
15 JULY 2003 1705M A J D A E T A L .

q 2003 American Meteorological Society

Systematic Strategies for Stochastic Mode Reduction in Climate

ANDREW J. MAJDA

Courant Institute of Mathematical Sciences, Center for Atmosphere–Ocean Science, New York University, New York, New York

ILYA TIMOFEYEV* AND ERIC VANDEN-EIJNDEN

Courant Institute of Mathematical Sciences, New York University, New York, New York

(Manuscript received 16 July 2002, in final form 9 January 2003)

ABSTRACT

A systematic strategy for stochastic mode reduction is applied here to three prototype ‘‘toy’’ models with
nonlinear behavior mimicking several features of low-frequency variability in the extratropical atmosphere. Two
of the models involve explicit stable periodic orbits and multiple equilibria in the projected nonlinear climate
dynamics. The systematic strategy has two steps: stochastic consistency and stochastic mode elimination. Both
aspects of the mode reduction strategy are tested in an a priori fashion in the paper. In all three models the
stochastic mode elimination procedure applies in a quantitative fashion for moderately large values of « ø 0.5
or even « ø 1, where the parameter « roughly measures the ratio of correlation times of unresolved variables
to resolved climate variables, even though the procedure is only justified mathematically for « K 1. The results
developed here provide some new perspectives on both the role of stable nonlinear structures in projected
nonlinear climate dynamics and the regression fitting strategies for stochastic climate modeling. In one example,
a deterministic system with 102 degrees of freedom has an explicit stable periodic orbit for the projected climate
dynamics in two variables; however, the complete deterministic system has instead a probability density function
with two large isolated peaks on the ‘‘ghost’’ of this periodic orbit, and correlation functions that only weakly
‘‘shadow’’ this periodic orbit. Furthermore, all of these features are predicted in a quantitative fashion by the
reduced stochastic model in two variables derived from the systematic theory; this reduced model has multi-
plicative noise and augmented nonlinearity. In a second deterministic model with 101 degrees of freedom, it is
established that stable multiple equilibria in the projected climate dynamics can be either relevant or completely
irrelevant in the actual dynamics for the climate variable depending on the strength of nonlinearity and the
coupling to the unresolved variables. Furthermore, all this behavior is predicted in a quantitative fashion by a
reduced nonlinear stochastic model for a single climate variable with additive noise, which is derived from the
systematic mode reduction procedure. Finally, the systematic mode reduction strategy is applied in an idealized
context to the stochastic modeling of the effect of mountain torque on the angular momentum budget. Surprisingly,
the strategy yields a nonlinear stochastic equation for the large-scale fluctuations, and numerical simulations
confirm significantly improved predicted correlation functions from this model compared with a standard linear
model with damping and white noise forcing.

1. Introduction

The climate system has a wide range of timescales
for important physical processes. Thus on hourly scales
there are boundary layer and small-scale convective pro-
cesses; on daily scales there are organized synoptic-
scale weather events; on monthly scales there is low-
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frequency variability of the extratropics and intrasea-
sonal variability of the Tropics (Ghil and Robertson
2002); on annual scales there is the El Niño–Southern
Oscillation and midlatitude planetary teleconnections
(Trenberth et al. 1998); finally, on decadal scales there
are important oscillations of the coupled midlatitude
atmosphere–ocean system (Griffies and Bryan 1997).
For example, in this last case, a reduced description of
the atmosphere is needed in studying patterns of coupled
decadal variability such as the North Atlantic oscilla-
tion. There is an obvious need in such a complex system
for systematic and rigorous strategies for reducing the
number of degrees of freedom while retaining fidelity
of important features of the unresolved variables. Such
reductive strategies help to develop deeper physical un-
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derstanding of the various components of the climate
system and their interaction. They also provide useful
reduced mathematical models that are much more com-
putationally efficient. Hasselmann (1976) proposed the
idea of simplified stochastic modeling for the unresolved
degrees of freedom in climate dynamics with important
contributions by Leith (1975).

In recent years, stochastic modeling of the extratrop-
ical atmosphere has been an active research topic (Bran-
stator 1995; DelSole and Farrel 1996; Selten 1997;
Newman et al. 1997; Branstator and Haupt 1998; Whi-
taker and Sardeshmukh 1998; Achatz and Brantstator
1999), including stochastic modeling for the angular
momentum budget (Weickmann et al. 2000; Egger 2001;
Egger and Hoinka 2002). For example, as regards low-
frequency variability of the extratropical atmosphere,
Brantstator (1995) and Whitaker and Sardeshmukh
(1998) have developed reduced linear stochastic models
through regression fitting of linear Langevin dynamics,
which assumes a structure with white noise forcing and
linear damping. For the angular momentum budget, re-
gression fitting of interesting phenomenological linear
Langevin models (Weickmann et al. 2000) and higher-
order Markov models (Egger 2001; Egger and Hoinka
2002) have been utilized.

A different approach to understanding low-frequency
variability of the atmosphere through the nonlinear dy-
namics and bifurcation theory of a reduced number of
suitable climate variables has been developed beginning
with the seminal work of Charney and DeVore (1979).
This approach involves identifying structures such as
multiple equilibria or stable periodic orbits in the phase
space of reduced nonlinear climate variables (Legras
and Ghil 1985; Jin and Ghil 1990; Ghil and Robertson
2002) and then utilizing the observational record or
global circulation models to search for the ‘‘ghost’’ of
this behavior in the full complex dynamics with many
degrees of freedom (Marcus et al. 1994, 1996; Itoh and
Kimoto 1996). In this context, explicit stochastic models
involving Markov jump processes have been utilized to
mimic random jumps between different basins of low-
frequency variability in observations (Vautard and Le-
gras 1988; Kimoto and Ghil 1993). Also, the effects of
small random additive noise have been analyzed in a
similar fashion (DeSwart and Grasman 1987) when in-
troduced in an ad hoc fashion in the simplest scenario
for multiple equilibria (Charney and DeVore 1979).

The work mentioned in the previous paragraph re-
quires regression fitting of an assumed linear stochastic
model to the observed climate and its fluctuations. By
necessity this approach to stochastic modeling has se-
vere limitations for predicting climate change and di-
agnosing its causes. Alternative systematic a priori sto-
chastic mode reduction strategies are needed for more
practical prediction and improved regression fitting.
This is the main focus of the present paper, which is
based on a systematic mathematical strategy for sto-
chastic mode reduction developed recently by the au-

thors (Majda et al. 1999, 2001, hereafter called MTV-
1 and MTV-2). The stochastic-mode reduction tech-
niques (MTV-1; MTV-2) is a two-step procedure based
on the assumption that the degrees of freedom under
consideration have been split into essential resolved
modes whose dynamics is the main objective and un-
essential unresolved modes, which are to be eliminated
in the reduced description. In the first step of the pro-
cedure, the equations of motion for the unresolved
modes are modified by representing the nonlinear self-
interaction terms between unresolved modes by sto-
chastic terms. The motivation is that the self-interaction
terms are responsible for the sensitive dependence on
small perturbations in the system on short timescales,
and that these modes can indeed be represented by sto-
chastic terms if coarse-grained modeling on longer time-
scales, as for climate, is the objective. This step in the
procedure is stochastic consistency. In the second step
of the procedure, the equations of motion for the un-
resolved modes are then eliminated using standard pro-
jection technique for stochastic differential equations
(Khasminsky 1963; Gardiner 1985; MTV-1; MTV-2).
The elimination step is mathematically rigorous in the
limit where the stochastic terms are infinitely fast, cor-
responding to the situation where the unresolved modes
evolve much faster than the resolved ones. This step is
stochastic mode elimination.

This systematic mode reduction technique has two
obvious advantages. First, the ad hoc simplification of
the original dynamics is made on the level of the un-
resolved modes rather than the resolved ones. This is
unlike the procedures described in the second paragraph
above that are in common use in the atmospheric science
community where the approximations are developed on
the resolved modes, one drops all couplings with the
unresolved modes, and replaces them by ad hoc sto-
chastic terms of linear Langevin type, with parameters
obtained by regression fitting. In contrast, the systematic
mode reduction procedure predicts the structure of the
stochastic terms in the equations for the resolved modes
(MTV-1; MTV-2) and this structure can be surprisingly
rich: nonlinear corrections arise, multiplicative noises
occur, both stable and unstable linear Langevin terms
arise, or all in combination, depending on the quanti-
tative features of the underlying dynamics (MTV-2).
The second advantage of the technique is its rigor in an
appropriate limiting parameters range, which can be de-
duced a priori from the original equations. This provides
a guideline for the applicability of the method, which
is an important feature of the procedure.

