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Abstract. Superparameterization is a fast numerical algorithm to mitigate implicit scale sep-
aration of dynamical systems with large-scale, slowly varying ‘mean’, and smaller scale, rapidly
fluctuating ‘eddy’ term. The main idea of superparameterization is to embed parallel highly resolved
simulations of small scale eddies on each grid cell of coarsely resolved large scale dynamics. In this
paper, we study the effect of model errors in using superparameterization for filtering multiscale
turbulent dynamical systems. In particular, we use a simple test model, designed to mimic typical
multiscale turbulent dynamics with small-scale intermittencies without local statistical equilibriation
conditional to the large scale mean dynamics, and, simultaneously, force the large scale dynamics
through eddy flux terms. In this paper, we consider the Fourier domain Kalman filter for filtering
regularly spaced sparse observations of the large scale mean variables. We find high filtering and
statistical prediction skill with superparameterization (identical to the skill with perfect model),
beyond conventional approaches such as the “bare-truncation model” that ignores completely the
eddy-fluxes and the “equilibrium closure” model that crudely approximates the eddy fluxes with clas-
sical averaging theory. We show that this high filtering skill is robust even for very sparse observation
networks and turbulent signals with a very steep, -6, spectrum. This is a counter-example to naive
thinking that the small-scale processes are not so important in multiscale turbulent dynamics with
steep energy spectrum. We find that the high filtering skill with superparameterization is robust for
small enough scale gap, provided that the filter prior model satisfies the classical linear controllability
condition. We will demonstrate a spectacular failure of filtering deterministically forced true signals
with the exactly perfect model that does not satisfy controllability and a dramatic improvement when
the controllability condition is restored with additional stochastic forcings. This result reconfirms
and justifies the counter-intuitive viewpoint that judicious model errors (or noises) can help filtering
turbulent signals.
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1. Introduction. An important scientific problem in applied sciences and engi-
neering is to model signals from nature with multiscale features. In many applications
ranging from modeling polymeric fluids to weather and climate dynamics, we are in-
terested in predicting the large scale ‘mean’ dynamics which is typically observed on
time scales longer than that of the unobserved small scale ’eddy’ component. The
practical difficulty in multiscale modeling is that we typically can’t resolve the ed-
dies and thus model errors through various parameterizations are unavoidable on the
mean macroscopic level. For example, in the climate modeling, the planetary waves
of interest have spatial structure on the order of 1000 to 10,000 km with weekly or
monthly time scale and in the long run the behavior of these waves depends on the
energy inverse cascade from the small scale processes such as the dry and moist con-
vection, clouds that occur on a spatial structure between 100 m to 100 km and time
scales between hours to days. Practically, it is typically computationally expensive to
resolve these small scale processes even if we understood their dynamics and at the
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same time we can’t completely ignore them.

Various approaches were introduced to mitigate such issues, including superpa-
rameterization that has been extensively used in simulating combustion problems [16]
and cloud resolving convection parameterizations [6, 5, 30] with some success. The
main idea of superparameterization is to embed parallel highly resolved simulations
of small scale eddies on each grid cell of coarsely resolved large scale dynamics. Typ-
ically, the eddies are resolved on a horizontal periodic domain and they only interact
with each other through the large scale mean dynamics. The goal of this paper is to
assess the effect of model errors in using superparameterization for data assimilation
in a transparent fashion. As in the practical setting, we focus on filtering (or assim-
ilating) sparse observations of the large scale mean variables and no observations of
the small scale eddies.

To achieve this goal, we use a test model for superparameterization that was
first introduced in [23]; this model is a version of the Gaussian closure models for
turbulence [21, 7]. The test model is designed to mimic typical multiscale turbu-
lent dynamics with small-scale intermittencies without local statistical equilibriation
conditional to the mean dynamics, and, simultaneously, forces the mean equations
through nonlinear eddy flux-like terms. Here, we called it flux-like term because the
average is defined over the coordinate of the embedded domain in addition to the
standard statistical average. In the remainder of the paper, we will just refer it as the
eddy flux term. For analytical tractability, we set the mean dynamics, conditional
to the nonlinear eddy flux terms, to solve a linear PDE; in this fashion, the mean
variables are nonlinear processes. Practically, the traditional superparameterization
introduces various model errors depending on the implementation details [6, 5, 20, 30];
in this paper, we are interested to assess the effect of model errors due to spatial dis-
cretization for data assimilation. This is realized by defining the test model to embed
small scale dynamics for the eddies on a parallel infinite domain and by defining the
superparameterization as a numerical scheme that replaces this infinite domain with
an L-periodic domain with a finite scale gap, L−1, [23]. Essentially, the eddies in the
our test model do not have direct interaction between each other, and therefore, we do
not assess model errors due to elimination of nonlocal eddy interactions. A detailed
study of statistical prediction skill for this type of model errors is fully reported in [7]
for complex dispersive turbulent waves.

Here, we implement the recently developed Fourier domain Kalman filtering strat-
egy for regularly spaced sparse observations [9, 24]. We choose this strategy rather
than the standard physical space filter to avoid spurious nonlocal correlations when
the filter covariance matrix is suboptimally estimated [14, 11], in addition to the fact
that the test model mean dynamics, conditional to the eddy flux forcing, is linear
with explicit solutions in discrete Fourier coordinate. In this fashion, we assimilate
nonlinear turbulent signals, technically, with a linear filter driven by nonlinear eddy
flux additive forcings. This strategy is not only numerically beneficial but it also pro-
duces accurate solutions beyond the standard physical space approach as we reported
in various contexts (see [25, 24] and the references therein). We find that filtering
with model errors due to superparameterization with small enough scale gap (large
L) is superior to filtering with model errors due to other approximations such as the
bare truncation model, which completely ignores estimating the small scale eddy flux
terms, and the statistical equilibrium closure model, which applies the classical av-
eraging principle [17, 19, 28] to crudely estimate the eddy flux terms. We will show
that this high filtering skill is robust even for very sparse observation networks and
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turbulent signals with a very steep, -6, spectrum. We will also demonstrate that
the classical linear filtering controllability condition [1, 12] is necessary for accurate
filtering with superparameterization and not sufficient for accurate filtering with the
bare truncation model and equilibrium closure models. We will also show a spectacu-
lar failure of filtering the deterministically forced true signal with the exactly perfect
model that does not satisfy the controllability and a dramatic improvement when
controllability condition is restored with additional stochastic forcings. This result
reconfirms and justifies a counter-intuitive thinking that judicious model errors (or
noises) can sometimes help filtering, as we encountered in many different data assim-
ilation contexts [24]. A detailed outline of the remainder of this paper is presented
next.

