A numerical strategy for efficient modeling of the

equatorial wave guide

Andrew J. Majda* and Boualem Khouider

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012

Contributed by Andrew J. Majda, December 7, 2000

Convection in the tropics is observed to involve a wide-ranging
hierarchy of scales from a few kilometers to the planetary scales and
also has a profound impact on short-term climate. The mechanisms
responsible for this behavior present a major unsolved problem. A
promising emerging approach to address these issues is cloud-
resolving modeling. Here a family of numerical models is introduced
specifically to model the feedback of small-scale deep convection on
tropical planetary waves and tropical circulation in a highly efficient
manner compatible with the approach through cloud-resolving mod-
eling. Such a procedure is also useful for theoretical purposes. The
basic idea in the approach is to use low-order truncation in the
meriodonal direction through Gauss-Hermite quadrature projected
onto a simple discrete radiation condition. In this fashion, the cloud-
resolving modeling of equatorially trapped planetary waves reduces
to the solution of a small number of purely zonal two-dimensional
wave systems along a few judiciously chosen meriodonal layers that
are coupled only by some additional source terms. The approach is
analyzed in detail with full mathematical rigor for linearized equa-
torial primitive equations with source terms.

Convection in the tropics has a profound impact on short-term
climate. Observational data indicate that tropical deep con-
vection is organized on a hierarchy of scales ranging from cumulus
clouds over a few kilometers to interseasonal oscillations over
planetary scales of order 40,000 km (1-3). The mechanisms for this
behavior present a major unsolved problem, despite the fact that
there has been extensive research over the last few decades on these
topics through parameterization of convection in general circula-
tion models (4) as well as theory (refs. 5 and 6 and refs. therein).
A particularly promising emerging approach to address these issues
is cloud-resolving modeling (CRM), where idealized highly re-
solved two-dimensional simulations of clouds are coupled to larger-
scale dynamics in a variety of ways (7-9), utilizing massively parallel
computer architecture. Nevertheless, only very crude resolution of
the large-scale interaction is possible with the current generation of
computers. Here a hierarchy of numerical models is introduced
specifically to model the feedback of small-scale deep convection on
the tropical planetary waves and tropical circulation in a highly
efficient manner compatible with the CRM approach. Besides its
efficiency, this numerical strategy also makes a direct link with
many of the observed larger-scale patterns in the equatorial wave
guide such as Kelvin, Yanai, and equatorial Rossby waves (3, 10,
11), so that observations, theory, and CRM simulations can be
compared in an interactive fashion.

The basic idea in the approach is to use low-order truncation in
the meriodonal direction through Hermite polynomials combined
with Gauss-Hermite quadrature in a meriodonal Galerkin approx-
imation projected onto a simple discrete radiation condition. In this
fashion, for example, the numerical CRM of equatorially trapped
solutions symmetric about the equator at planetary scales reduces
to the solution of a small number of purely zonal (ie., two-
dimensional) wave systems along a few judiciously chosen meri-
odonal layers that are only locally coupled by using additional
source terms. Thus, there is only mild overhead to include the
effects of rotation within the tropical wave guide compared with the
purely zonal decoupled cloud-resolving models (7-9).

The procedure using meriodonal truncation is a systematic way
to derive reduced models for the equatorial wave guide akin to the
familiar well-known strategy of using multilayer models in a vertical
truncation of the quasigeostrophic or primitive equations in mid-
latitude (11). However, the technical details are quite different and
are specifically adapted to the equatorial wave guide. A simplified
version of the basic meriodonal truncation strategy has been
introduced recently in ref. 5 for theoretical purposes to study
parameterization of convectively coupled tropical waves; the sys-
tematic use of low-order Gauss—Hermite quadrature is the key new
fact that turns this basic approach into a practical numerical
strategy.

The plan for the rest of this paper is the following: first, basic
properties of parabolic cylinder functions, Hermite polynomials,
and Gauss—Hermite quadrature are reviewed, which are necessary
for the remaining developments in the paper. Next, a brief summary
of the wave properties of the linearized equatorial primitive equa-
tions is presented. Then the basic Galerkin-collocation strategy is
presented for a general nonlinear equation having a structure
consistent with the equatorial wave guide; this formulation is
general enough to include as examples the moist anelastic equa-
tions, the primitive equations, and other simplified theoretical
nonlinear models for convectively coupled planetary waves with
reduced vertical structure. Also the need for a simple discrete
radiation condition is demonstrated here. Any cloud-resolving
discretization of the (x,z) equations (7-9) can be implemented
easily in the approach. Finally, the meriodonal truncation strategy
is developed for the linearized equatorial primitive equations to
provide a fundamental illustrative example of the approach, in-
cluding both its strengths and shortcomings.