The goals of the work presented here are (i) to dem-
onstrate how nonlinear dynamics on a reduced set of
resolved climate variables can be modified significantly
by the interaction with unresolved modes, (ii) to utilize
the systematic mode reduction strategy (MTV-1; MTV-
2) to predict the detailed structure of the stochastic dy-
namics resulting from this interaction, and (iii) to com-
pare these predictions with the results from resolved
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numerical simulations in detail. This study is performed
on highly idealized prototype models where all the dy-
namics and approximations are transparent; these mod-
els are chosen carefully to mimic important features of
potential applications in atmospheric science for the is-
sues and approaches described above in the second and
third paragraphs of this introduction. The authors hope
that the results presented below will stimulate direct
applications of the method to more realistic problems
in atmosphere–ocean science. The contents of the re-
mainder of the paper are outlined briefly below.

The core nonlinear dynamics of atmospheric GCMs
is dominated by the quadratically nonlinear exchange
of energy among modes through triad interaction. In the
models in section 2, the nonlinear dynamics on the cli-
mate modes are simple prototype dynamics with either
stable nonlinear periodic oscillations or multiple equi-
libria mimicking the scenarios discussed earlier in the
third paragraph for low-frequency variability (Ghil and
Robertson 2002); the exchange of energy between re-
solved and unresolved modes is given by a single triad
interaction where the unresolved modes are stochasti-
cally forced. The stochastic mode elimination procedure
(MTV-2) is applied to these models to predict the re-
duced stochastic climate model and then compared with
the results of direct numerical simulation for several
examples with predicted multiplicative and/or additive
noises and augmented nonlinearity; the results reported
later indicate that the nonlinear climate dynamics can
be altered in a remarkable fashion through such effects.
In this way, the applicability of the second step of the
approximation procedure is documented. The examples
from section 2 have 3 degrees of freedom. In section
3, these basic models are embedded in a fully deter-
ministic system with over 100 degrees of freedom; in
this way, the important issue of stochastic consistency,
the first step of the systematic strategy (MTV-1; MTV-
2) is assessed in a transparent fashion. Finally, in section
4, the a priori stochastic modeling strategy is applied
for spectrally truncated quasigeostrophic flow in peri-
odic geometry to an idealized problem analogous to the
stochastic modeling of the effects of mountain torque
on the angular momentum budget (Carnevale and Fred-
eriksen 1987; Weickmann et al. 2000; Egger 2001). The
systematic stochastic modeling strategy as applied in
section 4 predicts a nonlinear stochastic equation for the
analogue of variations in angular momentum. By com-
parison it is demonstrated that this equation predicts a
substantially improved correlation structure for the an-
alogue of variations in angular momentum beyond the
expected linear stochastic model for a range of topo-
graphic amplitudes. A pedagogical discussion of this
new application of the basic strategy (MTV-1; MTV-2)
is presented in the appendix for the interested reader.
The results presented here, emphasizing nonlinearity in
the climate variables and testing the stochastic modeling
strategy, are complementary to those results (Majda et
al. 2002, hereafter MTV-3) presented recently to test

the theory when nonlinear climate effects are complete-
ly absent and multiple interactions with the unresolved
modes are the dominant feature.

2. Nonlinear climate dynamics for triad models

When the core dynamics of a typical atmospheric
model for the midlatitudes is written in terms of an
orthogonal basis (spectral or empirical such as EOF’s,
etc.) the principal nonlinear interactions involve the qua-
dratically nonlinear exchange of energy. The projection
of these equations on three modes yields the triad equa-
tions for z 5 (z1, z2, z3), given by

dz1 5 b z z ,1 2 3dt

dz2 5 b z z ,2 3 1dt

dz3 5 b z z , b 1 b 1 b 5 0, (2.1)3 2 1 1 2 3dt

and the nonlinear dynamics involves a superposition of
such interacting systems (Lorenz 1963; Obukhov and
Dolzhansky 1975; Gluhovsky and Tong 1999; MTV-2).
Here the triad models are utilized to give a simplified
representation of typical nonlinear interactions occur-
ring between resolved climate variables, denoted by x,
and the unresolved variables y. The interesting and im-
portant topic of systematic procedures to determine the
group of resolved climate variables and unresolved var-
iables is not discussed (Selten 1997; Achatz and Bran-
stator 1999) but such a form is assumed at the outset
of the discussion. The focus here is the new phenomena
and the quantitative validation of the stochastic mode
elimination procedure when the climate variables have
explicit nonlinear dynamics with either multiple equi-
libria or stable periodic oscillations (Ghil and Robertson
2002). Since multiplicative noises are not used com-
monly in regression fitting of reduced climate models
at the present time, the first example studied next in-
volves these predicted effects from the systematic mode
elimination procedure.

a. Stable periodic orbit in the triad model

The standard nonlinear dynamics with a stable peri-
odic oscillation is given by the simple system of two
nonlinear equations

dx1 2 25 lx (1 2 a |x| ) 2 x (a 1 b|x| ),1 0 2dt

dx2 2 25 lx (1 2 a |x| ) 1 x (a 1 b|x| ), (2.2)2 0 1dt

where x 5 (x1, x2), | x | 2 5 1 , and a0 . 0. The2 2x x1 2

equations in (2.2) have a stable periodic orbit given
explicitly by
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21/2x(t) 5 a (cosvt, sinvt),0 (2.3)

with frequency v 5 a 1 b . How much are the21a 0

properties of such a stable periodic orbit in the reduced
climate variables changed by interactions with the un-
resolved variables? Assume that the nonlinear interac-
tions between two climate variables and a single un-
resolved variable are given by (2.1). Then the simplest
triad model to address these issues is given by

dx1 2 25 b x y 1 «[lx (1 2 a |x| ) 2 x (a 1 b|x| )],1 2 1 0 2dt

dx2 2 25 b x y 1 «[lx (1 2 a |x| ) 1 x (a 1 b|x| )],2 2 2 0 1dt

dy 1 2 ˙5 b x x 2 y 1 W. (2.4)3 2 1 !dt « «

Here and elsewhere Ẇ denotes white noise, ^Ẇ& 5 0,
^Ẇ(t)Ẇ(t9)& 5 d(t 2 t9). The parameter « in (2.4) si-
multaneously measures two effects: the strength of the
stochastic forcing and damping of the unresolved mode
and the fact that the timescale of the periodic motion
in the nonlinear climate dynamics occurs on a longer
timescale. Note that consistent with the summary dis-
cussion in the introduction, no stochastic terms have
been introduced in the climate variables alone; in fact,
the goal is to derive such stochastic effects on the
coarse-grained climate timescale. The systematic mode
elimination procedure (theorem 4.3 in MTV-2) rigor-
ously predicts for « K 1 the following reduced sto-
chastic model for the climate variables alone on the
coarse-grained climate timescale

dx1 2 ˙5 b b x 1 b b x x 1 Ï2b x W1 2 1 3 1 2 1 1 2dt
2 21 lx (1 2 a |x| ) 2 x (a 1 b|x| ),1 0 2

dx2 2 ˙5 b b x 1 b b x x 1 Ï2b x W1 2 2 3 2 1 2 2 1dt
2 21 lx (1 2 a |x| ) 1 x (a 1 b|x| ). (2.5)2 0 1

Here and elsewhere in the paper, all stochastic equations
are interpreted in the Itô sense (Gardiner 1985). Thus,
the systematic mode elimination procedure predicts the
stochastic climate model in (2.5) where the equations
in (2.2) for the stable periodic orbit are modified through
both augmented nonlinearity and multiplicative noise in
a specific quantitative fashion. What are the new phe-
nomena in (2.5) compared with those in (2.2) and how
accurately does the reduced model in (2.5) represent the
dynamics in (2.4) for fixed finite values of «?

