of discrete time points 0 = t0 <
t1 < · · · < tn = T . Let U = (U0, U1, . . . , Un) with Ui = u(ti). Our goal is to explore
the posterior probability distribution,

(2.1) p(θ |U) ∝ p(θ)p(U |θ),

where p(θ) is the prior distribution on θ and p(U |θ) is the likelihood function. We
note that, abusing notation, we use the generic notation p(·) to denote the probability
density/conditional probability density function for the relevant quantities. Since the
processes u(·) and γ(·) are coupled in a nonlinear way and γ(·) itself is a stochastic
process, the likelihood function p(U |θ) is not available in closed form. Therefore, we
adopt a data augmentation approach [33]. Let γmis = {γmis(t), 0 ≤ t ≤ T} represent
the unobserved full path of γ(·), and consider the augmented state space (θ, γmis).
The distribution (2.1) is replaced by the augmented posterior distribution

p(θ, γmis | U) ∝ p(θ, γmis,U)(2.2a)

= p(θ)p(γmis,U | θ)

= p(θ)p(γmis | θ)p(U | γmis,θ),(2.2b)

where all the corresponding densities are viewed with respect to appropriate domi-
nating measures, see [33]. If one is able to explore the probability model specified by
(2.2b), the desired distribution p(θ |U) can be determined by marginalizing over the
auxiliary variable γmis. In light of the Markov property, the likelihood function can
be decomposed recursively as follows:

p(U | γmis,θ) =

n∏
i=1

p(Ui |Ui−1, γmis[ti−1,ti]
,θ),

where γmis[ti−1,ti]
represents the path of γmis in the interval [ti−1, ti]. Conditionally on

γmis and U0 = u(t0) the dynamics of {u(t)} are well understood and the path-wise
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solution of (1.2a) is given by

(2.3) u(t) = ρ(t, t0)u(t0) + ρ(t, t0)

∫ t

t0

σuρ
−1(s, t0) dWu(s),

where

(2.4) ρ(t, t0) = exp

(
−
∫ t

t0

γmis(s) ds

)
.

Note that conditionally on u(t0) and γmis, the variate u(t) has a Gaussian distribution
with the mean and variance given respectively by

µ(t; t0) = ρ(t, t0)u(t0),

Σ(t; t0) = ρ(t, t0)2
∫ t

t0

σ2
uρ
−2(s, t0) ds.

(2.5)

Therefore each term in the product in (2.3) becomes

(2.6) p(Ui|Ui−1, γmis[ti−1,ti]
,θ) = φ

(
Ui;µ(ti; ti−1),Σ(ti; ti−1)

)
,

where φ(x;m, v) is the Gaussian PDF with mean m and variance v evaluated at x.
Therefore, the conditional probability p(U | γmis,θ) in (2.3) is obtained by capturing
all the p(Ui | Ui−1, γmis[ti−1,ti]

,θ) with i from 1 to n.

We now focus on p(γmis |θ), which is viewed as the Radon-Nikodym derivative
of the measure induced by (1.2b) with respect to the Wiener measure scaled by the
diffusion coefficient σγ . Given that two such dominating measures (with different σγ)
are singular, a direct MCMC implementation will result in a reducible algorithm, see
[33]. Therefore, we introduce a change of variable to normalize the diffusion coefficient
σγ in the governing equation (1.2b). Setting α(t) = γ(t)/σγ , the governing equation
(1.2b) can be rewritten as

(2.7) dα(t) = −dγ
σγ

(σγα(t)− γ̂) dt+ dWγ(t).

Note that the {α(t)} process will have constant quadratic variation on the interval
[0, T ] and thus we now avoid the singularity of the corresponding dominating mea-
sures. We also note that this re-parameterization will have to be reflected in (2.6) as
well.

Let a(α, t,θ) = −(dγ/σγ) (σγα(t)− γ̂). Using the Girsanov formula [32],

(2.8) p(αmis |θ) ∝ L(αmis;θ),

where

(2.9) L(αmis;θ) = exp

(∫ T

0

a(α, t,θ) dαt

)
exp

(
−1

2

∫ T

0

a(α, t,θ)2 dt

)
.

With these in mind, a standard Metropolis-Hastings algorithm for exploring the
posterior distribution (2.2a) will alternate between updating θ conditionally on γmis

and U and updating γmis conditionally on θ and U . Since neither of these conditional
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distributions are available in closed form, in our implementation we use Metropolis-
Hastings updates. Since θ is low-dimensional, designing a proposal distribution which
will perform well is achievable either using a univariate or multivariate update strat-
egy. We find that a deterministic scan univariate updating strategy performs on par
with a more sophisticated adaptive approach. However, designing a good proposal
distribution for the αmis(·) component turns out to be a very challenging task. Since
the prior distribution for αmis(·) is an OU process, we experimented simulating OU
paths with very limited success. It is well known that independent proposal distri-
butions for Metropolis-Hastings algorithms are severely inefficient [24, 33]. Our best
implementation resulted in acceptance rates below 0.1% indicating that the sampler
fails to explore the posterior distribution properly.