Parabolic Cylinder Functions, Hermite Polynomials, and
Gauss—-Hermite Quadrature

The parabolic cylinder functions are given by
D(&) =2 NPHy(E/ \2)e €4,
N, — &

,d
Hy(©) = (17

N=0,1,..., [1]

where Hy(&) are the Hermite polynomials. An orthonormal
basis for L? on the line is given by

oy = (N! \/g) ~12D( VE)’)7 so that f‘PN‘PM dy =doym 2]

The parabolic cylinder functions are the well-known eigenfunc-
tions of the quantum harmonic oscillator (12, 13) and have the
following properties associated with the raising and lowering
operators of quantum mechanics:
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Below, the obvious identities are utilized,
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y—2( +—L_), dy_z( ++L_). [4]

Next, Gauss—Hermite quadrature is introduced (13, 14). Given
the Hermite polynomial, Hy(y), lety;,j = 1, ..., N, denote the
N real zeroes

HN(YI'):O, j=1,...,N. [5]

For a given N, these points y; will define the N-meriodonal levels
of the truncated model. In Gauss—-Hermite quadrature, given N
and the nodes y;, 1 = j = N, there are positive quadrature
coefficients, H;, so that if one introduces the discrete inner
product for functions f(y), g(y) by

N
(. &~ = > f0)gv)H, [6]

j=1

then the discrete functions, ¢;(y;), ¢m(y;) are also a discrete
orthonormal basis,

(@1, ®m) = 81, for m,I<N. [7]

Explicit formulas for f; can be found in refs. 13 and 14. In
particular, for a function f{y), the L-projection, Pyf, is defined by

N—1
Pf= 2 fie ), [8]

j=0
with f; = [ fe; dy. By combining Egs. 6, 7, and 8, it follows that
if one begins with any function f(y) satisfying Pyf = f, then

N-—-1

2 f/@/(Yj),

1=0

Pyfly) = j=1,...,N

N
; _ 91
Jr= 2 fo)el)H,
j=1
D_ef.(f’(Pl)N’ 121,,N

The formulas in Eq. 9 show that given N, taking the discrete inner
product of the ¢ at the discrete levels y; with the quadrature
coefficients H; in the above fashion exactly reproduces the discrete
values of all functions f(y) with Pyf = f.

The Equatorial Primitive Equations

An important prototype example to test the numerical strategy
developed below is given by the linearized hydrostatic equatorial
primitive equations with source terms

Ve
o Ty = "V
-p.+B=0

0B _
— + Nw=58(x,y,z1)
Jat

divgyry +w, = 0. [10]
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Here vy = (u(x, y, z, t), v(x, y, z, t)) is the horizontal velocity field
with #3; = (—v,u), w is the vertical velocity, and B is the buoyancy,
with N the constant buoyancy frequency. Rigid lid boundary
conditions will be utilized here to mimic dynamics in the tropo-
sphere. The model in Eq. 10 already incorporates a number of key
features at large scales in a CRM method for the equatorial wave
guide (7-9). The CRM approach on the coarse-grained large scales
would involve additional nonlinear advection terms in Eq. 10 as well
as nonlinear interactive source terms, S(x, y, z, t), depending on the
cloud-resolving components not given explicitly in Eq. 10 (9). The
nonlinear advective terms are treated by the systematic approach in
the next section, whereas the source terms require only a separate
fractional step in the numerical procedure (9). Thus, the model in
Eq. 10 captures a significant number of features needed in a CRM
approach at large scales. This model also has the advantage that the
numerical procedure developed in the next section can be analyzed
explicitly in these important examples.