To address this issue, numerical simulations of (2.4)
and the reduced stochastic model were developed for
the following parameters in (2.4):

b 5 20.75, b 5 20.25, b 5 1 l 5 0.7,1 2 3

a 5 0.8, a 5 0.06, b 5 0.05. (2.6)0

With these parameters, the stable periodic orbit has am-
plitude | x | 5 . 1.118. Here and elsewhere in the21/2a 0

paper, the nonlinear terms are integrated through the
second-order Runge–Kutta method, while the strong
Milstein scheme of order one is utilized for the sto-
chastic terms (Kloeden and Platen 1995). Statistics for
(2.4) and (2.5) were calculated by time averaging an
individual solution integrated over a long time of the
order of T 5 105. In this experiment as well as the
others reported in this section, the parameter « was var-
ied systematically with values « 5 0.125, 0.25, 0.5, 1.
In Fig. 1, a contour plot for the joint probability density
function (PDF) of the climate variables x1 and x2 pre-
dicted by the reduced model is compared with the full
system for values « 5 0.25, 0.5, 1. Note that the reduced
model predicts two large peaks in the PDF along the x2

axis rather than the radially symmetric PDF one might
expect from the stable periodic orbit in (2.2), (2.3); also
note that this predicted PDF from the reduced model
agrees very well with the PDFs in the full triad model
in (2.4) even for values of « 5 1. In Fig. 2 the time
correlation functions for x1 and x2 for the reduced model
and the full triad system are compared for « 5 0.5 and
« 5 1. Once again the agreement is excellent, especially
considering that (2.5) is rigorously valid only for « K
1; the cases with « 5 0.125 and « 5 0.25 are not de-
picted here because the two curves are indistinguishable.
A notable feature of these correlation functions is their
oscillatory character; how do these oscillation frequen-
cies in the correlation functions compare to the corre-
sponding frequency in the stable periodic orbit in (2.2),
(2.3)? The frequency of the stable periodic orbit in (2.3)
is 0.1159 while the oscillation frequencies in the cor-
relation functions for x1 and x2 are 0.18 and 0.14, re-
spectively, that is, as much as 50% larger. Note that the
reduced equation in (2.5) predicts asymmetry in x1, x2

due to the effect of nonlinear interaction with the un-
resolved modes. A more stringent test for the higher-
order statistical behavior of the model involves the nor-
malized correlation of energy in time for an individual
mode (MTV-3),

2 2^x (t 1 s)x (s)&j jK (t) 5 , j 5 1, 2. (2.7)j 2 2 2^x & 1 2^x (t 1 s)x (s)&j j j

The statistical quantity Kj(t) is normalized so that Kj(t)
5 1 for Gaussian variables; thus, Kj(t) is an interesting
test for departures from Gaussianity and the capability
of the reduced stochastic model to capture such effects
in a larger system. The behavior of Kj(t) for the triad
model for « 5 0.5, 1 and the reduced equations is pre-
sented in Fig. 3. Significant features in this figure are
the strong departures from Gaussianity that persist over
nearly a correlation time (see Fig. 2), and the capability
of the reduced model to accurately track these departures
even for « 5 1.
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FIG. 1. Stochastic triad model with stable periodic orbit; contour plot of the joint PDF for the
climate variables (x1, x2) for the reduced stochastic model in (2.5) and the stochastic triad equations
in (2.4) with « 5 0.25, 0.5, 1. See Fig. 8 for the rough size of the peaks independent of «. The
large peaks are along the x2 axis.

FIG. 2. Stochastic triad model with stable periodic orbit; correlation
functions of x1 and x2 for the reduced stochastic model in (2.5) (solid
lines) and the stochastic triad model in (2.4) (dashed lines) with «
5 0.5, 1.0.

b. Multiple equilibria in the trial model

The simplest canonical bifurcation equation with mul-
tiple equilibria for the climate dynamics is the nonlinear
equation

dx
35 l(x 2 ax ), (2.8)

dt

arising from pitchfork bifurcation. For any parameter val-
ues with l . 0, a . 0 the equation in (2.8) has two
stable equilibria at x 5 6 and an unstable equilibriumÏa
at x 5 0. The parameter a controls the strength of the
nonlinear contributions compared to the linear ones in
the simplified climate dynamics, while l measures the
reciprocal of the overall timescale for the climate dy-
namics. Another prominent canonical equation for the
reduced climate dynamics is the system of two equations
arising from saddle node bifurcation (Ghil and Childress
1987). To assess the interaction of the climate dynamics
with the unresolved modes in the simpler situation in
(2.8), the following triad model is studied here:

dx
35 b y y 1 «l(x 2 ax ),1 2 3dt

dy 1 21 ˙5 b y x 2 y 1 W ,2 2 1 1!dt «d «d

dy 1 22 ˙5 b y x 2 y dt 1 W . (2.9)3 1 2 2!dt « «

In (2.9) the parameter d measures the fact that the two
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FIG. 3. Stochastic triad model with stable periodic orbit; correlation
of energy K1,2(t) for x1 and x2 for the reduced stochastic model in
(2.5) (solid lines) and the stochastic triad model in (2.4) (dashed
lines) with « 5 0.5, 1.0.

FIG. 4. Stochastic triad model with multiple equilibria; PDF for
the climate variable x for the reduced equation in (2.10) (solid lines)
and stochastic triad model in (2.10) (dashed lines), with l 5 0.5
(double-well regime) and l 5 0.15 (nearly Gaussian regime).

unresolved modes might be damped and forced with
different strength. In this case, the systematic mode
elimination strategy (theorem 4.3 in MTV-2), valid for
« K 1, predicts the following reduced stochastic equa-
tion for the climate variable x:

dx
3˙5 2g x 1 s W 1 l(x 2 ax ),c cdt

2 2 21g 5 2s 5 (b 1 b ) /(1 1 d ). (2.10)c c 1 2

Here the predicted model has additive noise. In this
model, the reduced equation in (2.10) has an explicit
PDF, which can be computed as a stationary solution
of the associated Fokker–Planck equation (Gardiner
1985). It is given by

2P 5 C exp[2V(x)/2s ],c c

1 1
2 4V(x) 5 (g 2 l)x 1 alx , (2.11)c2 4

where C is a normalization constant. With (2.10) and
(2.11), the reduced stochastic model for the climate var-
iable alone predicts behavior ranging from an essentially
Gaussian density to a strongly peaked PDF at the two
stable equilibria, and this depends in an interesting fash-
ion on both the explicit nonlinear coupling with the
unresolved modes through g c and sc and also the value
of l. To check whether these predictions are satisfied
in the complete triad model, the statistics for numerical
solutions of (2.9) and (2.10) were computed with the
values of b1, b2, b3 from (2.6), d 5 0.75, a 5 0.5, and
two different values of l; l 5 0.5 with a predicted
double-peaked PDF, and l 5 0.15 with a predicted near-
ly Gaussian PDF. As before, the parameter range « 5
0.125, 0.25, 0.5, 1 was utilized for the triad model in
(2.9), but results are only presented below for the large

values, « 5 0.5, 1; the discrepancies of the predictions
for « 5 0.125, 0.25 are insignificant and the agreement
between (2.9) and (2.10) is excellent. In Fig. 4 the PDF
for the climate variable predicted by (2.11) is compared
with the PDF for the climate variable calculated nu-
merically from (2.9) for « 5 0.5, 1 and the two different
values of l. For the double-well regime, with l 5 0.5,
the full triad model has sharper peaks at the stable equi-
libria than the prediction of the reduced model and these
peaks increase with «; nevertheless, the prediction of
the reduced stochastic model is qualitatively accurate.
For the case with l 5 0.15 with a predicted Gaussian
PDF, the predictions of the stochastic model are accurate
for « 5 0.5 but deteriorate somewhat for the larger value
« 5 1. The correlation function of the climate variable
x and the normalized energy correlation function K(t)
from (2.7) for the reduced stochastic model and the full
triad model are presented in Figs. 5 and 6, respectively,
for the two values l 5 0.5, l 5 0.15, and « 5 0.5, 1.
For « 5 0.5 the agreement in these statistics is excellent
while larger errors occur for « 5 1 without any strong
dependence on the value of l.

