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Real World Turbulence and Modern Applied
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1. Introduction

The topic for my own view of mathematics at the millenium involves
real world turbulence. centered around turbulence in the atmosphere and
the ocean, some of the current central scientific issues, and the prospects for
significant contributions in the future through modern applied mathematics.
Modern applied mathematics has flourished as a discipline in roughly the
last twenty years where practitioners are at ease and flexibly utilize the many
facets of applied mathematics in the following diagram:

Why do I discuss the topic of turbulence in atmosphere/ocean science?
There is no doubt that one of the grand challenges for science in the next
century is to achieve a detailed understanding of the atmosphere/ocean/
and land, including their interaction through fluid mechanical, biological,
and chemical processes so that detailed reliable predictions of short term
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and longer term climate can be made. These problems are so complex be-
cause different nonlinear physical processes intervene and couple throughout
an amazingly wide range of physical scales, ranging from millimeters to the
order of ten thousand kilometers, in a highly anisotropic fashion. No super-
computer in the forseeable future will be able to represent all of the physical
processes occurring on all of these scales, and detailed observations of all
of these scales simultaneously will not be possible. The current scientific
progress that has been made thus far in predicting weather and climate in-
volves computer models called general circulation models (GCM’s) where
the gross features of the atmosphere and ocean are modelled accurately, but.
the detailed interaction with physical processes on small length scales (usu-
ally smaller than the order of a few hundred kilometers) is parametrized.
The way these effects are parametrized involves theories for crude modelling
of inherently random stochastic turbulence from scales and processes that
are not represented in detail. There is a great need for understanding and
improving these parametrizations, especially for climate prediction where
the spatial resolution of the GCM’s is even more strongly limited due to the
long interval of time integration.

Understanding such issues necessarily involves a fascinating and novel
interplay among such mathematical topics as nonlinear partial differential
equations, probability theory and statistics, chaotic dynamics, etc., all in-
teracting in the symbiotic mode of modern applied mathematics mentioned
above as well as through close collaboration with atmosphere/ocean scien-
tists.

In my essay, I attempt to outline several of these scientific issues, some of
the current directions of interest for mathematicians, and some of the future
prospects for multi-disciplinary interaction for applied mathematicians. I
also will try to convey some of the flavor of the modus operandi of modern
applied mathematics.

Scales of Atmospheric Motion
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FIGURE 1
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Tropical Western Pacific
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FIGURE 2. Spatio-Temporal Scales of Motion

2. The scales of atmospheric motion and the strong effect of
rotation and stratification

It order to give an example of the wide range of spatial scales involved
in predicting the weather and climate, I have charted in Figure 1 the scales
of atmospheric motion.

In Figure 2, I have listed the spatio-temporal scales of motion in an
important part of the world for predicting short term climate, the Tropical
Western Pacific. It should be evident to the reader that distinct physical
phenomena on a very wide range of spatio-temporal scales in the atmosphere
participate in the evolution of short term climate which involves their cou-
pling to a similar broad range of scales in the ocean.

In atmosphere/ocean science there is little doubt about the equations
governing the fluid motion; all of the uncertainty arises from scales of mo-
tion that are unresolved and must be treated statistically. The simplest
illustrative model for the dynamics of the atmosphere is given by rotating
stratified Boussinesq equations for the velocily and density variations,

DT
F; + (Ro)™'& x &+ (Fr)~'p&3 = —Vp
(1) %?—(F?‘)_lv;;:O

divv =0.
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Here ¥ = (v, va.v3) is the fluid velocity, 7% = (.% + #.V is the convective
derivative, €3 = (0,0,1),p is the pressure, and p involves the variation of
density created from interaction through the force of gravity. The term,
(Ro)~'é3 x ¥ represents the tangent plane approximation to the earth’s ro-
tation while the two terms multiplying Fr~! represent the effect of buoyancy
forcing due to gravity on the dynamics.