The test model for superparameterization is discussed in detailed in Section 2. In
there, we also discuss the related other approximations: the bare-truncation model
and the equilibrium closure model. In Section 3, we discuss superparameterization.
In Section 4, we define our filtering problem and review the basic Fourier domain
Kalman filtering algorithm. In Section 5, we show the numerical results. We end the
paper with a short summary and a brief discussion of future work in Section 6.

2. Test models for superparameterization. Superparameterization is a fast
numerical algorithm to mitigate implicit scale separation of dynamical systems with
large-scale, slowly varying ‘mean’, ū, and smaller scale, rapidly fluctuating ‘eddy’
term, u′ [6, 5, 20]. Here, we describe a relevant test model with two spatial scales,
X, x ∈ R

n, where X = ǫx, and two temporal scales, t, τ , where τ = tǫ−1, with ǫ < 1,
a scale separation parameter [23, 20, 26]. In particular, we decompose a turbulent
field

U = ū(X, t) + u′(X, x, t, τ) ∈ R
s. (2.1)

into its slowly varying mean, ū(X, t), and fluctuation, u′(X, x, t, τ), where ū′ ≡ 0,
similar to a Reynold averaging formulation in turbulence [10, 27, 29]. We model u′

as an unbiased Gaussian random field that is stationary in x for fixed (X, t, τ) with
an eddy flux term represented by an s× s covariance matrix, cov(u′)(X, t, τ) ≡ u′u′.
Given any integrable function f(t, τ) and a fixed ǫ, we define

〈f〉(t) = ǫ

∫ ǫ−1

0

f(t, τ)dτ (2.2)

as the empirical time average of f over the fast time scale.
An in [23], we consider the following scalar (s = 1) multiscale test model:

∂ū

∂t
+ P (∂X)ū = 〈cov(u′)〉(X, t) + Fext(X, t), (2.3)

∂u′

∂τ
+ P ′(ū, ∂x)u

′ = −(−Γ(∂x)u
′ + σ(x)Ẇ (τ)). (2.4)

In (2.3), we will choose P to be a linear constant coefficient differential operator that
represents relevant mean dynamics. In this fashion, the test model exhibits nontrivial
large-scale turbulent dynamics only through the nonlinear covariance eddy flux term,
〈cov(u′)〉, that reflects the turbulent fluctuations from the small-scales, and a large
scale external forcing term, Fext, only when this forcing has a stochastic component.
We consider small-scale dynamics in (2.4) with a constant coefficient differential op-
erator P ′ that depends explicitly on the mean variable ū with varying stability and
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instability features without statistical steady state, mimicking real applications (see
[6, 5, 30] for cloud-resolving convection parameterization). In general, the dynami-
cal equations for the eddies are strongly nonlinear; here, for analytical tractability,
we use Ornstein-Uhlenbeck process with damping operator Γ and white noise forcing
σ(x)Ẇ (x, τ) to model nonlinear interaction between eddies [23]. This test model is
a special example of the Gaussian closure models for turbulent dynamical systems
introduced by the second author in [21]. In particular, we can write (2.4) in Fourier
space as a linear stochastic differential equation

dû′
k

dτ
+ P̃ ′(ū, ik)û′

k = −γkû
′
k + σkẆk, (2.5)

where P̃ ′ is the eigenvalue of the differential operator P ′ associated with eigenfunction
eikx for constant ū, P ′eikx = P̃ ′eikx. Similarly, γk satisfies Γeikx = γke

ikx. Here, the
Fourier coefficient is defined by the following spectral integral [31],

u′(X, x, t, τ) =

∫

Rn

û′
k(X, t, τ)eikxdWk, (2.6)

In (2.5), the stochastic noise term in (2.4) is defined as σ(x)Ẇ (τ) ≡
∫

Rn eikxσkdWk,
and by the definition in (2.6), we have

cov(u′)(X, t, τ) =

∫

Rn

Ck(X, t, τ)dk, (2.7)

where Ck ≡ û′
k(û

′
k)

∗, and subscript ‘*’ denotes complex conjugate. From (2.5), we
deduce a linear deterministic ODE with coefficients depending on ū for the covariance
Ck,

dCk

dτ
= −(P̃ ′

k + (P̃ ′
k)

∗ + γk + γ∗
k)Ck + σkσ

∗
k, (2.8)

Ck(τ = 0) = Ck,0,

where P̃ ′
k ≡ P̃ ′(ū, ik). For fixed ū, the initial value problems in (2.8) have explicit

solutions given by,

Ck(τ) = e−2λkτCk,0 +
σ2
k

2λk
(1 − e−2λkτ ), (2.9)

where

λk =
(P̃ ′

k + (P̃ ′
k)

∗) + (γk + γ∗
k)

2
. (2.10)

Given (2.3)-(2.10), now we discuss the numerical implementation details to finalize
the description of the test model. In particular, given initial conditions ū and Ck,0 at
time t, we numerically integrate (2.3)-(2.4) in the following sequence:

1. Update P̃ ′
k = P̃ ′(ū, ik) in (2.10) and compute the turbulent fluctuation 〈cov(u′)〉

using the spectral integral (2.7) and empirical time average (2.2) with con-
stant ǫ,

〈cov(u′)〉 = ǫ

∫ ǫ−1

0

∫

Rn

Ck(τ) dk dτ

=

∫

Rn

[ σ2
k

2λk
+

ǫ

2λk
(1− e−2λkǫ

−1

)
(

Ck,0 −
σ2
k

2λk

)]

dk (2.11)

Here, we effectively freeze the large scale time t.
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2. Integrate the large-scale PDE in (2.3) with large time step ∆t on a coarsely
resolved period domain. Numerically, we assume that the turbulent fluctua-
tion 〈cov(u′)〉(X, t) is constant over the time interval (t, t +∆t). With such
an approximation, notice that the integration step here involves two discrete
Fourier forward and inverse transforms for ū and 〈cov(u′)〉. Then we repeat
these two steps.