3. Stochastic consistency with nonlinear climate
dynamics and many degrees of freedom

As summarized in the introduction, the systematic
mode reduction strategy (MTV-1; MTV-2) has two
steps: stochastic consistency and stochastic-mode elim-
ination. In section 2 various facets and predictions of
the second step involving mode elimination have been
tested for prototype models with nonlinear climate dy-
namics and 3 degrees of freedom. Here the same pre-
dictions and issues are studied for model deterministic
systems with over 100 degrees of freedom but with the
same projected nonlinear climate dynamics as the two
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FIG. 5. Stochastic triad model with multiple equilibria; correlation
function of x for the reduced equation in (2.10) (solid lines) stochastic
triad model in (2.10) (dashed lines), with l 5 0.5 (double-well re-
gime) and l 5 0.15 (nearly Gaussian regime).

FIG. 6. Stochastic triad model with multiple equilibria; non-Gaus-
sianity test K(t) for x for the reduced equation in (2.10) (solid lines)
and the stochastic triad model in (2.10) (dashed lines), with with l
5 0.5 (double-well regime) and l 5 0.15 (nearly Gaussian regime);
K [ 1 corresponds to Gaussian behavior.

models in section 2. Thus, the results in section 2 pro-
vide a simplified context for the material presented here.
The main new issue addressed here is an unambiguous
test of stochastic consistency, which involves approxi-
mation of the self-interaction terms among the unre-
solved variables by white noise stochastic forcing and
damping; in chaotic dynamical systems with many de-
grees of freedom and sensitive dependence on small
perturbations in the unresolved modes, this is antici-
pated to be a reasonable approximation provided that
coarse-grained modeling on longer timescales, as for
climate, is the goal.

The deterministic prototype ‘‘toy’’ models introduced
here for these purposes are built in a simple fashion.
The main idea is to use the same low-order triad models
in (2.4) and (2.9) but to replace the strong damping and
white noise forcing for the unresolved variables, y in
(2.4) and y1, y2 in (2.9), by deterministic quadratic non-
linear interactions coupling these modes to many other
deterministic degrees of freedom. Here, the Galerkin
projection of the inviscid Burgers equation, ut 1 uux 5
0, is utilized for these purposes; these equations are a
strongly chaotic system with many degrees of freedom,
an interesting range of equipartition of energy spectrum,
and correlation scaling laws that are predicted success-
fully by simple scaling theories (Majda and Timofeyev
2000). If the complex Fourier amplitudes ûk 5 yk 1 izk

are introduced for 1 # | k | # L with û2 k 5 ,theseû*k
equations are given by

dy ikk 5 2Re û*û*,O p qdt 2 p1q1k50

dz ikk 5 2Im û*û*. (3.1)O p qdt 2 p1q1k50

The equations in (3.1) with L 5 50 are integrated ef-

ficiently later through a standard pseudospectral method
in space and fourth-order Runge–Kutta method in time
(Majda and Timofeyev 2000).

a. Stable periodic orbits with many degrees of
freedom

With the motivation from the previous paragraph, the
deterministic model considered here with 102 degrees
of freedom (1 # k # L) is given by

dx1 2 25 lb x y 1 lx (1 2 a |x| ) 2 x (s 1 b|x| ),1 2 1 1 0 2dt

dx2 2 25 lb x y 1 lx (1 2 a |x| ) 1 x (a 1 b|x| ),2 1 1 2 0 1dt

dy ikk 5 2Re û*û* 1 lb d x x ,O p q 3 1,k 1 2dt 2 p1q1k50

dz ikk 5 2Im û*û*, (3.2)O p qdt 2 p1q1k50

where | x | 2 5 1 and d1,k 5 1 for k 5 1 and 02 2x x1 2

otherwise. The deterministic equations in (3.2) pro-
jected on the three variables (x1, x2, y1) essentially co-
incide with the nonlinear dynamics in (2.4) without sto-
chastic forcing and damping. In the first step of the
stochastic modeling strategy, the deterministic nonlinear
interaction terms for y1 are approximated as follows:

i ˙2Re û*û* ø 2g y 1 s W,O p q 1 1 12 p1q1150

2s 1 5 var{y }. (3.3)12g1
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TABLE 1. Many degrees of freedom system with stable periodic
orbit; low-order statistics for the climate varibles x1 and x2; CT de-
noted correlation time.

DNS Reduced

Mean{x1}
Var{x1}
Flatness{x1}
CT{x1}

0.006
0.38
2.15

10.96

20.0003
0.35
2.31

10.52
Mean{x2}
Var{x2}
Flatness{x2}
CT{x2}

20.004
0.79
1.27

20.16

20.004
0.82
1.23

24.42
FIG. 7. Stable periodic orbit with many degrees of freedom; contour

plots of the joint probability density for the climate variables x1 and
x2; (a) deterministic system with 102 variables in (3.2); (b) reduced
stochastic equation in (3.4). See Fig. 8 for the size of the fourth
peaks. The large peaks are along the x2 axis.

FIG. 8. Stable periodic orbit with many degrees of freedom; mar-
ginal PDFs of x1 and x2 for the simulations of the full equations in
(3.2) and reduced stochastic model in (3.4). (a), (c) DNS stands for
direct numerical simulations.

With the approximation in (3.3) the equations in (3.2)
become essentially the stochastic model in (2.4) with
minor changes; applying the stochastic mode elimina-
tion procedure [theorem (4.3) of MTV-2] yields the re-
duced stochastic model for the climate variables x1, x2

given by

dx1 2 2˙5 N x x 1 s x W 1 lx (1 2 a |x| )1 1 2 1 2 1 0dt
22 x (a 1 b|x| ),2

dx2 2 2˙5 N x x 1 s x W 1 lx (1 2 a |x| )2 2 1 2 1 2 0dt
21 x (a 1 b|x| ), (3.4)1

where
2 2

21 21N 5 l b b g , N 5 l b b g ,1 1 3 1 2 2 3 1

s s1 1s 5 lb , s 5 lb .1 1 2 2g g1 1

This reduced model has the same features as the one in
(2.5) but arises now as the reduced two-dimensional
model in a system with 102 degrees of freedom. For
the same values in (2.6) for the coefficients and 5 2l
the deterministic equations in (3.2) are integrated for
times of the order of T 5 105 and statistics are computed
from this solution. In this damped driven system, the
modes yk, zk, 1 # k # L all achieve equipartition of
energy with a variance 0.2525 within 1%. The coeffi-
cient g1 is determined crudely as the inverse of the area
under the graph of the modulus of the correlation func-
tion for y1, while s1 is determined through g1 and the
variance of y1 through the equation (2g1) 5 var{y1};2s1

the values are g1 5 2.7671, s1 5 1.1803. These for-
mulas completely determine the reduced stochastic
model in (3.4). Table 1 compares the low-order statistics
of the climate variables x1, x2 calculated from the direct
numerical simulation (DNS) of (3.2) and the numerical
integration of the reduced stochastic model in (3.4); in
Table 1 the correlation times are computed as the re-
ciprocal of the integral of the modulus of the correlation
function. Note that the flatness is the ratio of the fourth
moment to the second moment squared. All of the low-

order statistics of x1 and x2 are computed accurately by
the reduced stochastic model; the largest errors are about
20% in the correlation time for x2 with significantly
smaller errors for all the other quantities. The joint PDF
of the variables x1, x2 for both the DNS and the reduced
stochastic model are shown in Fig. 7 while the marginal
PDFs for x1 and x2 are compared in Fig. 8; clearly both
the structure of the PDF and the quantitative amplitude
of the peaks are captured remarkably well by the re-
duced stochastic model. Note from Fig. 8 that the PDF
peaks along the x2 axis are very large while those along
the x1 axis are insignificant. Figure 9 compares the cor-
relation matrix of x1, x2 and the normalized correlation
function of the energy in x2, K2(t) from (2.7). All the
approximations are excellent given the a priori nature
of the reduced model, including the highly non-Gauss-
ian long-tail behavior exhibited by K2(t); K1(t) exhibits
more rapid adjustment to the Gaussian level, K1(t) [
1, and is not displayed here. Finally note from Figs. 9a
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FIG. 9. Stable periodic orbit with many degrees of freedom; two-
point statistics for x1 and x2; deterministic system with 102 degrees
of freedom (solid lines); stochastic reduced equation (dashed lines);
(a),(b) correlation function of x1 and x2, respectively; (c) cross-cor-
relation function of x1 and x2; (d) normalized correlation of energy
K2(t) in x2.

TABLE 2. Many degrees of freedom system with multiple equilibria; low-order statistics for the climate variable x and
the first unresolved mode Y1.

