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Abstract. A central issue in contemporary science is the development of data

driven statistical nonlinear dynamical models for time series of partial observations

of nature or a complex physical model. It has been established recently that ad-

hoc quadratic multi-level regression models can have finite-time blow up of statistical

solutions and/or pathological behavior of their invariant measure. Here a new class of

physics constrained multi-level quadratic regression models are introduced, analyzed,

and applied to build reduced stochastic models from data of nonlinear systems. These

models have the advantages of incorporating memory effects in time as well as the

nonlinear noise from energy conserving nonlinear interactions. The mathematical

guidelines for the performance and behavior of these physics constrained multi-level

regression models as well as filtering algorithms for their implementation are developed

here. Data driven applications of these new multi-level nonlinear regression models are

developed for test models involving a nonlinear oscillator with memory effects and the

difficult test case of the truncated Burgers-Hopf (TBH) model. These new physics

constrained quadratic multi-level regression models are proposed here as process

models for Bayesian estimation through Markov Chain Monte Carlo algorithms of

low frequency behavior in complex physical data.
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1. Introduction

A central issue in contemporary science is the development of data driven statistical-

dynamical models for the time series of a partial subset of observed variables, uI(t) ∈

R
N1 , which arise from observations of nature or from an extremely complex physical

model [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. This is an important issue in systems ranging from

bio-molecular dynamics to climate science to engineering turbulence. Examples of such

data driven dynamical models are multi-level linear autoregressive models with external

factors [2, 6] as well as ad-hoc quadratic nonlinear regression models [6, 11, 12, 13, 14]
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Such purely data driven ad-hoc regression models are developed through various criteria

to fit the data but by design, do not respect the underlying physical dynamics of the

partially observed system or the causal processes in the dynamics; nevertheless, the goal

of purely data driven statistical modeling is to provide simplified low order models with

high predictive skill for central features of the underlying physical system and not just

fit (or over-fit, see [2]) the given data.

Indeed, Majda and Yuan [15] provide rigorous mathematical theory and examples

with straightforward numerical experiments where the ad-hoc quadratic multi-level

regression models proposed in [11, 12, 13] necessarily have non-physical finite-time blow

up of statistical solutions and also pathological behavior of the related invariant measure

even though these models match a long time series of the observed data produced from

the physical model with high accuracy. The goal of the present paper is to develop new

physics constrained multi-level quadratic regression models which simultaneously reflect

the causality and energy conserving principles of the underlying nonlinear physics and,

by design, mitigate the non-physical finite-time blow up or pathology in the invariant

measure of ad-hoc quadratic regression strategies. The approach developed here builds

on earlier work for single level models without memory effects which uses physical

analytic properties [16, 17, 18, 19] to constrain data driven methods [9, 20, 21, 22]. The

objective here is to develop theory which blends natural physical analytic constraints

with the attractive memory effects of multi-level quadratic regression in a seamless

fashion and then to illustrate this new approach on a suite of models. A detailed outline

of the remainder of this paper is presented next.

The physics constrained quadratic multi-level regression models are introduced

in Section 2 including motivation and connections with earlier work. Mathematical

guidelines for the properties of these models are developed in Section 3 which ends with

a brief summary of algorithms [23] for filtering and parameter estimation in order to

implement the new regression strategies. Section 4 contains applications of the physics

constrained regression strategies to test models involving a nonlinear oscillator with

memory effects as well as the difficult test problem involving the first mode of the

truncated Burgers-Hopf (TBH) model [24, 25].

2. Physics Constrained Multi-Lebel Quadratic Regression Models

First, consider a variable u ∈ R
N and the class of linear multi-level regression models

with the form

du

dt
= Lu + F + L0,1r1,

dri

dt
= Qiu +

i
∑

j=1

aijrj + ri+1, 1 ≤ i ≤ p − 1, (1)

drp

dt
= Qpu +

p
∑

j=1

apjrj + σẆ ,
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where r1 ∈ R
M , L0,1 has rank M , and ~r = (r1, . . . , rp)

T ∈ R
Mp, while σ is an M × M

matrix and Ẇ ∈ R
M are independent white noises (physicist’s notation for white noise is

used but the Ito form is understood throughout this paper for all SDE’s). With concise

notation (1) can be written as

du

dt
= Lu + F + L0,1r1, (2)

d~r

dt
= Qu + A~r + σẆ .

