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Abstract

The Madden–Julian Oscillation’s (MJO’s) “skeleton” is its fundamental features on intrasea-
sonal/planetary scales: (i) slow eastward phase speed of roughly 5 m/s, (ii) peculiar dispersion
relation with dω/dk ≈ 0, and (iii), horizontal quadrupole vortex structure. The MJO skeleton
model is a minimal, nonlinear oscillator model that captures these three features together. The
fundamental mechanism involves interactions between moisture, convective activity, and equatorial
fluid dynamics. Further details beyond the MJO skeleton are referred to as the MJO’s “muscle” and
include refined vertical structure and upscale convective moment transport from sub-planetary-scale
convection and waves.

1 Introduction

The Madden-Julian Oscillation (MJO) is the dominant component of intraseasonal (≈ 30-60 days)
variability in the tropics. This variability appears not only in the wind, pressure, and temperature
fields, but also in water vapor and convection. The structure of the MJO is a planetary-scale
(≈ 10,000-40,000 km) circulation cell with regions of enhanced and suppressed convection, and it
propagates slowly eastward at a speed of roughly 5 m/s. The main regions of MJO activity are the
Indian and western Pacific Oceans, and the MJO interacts with monsoons, tropical cyclones, ENSO,
and other tropical phenomena. Nevertheless, while the MJO is mainly a tropical phenomenon, it
also interacts with the extratropics and can affect midlatitude predictability.

The fundamental features of the MJO on intraseasonal–planetary scales are referred to here as
the MJO’s “skeleton”:

I. Slow eastward phase speed of roughly 5 m/s,

II. Peculiar dispersion relation with dω/dk ≈ 0, and

III. Horizontal quadrupole vortex structure.

While these are the salient planetary–intraseasonal features of MJO composites, individual MJO
events often have additional features, such as westerly wind bursts, and different varieties of con-
vective features within the MJO envelope. Since these additional features add detailed character
to each MJO’s structure, and since these features often account for additional strength beyond the
MJO’s skeleton, they are referred to here as the MJO’s “muscle.”
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While the MJO is often described as an intraseasonal–planetary scale phenomenon, it actually
has a complex multiscale structure. The MJO’s region of enhanced convection is composed of
a menagerie of smaller-scale convective processes, including synoptic-scale convectively coupled
equatorial waves (CCEWs), mesoscale convective systems (MCSs), and tropical cyclones. Hence
the MJO is essentially an envelope of sub-planetary-scale convective activity and is a multiscale
phenomenon. In light of this, multiscale interactions are a key part of the theory for the MJO’s
skeleton and muscle.

The MJO skeleton model is a minimal dynamical model that captures the MJO’s intraseasonal–
planetary scale features I-III together. The model is a nonlinear oscillator model whose fundamen-
tal mechanism involves interactions between moisture, convective activity, and equatorial fluid
dynamics. Before presenting the full MJO skeleton model, these main components are described
individually.

2 Dry Equatorial Long-wave Equations

The equatorial long-wave equations describe equatorial dynamics on planetary spatial scales of
O(10, 000 km) in the zonal x direction and intraseasonal time scales of O(10 days) or longer. The
equations take the form

∂u′

∂t
− yv′ +

∂p′

∂x
= 0 [1]

yu′ +
∂p′

∂y
= 0 [2]

∂p′

∂z
= θ′ [3]

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0 [4]

∂θ′

∂t
+ w′ = 0 [5]

Here u′, v′, and w′ are the zonal, meridional, and vertical velocity anomalies, respectively; and p′

and θ′ are the pressure and potential temperature anomalies, respectively. Notice that the ∂v′/∂t
term is small in this long-wave limit, and hence geostrophic balance is satisfied in the meridional
y direction but not the zonal x direction. The Coriolis terms −yv′ and yu′ vanish at the equator
(y = 0) and are written using the equatorial beta-plane approximation. The equations [1]–[5] have
been nondimensionalized using the standard equatorial reference scales described in Table 1.

[TABLE 1 ABOUT HERE]

The wave solutions of [1]–[5] can be found by expanding in vertical and meridional basis func-
tions. First, each variable is expanded in terms of vertical structure functions such as u′(x, y, z, t) =
∑

j u
′

j(x, y, t)
√
2 cos(jz), etc. This allows the equations [1]–[5] to be separated into an infinite num-

ber of (long-wave) shallow water systems, where each mode j corresponds to a separate independent
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Table 1: Constants and reference scales for nondimensionalization.