The nondimensional coefficient representing the strength of rotation is
the Rossby number,

%

while the strength of (stable) stratification is measured by the I'ronde num-
ber
F 4
3 = —.

In (2), f is the rotation frequency while V is the typical fluid velocity and L
is the typical horizontal length scale; for (3), H is the typical vertical height
and N is the buoyancy frequency.

For the moment. let’s compare these equations with the more familiar
incompressible Euler equations in 3-D

Dv
ek v/
(4) Di P
divv=0.

Clearly the dynamics in these two equations in (1) and (4) differ through the
terms involving the Rossby number, Ro, and Froude number, F'r. At first
glance, these quantities in (1) scem like harmless lower order terms compared
with (4). Indeed on the very small spatial scales of ordinary human motion,
the effects of the earth’s rotation, for example, are negligible in agreement
with our collective experience: however, for the very large planctary scales
on the order of 10,000 kin, the atmospheric motions are strongly affected by
rotation, and rotational effects are important in the polar oceans even over
scales of only a few kilometers. In fact. most of the fluid motion of interest
for climate modelling is characterized by

either strong stratification, Fr << 1
(5) or strong rotation, Ro << 1
or both.

The interested reader can consult the basic texts ([1]. [2], [3]) for extensive
discussions.

Thus, the “lower order” terms in (1) from rotation and stratification
in fact play a dominant role in the dynamics of the atmosphere/ocean as



REAL WORLD TURBULENCE AND MODERN APPLIED MATHEMATICS 141

compared with (4). The result is striking new phenomena in (1) involving
inertio-gravity waves

(6) and
scalar potential vorticity

(see [1], [2], [3]). This strongly contrasts with the dynamics lor ordinary finid
How in (4) which involves evolution of the vector vorticity, &, through self-
stretching alone ([4],[5]). This prominent effect of self-stretching in ordinary
homogeneous fluid flows in fact is usually lower order for geophysical flows
except at the smallest length scales. There has been a significant amount
of recent activity in the P.D.E. community, revealing subtle behavior in the
dynamics for (1) in the limiting regimes described in (5) (see [6], [7]. [8].
(9], [10], [11] and the refercnces there).

Controlled laboratory experiments in strongly stratified and/or rotating
flows provide great insight into the differences between homogencous flows
satisfying (4) and the highly anisotropic inhomogencous flows with strong
stratification and/or rotation satisfying (1) and (3): such experiments also
provide wonderful opportunities for modern applied mathematics. Next, 1
briefly describe one such example of this interaction.

Embid and the author ([7], [8], [9]) have developed mathematical the-
ories for averaging over fast gravity waves in strongly stratified flows for
general unbalanced initial data, as occurs on mesoscales in both the atino-
sphere and ocean. The author and Grote ([12]) have utilized the reduced
dynamics in the low Froude number limit given by these theories to de-
velop a novel theoretical model which captures several salient features of
the remarkable recent laboratory experiments of Fincham, NMaxworthy, and
Spedding ({13]) on turbulent decaving strongly stratified Hows. Both the
theory and the experiments yield famiilies of initial colummnar dipole vortices
with dominant vertical vorticity which collapse into pancaked vortex sheets
with dominant horizontal vorticity while simultaneously, vertical dissipation
of energy strongly dominates horizontal dissipation. The actual experiments
are fully turbulent while the analytical models of Majda and Grote ([12])
involve a wide range of vertical scales but a fixed horizontal scale of motion.

3. Turbulence, waves, and universal scaling laws in the
atmosphere and ocean

The universal scaling law of stochastic turbulence theory, which is prob-
ably familiar to the reader, arises for the homogenous incompressible fluid
cquations from (1) with dissipation added. This is Kolmogorov's faimnous g
law and states ([14]) that the cnergy spectrum for velocity fluctuations at
intermediate scales, larger than the dissipation scale but smaller than the

large scale motions, behaves universally according to the —% power, i.c.,

(7) E(k) = Clk|~%.
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The derivation is based on a postulated cascade of energy from large to small
scales and dimensional analysis. This scaling law has been confirmed in a
variety of engineering flows although a fundamental mathematical derivation
remains elusive ([14]). The significance of such a universal law for energy is
that it connects properties of the fluid flow on scales that can be understood
(large scale engineering flows) to those that have large uncertainty (the
turbulent scales).