We note that in the paragraphs above, we describe an approach which aims to ex-
plore the infinite-dimensional space of the sample paths of the process αmis(·). While
the Metropolis-Hastings formulation is straightforward, designing efficient algorithms
is far from it. The main setback is that it is extremely difficult to design efficien-
t proposal distributions over infinite-dimensional spaces. Evidently, any computer
implementation will require some kind of finite-dimensional representation for α(·),
u(·) as well as a discrete time approximation for all the intractable integrals present
above. A natural idea is to design and simulate an algorithm which will explore the
finite-dimensional corresponding to some discrete-time approximation for the process
described in (1.2). However, it is well documented [20, 33] that such approximating
algorithms become increasingly inefficient as the discretization gets finer.

In the body of work of Golightly and Wilkinson, notably [21] and the references
therein, one finds an extremely general MCMC approach for exploring the posterior
distribution such as (2.2a). Their approach is based on a very fine time discretization
strategy and a data augmentation approach for the missing paths of both the observed
and unobserved variables. This results in an algorithm exploring an extremely high-
dimensional state space, where it is imperative to perform multivariate updates in
order to speed up convergence. Their strategy is to update overlapping missing paths
of duration 2∆t. While their algorithm is generally applicable to our situation, in this
paper we put forward a simpler strategy which in our case performs highly efficiently.
As we explain below, our algorithm updates the missing paths of only the unobserved
variable, thus reducing the computational cost. Moreover, it operates in simultaneous
blocks of length 2∆t, potentially improving the mixing properties. We have experi-
mented with a basic implementation of the Golightly and Wilkinson approach, which
produced reasonable estimates for the simplified SPEKF model parameters in (1.2),
but at a significantly higher computational cost owing to the sampling of the u(·)
paths. This issue would be further compounded in the applications of section 4 in-
volving a stochastic phase that requires an additional sampling of the imaginary part
of the u(·) signal.

We introduce the idea of preconditioning by informing the paths of the αmis(·).
This can be done either by incorporating additional prior information or through the
available observations. To that end we take full advantage of several important char-
acteristics of the SPEKF model (1.2). In absence of any additional prior information
about the unresolved process αmis(·), we suggest a mean stochastic model and use
it to inform the unobserved paths. Critical to our approach is the observation that
(1.2) defines a conditional Gaussian process, thus avoiding the need to carry out an
ellaborate time discretization scheme for the {u(t)} process. The necessary details
are given in the next section.
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3. Approximate MCMC via preconditioning. To address the deficiencies
of a standard MCMC approach as described above, we put forward a new algorithm
which preconditions the proposed missing path γmis by imposing soft constraints on
γ(t) at the observation times ti. In essence, the preconditioning procedure replaces the
samples drawn from the posterior distribution p(θ, γmis | U) in (2.2b) by samples from
the distribution p(θ, γmis,γpre | U), where γpre is a set of pre-estimated values for γ(t)
at ti. That is, instead of targeting the posterior distribution for the process model
in (1.2), our algorithm targets the posterior distribution for a conditional SPEKF
model where the γ(t) process is restricted to pass through the pre-estimated endpoints.
This procedure may introduce a bias in the sampled parameters, but at the same
time greatly improves the efficiency of the proposal distribution over the infinite-
dimensional γ(t) paths. Since SPEKF models have been designed from the outset as
surrogate models for complex partially-observed processes, it is acceptable to incur a
small bias in the estimated parameters if the predictive skill (which is the ultimate goal
in this context) is high. Indeed, as we demonstrate in section 4, simplifed SPEKF
models with parameters estimated via our proposed approximate MCMC strategy
have high predictive skill in both perfect- and imperfect-model scenarios.

3.1. Pre-estimating endpoints for the missing process. In a first step,
carried out offline, we estimate “plausible” values for the process {γ(t)} at the obser-
vation times ti. These values are computed by assuming that the observed signal u(t)
over the interval [0, T ] is governed by a mean stochastic model (MSM)

(3.1) du(t) = −γbu(t) dt+ σbu dWu(t).

