
An Ensemble Kalman Filter for Statistical Estimation

of Physics Constrained Nonlinear Regression Models

John Harlim∗

Department of Mathematics and Department of Meteorology, the Pennsylvania State

University, University Park, PA 16802

Adam Mahdi

Department of Mathematics, North Carolina State University, Raleigh, NC 27695

Andrew J. Majda

Department of Mathematics and Center for Atmosphere and Ocean Science, Courant

Institute of Mathematical Sciences, New York University, New York, NY 10012

Abstract

A central issue in contemporary science is the development of nonlinear data

driven statistical-dynamical models for time series of noisy partial observa-

tions from nature or a complex model. It has been established recently that

ad–hoc quadratic multi-level regression models can have finite time blow-up

of statistical solutions and/or pathological behavior of their invariant mea-

sure. Recently, a new class of physics constrained nonlinear regression models

were developed to ameliorate this pathological behavior. Here a new finite

ensemble Kalman filtering algorithm is developed for estimating the state,

the linear and nonlinear model coefficients, the model and the observation

noise covariances from available partial noisy observations of the state.
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Several stringent tests and applications of the method are developed here.

In the most complex application, the perfect model has 57 degrees of freedom

involving a zonal (east–west) jet, two topographic Rossby waves, and 54

nonlinearly interacting Rossby waves; the perfect model has significant non-

Gaussian statistics in the zonal jet with blocked and unblocked regimes and a

non-Gaussian skewed distribution due to interaction with the other 56 modes.

We only observe the zonal jet contaminated by noise and apply the ensemble

filter algorithm for estimation. Numerically, we find that a three dimensional

nonlinear stochastic model with one level of memory mimics the statistical

effect of the other 56 modes on the zonal jet in an accurate fashion, including

the skew non–Gaussian distribution and autocorrelation decay. On the other

hand, a similar stochastic model with zero memory levels fails to capture

the crucial non-Gaussian behavior of the zonal jet from the perfect 57-mode

model.

Keywords: ensemble Kalman filter, nonlinear regression models, parameter

estimation of stochastic differential equations, multi-level models.

1. Introduction

A central issue in contemporary science is the development of data driven

statistical-dynamical models for the time series of a partial subset of observed

variables, u1(t) ∈ RN1, which arise from observations of nature or from an

extremely complex physical model [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. This is an

important issue in systems ranging from bio-molecular dynamics to climate

science to engineering turbulence. Examples of such data driven dynamical

models are multi-level linear autoregressive models with external factors [2, 6]
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as well as ad-hoc quadratic nonlinear regression models [12, 13, 14, 15]. Such

purely data driven ad-hoc regression models are developed through various

criteria to fit the data but by design, do not respect the underlying physi-

cal dynamics of the partially observed system or the causal processes in the

dynamics; nevertheless, the goal of purely data driven statistical modeling is

to provide simplified low order models with high predictive skill for central

features of the underlying physical system and not just fit (or over-fit, see

[2]) the given data. Indeed, the work in [16] provides rigorous mathematical

theory and examples with straightforward numerical experiments where the

ad-hoc quadratic multi-level regression models proposed in [12, 13, 14] neces-

sarily have non-physical finite-time blow-up of statistical solutions and also

pathological behavior of the related invariant measure even though these

models match a long time series of the observed data produced from the

physical model with high accuracy.

In [17] a new class of physics constrained multi-level regression models

were proposed to systematically ameliorate the above difficulties. These mod-

els begin with an observed time series for a variable u1 ∈ RN1 and augment

u1 with a hidden variable u2 so that primary nonlinear energy conserving

interactions occur in the u variables with u = (u1, u2) ∈ RN , N = N1 +N2,

while the stochastic memory effects of noise are linear, conditional on the

state u. If Π2(u) = (0, u2)
⊤ denotes the projection on u2, then the Physics

Constrained Multi-Level Regression Models developed in [17] have the

structural form,
du

dt
= Lu+B(u, u) + F +Π2r1

d~r

dt
= Qu+ Ã~r + σẆ ,

(1)
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where the nonlinear interactions B(u, u) conserve energy so that

〈u,B(u, u)〉 = 0, (2)

for a suitable inner product 〈·, ·〉; and Ẇ is a white noise vector with noise

matrix σ. The matrix A defining the interactions of (r1, . . . , rp) with rj ∈
RN2, where p memory levels are triangular and are given by

dri
dt

= Qiu+
i

∑

j=1

ãi,jrj + ri+1, 1 ≤ i ≤ p− 1

drp
dt

= Qpu+

p
∑

j=1

ãp,jrj + σẆ .

Here p denotes the number of memory levels and p = 0 denotes the special

zero-memory level model

du

dt
= Lu+B(u, u) + F +Π2σẆ . (3)

Rigorous theorems in [17] show that such models do not blow-up (under

certain hypotheses) and have nice invariant measures. Guidelines involving

stability of L as well as observability and controllability of (1) for the primary

variables u = (u1, u2) when only u1 is observed are also given in [17] together

with a counterexample with statistical blow-up with neutral stability.

The practical issue treated here involves the inference of an appropriate

stochastic model in (1) with (2) from partial knowledge involving observa-

tions of u1 alone, contaminated by noise. This estimation problem involves

determining the coefficients L,Q, Ã, B and estimating the noise amplitude σ

in (1) and the observation noise covariance, besides estimating u2.

The filtering or estimation algorithm implemented in [17] was based on

using Extended Kalman Filter (EKF) combined with Belanger’s method [18]
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for noise and parameter estimation. This algorithm was used successfully

in [17] to estimate reduced stochastic model for the first Fourier mode of

the Truncated Burgers-Hopf (TBH) model [19] as well as related nonlinear

oscillators with memory. In Section 2 of this paper we provide an instruc-

tive motivating example, showing the skill of this algorithm with complete

observation of u and a spectacular failure of this algorithm due to linear

instability with partial observation when only u1 is observed. A new finite

Ensemble Kalman Filter (EnKF) based scheme for estimating all the pa-

rameters L,B,Q, Ã and the noise σ in the models from (1) is developed in

Section 3.

An important area for application of the regression models is low fre-

quency climate variability and a family of stringent paradigm models for this

behavior [9, 20], which are studied through the new estimation algorithm in

Section 4. The most complex problem considered in Section 4 involves a per-

fect model with 57 degrees of freedom with a large scale zonal (east-west) jet,

two topographic Rossby waves, and 54 nonlinearly interacting Rossby waves;

the perfect models have significant non-Gaussian statistics with blocked and

unblocked regimes of the zonal jet due to stochastic backscatter from the

Rossby waves even though the total perfect system exactly conserves energy.