Parameter Derivation Value Description

β 2.3× 10−11 m−1 s−1 Variation of Coriolis parameter with latitude
θ0 300 K Potential temperature at surface
g 9.8 m s−2 Gravitational acceleration
H 16 km Tropopause height
N2 (g/θ0)dθ̄/dz 10−4 s−2 Buoyancy frequency squared
c NH/π 50 m s−1 Velocity scale

L
√

c/β 1500 km Equatorial length scale
T L/c 8 hrs Equatorial time scale

HN2θ0/(πg) 15 K Potential temperature scale
H/π 5 km Vertical length scale
H/(πT ) 0.2 m s−1 Vertical velocity scale
c2 2500 m2 s−2 Pressure scale

(long-wave) shallow water system. For the first baroclinic mode, j = 1, the system has the form

∂u′

∂t
− yv′ − ∂θ′

∂x
= 0 [6]

yu′ − ∂θ′

∂y
= 0 [7]

∂θ′

∂t
− ∂u′

∂x
− ∂v′

∂y
= 0 [8]

where the subscript j = 1 has been dropped from all variables.
Next, through meridional expansion, this long-wave shallow water system can be separated into

equations for an infinite set of zonally propagating, equatorially trapped waves. This is achieved
by expanding the variables u′, v′, θ′ in terms of meridional basis functions such as u′(x, y, t) =
∑

m u′m(x, t)φm(y) etc. Here the appropriate meridional basis functions are the parabolic cylinder
functions, the first few of which are φ0(y) = π−1/4 exp(−y2/2), φ1(y) = π−1/4

√
2y exp(−y2/2), and

φ2(y) = π−1/42−1/2(2y2 − 1) exp(−y2/2). Notice the exp(−y2/2) factor in each of the parabolic
cylinder functions, whose rapid decay away from the equator, y = 0, corresponds to the terminology
“equatorially trapped waves”. Through such a meridional expansion, one can derive the infinite
set of equations

∂K ′

∂t
+

∂K ′

∂x
= 0 [9]

∂R′

1

∂t
− 1

3

∂R′

1

∂x
= 0 [10]

∂R′

2

∂t
− 1

5

∂R′

2

∂x
= 0 [11]

∂R′

3

∂t
− 1

7

∂R′

3

∂x
= 0 [12]

...
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Figure 1: Horizontal structures of two unforced “dry” equatorial long-waves: (a) Kelvin wave,
and (b) the first equatorial Rossby wave, R′

1
. Contours show lower tropospheric pressure with

positive (negative) anomalies denoted by solid (dashed) lines. The contour interval is one-fourth the
maximum amplitude of the anomaly, and the zero contour is not shown. Anomalies of convergence
(divergence) that are greater than two-thirds the maximum amplitude are shaded dark (light) gray.
From Majda and Stechmann (2009) Proceedings of the National Academy of Sciences USA.

HereK,R1, R2, R3, · · · are the amplitudes of equatorial long-wave Kelvin and Rossby waves, respec-
tively. The variables u′(x, y, t), v′(x, y, t), θ′(x, y, t) are recovered using the relationships between
the primitive variables u′m(x, t), v′m(x, t), θ′m(x, t) and the wave amplitudes K ′(x, t), R′

m(x, t). For
instance, u′

0
(x, t) = [K ′(x, t) − R′

1
(x, t)/2]/

√
2, etc. To illustrate this, Figure 1 shows u′, v′, θ′ for

the two separate cases with either K ′(x) = − cos(x) or R′

1
(x) = cos(x). These illustrations can be

thought of as the meridional structures associated with the wave amplitudes K ′(x, t) and R′

1
(x, t).

[FIGURE 1 ABOUT HERE]

The dispersion relations for the waves from [9]–[12] are seen to be ωK(k) = k, ωR1(k) = k/3,
ωR2(k) = k/5, etc., which arise from assuming solutions of the form K ′(x, t) = exp(i[kx−ωK(k)t]),
etc. Hence these waves are non-dispersive in this long-wave limit.