Mean{x} Var{x} Flat{x} Var{y1} CT{x} CT{y1} «

DNS l 5 1.2
Reduced l 5 1.2

20.0037
0.01

1.21
1.12

1.55
1.75

1.04
N/A

3.65
3.38

0.17
N/A

0.56

DNS l 5 0.5
Reduced l 5 0.5

0.012
0.01

0.974
0.91

1.892
2.09

0.852
N/A

3.36
3.22

0.18
N/A

0.55

DNS l 5 0.15
Reduced l 5 0.15

0.0001
0.01

0.72
0.70

2.39
2.53

0.67
N/A

3.58
3.32

0.21
N/A

0.53

and 9b that neither correlation function for x2 has a sig-
nificant oscillatory component representing the ghost of
the stable periodic orbit in the projected climate dynam-
ics, but the oscillatory component of the correlation func-
tion for x1 from the DNS has a frequency v 5 0.1047,
which agrees within about 10% with the frequency of
the deterministic periodic orbit, v 5 0.1159.

b. Multiple equilibria with many degrees of freedom

For the models with multiple equilibria, the prototype
deterministic models with 101 variables are given by

dx
25 lb y z 1 l(1 2 ax )x,1 1 1dt

dy ikk 5 2Re û*û* 1 lb d xz ,O p q 2 1,k kdt 2 p1q1k50

dz ikk 5 2Im û*û* 1 lb d xy . (3.5)O p q 3 1,k kdt 2 p1q1k50

The projection on the variables (x, y1, z1) gives essen-
tially the same nonlinear dynamics as for the model in
(2.9) without forcing and damping provided the unre-

solved variables y1, z1 are identified with y1, y2 in (2.9).
As in (3.3) stochastic consistency involves the approx-
imation

i ˙2Re û*û* ø 2g y 1 s W ,O p q 1 1 1 12 p1q1150

i ˙2Im û*û* ø 2g z 1 s W (3.6)O p q 1 1 1 22 p1q1150

with /(2g1) 5 var{y1} 5 var{z1}. With the approx-2s1

imations in (3.6), the equations in (3.5) become essen-
tially the stochastic model in (2.9) with minor changes
and the stochastic mode elimination procedure yields
the following reduced stochastic model for the climate
variables

dx
2˙5 2g x 1 s W 1 l(1 2 ax )x, (3.7)c xdt

where
2

2 2l b s g1 1 c2 2g 5 , s 5 s .c c 124g g1 1

Recall from section 2 that the parameter l determines
the structure of the PDF of x as in (2.11); the three
values l 5 0.15, 0.5, 1.2 are considered in the numerical
simulations of the deterministic model in (3.5) with l
5 3 and the same remaining parameters from section
2b. The 96 modes yk, zk with k $ 3 exhibit equipartition
of energy within 2% for three different values of l.
Table 2 lists the quantities var{y1} and correlation time
of y1 for the three cases that are utilized for computing
the values of g c , sc needed for the reduced stochastic
model in (3.7). The value of « in Table 2 was deter-
mined by comparing (3.7) with (2.9) utilizing the larg-
est interaction coefficient, b3 5 1, to yield « ø

var{x} ø 0.5. The low-order statistics for climate21l g 1

variable x in the DNS and predicted by the reduced
stochastic model are in excellent agreement for all three
cases. The PDFs for the deterministic system and the
one-dimensional reduced stochastic model for the three
cases are presented in Fig. 10. As anticipated by the
results in section 2b for « ø 0.5, the one-dimensional
stochastic model captures the transition behavior in the
PDF of the deterministic system from peaks at the stable
equilibria to a nearly Gaussian PDF as l decreases. As
can be anticipated from Table 2, both the correlation
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FIG. 10. Multiple equilibria with many degrees of freedom; PDF for the climate variable x for
the simulations of the deterministic model in (3.5) (solid lines) and the reduced equation in (3.7)
(dashed lines) in three regimes, l 5 1.2, 0.5, 0.15; (c) the solid and dashed lines nearly overlap
in the regime l 5 0.15.

function for the climate mode and the normalized cor-
relation function for the energy in the climate mode K(t),
depicted in Fig. 11 for the three cases, have only small
discrepancies between the DNS and the single-variable
reduced stochastic model. Note by comparing Fig. 9d
and Fig. 11 for the three cases that the departures from
Gaussianity measured by K(t) are much stronger for both
the reduced model and DNS for multiplicative noise in
the reduced model as compared with the three additive
noise cases presented here.

4. A priori stochastic modeling for topographic
stress

The ideal barotropic quasigeostrophic equations with
a large-scale zonal mean flow U on a 2p 3 2p periodic
domain (Carnevale and Frederiksen 1987) are given by

]q ]q ]c
⊥1 = c · =q 1 U 1 b 5 0,

]t ]x ]x
q 5 Dc 1 h,

dU 1 ]c
5 h dx dy, (4.1)E2dt 4p ]x

where q is the potential vorticity, U is the large-scale
zonal mean flow, c is the streamfunction, and h is the
topography. In (4.1), the mean flow changes in time
through the topographic stress; this effect is the direct
analogue for periodic geometry of the change in time
of angular momentum due to mountain torque in spher-
ical geometry (Frederiksen et al. 1996). Here the a priori
stochastic modeling strategy (MTV-1; MTV-2) is ap-
plied to the stochastic modeling of the topographic stress
terms in (4.1) as an analogue for mountain torque; thus,
the variable U is the resolved variable while all the
modes ck are unresolved variables for the general sto-
chastic modeling strategy as summarized in the intro-
duction and applied earlier in sections 2 and 3. Given
that U responds linearly to the streamfunction in (4.1),
naively, one might anticipate that the predicted sto-
chastic model for U is a linear Langevin equation with
damping and white noise forcing. Surprisingly, the new

application of the stochastic modeling strategy devel-
oped later yields a nonlinear stochastic equation for U;
furthermore, numerical simulations reveal an improved
prediction of the correlation function for U beyond a
purely linear stochastic model. The equations in (4.1)
are expanded in Fourier modes with f k denoting the kth
Fourier coefficient of a 2p-periodic function f with k
5 (kx, ky) and truncated to | k | 2 # L. The truncated
equations conserve the two quadratic invariants, energy
and enstrophy, and have a family of Gaussian invariant
measures (Carnevale and Frederiksen 1987), depending
on two parameters, a, m . 0 with

b
U 5 mean{U} 5 2 ,

m

1
var{U} 5 ,

am

hkc 5 mean{c } 5 2 ,k k 2m 1 |k|

1
var{c } 5 . (4.2)k 2 2a|k| (m 1 |k| )

The predicted mean state in (4.2) is nonlinearly stable
(Carnevale and Frederiksen 1987) and does not have
topographic instability.

a. A priori stochastic model

The fully a priori strategy assumes that the climate
PDF is given by the Gaussian measure defined by (4.2)
for fixed a, m . 0; nondimensional variables for per-
turbations about the climate mean are given by

newU 5 (U 2 U)/Ïvar{U},
newc 5 (c 2 c̃ /Ïvar{c }. (4.3)k k k k

In the new variables, the truncated equations from (4.1)
for each Fourier mode and U are given by
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FIG. 11. Multiple equilibria with many degrees of freedom; two-point statistics of the climate
variable, x, in three regimes, l 5 1.2, 0.5, 0.15 for the deterministic equations in (3.5) (solid
lines) and for the reduced equation in (3.7) (dashed lines). (a),(b),(c) correlation function of x;
(d),(e),(f ) correlation of energy K(t) in x.

dc kk x5 2i Uc 1 ik H9U 2 iV9ck x k k kdt Ïam

1 B c*c* 1 L c ,O Oklm l m kl l
l,m l

dU
5 2 Im k H9c , (4.4)O x k kdt k

where

m
H9 5 h ,k k 2 2!|k| (m 1 |k|

k bxV9 5 2 Uk . (4.5)k x2|k|

Note that is the Rossby wave frequency DopplerV9k
shifted by the mean flow. In the present application, all
the ck are unresolved variables; thus, the first step is to
invoke the approximation of stochastic consistency,