The role of this model is to estimate “background” damping and noise parameters,
γb and σbu, respectively. The parameter σbu can in fact be estimated consistently using
the quadratic variation of the process {u(t)}, as long as the observations are not too
sparse. Let

σ̂bu =

√√√√ 1

T

N∑
i=1

(Ui − Ui−1)2

be a background estimate of σu. Given σ̂bu, we use a maximum likelihood estimate
for γb, based on the background likelihood function

pmsm(U | γb) =

n∏
i=1

p(Ui |Ui−1, γu),

which is available in closed form, given that (3.1) is an OU process. Let

(3.2) γ̂b = argmaxγb∈...pmsm(U | γb)

Consequently, we assume that in each subinterval [ti−1, ti] the u(t) process is governed
by a local MSM,

(3.3) du(t) = −γ̄iu(t) dt+ σ̂bu dWu(t),

where σ̂bu is fixed and estimated as above, and γ̄i is estimated as the maximizer of the
local posterior distribution,

(3.4) p(γ̄i | Ui−1, Ui) ∝ p(γ̄i) p(Ui | Ui−1, γ̄i).
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Fig. 3.1. Illustration of the pre-estimation of the endpoints of γ using a mean stochastic model.

Here, we assume that the prior density p(γ̄i) is Gaussian with mean γ̂b estimated
from (3.2) and a large variance cbγ . Our choice is motivated by two reasons. Firstly,
we have limited prior knowledge on γ̄i and therefore the prior distribution should
reflect that uncertainty. In addition, we do expect that some of the estimated γ̄i
values are negative, to reflect the intermittent instability in the process {u(t)}. We
note that the local posterior distribution (3.4) is Gaussian, and the maximizer of
p(γ̄i | Ui−1, Ui) can be computed directly.

Let

̂̄γi = argmax p(γ̄i | Ui−1, Ui)

be the estimate of γ̄i over the interval [ti−1, ti]. The average values Γi = (̂̄γi−1 + ̂̄γi)/2
in two neighboring subintervals [ti−1, ti] and [ti, ti+1] are taken as preconditioning
values of the endpoints of γmis at ti for i = 1, . . . , n − 1. For the first and last
endpoint (i = 0 and i = n), we set Γi = ̂̄γi. An illustration of this procedure is
provided in Figure 3.1.

What remains is to switch the estimated endpoints of γmis to those of αmis. To
do this we regard Γ = (Γ1, . . . ,Γn) as “observations” of the γ(t) process, and estimate
a background diffusion coefficient σ̂bγ using the quadratic variation

σ̂bγ =

√√√√ 1

T

N∑
i=1

(Γi − Γi−1)2.

Having the estimated diffusion coefficient σ̂bγ , the endpoints of γmis are switched to

those of αmis via

(3.5) A = (A1, . . . , An) = Γ/σ̂bγ .

With these in mind, we are ready to introduce our algorithm via preconditioning.
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3.2. Proposed algorithm. A key feature of the new algorithm is to use the
precondition values A in (3.5) to construct an informative prior distribution for the
unknown quantities. To that end we split the path of the process αmis as

αmis = αpre ∪ αmis−
where

αpre = [αmis(t0) , αmis(t1), . . . , αmis(tn)] ,

αmis− = αmis(t0,t1)
∪ . . . ∪ αmis(tn−1,tn)

.

Moreover, for each subinterval t ∈ (ti−1, ti) we consider a conditional SPEKF model

(3.6a)

du(t) = −σγα(t)u(t) dt+ σu dWu(t),

dα(t) = −dγ
σγ

(σγα(t)− γ̂) dt+ dWγ(t),

with

(3.6b) u(ti−1) = Ui−1, u(ti) = Ui, α(ti−1) = αprei−1, α(ti) = αprei .

Correspondingly, we now aim to explore the posterior distribution

(3.7) p(θ, αpre, αmis− |U) ∝ p(θ)p(αpre)p(αmis− |θ, αpre)p(U |αmis,θ),

with the following prior specification.
• p(θ) is an uninformative Gaussian prior distribution.
• p(αpre) is an informative Gaussian distribution, centered at A and a diagonal

covariance matrix, with small variances.
• p(αmis− |αpre,θ) is a product of OU bridges which are determined by θ and

the endpoints given by αpre. The details on how to construct and simulate
such OU bridges are given [2] and in the Appendix.

We note that this prior specification is different from that induced by the OU process
(1.2b), in that the marginal distribution of αpre is now forced to be a very informative
Gaussian distribution. We now describe the Metropolis-Hastings updates.

Our algorithm alternates between updating the parameters θ and the path (αpre, αmis− ).

We initialize the algorithm by simulating θ{0} ∼ p(θ) and αpre,{0} ∼ p(αpre). Conse-

quently, we generate a path α
mis,{0}
− by simulating a collection of OU bridges using

αpre,{0} as endpoints. Given (θ{k}, αpre,{k}, α
mis,{k}
− ), k ≥ 0 we simulate θ∗ from a

proposal distribution θ∗ ∼ g(· |θ{k}). The proposed state θ∗ is accepted with proba-
bility

(3.8) min

{
1,

p(θ∗)p(α
mis,{k}
− , αpre,{k} |θ∗)p(U |αmis,{k},θ∗)

p(θ{k})p(αmis,{k}, αpre,{k} |θ{k})p(U |αmis,{k},θ{k}) ·
g(θ{k} |θ∗)
g(θ∗ |θ{k})

}
.