We only observe the zonal jet contaminated by noise and seek a physics con-

strained stochastic model with memory with form in (1) which mimics the

statistics of the 57-mode model. We apply our EnKF based algorithm for pa-

rameter estimation introduced in Section 3 and find that a three dimensional

nonlinear stochastic model with one level of memory, p = 1, is sufficient to

mimic the statistical effects of the other 56 modes on the zonal jet u in an

5



accurate fashion, including both the skewed non-Gaussian distribution for u

and its autocorrelation decay. On the other hand, a similar model with zero

level memory fails to capture any of these crucial non-Gaussian behavior for

the zonal jet from the perfect 57-mode model.

2. Motivating example for new parameter estimation algorithms

The existing EKF based algorithm [22, 23] was successfully used for es-

timating deterministic and stochastic parameters of various models (see e.g.

[17]). In this section we will introduce a family of test models that will be

used to show some of the limitations of the EKF based scheme, including a

failure due to linear instability when only partial observations are available.

This, in turn, motivates the development of a new, more robust, EnKF based

algorithm (described in detail in Section 3), which we compare with the EKF

filter.

Consider a system of stochastic differential equations (SDEs) in (1) with

one memory level and F = 0, which in compact form can be written as

dx

dt
= Ax+B(x, x) + Σ ~̇W, (4)

where x = (u1, u2, r) ∈ C3 and Σ ~̇W = (0, 0, σẆ )⊤, with W denoting a

complex valued Wiener process. In this example, the linear operator A ∈
C3×3 is given by

A =









L
0
1

Q1 ã1,1








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and is set to be symmetric negative definite; the nonlinear term is defined as

follows,

B(x, x) = (−iu∗2(c1u∗1 + c2u
∗
2), iu

∗
1(c1u

∗
1 + c2u

∗
2), 0)

⊤

to ensure globally stable non-Gaussian solutions with Lyapunov function

V = 1
2
(|u1|2 + |u2|2 + |r|2) when σ = 0. Here and throughout this article

|x|2 ≡ x∗x, where ‘*’ denotes complex conjugate. In our simulations, we

choose nonzero A, c1, c2, σ such that the system in (4) has all negative eigen-

values and comparable variance on each component (see Table 1 below). For

a special choice with c1 6= 0 and c2 = 0, the model in (4) corresponds to the

nonlinear oscillator test model in [17] constructed by adding a one memory

level to Galerkin truncation of the TBH model up to the first two Fourier

modes [21]. It is not too difficult to show that the model in (4) is control-

lable and thus geometrically ergodic [17], except on a set of measure zero

parameters.

2.1. Numerical results with EKF based parameter estimation scheme

We consider here parameter estimation with Belanger’s method [18, 22]

blended with EKF (see Appendix for the detail algorithm) for estimating all

the model deterministic parameters A,B, the model stochastic noise ampli-

tude, Σ, and the unknown observation noise covariance, given noisy partial

observations of x. This is exactly the algorithm used in [17, 23].

First, we consider the case when we observe u1 and u2, corrupted by inde-

pendent white noises with variance 10% of the corresponding climatological

(temporal average) variance. In this situation, we obtain very accurate esti-

mates (see Figures 1, 2 for the marginal densities and autocorrelation func-

tion, respectively) for this non-Gaussian statistics. In Table 2 we also include
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other statistical estimates such as the correlation times and variances. In Fig-

ures 3-5 we show the corresponding state and parameter estimates compared

to the truth. Notice that the fitting for the observable state variables is quite

skillful. The scheme estimates the deterministic parameters remarkably well

(even the nonlinear coefficients c1, c2 are estimated accurately), except for

a22, a33, a23.

Now consider noisy observations of only u1. Unfortunately in this sit-

uation the parameterization strategy with EKF diverges in finite time. In

Figure 6, we plot the largest absolute value of the eigenvalue of the linear

tangent model used in EKF based scheme as well as the estimates for real

part of the observed u1, and unobserved u2, variables, as functions of as-

similation step, until the scheme diverges (in this simulation, the solutions

blow-up to machine infinity after 728 iterations). Here, the stability of the

linear tangent model is sensitive to initial conditions. When the linear tan-

gent model largest magnitude of the eigenvalue is greater than one, the EKF

is unstable and the state estimate for the unobserved variable, u2, diverges.

On the other hand, the estimates for the observed variable, u1, are exactly

the observations. Such a pathological behavior was also observed in a simpler

context (see Chapter 3 of [24]).

2.2. Non blow-up parameter estimation scheme

As a remedy to the divergence of solutions in the EKF based parame-

ter estimation scheme with sparse observations, we propose an EnKF based

parameter estimation algorithm, which we will explain, in more detail, in

Section 3.

In Figures 7, 8 and Table 2, we show the statistical estimates obtained
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from EnKF based scheme observing similar set of noisy observations u1 and

u2 as those used in the EKF estimation experiment above. Notice that the

density estimates are accurate but the autocorrelation function estimates are

less accurate especially, beyond 20 time units. Compare to the EKF based

scheme, the EnKF based algorithm is less accurate with noisy observations

of u = (u1, u2). Such degrading estimates in this particular regime can

be attributed to various factors such as ensemble size, etc. However, our

scheme produces reasonable statistical estimates when observing only u1 (see

Figure 9 and Table 2) whereas the EKF based algorithm blow-up in finite

time. Next, we will describe the proposed EnKF based algorithm in detail.

Subsequently, we will apply this newly developed algorithm on a complex

test model for topographic mean flow interaction in Section 4.

3. An ensemble based parameter estimation algorithm for stochas-

tic differential equations

The basic parameter estimation scheme utilized in [17] blends the EKF

and Belanger’s method [18] in adaptive fashion. When observation yk be-

comes available at time step tk, the parameter estimation scheme applies

EKF to estimate simultaneously, the state variables and the parameters as-

sociated with the deterministic part of the SDE’s (for model in (1), these

parameters are components of L,Q, Ã, B). This step is called the primary

filter in [23, 22]. Subsequently, it applies a secondary filter to estimate the

stochastic parameter, σ, and the observation noise covariance, based on the

estimated innovation vector, vk ≡ yk − Hx−k , defined as the difference be-

tween the observation yk and prior mean estimate Hx−k in the observation
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space. Here, the observation operator H projects the model state space to

observation space. In the Appendix below, we review the EKF based param-

eter estimation algorithm step-by-step for convenience. In there, we write

the full algorithm in eight steps: Steps 1 and 2 describe the primary filter

and, the remaining Steps 3-8 describe the secondary filter. This estimation

algorithm is equivalent to the recursive formulation introduced by Belanger

for parameterizing linear SDEs [18].

To implement Belanger’s noise estimation scheme, one needs to specify a

linear operator that maps the second order statistics forward in time. This

forward operator is used to construct the observation operator and the noise

covariance matrix used in the secondary filter (see Steps 3-7 in the Appendix).