3 Moisture-Convection Interactions on Intraseasonal–Planetary

Scales

Besides the fluid dynamical core, the second main component of the MJO skeleton model is
moisture–convection interactions. These quantities are represented by the variables q′ and a, re-
spectively:

q′ : lower tropospheric moisture anomaly,

a : amplitude of the convection/wave activity envelope.
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It is noteworthy that, for the MJO skeleton model, it is only the amplitude of the convection/wave
activity envelope that is needed, not any of the details of the particular convection/waves that
make up the envelope, although the specific details can be important for convective momentum
transports or other features of the MJO’s “muscle”. Also notice that a, without a prime, is not an
anomaly.

A key part of the q-and-a interaction is how the moisture anomalies influence the convection.
The premise is that, for convective activity on planetary–intraseasonal scales, it is the time tendency

of convective activity – not the convective activity itself – that is most directly related to the (lower-
tropospheric) moisture anomaly. In other words, rather than a functional relationship a = a(q), it is
posited that q mainly influences the tendency – i.e., the growth and decay rates – of the convective
activity. The simplest equation that embodies this idea is

∂a

∂t
= Γq′a, [13]

where Γ is a constant of proportionality: positive low-level moisture anomalies create a tendency to
enhance the envelope of convection/wave activity, and negative low-level moisture anomalies create
a tendency to decrease the envelope of convection/wave activity.

The basis for [13], and the physics behind it, comes from a combination of observations, mod-
eling, and theory. Generally speaking, it is well-known that tropospheric moisture content plays
a key role in regulating convection. On planetary–intraseasonal scales specifically, several studies
have shown that the lower troposphere tends to moisten during the suppressed convection phase
of the MJO, and lower tropospheric moisture leads the MJO’s heating anomaly, which suggests
the relationship [13]. Furthermore, this relationship is also suggested by simplified models for
synoptic-scale convectively coupled waves, which show that the growth rates of the convectively
coupled waves depend on the wave’s environment, such as the environmental moisture content. In
[13], the factor Γq′ acts as a growth/decay rate for the convective activity, and the value of Γ has
been estimated from these growth rate variations in idealized models of convectively coupled waves.
Lastly, amplitude equations such as [13] have been used in other areas of science and engineering,
and they can sometimes be derived from the governing equations using systematic asymptotics.
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4 MJO Skeleton Model

By combining the parameterization [13] with the (long-wave scaled) linearized primitive equations
[1]–[5], the MJO skeleton model is obtained:

∂u′

∂t
− yv′ +

∂p′

∂x
= 0 [14]

yu′ +
∂p′

∂y
= 0 [15]

∂p′

∂z
= θ′ [16]

∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z
= 0 [17]

∂θ′

∂t
+ w′ = H̄a− sθ [18]

∂q′

∂t
− Q̃w′ = −H̄a+ sq [19]

∂a

∂t
= Γq′a. [20]

An equation for the lower-tropospheric moisture q′ is also included in the system in [19]. The terms
±H̄a represent a heat source and moisture sink due to convective activity, and sθ and sq represent
radiative cooling and a moisture source, respectively.

Notice that this model contains a minimal number of parameters: Q̃ = 0.9, the (nondimensional)
mean background vertical moisture gradient; and Γ = 1, or Γ ≈ 0.2 K−1 d−1 in dimensional units.
The source terms sθ and sq must also be specified (see below). Also notice that the parameter H̄ is
actually irrelevant to the dynamics (as can be seen by rescaling a); it is written here for clarity of
presentation: dimensionally, it gives H̄a the units of a heating rate while keeping a nondimensional.
The dimensional value of H̄ was chosen to be 10 K/day so that a typical value of a is ≈ 0.1, similar
to the nondimensinal value of u.

The MJO skeleton model [14]–[20] is a nonlinear oscillator model for the MJO skeleton as a neu-
trally stable wave. In other words, the model includes neither damping nor instability mechanisms.
The fundamental mechanism of the oscillation involves interactions between moisture, convection,
and circulation. The nonlinear oscillator component can be seen in the terms ∂q′/∂t = −H̄a and
∂a/∂t = Γq′a. However, there is also the important moisture convergence term, Q̃w′, which couples
this q-and-a oscillator to the circulation.