3.3. Updating the missing path. To improve the mixing time of our algorith-
m, and ensure continuity of the missing path at each iteration, we update amis,{k} in
temporally-interleaving blocks of duration 2 ∆t. Specifically, we propose a new path
amis,∗ using the following procedure.

1. If k + 1 is odd, select the even time indices I = {0, 2, . . . , }; otherwise select
the odd indices I = {1, 3, . . .}.
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2. For each i ∈ I, simulate a new endpoint

(3.9) αpre,∗i ∼ pi(αpre).

3. For each i ∈ I, simulate two adjacent OU bridges αmis,∗[ti−1,ti]
and αmis,∗[ti,ti+1]

with

endpoints α
pre,{k}
i−1 , αpre,∗i and αpre,∗i , α

pre,{k}
i respectively. The path segment

αmis,∗[ti−1,ti]
is accepted with probability

(3.10) min

{
1,
p(U |αmis,∗[ti−1,ti]

,θ{k})

p(U |αmis,{k},θ{k})

}
.

Next, we construct the full proposed missing path αmis,∗ by concatenating the
subpaths, i.e.,

αmis,∗ ≡ αmis,{k}[t0,t1]
∪ αmis,{k}[t1,t2]

∪ . . . ∪ αmis,∗[ti−1,ti]
∪ αmis,∗[ti,ti+1]

∪ . . . ∪ αmis,{k}[tn−1,tn]
.

The αmis,∗ defined above is then used in the model parameter update in (3.8). In
practice, we represent all the paths above using a fine grid for every time interval
[ti−1, ti]. All deterministic integrals involved in the algorithm are evaluated using a
trapezoidal rule. Moreover, the distribution pi(α

pre
i ) of the endpoints is a Gaussian

with zero mean and variance equal to 0.22(σ2
i−1/2 + σ2

i+1/2), where σ2
i−1/2 is the

variance of p(γ̄i | Ui−1, Ui) in (3.4).
Observe that by virtue of the conditional model structure in (3.6) the ratio of the

prior densities will cancel the ratio of the proposal densities in (3.10); i.e.,

(3.11)
p(αmis,∗− , αpre,∗ |θ{k})

p(αmis,{k}, αpre,{k} |θ{k}) ·
g(αmis,{k}, αpre,{k} |θ{k})
g(αmis,∗− , αpre,∗ |θ{k})

= 1,

since the new path is proposed independently of the old path by simulating from the
prior distribution. In particular, (3.11) holds only approximately in the case of the
standard (unconditional) SPEKF model in (1.2).

We refer the reader to Figure 3.2 for an illustration of our block update strat-
egy. As remarked earlier, our updates maintain the continuity of the sample paths
corresponding to the αmis(·) process. Our new sampling algorithm is summarized
below.

4. Numerical tests. We discuss applications of the algorithm developed in sec-
tion 3 to three experiments involving intermittent signals; one in a perfect model
setting, and two in a scenario where the signal is generated by a model which lies
outside the simplified SPEKF family (1.2). In addition to parameter estimation, we
are interested in assessing the skill of the SPEKF model estimated through MCMC
to reproduce the statistics of test data which are not part of the dataset used for
parameter estimation.

4.1. Information-theoretic measures of predictive skill and model error.
We characterize predictive skill and model error using techniques from information
theory [5, 25, 16, 28]. In particular, we consider that the statistics of the observed
signal u(t) at forecast lead time t given initial data u0 = u(0) are described by a time-
dependent PDF pt(u | u0) with a well-defined equilibrium peq(u) = limt→∞ pt(u |
u0). The MCMC-estimated SPEKF model produces forecast PDFs pMt (u | u0) and
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Fig. 3.2. Illustration of the update procedure for the missing path αmis

MCMC Algorithm with Preconditioning
1. Compute the precondition values Ai for the missing process from (3.5) using

the preconditioning algorithm of Section 3.1.
2. Set the number of iterations K. Set k = 0. Select the initial parameters

θ{0}, and construct the initial path αmis,{0} =
⋃
i α

mis,{0}
[ti,ti+1]

, where α
mis,{0}
[ti,ti+1]

are OU bridges in the interval [ti, ti+1
] with endpoints [α

pre,{0}
i , α

pre,{0}
i+1 ] given

by (3.5).
3. In step k + 1, draw the endpoints of αpre,∗i from (3.9).

4. Construct OU bridges αmis,∗[i,i+2] with endpoints [α
pre,{k}
i , α

pre,{k}
i+2 ] over the in-

tervals [t0, t2], [t2, t4], . . . if k+ 1 is odd, or [t0, t1], [t1, t3], [t3, t5], . . . if k+ 1 is
even. If the total number of subintervals is odd, then the last block contains
only one subinterval.