When EKF is used for the primary filter, it naturally provides linear tangent

model as the forward operator (see Step 2 in the Appendix below).

While the EKF based estimation scheme is accurate in the presence of

full observations, u = (u1, u2), as we reported in Section 2.1, the estimation

scheme diverges with only partial observation u1 due to linear instability

of the linear tangent operator. As a remedy, we propose to use prior and

posterior ensembles of solutions to approximate the linear tangent operator

(this step will be discussed in detail shortly); this approach is also used in

[25]. In general, one can choose any desirable EnKF filter; here we implement

Ensemble Transform Kalman Filter (ETKF) [26].

In summary, the new parameter estimation scheme uses the same sec-

ondary filter (Steps 3-8 in the Appendix) and replaces the primary filter

(Steps 1 and 2 in the Appendix) with the following two steps. Given a prior

ensemble of solutions x
(j),−
1 , j = 1, . . . , K:
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1. Compute the mean and perturbation about the mean

x̄−k =
1

K

K
∑

i=1

x
(j),−
k

Uk = [x
(1),−
k − x̄−k , . . . , x

(K),−
k − x̄−k ]

Vk = HUk.

Apply the ETKF with the following step

vk = yk −Hx̄−k

J = (K − 1)IK + Vk
(

p
∑

i=1

Riai,k
)−1

V ⊤
k .

Compute singular value decomposition (SVD) of J = XΣX⊤. Con-

struct

K̃k = UkXΣ−1X⊤V ⊤
k

(

p
∑

i=1

Riai,k
)−1

Wk =
√
K − 1UkXΣ−1/2X⊤,

x̄+k = x̄−k + K̃kvk,

x
(j),+
k = x̄+k +W

(j)
k , j = 1, . . . , K.

Here W
(j)
k denotes the jth column of Wk.

2. Compute the deterministic solutions for each ensemble member at the

next time step with

x̃
(j),−
k+1 = f(x

(j),+
k ), k = 1, . . . , K,

where f denotes the filter model deterministic operator. Notice that

if we only have a deterministic linear model, the covariance update is

given by

P−
k+1 = AkP

+
k A

⊤
k , (5)
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where f(xk) = Akxk. For nonlinear f , we propose to approximate

Ak with ensemble of solutions, following the approach in [25]. The

ensemble based prior and posterior error covariance matrices are defined

by

P−
k+1 =

1

K − 1
Ud
k+1(U

d
k+1)

⊤,

P+
k =

1

K − 1
WkW

⊤
k ,

(6)

where Ud
k+1 = [x̃

(1),−
k+1 − ¯̃x−k+1, . . . , x̃

(K),−
k+1 − ¯̃x−k+1] and

¯̃x−k+1 is the ensemble

average of the deterministic solutions {x̃(j),−k+1 }Kj=1. Inserting (6) into (5)

and multiplying both side by K − 1, we obtain

Ud
k+1(U

d
k+1)

⊤ = AkWkW
⊤
k A

⊤
k ,

or

Ud
k+1 = AkWk.

Therefore, we can approximate Ak by

Ak = Ud
k+1W

†
k ,

where † denotes pseudo-inverse. Now we account for the error covari-

ance associated with the stochastic term through,

P−
k+1 =

1

K − 1
Ud
k+1(U

d
k+1)

⊤ +

p
∑

i=1

Qiai,k.

Then generate Uk+1 with mean zero and covariance P−
k+1. One method

is to first simulate a random matrix Ũ = [u(1), . . . , u(K)] ∈ Rn×K where
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each component is sampled fromN (0, 1). Since these are finite samples,

take away the bias by

û(j) = u(j) − 1

K

K
∑

j=1

u(j).

Define Û = [û(1), . . . , û(K)], take eigenvalue decomposition, 1
K−1

ÛÛ =

ΞDΞ⊤. Then we have,

Uk+1 = P−
k+1ΞD

−1/2Ξ⊤Û .

Now we can apply the secondary filter (described in Step 3-8 in the Ap-

pendix) to update the noise parameter, σ, and the observation noise covari-

ance. Then, return to Step 1 above for the next assimilation time.

4. Physics Constrained Nonlinear Regression Models for Topo-

graphic Mean Flow Interaction

In this section, we apply the proposed parameter estimation scheme on a

family of stringent paradigm models for topographic mean flow interaction

[27, 28]. In particular, we consider fitting time series from topographic mean

flow interaction that solves a barotropic quasi-geostrophic equation with a

large scale zonal mean flow u on a two-dimensional periodic domain [29, 28].

The full equations are given as follows

∂q

∂t
= −∇⊥ψ · ∇q − u(t)

∂q

∂x
− β

∂ψ

∂x
,

q = △ψ + h, (7)

du

dt
=

1

4π2

∫

h
∂ψ

∂x
.
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Here q and ψ are the small-scale potential vorticity and stream function,

respectively. The large-scale zonal velocity field is characterized by u(t) and

the topography is defined by function h = h(x, y). The parameter β is

associated with the β-plane approximation to the Coriolis force. Notation

∇⊥ ≡ (−∂y, ∂x) and the integral above is a two-dimensional integral over a

periodic box of length 2π.

Now we shall construct a set of special solutions to (7), which inherit the

nonlinear coupling of the small-scale flow with the large-scale mean flow via

topographic stress. Consider the following Fourier decomposition,

ψ(~x, t) =
∑

k 6=0

ψk(t)e
ik~ℓ·~x, h(~x) =

∑

k 6=0

hke
ik~ℓ·~x (8)

where ~ℓ = (ℓx, ℓy) and ~x = (x, y). Note that we assume the topography has

zero mean with respect to spatial average, that is, h0 = 0. Substituting the

ansatz in (8) into (7), we obtain the layered topographic equations in

Fourier form [29, 28]:

dψk

dt
= ikℓx

( β

k2|~ℓ|2
− u

)

ψk + i
kℓx

k2|~ℓ|2
hku,

du

dt
= −iℓx

∑

k 6=0

khkψ
∗
k,

(9)

where ψ∗
k = ψ−k and h∗k = h−k, since both quantities ψ and h are real. We

note (cf. [29, 28]) that without loss of generality we can always rescale the

system in (9) with ℓx 6= 0 to align to a special case with ~ℓ = (1, 0). With this

property, we will consider a single layer topography in this zonal direction,

~ℓ = (1, 0) in the remaining of this paper.

Now we consider truncation of (9) with 0 < |k| ≤ Λ = 1, i.e., restrict
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ourself with the solutions of (7) in the form,

ψ(x, t) = ψ1(t)e
ix + ψ−1(t)e

−ix,

h(x) = H(cos(x) + sin(x)) = h1e
ix + h−1e

−ix,
(10)

where h1 = H/2 − H/2i and h−1 = h∗1, and H denotes the topography

amplitude.