For the atmosphere and the ocean, are there such universal scaling laws
over appropriate length scales? From the discussion in section 2, such laws
would necessarily involve a fascinating highly anisotropic interplay between
rotation and stratification, manifested as turbulence from the different phys-
ical structures involving inertial-gravity waves and scalar potential vorticity.
It is remarkable that such universal laws abound for different scaling regimes
in the atmosphere and the ocean. Here is a partial list of some of these uni-
versal laws with their appropriate spatial scaling regime.

(8)
1) The Gage-Nastrom spectrum ([15]) for the upper troposphere/lower
stratosphere on scales from 0(10km) to 0(1.000km).
2)  The Garrett-Munk Spectrum ([16]) for internal gravity
waves in the ocean on scales from 0(.1m) to (1im).
3) The Charney Spectrum for planetary waves and baroclinic
turbulence in the atmosphere on scales from 0(103km) to 0(101km).
4)  The Phillips Spectrum for ocean surface waves over deep
water ([17]) on scales from 0(10~2m) to 0(1m).
5)  The Kolmogorov spectrum ([14]) in the atmospheric boundary
Jayer at heights of roughly 100 meters on scales from 0(1073m) to
0(1m).

The perceptive reader will note that the famous Kolmogorov spectrum
of engineering turbulence applies in a very limited regime of small scales
in the atmosphere as listed in 5) above. A very active and hotly debated
contemporary research area involves the plysical origins of the universal
laws from 1) - ). In particular, does energy flow from the large scales
to the small scales or, more significantly for stochastic modelling, is there
an inverse energy cascade from the small unresolvable scales to the larger
scales? The special volume (|18]) contains contemporary discussion of these
issues including contributions from several applied mathematicians besides
atmosphere/ocean scientists. Modern applied mathematics has much to offer
in understanding these problems which mix both waves and vortices. An
excellent contemporary contribution blending sophisticated mathematical
theory and careful numerics in studying the inverse cascade for geophysical
flows is the recent study by Smith and Waleffe ([19]). Next, I describe
another recent contribution ([20]) demonstrating the role of modern applied
mathematics in these problems.
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3.1. Dispersive wave turbulence. Are there formal turbulence the-
ories generalizing IKolmogorov’s theory to predict the universal spectra in
(8)? The spectra listed in 1), 2), 3). 1) above all have features of dispersive
wave turbulence. There are very elegant theories ([21]. [22]) for the spec-
tra of wave turbulence which retain features of Kolmogorov’s theory and
applying to dispersive waves in a Hamiltonian setting. These thcories have
been applied to prototype physical Hows and involve uncontrolled pertur-
bation expansions utilizing Feynman diagrams with regimes of success and
also failure for the predictions. How can one assess these theories in an
unambiguous fashion?

Tabak, McLaughlin, and the author ([20]) have introduced recently a
family of elementary models with rich features for testing dispersive wave
turbulence. The model equations have the form

3 3 2 3
(9) it = 10170 + 10,175 (1015 0| 10:1"Tp)

for a complex scalar ¢ where a and @ are {ixed paramcters with 0 < a <
I and —x < 8 < . Here the operator |0;]Y is the pscudo-differential
operator defined by

(10) 7 = [ Py

-

where T denotes the Fourier transform. The faily of equations in (9) are the
silplest one-dimensional models involving dispersive waves and nontrivial
(quartric) resonances. These models have unambiguous and truly remark-
able turbulent energy spectra (see Figs. 14a), b), ¢). d) from ([20]) for a
wide range of parameter values in g with « fixed at a = % These spec-
tra typically extend over two clean scaling decades and have quasi-Gaussian
statistical structure. The models also liave an explicitly solvable weak turbu-
lence theory ([21], [22]) which is presented pedagogically in ref. ([20]) and
exhibits rich predicled behavior as the parameter J is varied. In an unam-
biguous fashion, the predictions of weak turbulence theory can be checked
against the calculated spectra from numerical simulations for this model.
There is a large discrepancy between weak turbulence theory and the calcu-
lated spectra; a new closure theory is proposed in ref. ([20]) which agrees
with the calculated spectra.