5. Accept each of the proposed OU bridges with the probability given in (3.10).

If αmis,∗[i,i+2] is rejected, then replace it by α
mis,{k}
[i,i+2] .

6. Propose the parameters θ∗ from some proposal function g(θ∗ |θ{k}).
7. Accept θ∗ with probability given by (3.8). If the proposal is rejected, then

set θ∗ = θ{k}.
8. Set k = k + 1. Go to step 3, and repeat until k + 1 = K.

pMeq (u) = limt→∞ pMt (u | u0), but these PDFs will in general differ from the PDFs of
the true signal. Throughout, we use the term “perfect model” to indicate the model
that generates the true signal, and “imperfect model” to represent the simplified
SPEKF model with the parameters estimated through the MCMC algorithm.

Here, we employ three metrics for model assessment which measure: (1) pre-
dictability of u(t) in the perfect model; (2) internal predictive skill of u(t) in the
MCMC-estimated SPEKF model; (3) model error of the estimated model relative to
the perfect model. These metrics are defined as follows.
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Intrinsic predictability, Dt. This metric quantifies the information provided by
the initial conditions about the future state of the system beyond the prior knowledge
available through equilibrium statistics. This information gain is computed through
the relative entropy between the time-dependent and equilibrium PDFs, i.e.,

(4.1) Dt = P(pt, peq),

where the functional P(p, q) =
∫
p log(p/q) is the relative entropy between two prob-

ability measures.
Internal predictive skill, DMt . In direct analogy with (4.1), we introduce the

relative-entropy metric

(4.2) DMt = P(pMt , p
M
eq ),

which measures information gain in the time-dependent forecast PDF of the imperfect
model beyond the model’s equilibrium. DMt will convey false predictability if either
of pMt or pMeq are biased away from the truth. Nevertheless, it is an important metric
for model assessment since it measures potential initial-value predictive skill in the
model relative to a trivial forecast drawn from the model’s equilibrium.

Model error, Et. This metric measures the lack of information in the imperfect
model density compared to a perfect statistical forecast. It is defined as

(4.3) Et = P(pt, p
M
t ).

In the following numerical tests, the initial value u0 is set to the mean value at
equilibrium. In separate calculations, we have confirmed that different u0 values lead
to qualitatively similar results.

4.2. Parameter estimation in a perfect-model setting. The first numeri-
cal test deals with a perfect-model environment where both the perfect model that
generates the signal and the imperfect model for parameter estimation and prediction
are in the simplified SPEKF model class. Thus, model error in this example is solely
due to poor parameter estimation.

To reflect the wave-like behavior of many signals, a deterministic phase is intro-
duced in the dynamics of the resolved variable u, leading to the simplified SPEKF
model,

du(t) = (−γ(t) + iω)u(t) dt+ σu dWu(t),(4.4a)

dγ(t) = −dγ
(
γ(t)− γ̂

)
dt+ σγ dWγ(t).(4.4b)

Note that there are five unknown parameters in this system. The algorithm for param-
eter estimation remains the same as that without phase, except that the variable u(t)
and its associated stochastic forcing dWu(t) become complex, and both ω and σu need
to be incorporated in the mean stochastic model (MSM) (3.1) for preconditioning.

To generate a signal with intermittency, we set the perfect-model parameter values
γ̂∗ = 0.8, σ∗u = 0.15, σ∗γ = 0.7, d∗γ = 0.5, and ω = 2. The observation time step is
∆t = 0.5, which is shorter than the averaged decorrelation time of u, τucorr = 1/d∗γ =
2. The training time series, shown in Figure 4.1, has length T = 250 and thus
contains 501 observations. The large burst of u around t = 75, 200 and 225, which
corresponds to a transient phase of negative γ, reflects the intermittent instability.
The intermittency occurrence is not observed with a high frequency, but the amplitude
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Fig. 4.1. Training time series for the experiment with no model error. The top and middle
panels show the real and imaginary parts of the resolved variable u(t). The bottom panel shows the
unresolved stochastic damping γ(t). Only observations of u(t) (indicated by point markers) are used
for parameter estimation via MCMC. The γ(t) process is hidden from the algorithm.

of the intermittency is large. Thus, this type of intermittent instability produces
“black swan”-like events.

The variance of the prior distribution (3.4) of γ̄ for preconditioning is chosen
to be cbv = 4 so that γ̄ has access to negative values. The scaling coefficient σγb to
convert the endpoints of γmis to αmis via (3.5) is estimated as σbγ = 0.64. The prior
distributions of the five parameters are

(4.5) σu ∼ Γ(2, 1/2), σγ ∼ Γ(2, 1), ω ∼ Γ(2, 1), γ̂ ∼ N (2, 2), dγ ∼ N (2, 1),

where Γ and N are the PDFs of the Gamma and Gaussian distributions, respectively,

(4.6) Γx(k, θ) =
1

θk
1

Γ(k)
xk−1e−

x
θ , Nx(µ, σ2) =

1√
2πσ2

e−
(x−µ)2

2σ2 .