4.1. Parameter estimation of a test model for interactions of zonal jet with

two topographic Rossby waves

Here we proceed with the following specific choice of the coefficients for

function ψ(x, t):

ψ1(t) =
1

2
(b(t)− ia(t)) and ψ−1 = ψ∗

1 . (11)

Substituting (10) with (11) into (9) and rotating the variables (a, b) counter-

clockwise by 45◦ to coordinate (v1, v2), we obtain the following system

du

dt
= ωv1,

dv1
dt

= −2ωu− βv2 + uv2

dv2
dt

= βv1 − uv1,

(12)

where ω ≡ H/
√
2. This model is similar to the Charney and DeVore [30]

model for nonlinear regime behavior without dissipation and forcing. Now

we consider (see [31, 32, 20, 28]) approximating the interaction with the

truncated Rossby wave modes, |k| > 1, with an Ornstein-Uhlenbeck process,

to obtain a test model that describes nonlinear interactions of zonal jet with

two topographic Rossby waves:

ẋ = (L−D)x+B(x, x) + ΣẆ , (13)
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where x = (u, v1, v2)
⊤, B(x, x) = (0, A1uv2,−A1uv1)

⊤, D = diag(0, d1, d2)
⊤,

Ẇ = (Ẇ1, Ẇ2)
⊤,

L =











0 ω 0

−2ω 0 −β
0 β 0











, Σ =











0 0

σ1 0

0 σ2











. (14)

Before we move on discussing the numerical results, we establish some

basic properties of system (13), (14). We define on R3 the following inner

product

〈x, x〉∗ = u2 +
1

2
(v21 + v22).

Notice that L is skew-symmetric with respect to this inner product, that is

〈Lx, y〉∗ = −〈x, Ly〉∗ for any x, y ∈ R3 and 〈x,B(x, x)〉∗ = 0. Note that the

test model in (13), (14) is an example of the special zero-memory level model

in (3). Furthermore, we have the following general properties.

Proposition 1. Consider the 3× 3 stochastic test system in (13), (14), and

assume d1, d2 > 0. We have the following properties:

(a) Set the noise Σ to zero. The origin of the system is globally asymptot-

ically stable.

(b) The system is controllable provided ω 6= 0.

(c) For σ2
1/d1 = σ2

2/d2 = E, the system has a Gaussian invariant measure

proportional to exp(−E−1‖x‖2∗).
(d) Consider the two stochastic systems in (13), (14) with ω replaced by

−ω, then these two systems have the same temporal statistics for u in

statistical equilibrium.
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Proof. The proof of (a) is straightforward, noting that V (u, v1, v2) =
1
2
u2 +

1
4
(v21 + v22) is a Lyapunov function and the origin is the only singular point.

Now we show (b). Let F be the vector field associated with (13) and let

g1 = (0, 1, 0)⊤, g2 = (0, 0, 1)⊤. We construct a matrix

M = (g1, g2, [F , g1], [F , g2])⊤,

which can be given explicitly as

M =

















0 1 0

0 0 1

−ω −d1 −A1u+ β

0 A1u− β −d2

















.

If we show that M has a full rank, the system is controllable. Let Mj be a

matrix M with deleted j-th row. Then

det(M1) = −ω(A1u−β); det(M2) = −d2ω; det(M3) = 0; det(M4) = −ω.

Since ω is a common factor of the above determinants the fact (b) of the

proposition follows.

Statement (c) is a direct calculation following Section 10.2.2 of [24].

Statement (d) is a consequence of the fact that there is symmetry in the

system; if (u, v1, v2) solves (13), (14) with a given ω, then (u,−v1,−v2) solves
this system with −ω since −σdW ∼= σdW in probability law.

The conditions in (a) and (b) guarantee that the model under considera-

tion is geometrically ergodic [33, 17] with a smooth invariant measure. The

condition in (d) has the implication that partial observations of u alone can-

not uniquely determine the coefficient of the model (see [16] for even simpler
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linear systems with this property). One of the numerical experiments below

illustrates this phenomena.

Following [20], we consider numerical experiments with the following pa-

rameters: β = 1, A1 = 1, and E = 1 =
σ2

1

2d1
+

σ2

2

2d2
. In particular, we choose

σ2
1 = σ2

2 = 1/2, d1 = d2 = 1/2 such that E =
σ2

j

dj
= 1. According to property

(c) of Proposition 1 the invariant measure is Gaussian for these parameters.

In the rest of the paper we will be referring to the following regimes related to

different values of the topography amplitude H , corresponding to maximum

height of the topography max |h|:

Regime 1: H =
√
2/4, corresponds to max |h| = 0.5,

Regime 2: H = 2
√
2/4, corresponds to max |h| = 1,

Regime 3: H = 3
√
2/4, corresponds to max |h| = 1.5,

Regime 4: H = 8
√
2/4, corresponds to max |h| = 4.

In the numerical experiments below, we consider the following observation

model,

vm = um + σo
m, σo

m ∼ N (0, ro), (15)

where um ≡ u(tm) are solutions of (13) with L,Σ defined as in (14) and

ro = 10%Var(u). Unless stated we set the observation time interval, ∆t =

tm+1 − tm = 0.01, number of lag, L = 8, in the secondary filter (see Step 8

in the Appendix), and the ensemble size K = 2n, where n = 8 denotes the

dimension of the augmented state space, concatenating the physical vari-

ables x ∈ R3 and the parameters β, ω, A1, d1, d2. The equilibrium statistics,
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including the mean, covariance, skewness, kurtosis, autocorrelation function,

correlation time, and the marginal density for u are numerically compared

with time series of length 300, 000 with resolution ∆t = 0.01. On the other

hand, the parameter estimation is inferring from observations defined in (15)

for only up to 20, 000 time units.

4.1.1. Statistical estimation of the three-dimensional test model

In Figure 10 we show the estimated marginal density and autocorrelation

function for various regimes (or topographic height). Notice that as the

topographic height H increases, the estimates become more accurate. We

suspect that the inaccuracy with smaller H is due to stiffness of matrix

L−D; in Regime 1, the eigenvalues of L−D are −0.04,−0.47±1.05i. While

in Regime 2, the eigenvalues of L −D are −0.15,−0.42 ± 1.20i. In Table 3

we report the other statistical estimates compared to the truth, confirming

the improved statistical estimates as H increases. Notice that in Regime 3

the parameter and state estimates for ω, v1, v2 are reflected about zero (see

Figures 11-12) while the fitting on the observed data, u, is nearly identical.

This is a consequence of the non-uniqueness of the parameters as described

by statement (d) of Proposition 1. In Figure 13, notice also the accuracy of

the stochastic parameter estimates for σ1, σ2, r
o, even when the estimates for

ω, v1, v2 differs by a negative sign from the true parameters.