From the implementation steps described above, notice that ū and u′ are resolved on
different domains. Furthermore, we proceed in step 1 above, locally, conditional to ū
at grid point Xj . In this sense, pairwise small scale solutions 〈cov(u′)〉(X, t) obtained
by freezing ū at two distinct locations Xj 6= Xℓ do not interact directly. With this
implementation, we implicitly define the notation ‘−′ as an average over the coordinate
of the embedded domain in additional to the standard statistical average. Essentially,
the test model consists of parallel solutions of highly resolved small scale eddies on an
infinite domain that are locally embedded to coarsely resolved large scale dynamics
on a periodic domain and interact to each other indirectly through the large scale
dynamics. With this setup, we have an unambiguous test model [23, 21] to assess the
potential of recovering the mean dynamics in the presence of model errors due solely
to spatial discretization when superparameterization is used [6, 5, 30].

2.1. Other closure approximations. Notice that in the two-step above, we
never compute the evolution of the fluctuations, u′(τ), since we have explicit solu-
tions for its covariances. In real applications, the smaller-scale dynamics are highly
nonlinear and obtaining 〈cov(u′)〉 is a nontrivial task. In that case, various closure
approximations can be introduced to estimate 〈cov(u′)〉, avoiding resolving u′(τ) in
detail.

A poor man’s approach is to completely ignore the small-scale nonlinear eddy flux
term by setting 〈cov(u′)〉 = 0 in (2.3). We call this approach the bare-truncation

model. In our setup, if the large-scale linear operator P is associated with a dissi-
pative dynamics and the external forcing Fext is deterministic, the bare-truncation
model will produce steady state solutions without any internal feature to develop
turbulence or chaotic dynamics.

The classical averaging theory [17, 19, 28] states that for a clear scale separation,
ǫ → 0, if the conditional invariant measure p∞(u′|ū) exists, we can approximate
the mean dynamics in (2.3) with an effective dynamics by replacing 〈cov(u′)〉 with
an approximate eddy flux (if it exists), obtained by averaging with respect to the
conditional invariant measure p∞(u′|ū). These assumptions are fundamental in the
Heterogeneous Multiscale Methods (HMM) [4], which is a numerical method designed
to estimate p∞(u′|ū) when its explicit expression is not available.

In our setup, these assumptions correspond to restricting λk > 0. In this case,
Ck converges to a statistical equilibrium σ2

k(2λk)
−1 as ǫ → 0 (or as τ = ǫ−1 → ∞). If

Ck converges quickly (or much faster than ǫ−1), then the empirical average in (2.2) is
not too sensitive to initial condition Ck,0 for small ǫ ≪ 1, and we have a statistical

equilibrium closure model given by

∂ū

∂t
+ P (∂X)ū = 〈cov(u′)〉∞(X, t) + Fext(X, t), (2.12)

where

〈cov(u′)〉∞(X, t) ≡ lim
ǫ→0

ǫ

∫ ǫ−1

0

∫

Rn

Ck(X, t, τ) dk dτ =

∫

Rn

σ2
k

2λk
dk. (2.13)
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In nature, the separation of scales may not be satisfied with ǫ ≈ 10−1. Additionally,
for some ū the eddy dynamics have no statistical equilibrium when λk ≤ 0 for some
k. In this situation, the energy spectrum Ck(τ) grows without bound as τ → ∞ and
such dynamics won’t be captured by the statistical equilibrium closure model above.

In our test model, we allow λk to fluctuate between positive and negative depend-
ing on ū to generate small-scale intermittencies without local statistical equilibriation
to nontrivially affect the mean dynamics [23]. This is what we will discuss next.

2.2. Small-scale intermittency. To model intermittency, as in [23], we choose

P̃ ′
k + (P̃ ′

k)
∗

2
= −f(ū)Ak,

where

Ak = Āe−δ|k||k|2 (2.14)

is a decaying factor for high wavenumber and f(ū) is a function that depends on mean
ū. In (2.14), δ = 0.1 and Ā are chosen such that maxk Ak = 1. In [23], they consid-
ered a cubic polynomial f ; in that case, f has no upper bound and the covariance
〈cov(u′)〉 is sensitive to small changes in ū that can lead to numerical instability in
the quadrature; to avoid this problem, the covariance was always truncated below a
maximal value set to 10 and the initial spectrum was chosen to equal the equilibrium
spectrum without large-scale interaction, Ck,0 = σ2

k(2γk)
−1.

Here, we choose quadratic f such that it has an upper bound and hence the
numerical instability in the quadrature is avoided when we proceed to step 1 above
with initial spectrum Ck,0 = σ2

k(2γk)
−1. In this fashion, we avoid the adhoc covariance

truncation adopted in [23]. The choice of equilibrium initial spectrum at each time t
in our implementation is merely for numerical simplicity; in real applications, we may
need to estimate Ck,0 at time t, possibly with a small-scale reinitialization approach
introduced in [8, 13], and this is beyond the scope of this paper. To motivate the
choice of quadratic function for f , consider

λk =
γk + γ∗

k

2
− f(ū)Ak ≥ −α,

where α > 0. Suppose that the damping term γk > 0 and we consider ū ∈ R, then
f : R → (−∞, (γk + α)A−1

k ). When ū is such that

−∞ < f(ū) <
γk
Ak

, (2.15)

the small-scale dynamics (2.8) has statistical equilibrium

lim
τ→∞

Ck(τ) =
σ2
k

2(γk − f(ū)Ak)
.

But, when ū is such that

γk
Ak

< f(ū) ≤ γk + α

Ak
, (2.16)

there is no statistical equilibrium.
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Fig. 2.1. Boundary of unstable modes as a function of u.

In our numerical example in this paper, we choose quadratic

f(ū) = γk + α− ū2, (2.17)

as an alternative to the cubic f in [23]; note that this choice doesn’t change the
underlying physics. This means that for a given ū, the instability occurs on modes
k ∈ [k−, k+], where k± with 0 ≤ k− < k+ solve

γk − f(ū)Ak = 0. (2.18)

For quadratic f in (2.17), the condition (2.16) implies that there is no statistical
equilibrium when

−√
α < ū <

√
α. (2.19)

The instability region, corresponding to no statistical equilibriation, is shown in
Fig. 2.1, for α = 0.4.