The above results suggest that one-dimeusional dispersive wave turbu-
lence is nontrivial and structurally much simpler than vortical turbulence.
[Furthermore, such models are intriguing elementary ones for features of
geophysical flows. It would be an exciting and accessible mathematical
development if the turbulence theory in such models could be understood
rigorously.

4. Turbulent reaction diffusion equations

The simplest model for rotating stratified How as occurs in the atmo-
sphere or ocean is given by the Boussinesq equations in (1). There are other
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very important physical, chemical and biological processes in the atmosphere
and ocean, such as the production of greenhouse gases and the depletion of
ozone in the stratosphere. the condensation, evaporation, ice formation, and
precipitation of cloud water in the lower atmosphere, and the tracking of
anthropogenic chemical tracers in the ocean. All of these problems involve
turbulent reaction diffusion equations for the concentrations, mass fractions,
or mixing ratio of these scalar fields. The effect of the change in time of such
scalar fields on the velocity field, itself, is often extremely small. Thus, the
prototypical example of a turbulent reaction diffusion equation is given by
the scalar field,

0z -
(11) 5t (V(f. ) +8(E,1)) - VZ = KAZ + {(2)
with a prescribed velocity field. In (11), f(Z) is a nonlinear reactive source
term, K > 0 is the molecular diffusivity, and the velocity field has two parts

A) V(z.,t), the known deterministic large scale velocity field
with divV =0
(12)  B) #(a,t). the inherently statistical velocity field.
arising from fluctuations on the unresolved scales
with divei =0

In more realistic models. Z is often a vector with many interacting compo-
nents; here for simplicity in exposition, I assume that Z is a scalar field.

4.1. Turbulent diffusion. The simplest important situation for tur-
bulent. reaction diffusion equations involves a passive tracer where the non-
linear source terms vanish identically and the cquations in (11) have the
simpler form,

(13) %—f + (17(5. t) + ¥(&. z)) VT = KAT.

The notation T stands for tracer here. and not necessarily temperature. The
reader should not be fooled by the simplicity in (13); while this equation
is linear for T, it is statistically nonlinear. To see this, I let ( ) denote
the average over the random fluctuations. The simplest useful statistic in
a tracer field is the mean passive scalar density. (T(Z,1)). Averaging (13)

vields the equation
(14)
a(:r(f, t)>
——"

Note that the equation in (14) is not a closed equation for <T(a’c‘, t)> because

+V(3,t) - V(T(:E, t)> - KA<T(5:‘, t)> - <73(:1':‘, ) VT(f,t)>.

the average of the advective term, (-17 . VT}, cannot be related simply to a
functional of (T(Z,t)). This is the simplest version of the famous closure

problem of turbulence theory.
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On the other hand, atmosphere/ocean scientists as well as engineers are
driven by pragmatic needs to assess the effect of unresolved scales a priori.
The standard way which thev achieve this is by postulating a relationship,

(15) —<z§‘(f,t) VT(&E, 1.)> =V. (K’T : VT(f,t))

where K is some constant “eddy diffusivity” matrix which can be estimated
roughly from auxilliary physical considerations. The ad hoc formula in (15)
is an example of a closure principle. Turbulent diffusion in GCM’s for the
atimosphere and occan is treated in this manner.