4.1.2. Sensitivity of statistical estimates to observation time interval

In this section, we study the sensitivity of the statistical estimates when

the observation time interval (or sampling time), ∆t, varies. Here we compare

three cases ∆t = 0.01, 0.1, 0.25, while fixing the model integration time step
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δt = 0.01. In previous simulations, we only considered a dense observation

time interval with ∆t = δt = 0.01.

In Figures 14 and 15 we show the parameter estimates (circles) for simu-

lation with ∆t = 0.01, 0.1, 0.25 for Regimes 1 and 3, respectively. The values

of the parameters of the true model are also provided (dotted line). We note

that in Regime 1 the estimates are within 20% of the errors (see the “error-

bar” plot) only for ∆t = 0.1. In Regime 3, on the other hand, the parameter

estimates are all within 20% of the errors for ∆t = 0.01, 0.1, 0.25 and we

expect insensitive statistical estimates in this regime. This suggests that, for

Regime 1, the selection of an appropriate sampling time (not too dense nor

too sparse) is essential in order to obtain accurate statistical estimates.

In Figure 16 we compare the marginal density and autocorrelation for

Regimes 1 and 3 for ∆t = 0.1, 0.25. In Tables 4 and 5, we also compare the

marginal statistics for u. From this posterior verification we confirm, what

we already observed before, that the accuracy of the statistical prediction in

Regime 1 depends on the sampling time. This result is consistent with those

reported in [8, 34] in the context of parameterizing multiscale dynamical

systems; and in [16] in the context of parameterizing linear systems. One

possible explanation for the sensitivity to sampling time in Regime 1 is due

to the stiffness of the resulting dynamical system. For Regime 3, on the other

hand, the statistical estimates are not sensitive at all to the sampling times

studied here (∆t = 0.01, 0.1, 0.25).

We also point out that the estimates in the numerically stiff Regime 1

are very sensitive to model errors. Numerically we find this sensitivity when

model errors are introduced through sparse integration time step, equals
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to the sampling time step, δt = ∆t. In our numerical experiment with

δt = ∆t = 0.25, the parameter estimation scheme produces a completely

inaccurate estimate for σ2 = 12.4, while the true parameter is
√
0.5 (detailed

results are omitted).

4.2. Parameter estimation of low order stochastic dynamics with partially

observed 57-mode topographic stress model solutions

In this section, we fit noisy solutions u of the topographic stress model

in (9), obtained from Galerkin projection of ψ in (8) with 0 < |k| ≤ Λ =

17 and a single-layer topography h in (10), resulting in a total of 57-mode

model [20, 28], to physics constrained reduced stochastic models. Here, the

true signals are solutions of nonlinear ordinary differential equations in (9),

describing complex interactions of the zonal mean flow with two topographic

Rossby modes and 54 Rossby modes. Notice that this regression problem

is much more difficult than that in the test model in Section 4.1 because

we introduce model errors whenever we use reduced stochastic models to

approximate the marginal statistical estimates of the true 57-mode model.

The difficulty here is because the 57-mode model produces significantly non-

Gaussian statistics with blocked and unblocked regimes of the zonal jet due to

stochastic backscatter from the Rossby waves even though the perfect system

exactly conserves energy. Then it becomes unclear as how to choose an

appropriate reduced stochastic model that will produce reasonable statistical

estimates. Below, we will demonstrate that a model with zero memory level

as in (3) is not sufficient for capturing any of these crucial non-Gaussian

behavior. Subsequently, we find that models with one memory level produce

reasonably good estimates with similar statistical effects.
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4.2.1. The zero memory level model

The test model (12) for interactions of zonal jet with two topographic

Rossby waves considered in Section 4.1 was derived based on a specific choice

of the coefficients of function ψ(x, t) given in (11). Motivated by extensive

numerical experiments, we derive a slightly modified zero memory level model

by considering (10) with the coefficients of ψ(x, t) given here by

ψ1(t) = a(t)− ib(t) and ψ−1 = ψ∗
1 . (16)

Inserting the ansatz in (10) and (16) to (9) and approximating the interac-

tion with the remaining 54 truncated Rossby modes with a two-dimensional

Ornstein-Uhlenbeck process, we obtain a reduced SDE model (13) with x =

(u, a, b)⊤, B(x, x) = (0, A1ub,−A1ua)
⊤,D = diag(0, d1, d2)

⊤, Ẇ = (Ẇ1, Ẇ2)
⊤,

L =











0 −H −H
H
2

0 −β
H
2

β 0











, Σ =











0 0

σ1 0

0 σ2











. (17)

We refer to this three-dimensional system as the zero memory level model

to be consistent with the definition in (3).

We fit noisy observations of um, defined in (15), where um ≡ u(tm) are

solutions of 57-mode Galerkin truncation of the barotropic model in (7), re-

solved at every ∆t = tm+1−tm = 0.25 and ro = 10%Var(u). In our parameter

estimation scheme, we set the integration time step to be δt = ∆t = 0.25. In

our numerical experiments, we found worse estimates with smaller δt. From

the numerical simulations in Regime 3, we find a very accurate estimate on

the autocorrelation function despite inaccurate estimate on the marginal dis-

tribution of u (see Figure 17). Here, the zero level memory model in (13),
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(17) produces nearly Gaussian equilibrium statistics and fails to capture the

skewness (and non-Gaussian feature of the true model) completely (see Fig-

ure 17 and Table 6). In Figures 18-20, we see that the corresponding observed

variable, u, fits the true signal and the parameter estimates converge to some

values. We find this result to be robust even with larger observation noise

variance ro = 25%V ar(u).

The failure in estimating the skewness suggests that the zero memory

level model in (13), (17) may have very different dynamics compared to the

true model. We confirm this by comparing the joint pdf’s of (u, a) and (u, b)

from the truth and the zero memory level models (see Figure 21). From our

numerical simulations we find that in Regimes 1 and 2, the model in (13),

(17) does not produce reasonable statistical estimates either (results are not

shown).

The main message here is that Ornstein-Uhlenbeck process is not a good

model for the interactions with the remaining 54 Rossby modes. Second,

accurate estimation of equilibrium marginal statistics is a necessary but not

a sufficient condition for good statistical predictive skill. This is because

there are non-unique models with very different dynamics that can produce

identical equilibrium marginal statistics. This nonuniqueness even occurs in

the setting of partially observed linear models [16]. Thus, we will consider

one level memory models in the remaining of this paper.