Regarding u as the fundamental variables, there are p levels of memory associated with

the models in (1). The case with no memory in the model noise, p = 0, involves the

identification of r1 = Ẇ and the stochastic model

du

dt
= Lu + F + L0,1Ẇ . (3)

In the development of the physics constrained multi-level quadratic regression

models developed here u = (uI , uII) where uI ∈ R
N1 is the original observed variable

and uII ∈ R
N2 is a hidden variable incorporating physics constrained primary nonlinear

interaction with N1 + N2 = N . The physics constrained multi-level regression models

proposed here have the same general structural form as (2) but include quadratic

nonlinear interactions in u, B(u, u), which conserve energy

u · B(u, u) = 0. (4)

In (4), the inner product can be general but when convenient below, we utilize the

standard Euclidean inner product. Let Π2(u) = (0, uII)
T denote the projection on

the variable uII , then the Physics Constrained Multi-Level Regression Models

proposed here have the form

du

dt
= Lu + B(u, u) + F + Π2r1, (5)

d~r

dt
= Qu + A~r + σẆ ,

together with the physical constraint in (4) on the nonlinear terms, and r1 ∈ R
N2 , the

memory dependent noise. The solutions of the linear equation for ~r can be written as

~r(t) = eAt~r(0) +

∫ t

0

eA(t−s)Qu(s)ds +

∫ t

0

eA(t−s)σdW (s). (6)

The first component, r1(t), can be substituted into the first equation in (5) to yield a

memory dependent equation for u alone with correlated noise. Such a Zwanzig-Mori

interpretation of the dynamics is useful below.

The special choice of p = 0 from (3) in (5) yields the physics constrained models

without memory

du

dt
= Lu + B(u, u) + F + Π2σẆ , (7)

which are the starting point for developing normal forms for single level stochastic

regression models [15, 20] for the variable uI alone based on stochastic mode elimination
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of the uII variables [16, 17, 18, 19]; these normal form reduced models incorporate

the physics constrained effects of conservation of energy as well as both additive and

multiplicative noises in the dynamics of the uI variables under the assumption of

separation of time scales between the dynamics of uI and uII . The advantage of the

more general data driven models with physical constraints from (4) and (5) is that they

retain both the nonlinear additive and multiplicative noise effects contained in (7) and

in addition, allow for p-level memory effects between uI and uII .

2.1. Comparison to Other Methods

The multi-level quadratic regression models introduced in [11] assume u ≡ uI and do

not have the hidden variable uII so uII = 0. They have the structural form

duI

dt
= LuI + B(uI , uI) + F + r1, (8)

d~r

dt
= QuI + A~r + σẆ ,

where B(uI , uI) is a general quadratic nonlinearity which does not impose the physical

constraint of energy conservation from (4) on the nonlinear terms. By substituting

the integral formula for r1(t) from (6) into (8), we see that the regression models in

(8) capture linear memory effects in uI and correlated noise but cannot capture the

nonlinear memory dependent noise effects present in (5) through the hidden variable

uII . Furthermore, the quadratic multi-level regression models from (8) which do not

impose physical constraints on the nonlinear terms can fit long time series of physical

data for uI very well yet suffer from non-physical finite-time blow up for statistical

solutions and pathological behavior of the invariant measure [15]. In Section 3, we

provide mathematical guidelines which mitigate such pathological behavior for the

physics constrained regression models in (4), (5). Note that when compared with (8), the

physics constrained nonlinear regression models from (4), (5) impose an additional layer

of memory through uII with nonlinear interactions with uI which satisfy the physical

constraints in (4) in a natural fashion, unlike the general procedure in (8).

Finally, consider the extreme limit of the models in (8) with no memory levels but

impose the physical constraint in (4); the result is the single level nonlinear regression

model

duI

dt
= LuI + BI(uI , uI) + F + σẆ , (9)

uI · BI(uI , uI) = 0.

Such kinds of regression model have been introduced in [26]. These models in (9) can be

derived as a special limiting case of the general physics constrained regression procedure

introduced in (4), (5) above in a straightforward fashion. Begin with the limiting model

in (7) and assume that the quadratic term, BI , maps the subspace of uI into uI alone

so that (4) becomes uI · BI(uI , uI) = 0; with time scale separation in (7) and applying

stochastic mode reduction [16, 17, 18, 19], we arrive at the regression form in (9).
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3. Mathematical Guidelines for Physics Constrained Quadratic Regression

Models

Here we develop mathematical guidelines for the physics constrained multi-level

regression models introduced in (4), (5) of Section 2. These hypotheses involve the

behavior of the linear regression model in (1) and (2) which arises from ignoring the

energy conserving nonlinear terms in the physics constrained model in (4), (5). An

explicit nonlinear example shows the necessity of the conditions developed below from

linear theory for the nonlinear multi-level regression models in (4), (5).