˙B c*c* 1 L c ø 2g c 1 s W , (4.6)O Oklm l m kl l k k k k
l,m l

where /gk 5 1, which is consistent with var{ck} 52sk

1 in the nondimensional variables. Utilizing the heuristic
approximation from (4.6) in (4.4) defines the approxi-
mate stochastic model as developed earlier in section
3. In the second step of the procedure, a stochastic model
elimination procedure is applied to get a stochastic equa-
tion for the climate variable U on a coarse-grained time-
scale. The novel feature of this modeling step in the

present application rests on the observation that the con-
tribution from the nonlinear interaction term, ikx(am)21/

2Uck, in (4.4), is often large. This is demonstrated a
posteriori in the numerical tests developed later (see
Figs. 13 and 14). Utilizing this fact in the systematic
stochastic modeling procedure results in the predicted
nonlinear reduced equation for U,

dU ˙5 2g(U )U 1 g9(U ) 1 Ï2g(U )W, (4.7)
dt

where g9(U) 5 dg/dU and

2 2k |H9 | gx k kg(U ) 5 2 . (4.8)O 2 1/2 2g 1 [V9 1 k (am) U ]k k k x

The details of the derivation of (4.7) are sketched in the
appendix. Note that the Doppler-shifted topographic
Rossby wave frequencies, Vk from (4.5), enter into the
nonlinear corrections in the denominator in (4.8). Under
the additional assumption that (am)21 | kxU | 2 K 12gk

( )2, a standard predicted linear stochastic model forV9k
U emerges from (4.7) with g 5 g(0) from (4.8) and
g9(0) 5 0 (MTV-1; MTV-2). Next, the performances of
both the nonlinear stochastic model in (4.7) and the
linear model are compared with numerical simulations.

b. Comparison with numerical simulations

In the numerical experiments reported later, the trun-
cation | k | 2 # L with L 5 17 was utilized with 57
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TABLE 3. One-point statistics for U and the real part of the first few modes ck for the simulations with H 5 0.3535 (max|h| 5 0.5).

U c(1,0) c(0,1) c(1,1) c(1,21) c(2,0) c(0,2)

DNS mean
DNS variance
DNS skewness
DNS flatness

20.458
0.3789
0.693
2.95

0.06287
0.1718

20.0912
2.54

0.00093
0.1737

20.0025
2.53

0.00024
0.0675
0.0093
2.73

0.00015
0.0666

20.0061
2.73

0.00008
0.0219
0.0025
2.88

0.00011
0.0221
0.0008
2.89

Stat mech mean
Stat mech variance

20.5
0.5

0.05891
0.1666

0
0.1666

0
0.0625

0
0.0625

0
0.0208

0
0.0208

Reduced mean
Reduced variance
Reduced skewness
Reduced flatness

0.5005
0.4984
0.0258
2.935

TABLE 4. The same as in Table 3 except simulations with H 5 0.7071 (max|h| 5 1).

U c(1,0) c(0,1) c(1,1) c(1,21) c(2,0) c(0,2)

DNS mean
DNS variance
DNS skewness
DNS flatness

20.442
0.382
0.6601
2.95

0.12234
0.16965

20.1818
2.6

20.0044
0.17569

20.0018
2.55

20.00029
0.0672

20.006
2.75

0.0011
0.0675
0.008
2.73

0.00055
0.0221
0.01
2.88

20.00008
0.0221

20.009
2.88

Stat mech mean
Stat mech variance

20.5
0.5

0.11785
0.1666

0
0.1666

0
0.0625

0
0.0625

0
0.0208

0
0.0208

Reduced mean
Reduced variance
Reduced skewness
Reduced flatness

20.501
0.4951
0.0114
3.0032

degrees of freedom. Since the main contributions for
fluctuations in angular momentum due to mountain
torque are due to large-scale Rossby waves (Egger
2001), here b 5 1 and single-mode large-scale topog-
raphy,

h(x, y) 5 H[cos(x) 1 sin(x)], (4.9)

is utilized with three amplitudes for H 5 0.3535, 0.7071,
1.06, so that max | h | 5 0.5, 1, 1.5, in order to exhibit
a range of behavior for the correlation functions. The
use of a single topographic Rossby mode here in the
model is to provide a difficult extreme test for stochastic
mode reduction rather than complete fidelity to realistic
topography. The truncated equations for the variables
U and the single topographic mode alone have com-
pletely integrable nonlinear oscillations (Grote et al.
1998) and no stochastic behavior. Nevertheless, all of
the transfer of fluctuations from the other unresolved
modes to the mean flow occurs through this single Ross-
by mode. In the numerical simulations, the Fourier
modes of the initial data had random phases and am-
plitudes consistent with the ensemble mean energy and
enstrophy for the Gaussian measure specified by (4.2)
with the prescribed m and a; after skipping an initial
time interval of the order of 2 3 104, statistics were
computed from the values of this numerical solution for
times of order T 5 1.5 3 104. The benchmark values
a 5 1, m 5 2 are utilized in all the simulations. Note
that the numerical simulations are not automatically cen-
tered at the climate mean state predicted in (4.2) as a
stringent test.

The theoretical equilibrium statistical predictions
summarized in (4.2) are a Gaussian PDF for U and all
Fourier amplitudes, ck; furthermore, the nonlinear sto-
chastic model in (4.7) also has Gaussian PDF by design
(MTV-2; MTV-3). See the appendix. In Tables 3, 4, and
5, the low-order single time statistics for U and Re ck,
| k | 2 # 4 from the numerical simulations are compared
with the theoretical predictions from (4.2) and for the
reduced stochastic model in (4.7) for H 5 0.3535,
0.7071, 1.06. Several trends are evident: for all of the
modes except U and c(1,0) the predictions of equilibrium
statistical mechanics (stat mech) are excellent; the dis-
crepancies for U are largest of order 15% in the mean
and 20%–25% in the variance with somewhat smaller
discrepancies for the mean and variance for c(1,0). One
unexpected feature is the evident positive skewness in
the PDF for U, which persists for all three cases with
a weaker negative skewness in the PDF for Re c(1,0).
Since the stochastic model is based on the a priori cli-
mate in (4.2), it necessarily has a Gaussian PDF and
cannot account for these features.

The correlation functions for U and the modes Re
c(1,0), Re c(0,1) are presented in Fig. 12 for the three
topographic amplitudes. Note that the correlation time
of U decreases while the correlation time of Re c(1,0)

increases as the amplitude of the topography increases
and these two times are comparable for the last case
with H 5 1.06 (max | h | 5 1.5); also, the correlation
function for U tends to develop oscillations in phase
with those in Re c(1,0) as the topographic amplitude in-
creases. Recall that c(1,0) is the amplitude of the large-
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TABLE 5. The same as in Table 3 except simulations with H 5 1.06 (max|h| 5 1.5).

U c(1,0) c(0,1) c(1,1) c(1,21) c(2,0) c(0,2)

DNS mean
DNS variance
DNS skewness
DNS flatness

20.4455
0.3847
0.682
3.04

0.18451
0.16706

20.2636
2.68

20.0008
0.1755
0.0034
2.55

0.00019
0.0677
0.0017
2.73

20.0002
0.0674

20.0025
2.74

0.0007
0.0221
0.0159
2.88

0.00008
0.0219
0.0074
2.88

Stat mech mean
Stat mech variance

20.5
0.5

0.17677
0.1666

0
0.1666

0
0.0625

0
0.0625

0
0.0208

0
0.0208

Reduced mean
Reduced variance
Reduced skewness
Reduced flatness

20.501
0.4962
0.008
3.01

FIG. 12. Barotropic QG equation; comparison of correlation function of the mean U (solid line),
Re c1,0 (dashed line), and Re c1,0 (dot–dashed line) for simulations of the barotropic QG equation
in (4.1) for three values of max | h | 5 0.5, 1.0, 1.5.

scale Rossby wave that interacts with the topography
while c(0,1) is associated with zonal flow amplitudes so
oscillatory correlations in c(1,0) and decaying correla-
tions in c(0,1) are expected. Clearly, no simple linear
Langevin stochastic model can capture the behavior of
the correlations in U depicted in Fig. 12.