To obtain the simplest model for the MJO, truncated vertical and meridional structures are used.
The procedure is analogous to the case of the dry equatorial long-wave equations described above,
where equations for the dry zonally propagating, equatorially trapped waves K ′(x, t), R′

j(x, t) were
derived. For the vertical truncation, only the first baroclinic mode is used in the simplest model so
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that u′(x, y, z, t) = u′(x, y, t)
√
2 cos(z), etc. The resulting equations are

∂u′

∂t
− yv′ − ∂θ′

∂x
= 0 [21]

yu′ − ∂θ′

∂y
= 0 [22]

∂θ′

∂t
− ∂u′

∂x
− ∂v′

∂y
= H̄a− sθ [23]

∂q′

∂t
+ Q̃

(

∂u′

∂x
+

∂v′

∂y

)

= −H̄a+ sq [24]

∂a

∂t
= Γq′a. [25]

Next, for the meridional truncation, the variables are expanded in terms of the parabolic cylinder
functions φm(y) as described above for the dry equatorial long-wave equations. It is also assumed
that q and a have simple equatorial meridional structure proportional to exp(−y2/2): a(x, y, t) =
[Ā(x) +A′(x, t)]φ0(y), where Ā(x) is a background state. For the long-wave-scaled equations, such
a meridional heating structure is known to couple with only Kelvin waves and the first symmetric
equatorial Rossby waves R′

1
, and the resulting meridionally truncated equations can be written as

∂K ′

∂t
+

∂K ′

∂x
= − 1√

2
H̄A′ [26]

∂R′

∂t
− 1

3

∂R′

∂x
= −2

√
2

3
H̄A′ [27]

∂Q′

∂t
+

1√
2
Q̃
∂K ′

∂x
− 1

6
√
2
Q̃
∂R′

∂x
=

(

−1 +
1

6
Q̃

)

H̄A′ [28]

∂A′

∂t
= ΓQ′(Ā+A′), [29]

where the subscript 1 has been dropped from R′

1
for brevity. The equations have been written in

terms of anomalies from the state of radiative–convective equilibrium, H̄Ā(x) = Sθ(x) = Sq(x).

Two simple cases are a uniform background state with constant Sθ = 1 K/day and a spatially
varying state Sθ(x) that represents a warm-pool sea surface temperature distribution.

An important point is that K ′(x, t) and R′(x, t) are the amplitudes of the structures of Kelvin
and Rossby waves, but these amplitudes in [26]–[27] need not always propagate like “dry” waves. In
the absence of forcing in [9]–[10], the “dry” long-wave Kelvin and equatorial Rossby wave solutions
are dispersionless waves that propagate at 50 and 17 m/s, respectively. However, in the presence of
the coupled dynamical forcing A in [26]–[29], the Kelvin and equatorial Rossby wave structures can
be coupled to each other and to Q and A; and these coupled modes/structures can have propagation
speeds very different from 50 or 17 m/s, and they can be dispersive. One such mode has a mixed
Kelvin–Rossby wave structure and dispersion characteristics of the MJO and is summarized below.

4.1 Energetics

The nonlinear MJO skeleton model has two important energy principles, in the absence of source
terms sθ and sq. First, the model [21]–[25] conserves a vertically integrated moist static energy:

∂t(θ + q)− (1− Q̃)(ux + vy) = 0. [30]
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Second, this model conserves a positive total energy that includes a contribution from the convective
activity a:

∂t

[

1

2
u2 +

1

2
θ2 +

1

2

Q̃

1− Q̃

(

θ +
q

Q̃

)2

+
H̄

ΓQ̃
a

]

− ∂x(uθ)− ∂y(vθ) = 0. [31]

This total energy is a sum of four terms: dry kinetic energy u2/2, dry potential energy θ2/2, a
moist potential energy proportional to (θ + Q̃−1q)2, and a convective energy H̄a/(ΓQ̃). Note that
the natural requirement on the background moisture gradient, 0 < Q̃ < 1, is needed to guarantee
a positive energy.