Note that apart from prescribing the sign of the diffusions and phase, the prior distri-
bution has almost no influence on the parameter estimation with our new sampling
algorithm. The proposal function g(θ) in the MCMC algorithm is set to a Gaussian
with zero mean and standard deviation 1/4, and is evaluated for each component
separately. The initial MCMC iterates θ{0} are all set to be twice their true values.
The missing paths are generated using an Euler numerical scheme with time step
∆t = 0.01.

Figure 4.2 displays MCMC trace plots of the five parameters together with the
estimated equilibrium variance of γ. The acceptance rates of γ̂ and dγ are around
70%, and that of σu, σγ , and ω are around 40%. Moreover, the acceptance rate of
the missing path αmis is around 75%, which is a significant improvement compared
to the < 0.1% acceptance rate of the direct algorithm (see section 2). As shown in
Figure 4.3, the parameters decorrelate after approximately 50 iterations. Thus, the
new algorithm provides a well-mixed Markov chain.
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Fig. 4.2. Trace plots of the parameters of the simplified SPEKF system (4.4) estimated via the
new MCMC algorithm of section 3, where the true signal is shown in Figure 4.1. Here, k denotes
the MCMC iteration.
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Fig. 4.3. Autocorrelation functions of the parameter traces of Figure 4.2 computed after a
burn-in period of 1000 iterations.

Figure 4.4 displays the true value, the given prior distribution, and the posterior
PDFs of the five SPEKF parameters, as well as the equilibrium PDF of γ corre-
sponding to the maximum a posteriori estimates of σγ and dγ . All parameters are
estimated accurately and have small uncertainty. In particular, the equilibrium vari-
ance of γ in the imperfect model, i.e., var(γ) = σ2

γ/(2dγ), agrees well with the true
value, σ∗γ/(2d

∗
γ). As a result, the equilibrium distribution of γ has access to negative

values, enabling the imperfect model to produce intermittency.
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Fig. 4.4. Parameter estimation for the simplified SPEKF system (4.4) performed via the new
MCMC algorithm. Panels (a)–(e) show the prior distribution (solid lines), posterior distribution
from the MCMC algorithm (dashed lines) and the true value of the parameters (circles) of γ̂, σu,
σγ , dγ , and ω, respectively. Panel (f) compares the equilibrium PDF of the unresolved variable
γ(t) of the perfect model and the model equipped with the maximum a posteriori estimates of the
parameters.

The imperfect model with the parameters from maximum a posteriori estimates
via the MCMC algorithm is able to reproduce both the equilibrium and off-equilibrium
statistics of the perfect model with high skill. As shown in Figure 4.5, the autocorrela-
tion functions ρu(t) and ρMu (t) for u in the perfect and imperfect models, respectively,
oscillate at the same frequency, with ρMu decaying only slightly slower than than ρu.
Moreover, the internal predictive skill metric DMt from (4.2) matches well with the
intrinsic predictability from (4.1). Both Dt and DMt are significantly larger than the
model error Et for short-range forecasts with t . 0.5. The medium-range (0.5 . t . 2)
prediction skill of the imperfect model is slightly worse than the prefect model, but
still larger than Et. Both the perfect and imperfect model equilibrate around t = 3.0,
at which point the model error in the equilibrium distribution pMeq (u) becomes neg-
ligible. In particular, the imperfect model succeeds in capturing the fat tails of the
true distribution peq(u), which are the outcomes of extreme events. We remark that
the residual errors in the estimated parameters are possibly due to the shortness of
the training time series. More accurate estimation should be achievable using longer
training time series.

4.3. Parameter estimation with model error. The more realistic situation
for parameter estimation and prediction is in the presence of model error, i.e., for u(t)
signals generated by models which are not in the simplified SPEKF class. Here, we
discuss two such experiments where intermittent instability in u(t) is the outcome of
a two-state Markov jump process (section 4.3.1) and a nonlinear stochastic process
with correlated additive and multiplicative (CAM) noise (section 4.3.2).