3.1. Natural Mathematical Constraints on Multi-Level Linear Regression Models

Introduce the notation V = (u,~r)T so that (1) or (2) becomes the linear system

dV

dt
= LV + NẆ + F, (10)

where the explicit definition of the matrices L, N , is evident from (2). This is a linear

system with Gaussian statistics and degenerate noise matrix N and we would like

to guarantee that the statistical dynamics for (10) is stable in time and approaches

a nondegenerate stationary Gaussian measure as t → ∞. Necessary and sufficient

conditions for this behavior are the following:

(i) Stability: All eigenvalues, λj, of L satisfy Re λj < 0.

(ii) Controllability: The entire space is spanned by the set (11)

of matrices given by LkN, k = 0, 1, . . .

Let pL(V, t) denote the Gaussian statistical solution of the Fokker-Planck equation

associated with (10) so that pL(V, t) = N (V̄ (t), R(t)) where V̄ (t) is the mean and R(t)

is the covariance. The conditions in (11)(i), (ii) guarantee that there is a non-degenerate

Gaussian invariant measure pL,eq = N (V̄∞, R∞) satisfying

LV̄∞ + F = 0, (12)

R∞ > 0 and LR∞ + R∞LT + NNT = 0,

so that

V̄ (t) → V̄∞ and R(t) → R∞ as t → ∞, (13)

with an exponential rate of convergence.

The first guideline for the physics constrained nonlinear regression models in (5) is

to require (11)(i) and (11)(ii) for the linear models which arise from (5) by dropping

the nonlinear terms. Intuitively, it is clear that there should be at least second moment

statistical stability of the physics constrained nonlinear regression model in (4), (5) under

the hypothesis in (11) as well as no pathological behavior of the invariant measure, at

least, if the energy conserving nonlinearity from (4) is weak enough. A rigorous proof for

this fact is very interesting but beyond the scope of the present paper. In this fashion,

the conditions in (11) applied to the linearization of (5) at the origin yields important
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practical guidelines for the physics constrained regression model in (4), (5). On the

other hand, the rigorous mathematical theory and examples in [15] demonstrate that

the ad-hoc quadratic regression models proposed in [11] can satisfy linear stability at

the origin and still exhibit pathological finite-time blow up of statistical solutions. Next,

we present a nonlinear example which shows that if the stability condition in (11)(i)

is violated in the mildest fashion and replaced by neutral stability of a single variable

uI , the physics constrained regression models from (4), (5) can exhibit pathological

unbounded growth of the mean statistics as time evolves.

3.2. Neutrally Stable Physics Constrained Regression Models with Energy Conservation

and Evolving Blow up of Mean Statistics

Consider the stochastic triad model introduced and analyzed in [27],

du1

dt
= A1u2u3,

du2

dt
= A2u1u3 − d2u2 + σ2Ẇ2, (14)

du3

dt
= A3u1u2 − d3u3 + σ3Ẇ3.

We see that the model in (14) has the quadratic regression form in (5) with p = 0 as

presented in (7) provided we identify uI = u1 and uII = (u2, u3) in (14). The physical

constraint of conservation of energy from (4) is satisfied provided that

A1 + A2 + A3 = 0. (15)

Strong linear stability is satisfied for u2, u3 but there is only neutral stability of u1;

thus, the stability condition in (11)(i) is violated in the mildest fashion. Furthermore,

it is easy to check Hormander’s condition [28] that the nonlinear terms in (14) have a

hypoelliptic Fokker-Planck generator so that the nonlinear version of the controllability

requirement in (11)(ii) is satisfied. In [27] p. 209-210, elementary calculations are

utilized to show that the system in (14) has a Gaussian invariant measure, peq, if and

only if this measure has the form,

peq(u) = C exp
(

−
1

2
(
u2

1

E1
+

u2
2

E2
+

u2
3

E3
)
)