4.2 Linear theory results

Now the linear modes of the model are presented. Since the model [26]–[29] involves four dynam-
ically coupled variables, there are four linear modes. The dispersion relation for the linear modes
is shown in Figure 2. (Only the two low-frequency, intraseasonal modes are shown. The other two
modes are high-frequency modes and are only weakly coupled to the wave activity.) Figure 2 shows
that the skeleton model has eastward-propagating waves with phase speeds of roughly 5 m/s and
the peculiar dispersion relation dω/dk ≈ 0, in agreement with the MJO. Moreover, the phase speed
and dispersion relation are robust over a wide range of parameter values, with the oscillation peri-
ods spanning the range of 30–60 days, which is the observed range of the MJO’s oscillation period.
The westward-propagating waves, on the other hand, which are plotted with positive ω and nega-
tive k, have frequencies ω(k) that vary significantly with k; moreover, their oscillation periods are
seasonal, not intraseasonal, for k = 1 and 2. This suggests the first piece of an explanation for the
observed dominance of eastward-propagating intraseasonal variability: the westward-propagating
modes have seasonal oscillation periods, on which time scales other phenomena are expected to
dominate over modulations of convective activity.

[FIGURE 2 ABOUT HERE]

The features in Figure 2 are fundamental features I–II of the MJO skeleton that were mentioned
in the Introduction section. For a linear wave, these two features arise from the eigenvalues of
the linear system. The second important piece from the linear system is the eigenvectors, which
determine the structure of the linear waves and fundamental feature III from the Introduction
section. When trying to match theory and observations, it is important that both the eigenvalues
and eigenvectors—i.e., all three fundamental features I–III—are matched together.

The physical structure of the wavenumber-2 MJO eigenmode is shown in Figure 3 for the stan-
dard parameter values. Horizontal quadrupole vortices are prominent, as in observations, and the
maximum convective activity is colocated with the maximum in equatorial convergence. The lower
tropospheric moisture leads and is in quadrature with the convective activity, which is also roughly
the relationship seen in observations. The pressure contours display the mixed Kelvin/Rossby
wave structure of the wave: equatorial high pressure anomalies are colocated with the westerly
wind burst as in Kelvin waves, and they are flanked by off-equatorial low pressure anomalies and
cyclonic Rossby gyres, in broad agreement with the observational record. Rectification of the ver-
tical structure and some of the phase relationships is likely due to effects of higher vertical modes
as part of the MJO’s “muscle”.

[FIGURE 3 ABOUT HERE]
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Figure 2: Linear wave phase speed ω/k (a) and oscillation frequency ω(k) (b) as functions of
wavenumber k for the low-frequency modes of [26]–[29]. Filled circles denote results with the
standard parameter values. Other markers denote results with one change made to the standard
parameter values: Q̃ = 0.8 (open circles), Q̃ = 0.95 (crosses), Γ = 0.5 (squares), and Γ = 2
(pluses). Horizontal lines in (b) denote oscillation periods of 30, 60, 90, and 120 days. From Majda
and Stechmann (2009) Proceedings of the National Academy of Sciences USA.

The relative contributions of K,R,Q, and A to these linear waves are shown in Fig. 4 for
wavenumbers 1, 2, and 3. The MJO has significant contributions from both the Kelvin and Rossby
components, whereas the westward modes are dominated by the Rossby component. In addition,
the larger Q and A amplitudes suggest the second piece of an explanation for eastward-propagating
rather than westward-propagating intraseasonal oscillations: the eastward-propagating modes are
more strongly coupled to equatorial moist convective processes.

[FIGURE 4 ABOUT HERE]

In addition to these illustrations, a formula for the intraseasonal oscillation frequency ω of the
MJO skeleton can be obtained by considering the even simpler case of flow above the equator. In
this case, v and y are set to zero, and meridional derivatives are ignored. The result is a linear
system of four equations for u′, θ′, q′, a′:

∂u′

∂t
− ∂θ′

∂x
= 0 [32]

∂θ′

∂t
− ∂u′

∂x
= H̄a′ [33]

∂q′

∂t
+ Q̃

∂u′

∂x
= −H̄a′ [34]

∂a′

∂t
= Γāq′. [35]

This system can be solved exactly due to the perfect east–west symmetry:

2ω2 = ΓSθ + k2 ±
√

(ΓSθ + k2)2 − 4ΓSθk2(1− Q̃) [36]
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Figure 3: Physical structure of the wavenumber-2 MJO mode of [26]–[29] for the standard parameter
values. Lower tropospheric velocity vectors are shown with contours of lower tropospheric pressure
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and Stechmann (2009) Proceedings of the National Academy of Sciences USA.
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where k is the zonal wavenumber. For the low-frequency waves, this is approximately equal to

ω ≈
√

ΓSθ(1− Q̃), [37]

For the standard parameter values used here, the oscillation period corresponding to [37] is 45
days, in agreement with observations of the MJO. Notice that this formula is independent of
the wavenumber k; i.e., this model recovers the peculiar dispersion relation dω/dk ≈ 0 from the
observational record, and it relates the MJO frequency to the three parameters of the model.