4.2.2. The one memory level model

Next, we consider a slight modification of the model in (17) with one level

of memory terms given by linear SDEs for residual terms r1, r2, conditional

to u, a, b. Mathematically, this modification yields a five-dimensional SDEs
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in (13) with x = (u, a, b, r1, r2)
⊤, B(x, x) = (0, A1ub,−A1ua, 0, 0)

⊤, D =

diag(0, d1, d2, d3, d4)
⊤, Ẇ = (Ẇ1, Ẇ2)

⊤,

L =























0 −H −H 0 0

H
2

0 −β 1 0

H
2

β 0 0 1

0 −1 0 0 0

0 0 −1 0 0























, Σ =























0 0

0 0

0 0

σ1 0

0 σ2























. (18)

We refer to this five-dimensional system as the one memory level model

to be consistent with (1). Notice that there are non-unique choices of para-

metric form for the class of models with one memory level, e.g., one can

add nonzero terms on components (4,5) and (5,4) in L in (18) that preserves

the skew symmetric condition so the model remains stable. We have tried

many parametric forms and found that they do not produce reasonable sta-

tistical estimates as well as the parametric form in (18) and an alternative

one memory level model that we will discuss in next section. For example,

in a numerical experiment with a mildest violation of the skew symmetric

condition through L4,5 6= −L5,4 6= 0, we find that the regression model di-

verges in finite time; this is consistent with the physics constrained condition

advocated in [16, 17].

We find that the one memory level model in (13), (18) produces reason-

able statistical estimates for the autocorrelation function and other statistics,

except for the kurtosis (see Figure 22 and Table 7 for detail) in Regime 2.

Notice also that this one memory level model produces comparable (not per-

fect) statistical behavior of the 57-mode; compare the joint pdf’s of (u, a)

and (u, b) in Figure 23. While the results in Regime 2 are very encouraging
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in the presence of model errors, such accurate statistical estimates are not

achieved in the other regimes with different topographic heights, H , using

the regression model in (13) with parametric form (18).

4.2.3. An alternative one memory level model with rotated topographic Rossby

modes

Here, we consider an alternative parametric form for one memory level

model by applying a 45◦ rotation on (a, b) to new coordinate (v1, v2) in (18).

This 45◦ rotation results in a parametric form that is similar to the test

model in Section 4.1. In particular, we obtain a system of five-dimensional

one memory level model in the form of (13) with x = (u, v2, v1, r1, r2)
⊤,

B(x, x) = (0,−A1uv1, A1uv2)
⊤, D = diag(0, d1, d2, d3, d4)

⊤, Ẇ = (Ẇ1, Ẇ2)
⊤,

L =























0 −2ω 0 0 0

ω 0 β 1 0

0 −β 0 0 1

0 −1 0 0 0

0 0 −1 0 0























, Σ =























0 0

0 0

0 0

σ1 0

0 σ2























, (19)

where ω ≡ H/
√
2.

This model produces reasonable statistical estimates (see Figure 24 and

Table 8 for detail) in the numerically stiff Regime 1 with H =
√
2/4. Fur-

thermore, we also see reasonable joint pdf’s estimates, especially for (u, v2)

(see Figure 25). The statistical accuracy in Regime 1 here is not obtainable

with the zero memory level model in (13), (17) nor the previous one memory

level model in (13), (18).

In comparison with the one memory level model in (13), (18), the one

memory level model with parametric form (19) improves the estimates for the
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mean and kurtosis while degrades the estimates for the variance, skewness,

and correlation times, as well as the joint pdf’s especially for (u, v1) (see

Table 9, Figures 26 and 27).

We should also point out that the estimated stochastic noise amplitude,

σ2
2, can be negative when the parametric form in (19) is used in Regime 1.

We suspect that such non-physical parameter estimates may be due to an in-

appropriate choice of parametric form within the class of physics constrained

models. We should point out that our algorithm is designed to avoid such

nonphysical estimates by setting σ2
j ≥ 0 (see Step 8 in the Appendix). In

our numerical results in Regime 1 that was shown in Figure 24 and Table 8,

the corresponding estimated stochastic parameters σ2 ≈ 0 (see Figure 28).

This suggests that with the parametric form in (19), the physics constrained

model has a complete dissipative residual term, r2. In this system of SDE’s

with stochastic forcing that appears only through r1 dynamics, the control-

lability condition is indeed satisfied except for a parameter set of measure

zero.

5. Summary

The objective of this paper was to solve the following problem, which often

appears in various scientific disciplines that involve predictability issue:

Given partial observations of complex dynamical systems, develop low dimen-

sional, data driven dynamical models for statistical prediction!

Our approach is to break this broad issue into two problems:

(i) How to choose appropriate low-dimensional stochastic models that re-

spect certain physical causality with accurate statistical prediction?
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(ii) Once we have chosen a class of regression models, how to estimate the

parameters in these models?

In this paper, our main contribution was to address problem (ii) with a

new algorithm for estimating the parameters in the regression models, given

only partial observations of the underlying dynamical systems. In particular,

a new estimation scheme was developed based on Belanger’s noise estimation

algorithm [18], blended with finite ensemble Kalman filter. This scheme is

computationally efficient when the dimension of the observation variables is

small [22]. This new algorithm was designed to avoid the numerical blow-

up that can occur with the existing EKF based estimation scheme when

observations are sparse.

We also applied the newly developed parameter estimation scheme on

a class of nonlinear models for topographic mean flow interaction. In the

context with no model errors (Section 4.1), we found that the estimation

scheme is indeed quite robust. We also found that when the underlying

dynamical systems of interest are numerically stiff, we need to sample the

observations at an appropriate time (see Section 4.1.2) for accurate statistical

estimation. This result is consistent with those in [8, 34] in the context of

parameterizing multiscale dynamical systems and in [16] in the context of

parameterizing linear systems.

In the presence of model errors, choosing an appropriate low-dimensional

models becomes a nontrivial task. In our work, we chose the regression

models, relying mostly on the mathematical criteria for physics constrained

multi-level regression models developed in [17] to avoid non-physical blow-

up solutions. In our numerical simulations involving non-Gaussian statistical
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behavior resulting from nonlinear interactions of a large scale zonal jet with

56 Rossby modes, we found that the zero level memory model is not sufficient

to capture these non-Gaussian statistics (see Section 4.2.1). Our numerical

results suggested that we need at least one memory level in the regression

models to produce reasonable statistically estimates.

While the numerical results are encouraging, we need more systematic

guidelines for choosing the most appropriate parametric form within the class

of physics constrained multi-level models. Notice that the results in Section

4.2 were based on exhaustive numerical trials of non-unique parametric forms

of regression models with zero and one memory levels. We plan to study this

issue in the near future. Finally, while the algorithm that we introduced here

is quite robust and useful, ideally one would want to estimate the distribution

of the parameters. In that situation, it will be important to consider efficient

Markov Chain Monte Carlo (MCMC) methods for parameter estimation.
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Appendix: Stochastic parameter estimation blending Belanger’s

method with Extended Kalman Filter

This Appendix provides a detailed review of application of Belanger’s

method [18] with the classical EKF [23]. Consider the following filtering
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problem,

xk = f(xk−1) + Γǫk, ǫk ∼ N (0, Q),

yk = Hxk + ǫok, ǫok ∼ N (0, R),

where xk = (uk, θk)
⊤ consists of the augmented state variables, xk, and

parameters, θk. In our case, we assume a persistent model for the parameters,

that is θk+1 = θk. We attempt to estimate xk as well as Q and R, on-the-fly.