, (16)

where E2 = σ2
2/(2d2), E2 = σ2

3/(2d3). The coefficient E1 is necessarily given in terms of

the other energy parameters E2, E3 by

E1 = −A1E2E3(A2E3 + A3E2)
−1. (17)

Thus, there is a Gaussian invariant measure for (14) if and only if E1 > 0. Now, it is

easy to arrange the values E2, E3 with

A1, A2 < 0, A3 = −(A1 + A2) > 0, and A2E3 + A3E2 < 0 (18)

or equivalently

A3 <
E3

E2

|A2|.
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This automatically guarantees that E1 < 0 in (14) for an energy conserving nonlinearity

so there is no Gaussian invariant measure as required in (16). Simple numerical

experiments with (14) in regimes with (18) satisfied and reported in Fig. 5 from [27]

show that the mean of a statistical solution of (14) becomes unbounded as time evolves

and clearly has pathological dynamical behavior. This example illustrates the necessity

of the strict linear stability condition in (11)(i) in mitigating unphysical behavior for

(4), (5) as quadratic multi-level regression models. Even the mildest violation of (11)(i)

through neutral stability can lead to pathological behavior in the dynamics.

3.3. Mathematical Guidelines and Filtering Algorithms for the Physics Constrained

Regression Models

In practical implementation of the multi-level regression models in (4) and (5), we have

to estimate the primary variables, V = (uI , uII , ~r)
T , from partial observations of only

the variable uI as well as estimate the (slowly varying) constant regression parameter

coefficients in the model. A standard strategy to achieve all of this parameter estimation

is to use an extended Kalman filter algorithm as utilized for empirical-dynamical

quadratic regression in [23]; the algorithm utilizes the parameter estimation scheme

developed in [29] and the residual noise method developed in [30]. This is the algorithm

which we utilize in the numerical experiments presented in Section 4 and the reader is

referred to [23, 29, 30] for algorithmic details. Let Π1(V ) be defined by Π1(V ) = uI ; then,

the natural additional mathematical requirement to impose on the multi-level regression

model in (4) and (5) is that the partial observation Π1(V ) is observable [31, 32] for the

linear operator in (10) which arises from dropping the nonlinear terms in (5). With

the notation in (10) for this linear operator, the observability condition for the primary

variables V requires:

The entire space is spanned by the set of matrices (19)

given by (Lk)T ΠT
1 , k = 0, 1, . . .

If the dynamics in (5) is strongly nonlinear so that B in (5) is large, there are

important caveats and perhaps limited skill in using an extended Kalman filter which

is based on successive linearization for both the dynamics for the primary variables and

the parameters [33]. A more flexible algorithm for filtering and parameter estimation in

the present context is based on finite ensemble filters [34] but this approach is deferred

to future applications.

4. Applying the Physics Constrained Regression Algorithms for Data

Driven Models

Here we apply the physics constrained regression strategies from (4), (5) with the EKF

algorithm in [23, 29, 30] (as we mentioned in Section 3.3) to test models involving a

nonlinear oscillator with memory effects as well as the difficult test problem involving
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observations of the first mode of the TBH model [19, 25] without any direct knowledge

of the dynamics which created this time series.

4.1. Nonlinear Oscillator with Memory as a Test Model

Here, we test the ability of the physics constrained quadratic multi-level regression

strategies in (4), (5) with the numerical filtering algorithm mentioned in Section 3.3 to

recover the statistics of a time series in a nonlinear test problem. The starting point is

the nonlinear oscillator

du1

dt
= − iau∗

1u
∗
2, (20)

du2

dt
= ia(u∗

1)
2,

for complex valued components u1, u2 so that (20) is a four-dimensional dynamical

system. It is easy to see directly that the nonlinear terms in (20) conserve energy for

any complex valued number a so that (4) is satisfied; furthermore, (20) is completely

integrable and its dynamics is equivalent to the dynamics of a constant phase shift

in time and the integrable behavior of a particle in a quartic potential [24] so (20)

is essentially a nonlinear oscillator; moreover, (20) arises with a special choice of the

coefficient, a, from Galerkin truncation of the TBH model to the first two Fourier modes