4.3 Nonlinear simulation

Figure 5 shows a numerical solution of the nonlinear equations [26]–[29] for a warm-pool sea surface
temperature. The convective activity is aligned over the warm pool, which is in the center of the
domain from x ≈ 10, 000− 30, 000 km. The MJO events have prominent phases of both active and
suppressed convection, and each event has its own individual characteristics in terms of strength,
lifetime, regional variations, etc. Furthermore, in addition to the prominent eastward-propagating
disturbances, there are instances of localized standing oscillations throughout the domain. For
instance, to illustrate this, two rectangular boxes are drawn in Figure 5: x = 11, 000 − 15, 000 km,
t = 3, 400 − 3, 470 days, and x = 15, 000 − 19, 000 km, t = 3, 440 − 3, 530 days. Localized standing
oscillations are prominent again, later, in the region x = 15, 000 − 19, 000 km, t = 3, 550 − 3, 600
days (for comparison, no box added). The western end of the warm pool is a common location
of the standing oscillations, which is in broad agreement with the visual appearance of standing
oscillations in the Indian Ocean, sometimes at the beginning of an MJO event.

[FIGURE 5 ABOUT HERE]

5 MJO’s “muscle”

While the MJO skeleton model describes the fundamental planetary–intraseasonal features of MJO
composites, individual MJO events often have additional features, such as westerly wind bursts,
and different varieties of convective features within the MJO envelope. Since these additional
features add detailed character to each MJO’s structure, and since these features often account for
additional strength beyond the MJO’s skeleton, they are referred to here as the MJO’s “muscle.”

One contributor to the MJO’s muscle is convective momentum transport (CMT) due to the
convective systems that are embedded within the MJO’s envelope. These systems include various
types of MCSs and CCEWs, and their CMT can potentially accelerate or decelerate the winds
associated with the MJO skeleton.

To illustrate the CMT due to MCSs and CCEWs, an exactly solvable model is presented for
their velocity anomalies (u′, w′) and momentum fluxes u′w′ in a two-dimensional x−z setting above
the equator. Consider the following exactly solvable model for a CCEW’s velocity (u′, w′):

w′(x, z, t) = S′

θ(x, z, t) [38]

∂u′

∂x
+

∂w′

∂z
= 0. [39]
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Figure 5: Numerical solution of the nonlinear equations [26]–[29] for a warm-pool sea surface
temperature. Contour plots of (a) H̄A′(x, t) and (b) Q′(x, t). Rectangular boxes show regions of
standing oscillations: x = 11, 000–15,000 km, t = 3, 400–3,470 days, and x = 15, 000–19,000 km,
t = 3, 440–3,530 days. From Majda and Stechmann (2011) Journal of the Atmospheric Sciences.
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In this model, called the weak-temperature-gradient approximation, the wave’s vertical velocity w′

is exactly in balance with the heating rate S′

θ, which we must specify. The wave’s horizontal velocity
u′ is then determined from the incompressibility constraint in [39]. Given this exact solution for u′

and w′ of the CCEW, its effect on the larger-scale mean flow is determined by

∂ū

∂t
= − ∂

∂z
w′u′, [40]

where this is the horizontal spatial average of the horizontal momentum equation, ∂tu+ ∂x(u
2) +

∂z(wu) +∂xp = 0, and where bar and prime notation is used to denote a horizontal spatial average
and fluctuation, respectively:

f̄(z, t) =
1

L

∫ L

0

f(x, z, t) dx [41]

f ′(x, z, t) = f − f̄ , [42]

where periodic horizontal boundary conditions are assumed for simplicity. From [40] it is seen that
a CCEW will alter the mean flow if and only if ∂zw′u′ 6= 0. In the context of convective motions,
this effect on the mean flow is called CMT.