4.3.1. Intermittent instability from a Markov jump process. In this ap-
plication, the unresolved variable γ(t) of the perfect model that generates the signal
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Fig. 4.5. Perfect-model predictability (left) and predictive skill of the imperfect model equipped
with the maximum a posteriori estimated parameter values from Figure 4.4. The top and middle
panels show the autocorrelation functions ρu(t) and ρMu (t), the perfect-model predictability score Dt
from (4.1), and internal prediction skill DMt from (4.2), respectively. The bottom right panel shows
the evolution of the model error Et from (4.3). The bottom left panels display the equilibrium PDF
of the perfect model and the model (solid) with the estimated parameters (dashed) in both linear and
logarithmic scales.

is assumed to be driven by a two-state Markov jump process, i.e.,

du(t) = (−γ(t) + iω)u(t) dt+ σu dWu(t),

γ(t) satisfies a two-state Markov jump process.
(4.7)

The system (4.7) features regime switching and can be utilized to mimic unresolved
baroclinic instabilities in the atmosphere or ocean [27]. Here, the damping γ(t) switch-
es between the stable phase γ+ = 2.27 and the unstable phase γ− = −0.04. The
switching rate from the stable to unstable phase is ν = 0.1 and that from the un-
stable to stable phase is µ = 0.2. Therefore, the time-averaged damping is given by
γ̄ = (νγ− + µγ+)/(µ + ν) = 1.5. The phase and diffusion coefficients are ω = 1.782
and σu = 0.1095, respectively.

The observed u(t) signal for parameter estimation and the underlying γ(t) process
are shown in Figure 4.6, where negative γ(t) values corresponds to intermittent insta-
bility. The observation time step is ∆t = 0.5, which is shorter than the decorrelation
time of u(t). The length of the observed time series is T = 250, corresponding to 501
observations. The variance of γ̄ in the preconditioning algorithm of section 3 is set to
cbv = 6 to ensure access to negative values. The scaling coefficient in (3.5) is around
σbγ = 0.8. The prior distributions of the parameters are the same as in (4.5).

Figure 4.7 shows a proposal of the missing path γmis constructed by OU bridges
in step 6 of the new algorithm (after rescaling αmis,{k} by σbγ). Clearly, the proposed
missing path has a similar pattern as the true signal, and therefore it succeeds in
recovering the intermittency. Figures 4.8–4.10 show trace plots and autocorrelation
functions of the MCMC iterations, and the PDFs for parameter estimation obtained
via the new algorithm, respectively. Similarly to the example in section 4.2, the
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Fig. 4.6. True signal generated by system (4.7) featuring a two-state Markov jump process.
The top and middle panels show the true signal of the real and imaginary parts of the resolved
variable u and the bottom panel shows that of the unresolved variable γ, which is a two state Markov
jump process with stable phase γ+ = 2.27 and unstable phase γ− = −0.04. Only observations of u
(indicated by point markers) are used for parameter estimation via MCMC. The γ process is hidden
from the algorithm.
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Fig. 4.7. A sample of the missing path γmis using the new algorithm (solid) compared with the
true two-state Markov jump process signal (dashed) from (4.7).

new algorithm has a high acceptance rate, and is able to recover the intermittent
instability.

Figure 4.11 displays the prediction skill resulting from maximum a posterior-
i estimates of the parameters obtained via the new algorithm. The autocorrelation
function of the imperfect model has the same oscillation frequency as that of the per-
fect model, but it decays slightly faster than its perfect model counterpart. Moreover,
the model error Et from (4.3) in the equilibrium PDF pMeq (u) is small. In particular,
the imperfect model has a similar fat-tailed density as the equilibrium PDF peq(u) in
the perfect model, which implies the imperfect model is able to capture the extreme
events. The imperfect model has good short-range internal prediction DMt from (4.2)
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Fig. 4.8. Trace plots of the parameters of the simplified SPEKF system (4.4) estimated via the
new MCMC algorithm of section 3, where the true signal is generated by system (4.7) and is shown
in Figure 4.6. Here, k denotes the MCMC iteration.
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Fig. 4.9. Autocorrelation functions of the parameter traces of Figure 4.8 after a burn-in period
of 1000 samples.

skill for t < 0.70. However, its medium-range forecasts from that model are not
accurate in the sense that DMt , which decays slightly faster than the perfect model
predictability score Dt, is exceeded by the model error. Nevertheless, the model error
remains small at later times, giving a good estimation of the equilibrium distribution.

4.3.2. Intermittent instability with correlated additive-multiplicative
noise. We have also studied an example in which the unresolved variable is driven
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Fig. 4.10. Estimation of SPEKF parameters via the new algorithm for an observed signal
generated by the Markov jump process system (4.7). Panels (a)–(e) shows the prior distribution
(solid line), posterior distribution from MCMC algorithm (dashed line) and the true parameter
values if available (circle) of γ̂, σu, σγ , dγ and ω, respectively. Panel (e) shows the equilibrium PDF
of the unresolved variable γ of the SPEKF model equipped with maximum a posteriori estimates of
the parameters.
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is hidden from the algorithm.