[24]. The test model considered here consists of adding stable linear couplings plus a

level of colored noise to the model in (20) so that the test model is essentially a nonlinear

oscillator with memory with the form,

du1

dt
= − iau∗

1u
∗
2 + a11u1 + a12u2,

du2

dt
= ia(u∗

1)
2 + a21u1 + a22u2 + r, (21)

dr

dt
= α1u1 + α2u2 + β1r + σẆ ,

With a slight change of notation, the test model in (21) has the structure of the normal

form for the physics constrained quadratic multi-level regression model in (4), (5) with

p = 1 with coefficients in this perfect model satisfying the linear stability, controllability,

and observability conditions in (11) and (19). Here we take a long time series generated

by the perfect model in (21) and ask whether the regression models in (4), (5) together

with the filtering algorithm in 3.3 can produce a new physics constrained regression

model with the same structural form as in (21), perhaps with different coefficients, so

that the statistical behavior of uI = u1 in the nonlinear regression model reproduces

that in the original perfect model. Note that determining this regression model from

filtering is an underdetermined nonlinear procedure when given only the time series of

u1 alone and one cannot expect exact recovery of the coefficients of the dynamics of the

original model in (21). Such nonuniqueness occurs even for linear regression models and

explicit examples are given in [15]. This is a stringent test model for the capabilities of

the physics constrained regression procedure.
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Here and below, we pick the observational noise variance to be 10% of the observed

variance of u1 from the perfect model and always utilize the fixed time step Tobs = .01

between observations of u1. These same values are also utilized for the TBH model

results reported later in this section.

The perfect model parameters and estimated parameters from multi-level regression

(MLR) for the first test case are reported in Table 1. Figure 1 compares the perfect and

estimated probability distribution function (pdf) and autocorrelation for u1 produced

by the perfect model and the MLR algorithm. Here the MLR algorithm is highly skillful

with true correlation times given by .53 and .54 for the real and imaginary parts of the

perfect model compared with .52 for both components from the MLR model; the true

variance for u1 (.0029) is also estimated very well by the MLR algorithm (.0032) as is

evident in Figure 1. Note from Table 1 that both the perfect model and the MLR model

have nonlinear coefficients of non-trivial and comparable magnitude so that the physics

constrained MLR algorithm is fully nonlinear here. For completeness, in Figure 2 we

report the convergence history of the estimated parameters in the MLR algorithm and

note the excellent rapid convergence of all parameters to roughly constant values; this

suggests that a relatively short time series of data is required here.

In the second case, we increase the value, a, of the nonlinear coupling coefficient

in the perfect model with random choices of similar magnitude as in the first test case

for the remaining parameters; thus, the perfect model is more nonlinear in this second

test with non-Gaussian pdf (with skewness 0.69 for the real and -0.35 for the imaginary

components and excess kurtosis of roughly 1.09). The true and estimated parameters

from MLR, which also infer stronger nonlinear dynamics, are given in Table 2; the true

and the estimated statistics for u1 are presented in Figure 3. In this highly nonlinear

test case, the non-Gaussian shape of the pdf’s as well as the variance of the pdf’s in

the true model (.0034) is estimated very well by the MLR algorithm (.0039) despite

both being strongly nonlinear and non-Gaussian. By sight, the autocorrelations are

also well captured in Figure 3 although there are slight discrepancies with perfect

model autocorrelation time, .55, and the MLR estimate, .60. One possible source of

discrepancies in this stronger nonlinear regime of the perfect model is the use of linear

tangent models in the extended Kalman filter algorithm [33] and this needs careful

additional study beyond the scope of the present paper.

4.2. The Nonlinear MLR Algorithm Applied to Time Series from TBH

With the confidence gained in applying the MLR algorithm to nonlinear dynamics

in Section 4.1, here we apply the MLR algorithm to a difficult test case involving

observation of the first Fourier component of the TBH model. The TBH model

[19, 24, 25] is described by the following quadratically nonlinear equation for complex

Fourier coefficients, uk, 1 ≤ |k| ≤ 50 with u−k = u∗
k,

duk

dt
= −

ik

2

∑

k+p+q=0

1≤|k|≤50

u∗
pu

∗
q. (22)
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It is a striking example of intrinsic stochastic chaotic dynamics arising in a large

deterministic system with 100 variables with a number of remarkable statistical

properties documented elsewhere [19, 24, 25]. The first Fourier mode has the longest

autocorrelation time and thus the largest statistical memory of the dynamics in (22).