To solve this problem, define

Q =

p
∑

i=1

Qiai,

R =

p
∑

i=1

Riai.

and our aim is to estimate ai, i = 1, . . . , p.

Start with time index k = 1, we provide prior statistical estimates,

x−k , P
−
k = I, for the primary filter and ~ak = (a1,k, . . . , ap,k), and Θk = Ip,

for the secondary filter. The primary filter for estimating xk is described in

Steps 1 and 2, while the secondary filter for estimating ~ak is described in

Steps 3-8.

1. Apply the Kalman filter,

vk = yk −Hx−k

K̃k = P−
k H

⊤(HP−
k H

⊤ +

p
∑

i=1

Riai,k)
−1

P+
k = (I − K̃kH)P−

k

x+k = x−k + K̃kvk.
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2. Define linear tangent model, Ak ≡ ∇f(x+k ) and compute x−k+1 and

P−
k+1 = AkP

+
k A

⊤
k +

p
∑

i=1

Qiai,k

3. Define

Kk = AkK̃k,

φk = Ak −KkH.

4. For each i, construct observation operator for vkv
⊤
k , starting with Si,1,0 =

0, let

Mi,k,0 = Si,k,0H
⊤,

Fi,k,0 = HMi,k,0 +Ri,

Si,k+1,0 = φkSi,k,0φ
⊤
k + ΓQiΓ

⊤ +KkRiK
⊤
k .

5. For each i, construct observation operator for vkv
⊤
k−ℓ, where k > 1. Set

Mi,k,ℓ = φk−1Mi,k−1,ℓ−1 −Kk−1Riδℓ,1

Fi,k,ℓ = HMi,k,ℓ

6. Approximate E(vkv
⊤
k ) with

E(vkv
⊤
k ) =

p
∑

i=1

Fi,k,0ai,k.

Suppose if vk = (v1k, . . . , v
m
k )

⊤ is m-dimensional. Define

σk,ℓ ≡ vec(vkv
⊤
k−ℓ) = (v1kv

1
k−ℓ, v

2
kv

1
k−ℓ, . . . , v

m
k v

1
k−ℓ,

. . . , v1kv
m
k−ℓ, v

2
kv

m
k−ℓ, . . . , v

m
k v

m
k−ℓ)

⊤.
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7. Consider the observation model,

σk,ℓ = Fk,ℓ~a+ ηk,ℓ, ηk,ℓ ∼ N (0,Wk,ℓ),

where in our case, σk,ℓ = vec(vkv
⊤
k−ℓ) ∈ R+ , Fk,ℓ = (F1,k,ℓ, . . . , Fp,k,ℓ),

~a = (a1, a2, . . . , ap)
⊤ and for each pair of indices {k, ℓ}, construct

Wk,ℓ = E(vkv
⊤
k )E(vk−ℓv

⊤
k−ℓ) + E(vkv

⊤
k )

2δℓ,0.

Note thatW is constructed, assuming Gaussian and independent noises,

ηk,ℓ. Components of matrix W in (20) can be rewritten as follows,

W α,β,γ,δ
k,l = E(vαk v

γ
k)E(v

β
k−ℓv

δ
k−ℓ) + E(vαk v

δ
k)E(v

β
k v

γ
k)δℓ,0.

8. Define a counter

t ≡ t(k, ℓ) = (k − 1)(L+ 1) + ℓ,

and perform correction for ~ak in sequential fashion for t = 1, . . . , L+1.

Below, replace subscript-(k, ℓ) with t. Now, perform sequential update

for a and Θ, to obtain

~ak+1 = ãL+1,

Θk+1 = RL+1,

where

Rt+1 = Rt − RtF⊤
t (Wt + FtRtF⊤

t )
−1FtRt,

ãt+1 = ãt +Rt+1F⊤
t W

−1
t (σt − Ftãt),

are computed with initial conditions,

ã1 = ~ak,

R1 = Θk.
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To ensure positive definite covariance estimates for Q and R, we set

~ak+1 = max(~ak+1, 0). (20)

Now we can repeat Step 1 above for the new assimilation time.
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variable mean variance correlation time

u1 -0.0004 - 0.0073i 0.0901 13.6284 (6.3701)

u2 -0.0051 - 0.0136i 0.0994 3.6426 (3.4758)

r -0.0025 - 0.0039i 0.1066 0.2793 (0.2734)

Table 1: Long time averaged statistics
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statistics truth EKF (u1, u2) EnKF (u1, u2) EnKF (u1)

Re{Tu1
} 7.0940 7.0845 6.9049 7.9594

Im{Tu1
} 7.0857 7.0752 7.0799 7.9374

Re{Tu2
} 3.4624 3.4298 3.6103 3.6103

Re{Tu2
} 3.4966 3.4629 3.3945 3.3945

V ar(u1) 0.0957 0.0955 0.0955 0.0888

V ar(u2) 0.0980 0.0918 0.0994 0.0994

Table 2: Correlation time, T , and variance estimates for u1 and u2 from EKF and EnKF

based estimation schemes. In brackets we indicate the observed variables in our estimation

simulations.
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Regime 1: H =
√
2/4.

statistics truth estimate

Mean -0.0045 0.0085

Variance 0.2509 0.5176

Skewness 0.0027 -0.0460

Kurtosis 3.0277 2.9796

Corr time 17.5401 24.7415

Regime 2: H = 2
√
2/4

statistics truth estimate

Mean 0.0041 0.0085

Variance 0.2515 0.2434

Skewness 0.0060 0.0617

Kurtosis 2.971 3.0214

Corr time 5.6839 5.0854

Regime 3: H = 3
√
2/4.

statistics truth estimate

Mean 0.0032 -0.010300

Variance 0.2540 0.2828

Skewness 0.0060 -0.0440

Kurtosis 2.9878 2.9904

Corr time 2.4503 2.5290

Regime 4: H = 8
√
2/4

statistics truth estimate

Mean 0.0022 -0.0011

Variance 0.2947 0.3080

Skewness 0.0268 0.0047

Kurtosis 2.9913 2.9991

Corr time 0.2803 0.2605

Table 3: Marginal Statistics for u of the three-dimensional test model (13), (14) for ob-

servation (sampling) time interval ∆t = 0.01.
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statistics truth estimate (∆t = 0.1) estimate (∆t = 0.25)

Mean -0.0045 -0.0433 -0.0003

Variance 0.2509 0.2759 0.3627

Skewness 0.0027 -0.1448 0.0325

Kurtosis 3.0277 2.8622 2.9388

Corr time 17.5401 19.0139 20.6745

Table 4: Marginal statistics for u of the three-dimensional test model (13), (14) in Regime