The nonlinear stochastic model in (4.7) and the cor-
responding linear model require estimated values for sk

and gk. The decay time g (1,0) in (4.6) was chosen as the
best fit to the correlation function of Re c(1,0) by
exp cos( t) with from (4.5) and sk deter-2g t(1,0) V9 V9(1,0) (1,0)

mined from (4.2) and /gk 5 var{ck}. The correlation2sk

functions for U determined by the nonlinear stochastic
equation in (4.7) with these parameters and the corre-
sponding linear stochastic model are compared with the
numerical correlation functions for the three cases in
Figs. 13 and 14; Fig. 14 has a logarithmic vertical scale.
As is evident from these figures, the predictions of the
nonlinear stochastic model are quite good with similar
accuracy for all three topographic heights, including the
difficult case, max | h | 5 1.5, where the ratio of cor-
relation times for Re c(1,0) and U is approximately one.
Furthermore, the nonlinear stochastic model has pre-
dictions that are always clearly superior to the linear
stochastic model although both models have comparable
asymptotic behavior for very large lag times.

5. Summary and conclusions

A systematic modeling strategy for stochastic mode
reduction (MTV-1; MTV-2) has been applied here to

three prototype ‘‘toy’’ models with nonlinear behavior
mimicking several important features for low-frequency
variability of the atmosphere. In particular, models with
either stable periodic orbits or multiple equilibria in the
projected climate dynamics were emphasized in sections
2 and 3. The systematic strategy has two steps: sto-
chastic consistency and stochastic mode elimination.
Both aspects of the strategy are tested in the paper in
an a priori fashion; in particular, it has been established
in all examples studied here that the stochastic mode
elimination step, which is justified rigorously only for
« K 1, in fact applies for values of « as large as « ø
0.5 and even « ø 1 in many situations. Since « measures
roughly the square root of the ratio of correlation times
of unresolved variables to the resolved ones, these re-
sults suggest potential application of the method for
reduced stochastic modeling of low-frequency variabil-
ity in the atmosphere where « ø 0.4 or 0.5 (the ratio
of 3 to 4 days for synoptic-scale correlations to 8 to 10
days for low-frequency variables). The results devel-
oped here provide some new perspectives on both the
role of stable nonlinear structures in projected nonlinear
climate dynamics and also regression fitting strategies
for stochastic climate modeling.

The example in section 3a dramatically illustrates
several of these points. This deterministic system with
102 degrees of freedom has an explicit periodic orbit,
which is stable as regards the projected climate dynam-
ics for the two climate variables; however, the ‘‘ghost’’
of this periodic oscillation in the complete deterministic
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FIG. 13. Barotropic QG equation; comparison of the correlation function of U for three values
of max | h | 5 0.5, 1.0, 1.5; DNS of the barotropic QG equation in (4.1) (solid line); nonlinear
reduced stochastic model in (4.7) (dashed line); corresponding linear reduced stochastic model
(dotted line).

FIG. 14. Barotropic QG equation; same as in Fig. 13 on logarithmic scale.

system instead yields a PDF with two large peaks and
two secondary peaks (see Figs. 7 and 8) that only weakly
‘‘shadow’’ this periodic orbit; in the example, only the
correlation function of the variable x1 (see Fig. 9), as-
sociated with the smaller peaks reflects any feature of
the stable nonlinear oscillation in the projected nonlinear
climate dynamics. Furthermore, the systematic proce-
dure produces reduced stochastic equations for the two
climate variables that reproduce all of the features in
the climate dynamics of the deterministic equations in
a quantitative fashion (Table 1, Figs. 7, 8, and 9). Key
features of the reduced stochastic model, (3.4), are mul-
tiplicative noises and augmented nonlinearity produced
through interaction with the unresolved variables that
are predicted a priori by the systematic modeling strat-
egy. Also note in this example that x1, x2 [ 0, yk, zk [
0 is unstable for the deterministic system, yet arises as
the climate mean state (Table 1). Furthermore, this zero
state is in a basin of low probability in the PDF for the
climate variables (Figs. 7 and 8) so the climate dynamics
rarely visits the climatological mean state. This phe-
nomenon is very similar to the one reported in Markov
models for observational data for low-frequency be-
havior (Mo and Ghil 1988). These models also provide
dramatic examples of the failure of standard regression
fitting through Langevin-type linear models involving
only linear equations with white noise forcing; in such
a procedure, the correlation functions centered at the
climatological mean state are fit by the procedure.

Knowledge of only the mean state from Table 1 and the
correlations in Figs. 9a–c strongly suggests such a linear
Langevin regression fit, which has only Gaussian be-
havior; on the other hand, this approach must fail due
to nonlinearity in the reduced dynamics; recall that both
the PDF (Figs. 7 and 8) and the energy correlations,
K2(t), exhibit strongly non-Gaussian behavior in the dy-
namics that is captured by the reduced stochastic model
with nonlinear dynamics in (3.4).

Several interesting additional points also can be made
for the deterministic system in section 3b with 101 de-
grees of freedom and simple multiple equilibria in the
projected nonlinear climate dynamics. It is established
there that both the strength of the coupling to the un-
resolved modes and the strength of nonlinear climate
dynamics measured by l in (3.5) determine whether the
stable multiple equilibria are important (Fig. 10a) or
relatively unimportant (Fig. 10c) in the deterministic
dynamics. Furthermore, such features and transition re-
gimes are captured by the predicted reduced one-di-
mensional nonlinear stochastic equation for the climate
dynamics with additive noise in (3.7) including excel-
lent a priori prediction of temporal correlations (Figs.
10 and 11) through all of the transition parameter re-
gimes l 5 0.15, 0.5, 1.2. Since the role of multiple
equilibria in predicted nonlinear climate dynamics in
low-frequency variability is a controversial topic (Ghil
and Robertson 2002), these examples and the reduced
stochastic model quantify the issues surrounding the
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importance of multiple equilibria in an unambiguous toy
model. However, some of the controversy involves sta-
tistical issues with limited observational datasets, which
cannot be addressed in the toy model. In more realistic
systems, the climate variables interact with the unre-
solved variables through superposition of both types of
triad interactions from the models in sections 2 and 3;
the systematic stochastic modeling strategy predicts su-
perposition of multiplicative noises, augmented nonlin-
earity, and additive noise in the general case [theorem
(4.3) in MTV-2], and this should be useful for improved
regression fitting strategies.

The systematic stochastic mode reduction strategies
are applied in section 4 in an idealized context to the
stochastic modeling of the effect of mountain torque on
the angular momentum budget. Surprisingly, a new ap-
plication of the stochastic modeling strategy is devel-
oped there that leads to a nonlinear stochastic equation
for the large-scale mean. Furthermore, it is established
there that such reduced nonlinear stochastic dynamics
improve the predicted correlation functions significantly
compared with the linear Langevin model.

The case study presented in section 4 involves the
extreme situation of a single topographic Rossby mode
interacting with the mean flow; this case is utilized here
as a severe but simple test for the stochastic mode re-
duction strategy. Even the new nonlinear stochastic
mode reduction procedure that accounts for the effect
of the single topographic Rossby frequency through
(4.5) and (4.8) cannot capture the oscillations in the
correlation function for U evident in Figs. 12 and 13
for large topographic amplitudes when U is treated as
the single climate variable. A systematic study by the
authors of stochastic modeling for mountain torque with
realistic large-scale multimode topography in spherical
geometry with both quasigeostrophic and primitive
equation models is in progress; the detailed results will
be reported elsewhere.

Finally, there are several important issues for climate
modeling that have not been addressed in the present
work. The stochastic mode reduction strategy developed
here assumes a partition into slower evolving climate
variables and more rapidly evolving unresolved variables.
How can such a partition be achieved in a complex cli-
mate model? The possibilities for developing such a par-
tition range from utilizing a basis of empirical orthogonal
functions in a suitable metric for the dynamics (Bransta-
tor 1995; Selten 1997), to a basis of optimally persistent
patterns (DelSole 2001), to a basis of principal interaction
patterns (Achatz et al. 1995), etc. Clearly, this is a central
issue for the applicability of the stochastic-mode reduc-
tion procedures to realistic climate problems and warrants
extensive research efforts. Other important issues for the
use of stochastic-mode reduction in climate models in-
volve the physical fidelity of the reduced models re-
garding changes in the external parameters of the climate
as well as fidelity with the predictability characteristics
of the climate variables. In particular, the validity of an

accurate fluctuation–dissipation theorem (Leith 1975) for
the reduced stochastic climate description is a funda-
mental problem. It was established in section 3 that the
toy models introduced there exhibit substantial changes
in the climate PDF that are captured by the stochastic
reduced model. Thus, the models introduced here provide
instructive examples for these central problems in climate
research. The authors plan to report on these issues in
the toy models in the near future.
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APPENDIX

Stochastic Mode Elimination

In this appendix, the reduced equation in (4.7) for the
zonal mean flow U alone is obtained by mode elimi-
nation from the truncated barotropic equations in (4.4)
under the stochastic consistency assumption in (4.6).
For the reader’s convenience, a heuristic, but strictly
formal, derivation of (4.7) is first given. Next, the ef-
fective equation in (4.7) is reobtained in a systematic
fashion by asymptotic analysis of Fokker–Planck op-
erators, which can be made rigorous following Kurtz
(1973). Notice that some difficulty arises with the heu-
ristic derivation as concerns the interpretation of the
multiplicative noise in (4.7); this problem is solved un-
ambiguously by the systematic derivation of this equa-
tion. The interested reader is referred to Gardiner (1985,
section 6.4) for a heuristic discussion of the mode elim-
ination procedure on a simpler example with no problem
of interpretation of the noise.