2.3. Numerical Simulations. We numerically simulate the test model in (2.3)-
(2.8) with a linear differential operator for large scale dynamics defined by

P (∂X) = A∂3
X − ν∂2

X + c∂X + d, (2.20)

where A = 1 is the dispersion coefficient, c = 1 is the advection coefficient, ν = 10−8 is
the diffusion coefficient, and d = 10−2 is the linear damping coefficient. For the small-
scale dynamics, we choose uniform damping γk = 1 with a -5/3 turbulent spectrum,

σ2
k

2γk
=

E0

(1 + |k|)5/3 , (2.21)

with pre-constantE0 = 0.1. In this sense, the statistical equilibrium for the small-scale
equation when ū is ignored is an energetic turbulent field without scale separation.
We resolve the large-scale dynamics on N = 128 equally spaced grid points on a one-
dimensional (n = 1) 2π-periodic domain while the smaller scale dynamics is resolved
up to wavenumber |k| ≤ Kmax = 1000. We use an adaptive quadrature rule to



8 J. Harlim and A.J. Majda

100 101 102
10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

102

wavenumber

Energy spectrum for deterministic model

 

 

Eℓ

ℓ
−6

Fig. 2.2. Empirically estimated large-scale energy spectrum of the deterministically forced sys-
tem (thick solid) compared to the ℓ−6 spectrum. The mean dynamics has |ℓ| ≤ N/2 = 64 modes
since we only resolve it on N = 128 equally spaced grid points.

integrate (2.11) with a fixed initial condition Ck,0 = E0(1 + |k|)−5/3 for numerical
simplicity as discussed above in Section 2.2. The large-scale dynamics are integrated
following step 2 above with time step ∆t = 0.5. We consider modest scale separation
with ǫ = 0.1, and large-scale external forcings through

Fext = F̄ + Λ(X) · Ẇ (t), (2.22)

where we set F̄ = −0.5.
In our first simulation, we consider a large-scale deterministic forcing by setting

Λ(X) · Ẇ (t) = 0. In Fig. 2.2, we show the empirically estimated large-scale energy
spectrum from numerical solutions of the test model, which is nothing but the tem-
poral variance of the Fourier coefficients. Notice that the energy spectrum is close
to ℓ−6 spectrum for ℓ > 5. In Fig. 2.3, we plot the corresponding solutions of the
deterministic forcing case. Panels (a) and (b) show the snapshots of the solution and
the covariance of the small-solution at time t = 400.1, respectively; panel (c) depicts
ū and 〈cov(u′)〉 at grid point X = 3.0925 as functions of time. Here, the choices of
snapshot time t = 400.1 and grid point X = 3.0925 are arbitrary. Notice that when-
ever ū is within (−√

α,
√
α), which is denoted by the two horizontal dashes on panels

(a) and (c), the nonlinear eddy flux term, 〈cov(u′)〉, is large as expected. These large
excursions in 〈cov(u′)〉 are the intermittent local instabilities described in Section 2.2.

We also consider stochastically forced large scale dynamics through,

Λ(Xj) · Ẇ (t) ≡
∑

|ℓ|≤N

eiℓXj σ̂ℓẆℓ(t), Xj = j2π/N, (2.23)

a spatially correlated noise that is white in time. Here, we choose σ̂ℓ such that the
large scale dynamics in (2.3) without the small scale covariance term, 〈cov(u′)〉, has
an energy spectrum of ℓ−6. For this case, the empirically estimated large-scale energy
spectrum is close to ℓ−3 spectrum for ℓ > 5 (see Fig. 2.4). The corresponding solutions
for this case physically resemble the deterministic forcing case; the only difference is
that the small scale intermittent local instabilities occur at different locations and
times (results not shown).
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Fig. 2.3. Deterministically forced solutions: (a) Snapshots of ū at time t = 400.1; (b) Small-
scale eddy fluxes correspond to ū at time t = 400.1; (c) Timeseries of ū and 〈cov(u′)〉 at X = 3.0925.

In Fig. 2.5, we show the space-time plot of the mean state, ū, and the as-
sociated small-scale intermittent unstable eddy fluxes, 〈cov(u′)〉, that occur when
ū ∈ (−√

α,
√
α). In the remainder of this paper, we refer to these numerical solutions

as the truth.

3. Superparameterization. The main idea of superparameterization is to re-
tain the large-scale dynamics in (2.3), but make various space-time discrete approx-
imations in solving the small-scale dynamics in (2.4) to reduce the computational
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cost. The traditional superparameterization introduces an artificial scale gap, L−1,
and solves the small-scale dynamical equations in (2.4) locally on a periodic domain
[6, 5, 30]. Such an approximation introduces two types of model errors: first, model
errors due to finite spatial and temporal discrete approximations. Second, model
errors due to truncation of the direct interaction between nonlocal fluxes.

The test model in (2.3)-(2.8) is designed in such a way that superparameterization
only introduces model errors of the first type (see Section 2). Indeed, this test model
is readily a “superparameterization” with small-scale dynamics resolved on parallel
embedded infinite domains (see [7]). With this setup, superparameterization simply
replaces the stochastic integral in (2.6) with a discrete sum of random variables over
the lattice with wavenumbers kj = j/L. Practically, we approximate the covariance
integral in (2.11) with,

〈cov(u′)〉L =
1

Ln

∑

j

[ σ2
kj

2λkj

+
ǫ

2λkj

(1− e−2λkj
ǫ−1

)
(

Ckj ,0 −
σ2
kj

2λkj

)]

, (3.1)

which is nothing but a trapezoidal rule. In realistic applications, superparameteriza-
tion approximates (3.1) even further by a suitable reduced model on a one-dimensional
L-periodic domain, replacing the full n-dimensional periodic domain [16, 6, 5]. There
is also a sparse-time variant of superparameterization [30] that judiciously approxi-
mates the eddy flux term, 〈cov(u′)〉, with that from a reduced time integration of the
small-scale dynamics. In this paper, we will not explore these two approximations;
we only consider resolving the test model on a one-dimensional domain (n = 1) and
focusing on the effect of the trapezoidal approximation in (3.1) for data assimilation
purposes.

Now, let’s discuss some numerical results of simulating the test model in (2.3)-
(2.8) with superparameterization with various values of scale gap, measured by L−1.
In Fig. 3.1, we show the simulations of the deterministically forced case with super-
parameterization with L = 2. Notice that this approximation reproduces qualitative
solutions with local intermittent instabilities, similar to those of the truth (compare
with Fig. 2.3); note that the small-scale intermittencies do not occur at the same
instances and locations since the test model is a chaotic dynamical system. By chaos,
we mean sensitivity to the choices of unstable modes when different integration rule
is employed in approximating (2.11) in addition to sensitivity to initial conditions.