by a nonlinear and non-Gaussian dynamics with cubic nonlinearity and CAM noise
[26],

du(t) = (−γ(t) + iωu)u(t) dt+ σu dWu(t),(4.8a)

dγ(t) = (−aγ(t) + bγ2(t)− cγ3(t) + fγ) dt+ (A−Bγ(t)) dWc(t) + σ dWγ(t),(4.8b)

We selected a dynamical regime in which γ(t) is bimodal [see Figure 4.13(f)]. The
training time series is shown in Figure 4.12. There, γ(t) is qualitatively similar to
two-state Markov jump process of section 4.3.1 but has a continuous path. The
observation time is ∆t = 0.5, which is again shorter than the averaged decorrelation
time of u(t). The theoretic optimized parameters σγ , dγ and γ̂ can be computed by
matching the mean, variance and decorrelation time of the cubic model (4.8b) with
those of SPEKF model (4.4b) and are illustrated by the green dot in Figure 4.13.

Parameter estimation results from the new algorithm are shown in Figure 4.13.
The parameters γ̂, σu and ω are estimated with high accuracy. Both damping dγ and
diffusion σγ are slightly overestimated, but the ratio σ2

γ/(2dγ), which is the variance
of γ(t), is very close to the variance of the Gaussian approximation of the perfect
model. The prediction skill results (not shown here) are qualitatively similar to those
in Figure 4.11 for system (4.7) but in this case the continuity of the γ(t) in the perfect
model leads to a somewhat smaller model error of the imperfect model.

5. Conclusions. In this paper, the simplified SPEKF model (1.2) is utilized as
a low-order process model to approximate signals with hidden intermittent instability.
Bayesian inference incorporating data augmentation [38] is applied for parameter es-
timation in this class of models via MCMC algorithms. Direct applications of MCMC
with data augmentation [33] was found to result in a low acceptance rate of the missing
path and poor parameter estimation skill. A new MCMC algorithm was developed,
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Fig. 4.13. Estimation of SPEKF parameters via the new algorithm for an observed signal
generated by the system (4.8). Panels (a)–(e) shows the prior distribution (solid line), posterior
distribution from MCMC algorithm (dashed line) and the true parameter values if available (circle)
of γ̂, σu, σγ , dγ and ω, respectively. Panel (e) shows the equilibrium PDF of the unresolved variable
γ(t) of the SPEKF model equipped with maximum a posteriori estimates of the parameters.

which involves a preconditioning procedure to pre-estimate the unresolved process at
the discrete moments that are consistent with the observations of the resolved vari-
able. This new algorithm provides a high acceptance rate of the proposed missing
path for data augmentation, and produces posterior PDFs for parameter estimation
of high accuracy and low uncertainty.

We have performed a suite of numerical tests of the new algorithm in both perfect-
model settings and applications where the observed signal is generated by a model
which is not of SPEKF type. In all cases, the SPEKF models with parameters esti-
mated via the new algorithm were able to capture the fat-tailed PDFs of the observed
signal resulting from extreme events due to hidden intermittent instability. In a chal-
lenging application with model error where intermittent instability is generated by
a discontinuous two-state Markov jump process, the new algorithm led to SPEKF
models of high short-range predictive skill and high fidelity relative to the true-model
statistics in both medium- and long-range forecasts.

Future work will involve generalizing the algorithm to perform parameter esti-
mation in the full SPEKF model (1.1), as well as the even more complicated case [6]
with a stochastic phase ω(t) in u(t). The full SPEKF model with stochastic phase has
11 explicit parameters and several implicit parameters in the forcing. Whether some
of the parameters are redundant and how to estimate a large number of parameters
with only partial observations in u(t) are both important research questions. The
application of SPEKF models to parameter estimation and prediction with real-world
data with intermittency, such as data for the Madden-Julian Oscillation, ENSO, and
planetary boundary layers, will be taken into consideration in the future.
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Appendix. This section summarizes lemma 3.1 in [2] for sampling the Ornstein-
Uhlenbeck (OU) bridge. Consider an OU bridge, which is a solution to the stochastic
different equation

dXt = −θXtdt+ σdWt

conditionally on X0 = a and XT = b for some a, b ∈ R.
Lemma 3.1 in [2]. Generate Xt0 , Xt1 , . . . , Xtn , Xtn+1

, where 0 = t0 < t1 <
· · · < tn < tn+1 = T , by X0 = a and

Xti = e−θ(ti−ti−1)Xti−1
+Wi, i = 1, . . . , n+ 1

where the Wis are independent and

Wi ∼ N
(

0, σ2

(
1− e−2θ(ti−ti−1)

2θ

))
.

Define

Zti = Xti + (b−Xtn+1
)

eθti − e−θti
eθtn+1 − e−θtn+1

, i = 0, . . . , n+ 1.

Then (Zt0 , Zt1 , . . . , Ztn , Ztn+1
) is distributed like an Ornstein-Uhlenbeck bridge with

Zt0 = a and Ztn+1
= b.
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