The Galerkin truncation of (22) to the first two Fourier modes yields the nonlinear

oscillator model in (20) with a specific choice of coefficient, a. Here we have a difficult

application of the physics constrained MLR algorithms from (4), (5): We attempt to

recover the statistics of u1 through the physics constrained MLR algorithm with the

structural form in (21) without any further knowledge of the detailed dynamics of TBH.

The results from the MLR algorithm with (21) for the estimated parameters are given

in Table 3 and the statistics of u1 from TBH and the MLR algorithm are compared in

Figure 4. The values of the coefficients in Table 3 satisfy the linear stability condition

in (11). The pdf of u1 is fit quite well with a slight underestimation of the variance; the

autocorrelation function is fit perfectly for all lags smaller than one and larger than three

but the peculiar positive bulge in the TBH autocorrelation function for u1 for 1 ≤ t ≤ 3

is not captured by the MLR algorithm. From Table 3, the estimated coefficient, a,

of the nonlinear oscillator is nearly zero indicating that linear regression models with

three-level memory (p = 1) are excellent models for the stochastic dynamics of the

first mode of TBH. In fact, much higher level stable linear regression models for the

first mode u1 of TBH can match the autocorrelation and variance of TBH exactly [35].

However, a four level nonlinear or linear regression model (p = 2) with the same physics

constrained structural form as in (21) yields essentially the same performance of the

MLR model as in Figure 4 while a two-level model with p = 0 exhibits large statistical

discrepancies in u1. These results of statistical linearity of the dynamics of the first

mode of TBH predicted from the physics constrained nonlinear MLR algorithm with

the normal form in (21) are foreshadowed by earlier work [25]. In [25], a sequence of

modified TBH models defined by a parameter ǫ with increasing scale separation as ǫ

decreases for ǫ ≪ 1 and agreeing with the TBH model for ǫ = 1 were studied through

deterministic mode elimination; the predicted stochastic models for u1 in that context

are linear Langevin equations, i.e., linear stochastic models without memory, which fit

the autocorrelation and variance for u1, in the range, 0 < ǫ . .5. Thus, the nearly

linear three-level stochastic model produced by the MLR algorithm is consistent with

this limiting behavior.

5. Concluding Discussion

New physics constrained multi-level quadratic regression models with the advantages

of incorporating the nonlinear noise from energy conserving nonlinear dynamics as well

as memory effects in time have been introduced here in Section 2 and compared with

existing methods in the literature. Mathematical guidelines for the performance and

behavior of these physics constrained multi-level quadratic stochastic models as well

as MLR filtering algorithms have been presented in Section 3. Applications of the
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physics constrained MLR algorithms to a test model involving a nonlinear oscillator

with memory and the difficult test case of the TBH model were developed in Section 4

with encouraging results reported there. Improvements in the MLR filtering algorithms

through finite ensemble Kalman filters are an interesting future project as mentioned

earlier.

We end our discussion by proposing the use of the physics constrained multi-level

regression models as process models for use with full Bayesian estimation of parameters

through Markov Chain Monte Carlo algorithms [6, 14]. These new nonlinear regression

models can be applied to low frequency time series for a variety of physical systems.

The authors plan to report on research addressing all of these issues with various

collaborators in the near future.

Acknowledgments

The research of A.J.M. is partially supported by the National Science Foundation grant

DMS-0456713 and the Office of Naval Research grants ONR DRI N00014-10-1-0554 and

N00014-11-1-0306. The research of J.H. is partially supported by the Office of Naval

Research Grant N00014-11-1-0310, the NC State startup fund, and the NC State Faculty

Research and Professional Development fund.

References

[1] I. Horenko. Finite element approach to clustering of multidimensional time series. SIAM J. Sci.

Comp., 32(1):68–83, 2010.

[2] I. Horenko. On the identification of nonstationary factor models and their application to

atmospheric data analysis. Journal of the Atmospheric Sciences, 67(5):1559–1574, 2010.

[3] D. Crommelin and E. Vanden-Eijnden. Subgrid-scale parameterization with conditional Markov

chains. J. Atmos. Sci., 65:2661–2675, 2008.

[4] M.B. Priestly. Non-linear and non-stationary time series analysis. Academic Press, London, UK,

1988.

[5] H. Tong. Nonlinear time series: A dynamical systems approach. Oxford University Press, Oxford,

UK, 1990.

[6] N. Cressie and C.K. Wikle. Statistics for spatio-temporal data. Wiley, New Jersey, 2011.