On the other hand, the superparameterization with L = 0.1 produces stable
equilibrium dynamics (see Fig. 3.2). Here, the failure in superparameterization is
attributed to incorrect subsampling on the unstable wavenumbers of the small scale
dynamics. For this specific example, when ū ∈ (−√

α,
√
α), we resolve at most two

unstable wavenumbers, kj = j/L = 10j, where j = 2, 3 (see Fig. 2.1). With such
a sparse sample, the eddy flux converges to 〈cov(u′)〉L = 1.008, uniformly in space.
Consequently, the large-scale dynamics converges to

ûℓ,∞ ≡ lim
t→∞

ûℓ(t) = lim
t→∞

〈cov(u′)〉L + Fext

p(iℓ)
δℓ,0

(

1− ep(iℓ)t
)

=
〈cov(u′)〉L + Fext

d+ νℓ2
δℓ,0 =

{

50.8, ℓ = 0,

0, ℓ 6= 0,

which implies ū → û0,∞ = 50.8, a trivial constant mean dynamics, as t → ∞ (this is
consistent with Fig. 3.2). In the above derivation, we define δℓ,0 to equal zero when
ℓ 6= 0 and one only when ℓ = 0.
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In Table 3.1, we report the statistical prediction skill of the large scale variable,
ū, obtained from superparameterization with various values of L compared to the
truth (see Section 2.3) for the deterministically and stochastically forced cases. In
particular, we compare the mean, covariance, spatial and temporal correlations, com-
puted from statistical steady state solutions for the time interval [200, 500]. Notice
that for both type of forcings, superparameterization with L = 2 produces the best
statistical estimates. For L = 0.5, 1, we still reproduce the same physics with small-
scale intermittent instabilities (results are not shown) but the statistical estimates
deteriorate (see Table 3.1). When L = 0.1, the statistical estimates are not skillful
with very large mean, as we discussed earlier. Intuitively, the improved statistical es-
timates with larger L is not so surprising since the trapezoidal approximation in (3.1)
produces smaller errors in estimating the covariance integral (2.11). Notice also that
the stochastically forced case has slightly smaller statistical estimates compared to
the deterministically forced case. The smaller values of mean and covariances suggest
that the large-scale stochastic forcing decreases ū and simultaneously enhances the
occurence of small-scale local intermittent instabilities.

Table 3.1

Statistical prediction skills: Mean, variance, spatial, and temporal correlations of ū computed
from statistical steady state solutions at time interval [200, 500] from superparameterization with
various values of scale gap, L, and the truth for large-scale deterministic and stochastic forcings.

Mean Cov SpCorr TemCorr
Det True 4.30 6.13 2.36 112.80
SP L = 2 4.32 6.00 2.38 113.62
SP L = 1 4.18 5.36 2.41 114.94
SP L = 0.5 3.83 3.68 2.51 120.07
SP L = 0.1 48.79 2.79 3.14 149.92
Stoch True 4.03 5.76 2.29 110.88
SP L = 2 4.16 5.67 2.38 113.17
SP L = 1 3.85 4.89 2.36 112.94
SP L = 0.5 3.81 3.92 2.48 118.14
SP L = 0.1 48.35 5.52 3.13 149.82

4. Filtering with superparameterization. We consider solutions of the test
model in (2.3)-(2.8) as the underlying truth signal. We define our filtering problem
with partial observations of the large-scale variable, ū, at discrete time and space. In
particular, we consider observations at every pmodel grid points through the following
observation model,

vj,m = ū(Xj , tm) + σo
j,m, σo

j,m ∼ N (0, ro), (4.1)

whereXj = j2π/M andM = N/p denotes the total number of observations at time tm
(recall that N = 128 are the total grid points of the large scale mean dynamics). The
observations vj,m are corrupted by spatially and temporally uncorrelated Gaussian
noises with mean zero and variance ro and available at every discrete time tm = mtobs,
with observation time interval tobs.

We will compare various filtering strategies, including:

1. The true filter as a diagnostic. This scheme essentially utilizes the test model
described in Section 2 as the filter prior model.
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Fig. 3.1. Deterministically forced superparameterized approximate solutions with L = 2: (a)
Snapshots of ū at time t = 400.1; (b) Small-scale eddy fluxes correspond to ū at time t = 400.1; (c)
Timeseries of ū and 〈cov(u′)〉 at X = 3.0925.

2. The bare-truncation filter. This filtering strategy utilizes the bare-truncation
model described in Section 2.1 as the filter prior model.

3. The equilibrium closure filter. This filtering strategy utilizes the statistical
equilibrium closure model described in Section 2.1 as the filter prior model.

4. The superparameterization filter. This filtering scheme utilizes the superpa-
rameterizated model described in Section 3 as the filter prior model.

Below, we describe these four filtering strategies and the basic filtering algorithm for
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Fig. 3.2. Deterministically forced superparameterized approximate solutions with L = 0.1: (a)
Snapshots of ū at time t = 400.1; (b) Small-scale eddy fluxes correspond to ū at time t = 400.1; (c)
Timeseries of ū and 〈cov(u′)〉 at X = 3.0925.

regularly spaced sparse observations in (4.1) in detail.

4.1. Fourier Domain Kalman Filters for regularly spaced sparse ob-

servations. We consider implementing the four filtering strategies above in Fourier
space rather than in physical space; this strategy is not only numerically beneficial but
it also produces accurate solutions beyond the standard physical space approach as
we reported in various contexts (see [25, 24] and the references therein). Essentially,
this approach applies a spatial localization in Fourier domain to avoid spurious non-
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local correlations that often occur when the filter covariance matrix is sub-optimally
estimated [14, 11]. Below, we briefly describe the Fourier domain Kalman filter in
detail [24, 25, 22, 9].