4.1.1. The Mathematics of Closure for Turbulent Diffusion. It is obvi-
ously a very interesting mathematical problem to decide the validity of such
closure hypotheses as in (15) given the nature of the unresolved velocity
scales. There has been a major effort among applied mathematicians and
physicists in developing simplified models where closure theory can be un-
derstood rigorously for equations for both the mean, (T), and higher order
statistics such as tracer correlations. The models of this type that have been
completely analyzed fall into the following special cases:

1) Periodic Velocity Models:
V= Vo, constant, and 0(Z, t) space-time periodic
or random with short-range correlations
([23].[24],[25].[26].[27].[28]).

2) Simple Shear Laycr Models:
(16) In two space variables, (z,y), 0 = (w(!.), v(z. t))

where w(t), v(z,t) have arbitrary and even
long-range correlated statistics
([29],[30],[31],[32].[33].[34]. [35]).

3) Rapid Decorrelation in Time Models:
The velocity statistics are essentially white noise in time
(136],(37].138].[39].}40].[41], [42]).

In the situation from 1), the mathematical theories for turbulent dif-
fusion apply at large scales and loug times and yield the equation in (15)
together with formulas for the effective diffusivity tensor, Kp; these formu-
las ([26].[27],[35]) reveal a very subtle relationship between the small scale
flow geometry, U(Z,t), and the mean flow, V. Examples with the simple
shear layer models from 2) rigorously demonstrate ([29],[30],[31],{32],[35])
that nonlocal space-time equations are needed for the averages with suit-
able long-range correlated velocity fields rather than the simple local dif-
fusion equation postulated through (15). Also. the subtle issues of behav-
ior at finite times can be understood with full mathematical rigor in the
models from 2). In the situation from 3), the closure postulate in (15)
is exact for all times but subtle issues in analyzing the resulting variable
cocflicient P.D.E.’s emerge. Once one has rigorously analyzed models like
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those in (15), it becomes very interesting to check the capabilitics of numer-
ical Monte Carlo methods ([43],[44].[45],[27]) or analytical renormalization
methods ([46],{47].[48].[49]) to understand their capabilities in recovering
the predictions of these models.

There is a great need for further mathematical understanding of turbu-
lent diffusion with applications to atmosphere/ocean science. An extensive
research/expository article on turbulent diffusion with much more detailed
discussion of all of the above issues has been written very recently by Kramer
and the author ([35]).

4.1.2. Closure Procedures for Turbulent Reaction Diffusion Equations.
Much less is known rigorously regarding closure procedures for the turbu-
lent reaction diffusion equations in (11) with a nonzero source term, f(Z),
despite their practical importance in both atmosphere/ocean science and
other disciplines such as combustion engineering. Souganidis, Embid, and
the author have discussed renormalized front propagation with both peri-
odic ([50],[51],[52]) and fractal ([53],[54]) small scale velocity fields. They
have also compared ([55]) the predictions of popular closure theories in the
applied community with rigorous exactly solvable answers for simple tur-
bulent. flow geometries. Pope has written two excellent review papers on
formal closure procedures for reactive flows ([56],[57]) which are strongly
recomuiended by the author.

One of the major uncertainties in predicting climate involves clouds and
successfully parametrizing clond water content. Krueger ([58] and private
communication) has successfully modelled the turbulent droplet spectrum
for clouds by utilizing a novel closure procedure for turbulent reaction dif-
fusion equations due to Kerstein ({59],[60].[61]). The linear eddy models
of Kerstein are stochastic models involving one-dimensional stochastic re-
arrangement maps which mimic the process of turbulent deformation and
diffusion. Given their success and potential for improved modelling in cloud
physics, a very interesting research topic involves a definitive quantitative
mathematical understanding of this novel closure procedure in some well-
designed idealized models. A first step in this direction is due to Childress
and Klapper ([62]).