[7] G.A. Pavliotis and A.M. Stuart. Parameter estimation for multiscale diffusions. J. Stat. Phys.,

127(4):741–781, 2007.

[8] R. Azencott, A. Beri, and I. Timofeyev. Adaptive sub-sampling for parametric estimation of

gaussian diffusions. Journal of Statistical Physics, 139:1066–1089, 2010. 10.1007/s10955-010-

9975-y.

[9] A.J. Majda, C.L. Franzke, A. Fischer, and D.T. Crommelin. Distinct metastable atmospheric

regimes despite nearly gaussian statistics: A paradigm model. Proceedings of the National

Academy of Sciences, 103(22):8309–8314, 2006.

[10] C. Franzke, I. Horenko, A.J. Majda, and R. Klein. Systematic metastable atmospheric regime

identification in an agcm. Journal of the Atmospheric Sciences, 66(7):1997–2012, 2009.

[11] S. Kravtsov, D. Kondrashov, and M. Ghil. Multilevel regression modeling of nonlinear processes:

Derivation and applications to climatic variability. Journal of Climate, 18(21):4404–4424, 2005.

[12] D. Kondrashov, S. Kravtsov, A. W. Robertson, and M. Ghil. A hierarchy of data-based enso

models. Journal of Climate, 18(21):4425–4444, 2005.



Physics Constrained Nonlinear Regression Models for Time Series 12

[13] D. Kondrashov, S. Kravtsov, and M. Ghil. Empirical mode reduction in a model of extratropical

low-frequency variability. Journal of the Atmospheric Sciences, 63(7):1859–1877, 2006.

[14] C. Wikle and M. Hooten. A general science-based framework for dynamical spatio-temporal

models. TEST, 19:417–451, 2010. 10.1007/s11749-010-0209-z.

[15] A.J. Majda and Y. Yuan. Fundamental limitations of ad hoc linear and quadratic multi-level

regression models for physical systems. Discrete and Continuous Dynamical Systems B (in

press), 17(4), 2012.

[16] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Models for stochastic climate prediction. Proc.

Nat. Acad. Sci., 96:15687–15691, 1999.

[17] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A mathematical framework for stochastic

climate models. Comm. Pure Appl. Math., 54:891–974, 2001.

[18] A.J. Majda, C. Franzke, and B. Khouider. An Applied Mathematics Perspective on Stochastic

Modelling for Climate. Philos Transact A Math Phys Eng Sci., 366(1875):2429–2455, 2008.

[19] A.J. Majda, R.V. Abramov, and M.J. Grote. Information theory and stochastics for multiscale

nonlinear systems. CRM Monograph Series v.25, American Mathematical Society, Providence,

Rhode Island, USA, 2005.

[20] A.J. Majda, C. Franzke, and D. Crommelin. Normal forms for reduced stochastic climate models.

Proceedings of the National Academy of Sciences, 106(10):3649–3653, 2009.

[21] C. Franzke, A.J. Majda, and E. Vanden-Eijnden. Low-order stochastic mode reduction for a

realistic barotropic model climate. Journal of the Atmospheric Sciences, 62(6):1722–1745, 2005.

[22] Y. Yuan and A.J. Majda. Invariant measures and asymptotic gaussian bounds for normal forms

of stochastic climate model. Chinese Annals of Mathematics - Series B, 32:343–368, 2011.

10.1007/s11401-011-0647-2.

[23] K. Strounine, S. Kravtsov, D. Kondrashov, and M. Ghil. Reduced models of atmospheric

low-frequency variability: Parameter estimation and comparative performance. Physica D:

Nonlinear Phenomena, 239(34):145 – 166, 2010.

[24] A.J. Majda and I. Timofeyev. Statistical mechanics for truncations of the Burgers-Hopf equation:

A model for intrinsic behavior with scaling. Milan Journal of Mathematics, 70:39–96, 2002.

[25] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. Stochastic models for selected slow variables

in large deterministic systems. Nonlinearity, 19:769–794, 2006.

[26] F. Kwasniok. Reduced atmospheric models using dynamically motivated basis functions. Journal

of the Atmospheric Sciences, 64(10):3452–3474, 2007.

[27] A.J. Majda, I. Timofeyev, and E. Vanden-Eijnden. A priori tests of a stochastic mode reduction

strategy. Physica D, 170:206–252, 2002.