The truncated barotropic equations in (4.4) under the
stochastic consistency assumption in (4.6) read

dck ˙5 ik H9U 2 g (U )c 1 s W ,x k k k k kdt

dU
5 2 Im k H9c , (A.1)O x k kdt k

where

g (U ) 5 g 1 iv (U ), withk k k

kxv (U ) 5 V9 1 U. (A.2)k k Ïam

The basic requirement to eliminate the unresolved
modes, ck, from (A.1) is that these modes are so fast
that they adjust themselves quasi-instantaneously to the
value of the slow mode, U, whose evolution is sought.
For (A.1) this adiabatic adjustment arises provided that
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gk(U) is large enough; when this is the case, the second
equation for ck in (A.1) can be solved with U being
kept frozen at its given value:

c (t) ø c (0) exp[g (U )t]k k k

t

1 ik H9U exp[2g (U )s] dsx k E k

0

t

˙1 s exp[2g (U )(t 2 s)]W (s) ds. (A.3)k E k k

0

For time such that gk(U)t k 1, the first term in this
expression becomes negligible [i.e., the memory of the
initial condition ck(0) is lost], and the lower limit in
the integrals can be pushed back to 2` without intro-
ducing any significant error. Therefore,

k H9Ux kc (t) ø ik g (U )k

t

˙1 s exp[2g (U )(t 2 s)]W (s) ds, (A.4)k E k k

2`

and inserting this expression in the first equation for U
in (A.1) leads after some manipulations to

dU
5 2g(U )U 1 Ï2g(U )j(t). (A.5)

dt

Here the nonlinear damping factor g(U) is precisely the
one given in (4.8), and j(t) has been defined as

2
j(t) 5 Im k H9sO x k k!g(U ) k

t

˙3 exp[2g (U )(t 2 s)]W (s) ds. (A.6)E k k

2`

Therefore, (A.5) is identical with (4.7) provided it can
be shown that

˙Ï2g(U )j(t) ø g9(U ) 1 Ï2g(U )W, (A.7)

in suitable limit. Establishing (A.7) requires to show
that j(t) is approximately delta correlated in time, and
that the Fokker–Planck operator associated with this
noise term has to be written is self-adjoint form [see
(A.23) below]; the second requirement is what gives
rise to the second term at the right-hand side of (A.7)
that is in fact a noise-induced drift term, similar to the
one which is obtained when a Stratonovich stochastic
differential equation is rewritten in Itô’s form. The white
noise nature of j(t) is rather straightforward to establish,
as shown next. However, the second property for the
Fokker–Planck operator is more subtle and cannot be
obtained within the heuristic derivation; this property
will be established afterwards in the systematic deri-
vation of (4.4).

To establish the white noise nature of j(t) heuristi-

cally, the autocorrelation function of this noise is com-
puted and shown to be delta correlated in time. Using
^Ẇk(t) (t9)& 5 d(t 2 t9)dk,k9 it can be checked after aẆ*k9

tedious but straightforward calculation that

1
2 2 2^j(t)j(t9)& 5 k (H9) s exp[2g |t 2 t9|]O x k k kg(U) k

3 cos[v (U)(t 2 t9)]. (A.8)k

Since

exp(2g |t 2 t9|) cos[v (U )(t 2 t9)]k k

1
ø d(t 2 t9), (A.9)

2 2g 1 v (U )k k

as gk → `, it follows from (A.8) using 5 gk that2sk

^j(t)j(t9)& ø d(t 2 t9) (A.10)

in this limit; therefore, j(t) in (A.5) is indeed approx-
imately a white noise.

The reduced equation in (4.7) can be derived in more
systematic fashion by manipulating the Fokker–Planck
equation associated with the stochastic model in (A.1).
First, it is necessary to make the separation of timescale
apparent by introducing a tracer parameter « and re-
writing (A.1) as

dc i g (U ) sk k k ˙5 k H9U 2 c 1 W ,x k k k2dt « « «

dU 2
5 Im k H9c . (A.11)O x k kdt « k

The parameter « must be thought of as a small parameter,
which allows us to distinguish the relative amplitude of
the various terms in (A.11). Note that it has been as-
sumed in (A.11) that all the terms entering gk(U)ck–
that is, the nonlinear interaction term ikx(am)21/2Uck,
the oscillatory term i ck, and the damping term gkck–V9k
are large and of the same order, «22; this assumption
must be checked a posteriori and, in the present case,
leads indeed to results for the reduced equation that are
consistent with the direct numerical simulation of the
original equations in (4.4). The Fokker–Planck equation
associated with (A.11) is

] f 1 1
5 L f 1 L f, (A.12)1 22]t « «

where L1, L2 are the operators

] ]
L 5 2 Im k H9c 1 ik H9U , (A.13)O O1 x k k x k]U ]ck k k

2] ]
2L 5 2 g (U ) 1 s . (A.14)O O2 k k]c ]c ]c*k kk k k

To take the limit as « → 0 in (A.12) and derive an
equation for f 0 5 lim«→0 f , the function f is formally
expanded as f 5 f 0 1 « f 1 1 «2f 2 1 O(«3). Inserting
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this expansion in (A.12) and regrouping the terms of
order «22 leads to

L f 5 0,2 0 (A.15)

which indicates that f 0 belongs to the null space of L2

or, equivalently, that P f 0 [ f 0; here, P is the projection

(Pg)(U ) 5 P (c)g(U, c) dc, (A.16)E U

where g is a test function and PU(c) is the stationary
PDF associated with the operator L2. Since L2 is the
Ornstein–Uhlenbeck operator in ck, with U entering
here as a parameter, PU(c) can be obtained explicitly
(see e.g., appendix A of MTV-2) and is given by

2 2P (c) 5 C exp 2 |g (U )| |c | /s , (A.17)OU k k k[ ]k

where C is a normalization constant. Next, regrouping
the terms of order «21 in (A.12) with f 5 f 0 1 « f 1 1
«2f 2 1 O(«3) leads to

L f 5 2L f .2 1 1 0 (A.18)

This equation has a solution only if the left-hand side
belongs to the range of L2, which requires that PL1f 0

5 0; it can be checked that this condition is automat-
ically satisfied in the present case. Therefore, the so-
lution of (A.18) is

21f 5 2L L f .1 2 1 0 (A.19)

Finally regrouping the terms of order 1 in (A.12) and
using (A.19) gives

] f0 21L f 5 1 L L L f , (A.20)2 2 1 2 1 0]t

and the solvability condition for this equation, P(right-
hand side) 5 0, leads to the desired equation for f 0

] f0 215 L f , L 5 2 PL L L P. (A.21)0 1 2 1]t

The operator can be computed explicitly using again21L 2

the fact that L2 is the Ornstein–Uhlenbeck operator in
ck, with U entering as a parameter; the calculation is
very similar to the one outlined in appendixes A and B
of MTV-2, and the final result for L is

2] f ] f ] f0 0 0L f 5 2g(U )U 1 g9(U ) 1 g(U ) , (A.22)0 2]U ]U ]U

with g(U) given by (4.8). It follows that the Itô equation
associated with (A.21) is precisely (4.7). Notice that
(A.22) shows that the second term at the right hand-
side of (4.7) is indeed a noise-induced drift, as asserted
before, since (A.23) can also be written as follows with
the diffusive term in self-adjoint form:

] f ] ] f0 0L f 5 2g(U )U 1 g(U ) . (A.23)0 [ ]]U ]U ]U
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