1 for observation time step ∆t = 0.1, 0.25.
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statistics truth estimate (∆t = 0.1) estimate (∆t = 0.25)

Mean 0.0032 0.0104 0.0116

Variance 0.2540 0.2809 0.2621

Skewness 0.0060 0.0876 0.0758

Kurtosis 2.9878 3.0077 3.0074

Corr time 2.4503 2.6881 2.2359

Table 5: Marginal statistics for u of the three-dimensional test model (13), (14) in Regime

3 for observation time step ∆t = 0.1, 0.25.
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statistics truth estimate

Mean -0.3889 -0.2717

Variance 0.3586 0.3514

Skewness 0.5821 -0.0179

Kurtosis 2.8483 3.0375

Corr time 2.5068 3.5166

Table 6: Statistics for the zero memory level model (13), (17) in Regime 3.
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statistics truth estimate

Mean -0.3860 -0.3059

Variance 0.3515 0.3529

Skewness 0.6128 0.6731

Kurtosis 2.8817 4.5402

Corr time 5.5442 5.0872

Table 7: Statistics for the one memory level model (13), (18) in Regime 2.

43



statistics truth estimate

Mean -0.3818 -0.2985

Variance 0.3407 0.2950

Skewness 0.6098 0.5877

Kurtosis 2.8968 3.4942

Corr time 16.9594 14.7060

Table 8: Statistics for the one memory level model (13), (19) in Regime 1.
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statistics truth estimate

Mean -0.3860 -0.3437

Variance 0.3515 0.3138

Skewness 0.6128 0.4853

Kurtosis 2.8817 3.3205

Corr time 5.5442 4.3553

Table 9: Statistics for the one memory level model (13), (19) in Regime 2.
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Figure 1: Marginal densities for the real and imaginary part of u1 and u2 from EKF based

parameter estimation scheme with noisy observations of u1 and u2. Truth (dashes) and

estimates (solid); the two curves are on top of each other.
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Figure 2: Autocorrelation functions for the real and imaginary part of u1 and u2 from

EKF based parameter estimation scheme with noisy observations of u1 and u2. Truth

(dashes) and estimates (solid); the two curves are on top of each other.
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Figure 3: State estimates from EKF based parameter estimation scheme with noisy ob-

servations of u1 and u2. Truth (black dashes) and estimates (grey).
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Figure 4: Deterministic parameter estimates (components of A and c1, c2) from EKF based

parameter estimation scheme with noisy observations of u1 and u2. Truth (black dashes)

and estimates (grey).
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Figure 5: Stochastic parameter estimates from EKF based parameter estimation scheme

with noisy observations of u1 and u2. Truth (black dashes) and estimates (grey).

50



0 100 200 300 400 500 600 700
0.997

0.998

0.999

1

1.001
Abs[max eigenvalue]

0 100 200 300 400 500 600 700
−2

−1

0

1
Re[u1]

0 100 200 300 400 500 600 700
−10

−5

0

5
Re[u2]

Figure 6: The evolution of the largest magnitude of the eigenvalue of the linear tangent

model used in the EKF based parameter scheme from observing only u1 (top panel). In

the last two panels, we plot the state estimates of the real part of u1 and u2 as functions of

the assimilation step. The plot shows the first 728 iterations before the scheme diverges.
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Figure 7: Marginal densities for the real and imaginary part of u1 and u2 from EnKF

based parameter estimation scheme with noisy observations of u1 and u2. Truth (dashes)

and estimates (solid).
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Figure 8: Autocorrelation functions for the real and imaginary part of u1 and u2 from

EKF based parameter estimation scheme with noisy observations of u1 and u2. Truth

(dashes) and estimates (solid).
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Figure 9: Marginal densities for the real and imaginary part of u1 from EnKF based

parameter estimation scheme with noisy observations of u1. Truth (dashes) and estimates

(solid).
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Figure 10: Marginal density (or histogram) and autocorrelation function of the three-

dimensional test model (13), (14) in all four regimes for observation (sampling) time

interval ∆t = 0.01.
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Figure 11: State estimates of the three-dimensional test model (13), (14) in Regime 3.
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Figure 12: Deterministic parameter estimates of the three-dimensional test model (13),

(14) in Regime 3.
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Figure 13: Stochastic parameter estimates of the three-dimensional test model (13), (14)

in Regime 3.
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Figure 14: Parameter estimates of the three-dimensional test model (13), (14) as functions

of observation time step, ∆t in Regime 1. The true parameters are plotted in dashes with

20% of “error-bar” plot. The estimates are denoted in circles.
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Figure 15: Parameter estimates of the three-dimensional test model (13), (14) as functions

of observation time step, ∆t in Regime 3. The true parameters are plotted in dashes with

20% of “error-bar” plot. The estimates are denoted in circles.
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Figure 16: Density (or histogram) and autocorrelation function of the three-dimensional

test model (13), (14) in Regimes 1 and 3 for observation (sampling) time intervals ∆t =

0.1, 0.25.
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Figure 17: Marginal density (or histogram) and autocorrelation function of the solutions

for the zero memory level model in (13), (17) in Regime 3.
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Figure 18: State estimates for the zero memory level model in (13), (17) in Regime 3.
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Figure 19: Deterministic parameter estimates for the zero memory level model in (13),

(17) in Regime 3.
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Figure 20: Stochastic parameter estimates for the zero memory level model in (13), (17)

in Regime 3.
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Figure 21: Contour plot of the joint pdf of the zero memory level model in (13), (17) in

Regime 3.
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Figure 22: Marginal density (or histogram) and autocorrelation function of the solutions

for the one memory level model (13), (18) in Regime 2.
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Figure 23: Contour plot of the joint pdf of the one memory level model in (13), (18) in

Regime 2.
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Figure 24: Marginal density (or histogram) and autocorrelation function of the solutions

for the one memory level model (13), (19) in Regime 1.
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Figure 25: Contour plot of the joint pdf of the one memory level model in (13), (19) in

Regime 1.
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Figure 26: Marginal density (or histogram) and autocorrelation function of the solutions

for the one memory level model (13), (19) in Regime 2.

71



u

v 1

true (u,v1)

−2 −1 0 1 2
−2

−1

0

1

2

u

v 2

true (u,v2)

−2 −1 0 1 2
−2

−1

0

1

2

u

v 1

estimate (u,v1)

−2 −1 0 1 2
−2

−1

0

1

2

u

v 2

estimate (u,v2)

−2 −1 0 1 2
−2

−1

0

1

2

Figure 27: Contour plot of the joint pdf of the one memory level model in (13), (19) in

Regime 2.
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Figure 28: Stochastic parameter estimates for the one memory level model (13), (19) in

Regime 1.
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