In Fourier space, the observation model in (4.1) is expressed as follows:

v̂n,m =
∑

nj∈A(n)

ûnj ,m + σ̂o
n,m, |n| ≤ M/2 (4.2)

where v̂n,m is defined through vj,m =
∑

|ℓ|≤M/2 v̂n,meinXj , with Xj = 2jπ/M and

M = N/p = 128/p; the coefficient ûℓ,m ≡ ûℓ(tm) is defined through discrete Fourier
transform ū(Xj , t) =

∑

|ℓ|≤N/2 ûℓ(t)e
iℓXj , with Xj = 2jπ/N and N = 128. In (4.2),

the noise term is Gaussian with mean zero and variance ro/M , σ̂o
n,m ∼ N (0, ro/M),

whereas the term A(n) denotes the aliasing set of wavenumber n defined as [9, 24]:

A(n) =
{

nj = n+Mj | j ∈ Z, |nj | ≤
N

2

}

. (4.3)

For example, if observations are available at every p = 4 grid points of the total
model grid points N = 128, we have a total of M = N/p = 32 observations.
The corresponding discrete Fourier coefficients are available for wavenumbers n =
−15,−14, . . . ,−1, 0, 1, . . . , 16. The aliasing sets of wavenumbers 0, 1, 2, . . . are given
by

A(0) = {−32, 0, 32, 64},
A(1) = {−63,−31, 1, 33},
A(2) = {−62,−30, 2, 34},

...

A(16) = {−48,−16, 16, 48}.

In this case, the observation model in (4.2) couples p = 4 modes that are aliased
to each other; any pair of Fourier coefficients belonging to different aliasing sets are
uncorrelated. Hence, the Fourier domain Kalman filter consists of block diagonal
filters, where each block solves a p× p filtering problem [9, 22, 24].

Let’s define ~un,m = (ûn1,m, . . . , ûnp,m)T and G = (1, . . . , 1) ∈ R
1×p, where sub-

script ‘T ’ denotes a transpose. Then we can rewrite the observation model in (4.2) in
vector form,

v̂n,m = G~un,m + σ̂o
n,m.

Given a prior mean state ~u−
n,m = (û−

n1,m, . . . , û−
np,m)T and a p×p positive definite prior

error covariance matrix, R−
n,m, the standard Kalman filter formula [1] provides the

posterior mean estimate, ~u+
n,m = (û+

n1,m, . . . , û+
np,m)T , and error covariance matrix,

R+
n,m, in explicit form,

~u+
n,m = ~u−

n,m +Kn,m(v̂n,m −G~un,m), (4.4)

R+
n,m = (Ip −Kn,mG)R−

n,m, (4.5)

where Ip denotes a p × p identity matrix and Kn,m denotes a p × 1 Kalman gain
matrix,

Kn,m = R−
n,mGT (GR−

n,mGT + ro/M)−1, (4.6)
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where the computational cost involves only a scalar inversion and various matrix-
vector multiplications.

For the test model in (2.3)-(2.8), the Fourier domain filtering is natural since the
large scale solutions are obtained by solving the following linear SDE for each Fourier
coefficient, conditional to Ĉℓ,

dûℓ

dt
= −p(iℓ)ûℓ + Ĉℓ + F̄ δℓ,0 + σ̂ℓẆℓ, |ℓ| ≤ N/2, (4.7)

where p(iℓ) is the eigenvalue of linear differential operator P (∂X) in (2.3). In our
special numerical example in (2.20), p(iℓ) = (d + νk2) + i(ck − Ak3) is a selective
decay damping when ν 6= 0. In (4.7), Ĉℓ denotes the discrete Fourier coefficient of
the covariance,

〈cov(u′)〉(Xj , t) =
∑

|ℓ|≤N/2

Ĉℓ(t)e
iℓXj , (4.8)

and we assume Ĉℓ is constant within a small integration step (t, t+∆t) as described
in Section 2.3. Therefore, in terms of ûℓ alone, the SDE in (4.7) is linear.

For the true filter, we use 〈cov(u′)〉(X, t) obtained by integrating (2.11) with
adaptive quadrature as discussed in Section 2.3. For the bare-truncation model, we
set 〈cov(u′)〉 = 0. For the equilibrium closure filter, we set 〈cov(u′)〉 = 〈cov(u′)〉∞
from (2.13). For the superparameterization, we use 〈cov(u′)〉L obtained from the
trapezoidal approximation in (3.1). The last two terms in (4.7) correspond to the
Fourier coefficients of the large-scale external forcing defined in (2.22) and (2.23). For
the deterministic forcing case, we set σ̂ℓ = 0.

Given a posterior mean state, û+
ℓ,m, and a p × p error covariance matrix, R+

n,m,
at time tm, both obtained from (4.4)-(4.6), we integrate the dynamical equation in
(4.7) to obtain the prior mean, û−

ℓ,m+1, and error covariance, R−
ℓ,m+1, at the next

observation time, tm+1 = tm+ tobs. In discrete-time formulation, conditional to Ĉℓ,m,
the prior statistics are explicitly given by:

û−
ℓ,m+1 = Fℓû

+
ℓ,m +

1

p(iℓ)
(1 − Fℓ)(Ĉℓ,m + F̄ δℓ,0), |ℓ| ≤ N/2 (4.9)

R−
n,m+1 = FnR

+
n,mF∗

n +Qn, |n| ≤ M/2, (4.10)

where Fℓ = exp(−p(iℓ)tobs). In (4.10), we define p × p diagonal matrices for the
dynamical operator and system noise covariance for Fourier coefficients in aliasing set
A(n),

Fn = diag(Fn1
, . . . , Fnp

), Qn = diag(Qn1
, . . . , Qnp

),

where Qℓ =
σ̂2

ℓ

2p(iℓ) (1 − |Fℓ|2) is the variance of the solutions of (4.7); we denote

|u|2 = u · u∗. The recursive formula in (4.4), (4.5), (4.6), (4.9), and (4.10) define the
Fourier domain Kalman filter [9, 24]. The four filtering strategies above differ through
their forcing terms, Ĉℓ,m. Note that for a special case where we observe at all grid
points, p = 1, the Fourier domain Kalman filter is completely diagonal with M = N
(see [22, 2, 24]).

The famous Kalman and Bucy [12] filtering stability criterion suggests that the fil-
tered solutions are stable when the observability condition is satisfied. Furthermore, if
the dynamical model is also controllable, then it is possible to obtain accurate Kalman
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filtered solutions. In our case above, the necessary and sufficient conditions for observ-
ability are Fni

6= Fnj
for any pair of i, j ∈ A(n) where i 6= j (see Chapter 3 of [24]).