To illustrate CMT in some specific cases, consider a heat source with two phase-lagged verti-
cal modes, sin(z) and sin(2z), which represent deep convective heating and congestus/stratiform
heating, respectively:

S′

θ = a∗

{

cos[kx− ωt]
√
2 sin(z) + α cos[k(x+ x0)− ωt]

√
2 sin(2z)

}

, [43]

where k is the horizontal wavenumber and a∗ is the amplitude of the heating. Two key parameters
here are α, the relative strength of the second baroclinic heating, and x0, the lag between the
heating in the two vertical modes. Heating structures of this form are commonly associated with
MCSs and CCEWs, due to variations in congestus, deep, and stratiform cloud populations. Figure
6 shows three cases for the lag x0: 0 (top), +500 km (middle), and −500 km (bottom) for a wave
with wavelength 3000 km, heating amplitude a∗ = 4 K/day, and relative stratiform heating of
α = −1/4. The lag determines the vertical tilt of the heating profile. Given this heating rate, the
velocity can be found exactly from [39]:

u′(x, z, t) = −a∗
k

{

sin[kx− ωt]
√
2 cos(z) + 2α sin[k(x+ x0)− ωt]

√
2 cos(2z)

}

[44]

w′(x, z, t) = a∗

{

cos[kx− ωt]
√
2 sin(z) + α cos[k(x+ x0)− ωt]

√
2 sin(2z)

}

[45]

With this form of u′ and w′, the eddy flux divergence is

∂

∂z
w′u′ =

3

2

sin(kx0)

k
a2
∗
α[cos(z) − cos(3z)] [46]

Notice that a wave with first and second baroclinic components generates CMT that affects the
first and third baroclinic modes. Also notice that [46] is nonzero as long as α 6= 0 (i.e., there are
both first and second baroclinic mode contributions) and x0 6= 0 (i.e., there is a phase lag between
the first and second baroclinic modes). MCSs and CCEWs in nature typically have this type of
structure.
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For illustrations of the above exact solutions, consider the three cases shown in figure 6: upright
updraft (top), “westward-propagating” CCEW (middle), and “eastward-propagating” CCEW (bot-
tom). Although there is no inherent definitive propagation in the exactly solvable model [38]–[39],
propagation direction labels are assigned to the vertical tilt directions according to the structures of
observed CCEW: heating is vertically tilted with leading low-level heating and trailing upper-level
heating with respect to the CCEW propagation direction. Specifically, Figure 6b corresponds to
the observed structures of convectively coupled Kelvin waves, which propagate eastward, and Fig-
ure 6c corresponds to westward-propagating inertio-gravity waves (also called “two-day waves”).
Also shown in Figure 6 are the average vertical flux of horizontal momentum, w′u′, and its vertical
derivative, ∂zw′u′. These exact solutions show that upright updrafts have zero CMT, and tilted
updrafts have nonzero CMT with the sign determined by the CCEW’s propagation direction. Note
that the vertically averaged momentum would not be affected by CMT in this model, since w′u′ is
necessarily zero at the upper and lower rigid boundaries. Westerly wind bursts, which refer to lower
tropospheric winds, can be accelerated by CMT due to eastward-propagating MCSs and CCEWs,
as illustrated in Figure 6b.

[FIGURE 6 ABOUT HERE]

One effect that is not included in the model [38]–[39] is the effect of the larger-scale mean wind
ū(z, t) on the MCSs or CCEWs. This could affect whether eastward- or westward-propagating
convective systems are favored in a given environment, which, in turn, affects the CMT.
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Figure 6: Solutions to the exactly solvable model [38]–[39] for CCEW structure and CMT in three
cases: upright updraft (top), vertically tilted updraft of “eastward-propagating” CCEW (middle),
and vertically tilted updraft of “westward-propagating” CCEW (bottom). Left: Vector plot of
(u′, w′) and shaded convective heating S′

θ(x, z). For vectors, the maximum u′ is 6.0 m/s for the
top and 4.0 m/s for the middle and bottom, and the maximum w′ is 2.8 cm/s for the top and
2.2 cm/s for the middle and bottom. Dark shading denotes heating, and light shading denotes
cooling, with a contour drawn at one-fourth the max and min values. Middle: Vertical profile of
the mean momentum flux: w′u′. Right: Negative vertical derivative of the mean momentum flux:
−∂zw′u′. From Stechmann, Majda, and Skjorshammer (2012) Theoretical and Computational Fluid

Dynamics.
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