[28] L. Hormander. The analysis of linear partial differential operators III: Pseudo-Differential opera-

tors. Number v. 3 in Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen.

Springer, 1985.

[29] B. Friedland. Treatment of bias in recursive filtering. IEEE Trans. Automat. Contr., AC-14:359–

367, 1969.

[30] P.R. Belanger. Estimation of noise covariance matrices for a linear time-varying stochastic process.

Automatica, 10(3):267 – 275, 1974.

[31] B.D. Anderson and J.B. Moore. Optimal filtering. Prentice-Hall Englewood Cliffs, NJ, 1979.

[32] C. Chui and G. Chen. Kalman filtering: with Real-Time Applications. Springer New York, 1999.

[33] M. Branicki, B. Gershgorin, and A.J. Majda. Filtering skill for turbulent signals for a suite of

nonlinear and linear extended kalman filters. Journal of Computational Physics, 231(4):1462 –

1498, 2012.

[34] S.-J. Baek, B.R. Hunt, E. Kalnay, E. Ott, and I. Szunyogh. Local ensemble Kalman filtering in

the presence of model bias. Tellus A, 58(3):293–306, 2006.

[35] E.L. Kang, J. Harlim, and A.J. Majda. Regression models with memory for the linear response

of turbulent dynamical systems. submitted to Comm. Math. Sci., 2011.



Physics Constrained Nonlinear Regression Models for Time Series 13

Table 1. Weakly nonlinear regime: The truth and estimated parameters of the test

model in (21). The estimated parameters are obtained from filtering noisy time series

of the observed component, u1, at discrete time step Tobs = 0.01.

parameter truth MLR estimate

a 0.1 − 0.3i 0.1319 − 0.0556i

a11 −3 + 0.75i −2.0570 + 1.3106i

a12 0.25 − 0.25i −0.0459 − 0.1040i

a21 0.2 + 0.2i −0.4809 + 0.9616i

a22 −2.4 − 1.6i −1.4187 − 2.0819i

α1 −2.1 + 2.6i −1.9971 + 2.9933i

α2 −2.7 − 0.9i −2.2236 + 1.0463i

β1 −1.4 + 1.9i −2.2975 + 2.1854i

σ2Tobs/2 0.1 0.7304

Table 2. Strongly nonlinear regime: The truth and estimated parameters of the test

model in (21). The estimated parameters are obtained from filtering noisy time series

of the observed component, u1, at discrete time step Tobs = 0.01.

parameter truth estimate

a 1 + i −0.1066 − 0.1324i

a11 −3 + 0.75i −2.2683 + 0.6771i

a12 0.25 − 0.25i −0.0306 − 0.0246i

a21 0.2 + 0.2i −0.4810 + 0.9871i

a22 −2.4 − 1.6i −1.5916 − 1.8842i

α1 −2.1 + 2.6i −1.9989 + 2.9953i

α2 −2.7 − 0.9i −2.2871 + 1.1881i

β1 −1.4 + 1.9i −1.9599 + 2.2733i

σ2Tobs/2 0.1 17.4107
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Table 3. The estimated parameters for the three-level MLR model in (21) obtained

from filtering noisy time series of the first component, u1, of the TBH model at discrete

time step Tobs = 0.01.

a 0.0012 + 0.0013i

a11 −3.0507 + 0.7685i

a12 −0.2321 − 0.2636i

a21 0.2118 + 0.2285i

a22 −2.3645 − 1.5840i

α1 −2.1186 + 2.6744i

α2 −2.7059 − 0.8956i

β1 −1.3976 + 1.8711i

σ2Tobs/2 4.39
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Figure 1. The test model in a weakly nonlinear regime: Marginal distributions of

real and imaginary parts (top panels) and autocorrelation functions (bottom panels)

of the first component, u1, of the truth and MLR estimate (21).
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Figure 2. The test model in a weakly nonlinear regime: Posterior parameter estimates

as functions of time. In each panel the solid line denotes the real component and the

grey dashes denote the imaginary component.
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Figure 3. The test model in a strongly nonlinear regime: Marginal distributions of

real and imaginary parts (top panels) and autocorrelation functions (bottom panels)

of the first component, u1, of the truth and MLR estimate (21).
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Figure 4. The TBH time series: Marginal distributions of real and imaginary parts

(top panels) and autocorrelation functions (bottom panels) of the first component, u1,

of the truth and MLR estimate (21).