These conditions are clearly satisfied in our test model since P (∂X) in (2.20) defines a
selective damping p(iℓ) when ν 6= 0, and therefore, the Fourier domain Kalman filter
defined through recursive steps in (4.4)-(4.6), (4.9) , (4.10) with prior model in (4.7)
always satisfies the observability condition. The controllability condition is satisfied
if Qn has a full rank [24]; therefore, filtering with the deterministically forced prior
model with σ̂ℓ = 0 does not satisfy the controllability condition. On the other hand,
filtering with the stochastically forced prior model always satisfies the controllability
condition. With this theoretical guideline, we expect less accurate filtered solutions
with deterministically forced prior models compared to the stochastically forced prior
models even when the true signals are solutions of the same deterministically forced
models; in some sense, the system noise becomes our “friend”.

5. Filter performance on test models. In our numerical experiments below,
we set the observation noise variance ro = 1.41 (which is roughly about 23 − 25%
of the covariance of ū, depending on the forcing case, as recorded in Table 3.1) and
the observation time interval tobs = 0.5 (much shorter than the temporal correlation,
see Table 3.1). We will use the average RMS error and spatial correlation (SC)
between the posterior mean state ~u+

m = (ū+(X1, tm), . . . , ū+(XN , tm)) and the truth
~um = (ū(X1, tm), . . . , ū(XN , tm)) to measure the filtering skill,

RMS =
1

T − T0

T
∑

m=T0+1

√

〈

(~u+
m − ~um)2

〉

N
, (5.1)

SC =
1

T − T0

T
∑

m=T0+1

〈

(~u+
m − 〈~u+

m〉N )(~um − 〈~um〉N )
〉

N
√

〈(~u+
m − 〈~u+

m〉N )2〉N 〈(~um − 〈~um〉N )2〉N
. (5.2)

In (5.1)-(5.2), the temporal average ignores the first T0 = 100 of the total T = 1, 000

assimilation steps; we also define spatial average with 〈~um〉N = N−1
∑N

j=1 ū(Xj , tm).

5.1. Stochastically forced prior models. First, let’s discuss numerical re-
sults from filtering stochastically forced truth signals with stochastically forced prior
models. We’ll discuss the more subtle case of filtering deterministically forced truth
signals in Section 5.2.

In Fig. 5.1, we show the average RMS errors and SC of all four strategies described
in Section 4 for regularly sparse observations in (4.1) with p = 4, 8, 16, 32. Notice the
filtering skill with model errors from the best to the worst are the superparameteri-
zation filter with L = 2, the equilibrium closure filter, and the bare-truncation filter,
subsequently. Second, the filtering skill of superparameterization with L = 2 (squares)
is indistinguishable from that of the true filter (dashes); both schemes produce the
smallest RMS and highest SC. As observations become sparser (or p increases), the
filtering skill degrades as expected; the SP filter with L = 2 RMS is roughly 0.76 (still
much below the observation error,

√
ro =1.18) and SC is roughly 0.9.

In Figs. 5.2-5.5, we show snapshots of the large scale posterior and prior mean
estimates, ū+ and ū− compared to the hidden true state, ū, at tm = 500 (or after
T = 1000 assimilation steps), for regularly sparse observations with p = 4, 8, 16, 32,
respectively. Comparing these figures, we can see in detail the degradation of the
accuracy of the filtered solutions for each method when observations are sparser.
For p = 4, estimates from all four filtering strategies are nearly identical except near
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Fig. 5.1. Average RMS errors and SC (spatial correlations) as functions of p.

X = 5 where the bare truncation and equilibrium closure filters’ estimates are slightly
inaccurate. Notice the similarity of SP filter with L = 2 and the true filter even in
a very sparse observation network case with p = 32 (see Fig. 5.5); here the bare
truncation and equilibrium estimates are much worse compared to the SP filter.

In Fig. 5.6, we plot the average RMS and SC from SP filter for sparse observations
with p = 8 as functions of scale gap, L. Here, we only simulate with L = 0.1, 0.5, 1, 2,
similar to those in Table 3.1. Notice the sudden degradation of filtering skill with
L = 0.1 (see also Fig. 5.7) as we expected since this scale gap produces stable dynamics
without local intermittent instabilities as discussed in Section 3 (recall the results in
Fig. 3.2 and Table 3.1). On the other hand, the filtering skill with L = 0.5, 1, 2 are
comparable (again, see Fig. 5.7); essentially, the filtering skill of the very cheap SP
with L = 0.5 is comparable to that of L = 2 which we know is almost identical to the
skill of the true filter (see Fig. 5.1).

5.2. Controllability. In Fig. 5.8, we show numerical results of filtering the de-
terministically forced true signal with the perfect deterministically forced prior filter
model for sparse observations with p = 4. Both the true and SP filtered solutions
reproduce the wave pattern inaccurately. The bare truncation and equilibrium closure
estimates converge to ū+ ≈ −49.29 and −31.3, respectively, without any turbulent
fluctuations. These inaccurate filtered solutions are due to the lack of controllability
as we discussed earlier in Section 4 when the prior model noise covariance is zero,
Qℓ = 0. Numerically, the prior covariance update in (4.10) is so small when Qℓ = 0
that the Kalman gain matrix in (4.6) has Kn,m ≈ 0, and subsequently, the uncon-
trollable filter trusts the prior mean estimates completely. For bare truncation and
equilibrium closure, the filtered solutions are nothing but the stable equilibrium so-
lutions of these models. See also Table 5.1 for their corresponding average RMS
errors and SC. We also find similar numerical outcomes for smaller observation noise
variance, ro (results are not shown).

In Fig. 5.9, we consider filtering exactly the same observations as in Fig 5.8 with
a stochastically forced prior model, where Qℓ 6= 0 is chosen such that the large-scale
dynamics in (2.3) without nonlinear covariance term, 〈cov(u′)〉, has ℓ−6 spectrum,
similar to the spectrum of the deterministically forced true signals (see Fig 2.2).
Notice the dramatic improvement in the filtering skill (see Fig. 5.9 and Table 5.1) when
controllability condition is restored. The choice of ℓ−6 spectrum is completely adhoc,
one can investigate further for the better choices and we are not interested in that
aspect here. Our point is to show the importance of the controllability condition in
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Fig. 5.2. Case p = 4: (a) Snapshots of at tm = 500 (or after T = 1000 assimilation steps).
The bare truncation filter (first row), the equilibrium closure filter (second row), the superparame-
terization filter with L = 2 (third row), and the true filter (fourth row).