5. Stochastic modelling for climate prediction

An area with great importance for future developments in climate pre-
diction involves simplified stochastic modelling of nonlinear features of the
coupled atmosphere/ocean system. This area also holds great promise for
future mathematical developments involving novel stochastic modelling for
nonlinear P.D.E.s with both turbulence and large scale chaotic dynamics.
The practical reasons for such needs are easy to understand. In the forsee-
able future, it will be impossible to resolve the effects of the coupled atmo-
sphere/ocean system through computer models with detailed time integra-
tion of the atmosphere on decadal scales. However, the questions of interest
also change. For example, for climate prediction, one is not interested in
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whether there is a significant deflection of the storm track northward in
the Atlantic during a specific weck in January of a given year. but rather
whether the mean and variance of the storin track are large during one or
several years of winter seasons and what is the impact of this trend on the
ocean, for example.

The idea of simplified stochastic modelling for unresolved space-time
scales in climate modelling is over twenty years old and emerged from fun-
damental papers by Hasselmann ([63]) and Leith {[64]), who also asked the
important related question of whether there is an appropriate flucuation-
dissipation relation valid for the climate on large spatio-temporal scales.
In the atmosphere/ocean science community, there is a recent flourishing
of ideas utilizing simple linear stochastic equations to model and predict
short term and decadal climate changes such as the atmospheric influence
on El Nino ([65].[66]), the North Atlantic Oscillation (NAO) ([67],[68]).
and related issues such as stochastic models for mid-latitude storm tracks
([69],[70],[71]). In contrast to this use of linear stochastic models in at-
mosphere/ocean science, stochastic modelling of homogeneous isotropic tur-
bulence naturally leads to nonlinear stochastic models ([14],(72]) which at-
tempt to yield sclf-cousistent low order statistics. A very natural and po-
tentially very rich area for both mathematical analysis and applications in
atmospliere/ocean science involves assessing the need for nonlinear stochas-
tic modelling and the validity of approximate linear Markov modecls in pro-
totype problems in atmosphere/ocean science. For coupling the atimosphere
and ocean, one would like to develop stochastic models which incorporate
nonlinear feedback but exploit the great disparity in time scales of the re-
sponse between the atmosphere and the ocean. It is especially natural to
attempt to use and refine asymptotic mathematical techniques of stochastic
averaging ([73]) and stochastic resonance in intermediate models for cou-
pling the atmosphere and the occan in the tropics ([65]).

In a completely different direction, there is great current interest in the
locations in the Labrador and Greenland Seas where open occan convection
occurs in response to cold air outbreaks from the polar atinosphere. At these
discrete locations, as well as the Weddell Sea, the atmosphere directly influ-
ences the ocean and the thermohaline circulation, governing the poleward
transport of heat in the ocean, locally overturns and profoundly influences
the present climate. A very recent review article by Marshall and Schott
([74]) surveys observations, theory and models. Legg, Marshall, Visbeck,
and Jones ([75],[76],[77]) have utilized Heton models in a two layer setting
to model the spreading phase of open-ocean convection. These calculations
reveal the emergence of coherent tilted dipole clusters which transport heat
from the open convection site. In order to make predictions and for crude
parametrization of open-oceau convection events in GCM'’s, it is desirable
to develop a statistical theory for such propagating clusters of Hetons that
depends only on the bulk features of energy, circulation, and angular mo-
mentum and not the detailed dynamics. Such a theory necessarily involves a
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fascinating interplay between long range barotropic organization and short
range baroclinic organization, since the effect of rotation near the sites of
open convection is important on small scales on the order of 1 to 1.5 k.m.
while the sites of open convection span hundreds of kilometers. A first paper
on this topic involving novel statistical theories in a closed basin has just
been developed by DiBattista and the author ([78]).

6. Concluding remarks

Clearly, I believe that there are exciting prospects for future develop-
ments involving modern applied mathematics and atmosphere/ocean sci-
ence. Several different directions with great promise involve inherently ran-
dom or stochastic processes interacting with nonlinear P.D.E.s. Understand-
ing climate is a world-wide scientific challenge so this special milleninm vol-
unie sponsored by the International Mathematical Union is an especially
appropriate forum for this article. I hope that it will inspire voung math-
ematicians to understand and work in these exciting future directions for
mathematics.
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