Table 5.1

Average RMS errors and SC for filtering deterministic truth with and without controllability.

Not controllable Controllable
Scheme RMS SC RMS SC

bare truncation 43.1004 0.2314 0.6331 0.9677
eq-closure 28.7007 0.2784 0.5362 0.9677

SP with L = 2 1.1180 0.8364 0.2775 0.9859
true filter 1.1320 0.8325 0.2777 0.9859
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Fig. 5.3. Case p = 8: (a) Snapshots of at tm = 500 (or after T = 1000 assimilation steps).
The bare truncation filter (first row), the equilibrium closure filter (second row), the superparame-
terization filter with L = 2 (third row), and the true filter (fourth row).

obtaining accurate filtered solutions. A similar result holds for filtering stochastically
forced true signals; in that case, we obtain inaccurate filtered solutions when we use
deterministically forced prior filter models (results are not shown). We should note
that all the results in Section 5.1 hold for deterministically forced true signals provided
that the filter prior model satisfies controllability condition, that is, Qℓ 6= 0.

If we are able to observe the large scale dynamics at a very high spatial resolution
with small errors (which may not be the case in real applications), then the filtered
solutions will discard the prior model and completely rely on these observations. To
solidify this argument, we show the RMS errors and SC for simulations with no
observations error ro = 0 but satisfying the controllability condition in Figure 5.10.
Notice that there are no difference in skills when p = 4 (observations are spatially
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Fig. 5.4. Case p = 16: (a) Snapshots of at tm = 500 (or after T = 1000 assimilation steps).
The bare truncation filter (first row), the equilibrium closure filter (second row), the superparame-
terization filter with L = 2 (third row), and the true filter (fourth row).

dense). For sparse observations, the study in this section suggests that the choice of
prior model is very important. Notice the inaccurate filtered solutions from both the
bare-truncation and equilibrium closure filters compared to that of the SP with L = 2,
even when controllability is satisfied (see Figs. 5.9, 5.10, and Table 5.1). An additional
remarkable fact is that the true signal here has a very steep spectrum, with ℓ−6; one
may be led to believe that for such a steep spectrum, the small scale dynamics may
not be that important. Our numerical results demonstrate that we can’t ignore the
small scale covariance 〈cov(u′)〉 nor replace it with the equilibrium closure estimate
〈cov(u′)〉∞. Indeed, we have to carefully estimate this small scale covariance. Even
superparameterization fails when the scale gap is too large with L = 0.1.
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ū

eq−closure

0 1 2 3 4 5 6
−10

−5

0

5

10

15

ū

SP with L=2

0 1 2 3 4 5 6
−10

−5

0

5

10

15

ū
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Fig. 5.5. Case p = 32: (a) Snapshots of at tm = 500 (or after T = 1000 assimilation steps).
The bare truncation filter (first row), the equilibrium closure filter (second row), the superparame-
terization filter with L = 2 (third row), and the true filter (fourth row).

6. Concluding Discussions. In this paper, we study the effect of model errors
in using superparameterization for data assimilation with a simple test model with
semi-analytic solutions. The test model is designed to mimic typical multiscale turbu-
lent dynamics [15, 16, 6, 18] with small-scale intermittencies without local statistical
equilibriation conditional to the large scale dynamics, which simultaneously force the
large scale dynamics.

With such an idealized test model, we unambiguously compare the effect of model
errors, introduced through various approximations of the small-scale eddy fluxes, in
filtering regularly spaced sparse observations and predicting equilibrium statistics. In
particular, we compare three different approaches with model errors: the bare trun-
cation model, the equilibrium closure model, and the superparameterized model. We
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Fig. 5.6. Case p = 8: Average RMS errors and spatial correlations as functions of L.

find robust high filtering and statistical prediction skill with superparametrized model
(with skill almost identical to that of the true model), when the superparameterization
scale gap is not too large (L is not too small). The high filtering skill with superpa-
rameterization is robust even when the observation network is very sparse, as long as
the filter models satisfy the controllability condition with sufficient nonzero system
noise covariance, Qℓ 6= 0. A spectacular failure of filtering the deterministically forced
true signal with the exactly perfect model that does not satisfy controllability and
a dramatic improvement when controllability condition is restored with additional
stochastic forcings reconfirm that judicious model errors (or noises) can sometimes
help filtering, as we encountered in different data assimilation contexts [24]. On the
other hand, the other two approaches, the bare truncation and equilibrium closure
models, have much lower skill in filtering as well as statistical prediction even when
the true signal has a very steep spectrum with ℓ−6 and controllability condition is
satisfied! In this case, these two models produce steady state solutions (without tur-
bulence) since the small-scale eddy flux terms that generate turbulence are ignored
or not properly estimated. Furthermore, a violation of controllability condition sets
the filtered solutions to be the steady state solutions, ignoring any given observations.
This is a counter-example to naive thinking that the small-scale processes are not so
important in multiscale turbulent dynamics with steep energy spectrum.

In the near future, we will investigate the effect of other kinds of model errors
in filtering with superparameterization: (1) When the small-scale dynamics are re-
solved on n-dimensional periodic domain, additional model errors are introduced in
the classical superparameterization with suitable reduced models on a one-dimensional
L-periodic domain, replacing the n-dimensional periodic domain [16, 6, 5]; (2) Model
errors through a sparse-time variant of superparameterization [30] that judiciously ap-
proximates the eddy fluxes, 〈cov(u′)〉, with reduced time integration of the small-scale
dynamics; (3) model errors from elimination of direct nonlocal interaction between
smaller scale processes for complex nonlinear dispersive wave turbulence [7]. A much
more difficult problem is to filter observations of mixed typed, involving functions
of the large and small scale variables, which often arise in some applications; for
example, in geophysical fluid applications, the observed temperature, moisture, and
velocity necessarily mix both the slow and fast modes [3]. In a more realistic setting,
we may need to appropriately account for the initial conditions of the unobserved
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Fig. 5.7. Snapshots of at tm = 500 (or after T = 1000 assimilation steps) for p = 8 for
superparameterization with various L.

eddies such that they are statistically consistent with the large scale variables, ū.
We will explore the possibility of utilizing the small-scale reinitialization approach
introduced in [8, 13] as well as other options.
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