Under these conditions, it is well known (10, 11) that the
equations in Eq. 10 reduce to a barotropic equation and an
infinite number of decoupled shallow water equations,

whoo
?-Fyqu +CqVHpq:0
ap‘1+ div ¢ 1S( 1, [11]
— + ¢, divvf, = =S, (x,y,1),
ot a " cg !
where
—N aP =1,2 12
qu)\qa P*an Q* 9 Ly ey [ ]

and A, g =1,2,...,withO <A; <Xy <A3,...,are the vertical
separation constants determined by the eigenvalue problem,

Gyz) = —)\ZGq(z), 0<z<H, Guyz)=0, z=0,H,
[13]

with orthonormal eigenmodes, G,(z). The units of space and
time in Eq. 10 have been nondimensionalized so that 8 = 1 and
so that the speed of the second baroclinic mode ¢, = (N/A,),
satisfies, ¢ = 1. Thus, in nondimensional units, the wave speeds
¢4 associated with the other baroclinic modes are given by

A

cq=)\fq, q=1,2,3,.... [14]

The rationale for this choice of nondimensionalization rests in
the fact that a typical value of ¢, is 25 m/s (6), and it is desirable
to resolve by a numerical strategy both the dry equatorial gravity
waves with the speed, 50 m/s, and also the much slower
convectively coupled waves (3, 5, 6) with a nearly Kelvin-wave
structure with speeds of roughly 12 to 15 m/s (3, 5, 6). Of course,
this choice is somewhat arbitrary and can be tuned conveniently
from other considerations. The source terms, S,(x, y, t), in Eq.
11, are expansion coefficients of the general source S(x, y, z, t)
in terms of the orthonormal eigenmodes, G,(z). The barotropic
equation also has a source term determined by the vertical
average of S. For simplicity in exposition, the barotropic mode
contribution to Eq. 10 is omitted in the discussion here, because
it can be treated separately in a different fashion.

A Low-Order Meriodonal Truncation Strategy for
Numerical Modeling

Here a general meriodonal truncation strategy is formulated for
a general system of equations for a vector quantity, u,
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m + A (wu, + Ax(wu, + Bw)u, + yLu = S, z, t, u),

[15]

where A1(u), A>(u), B(u) are matrix-valued nonlinear functions,
and L is a constant matrix. In the example of the linearized
primitive equations from Eq. 10, the state vector u represents all
the variables, vy, w, B, and also p.

Given N, consider the approximate solution to Eq. 15 defined
through the meriodonal grid levelsy;, j = 1, ..., N associated
with Gauss—Hermite quadrature, i.e.,

ui(x,z,t) =ux,z,y,t), j=1,...,N. [16]

Recall the operation Py defined in Eq. 8, which involves
projection on the first N, parabolic cylinder functions. The
Galerkin-collocation approximation to Eq. 15 involves the ap-
proximation

d
(B(w)uy)(x, y;, z, t) = Bu;(x, z, t))(PN 5PNM) (x,y5, 2, 1)

(yLu)(xa yj’ Z, t) = (PN)’LPNU)(X,Y;" z, t)

For the moment, a precise definition of the operators on the
right-hand side of Eq. 17 is postponed. With the approximations
in Egs. 16 and 17, the solution of Eq. 15 is replaced by the
following approximation involving N-levels in y.

[17]

The Meriodonal Truncation Equations

o DAt As(u) T+ P LPu) (v, 1)

d
+ B(Uj)<PN @PNM)(Yj’ t) =8,y t, u;)

forj=1,...,N. [18]

Provided that the operators Py(yLPy) and Pn(9/dy)Py can be
computed efficiently, then the above equations are a meriodonal
truncation of the equations in Eq. 15, which involves N-equations
in the two (x, z) space variables alone, which are weakly coupled
through these operators.

The operator Py(d/dy)Pyu is defined as follows. Given the
values, u(x, yj, z, t), from Eq. 9, Pyu is defined by

N-1
Py = X i)
1=0
[19]
N
121 = z u(xayja z, t)‘Pl(y/)Hj
j=1
With the properties in Eq. 3, one calculates
N-1
d 1.
Py Pau=Py X Si(L . +L_)e)
Y 1=0
N1y
=Py 2 e 1) = U+ 1) e 1)
1=0 \
No1
= 2 Gl U+ D =i el 120]
=0 V
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Thus, the explicit formula is obtained,

N-—-1
] 1 . -
(PN @PNM> ()’/) = I;ﬂ @(ul (l+ 1)1/2 —up- 111/2)<P1(Vj)-
[21]
A similar calculation shows that
N-—-1
L . 1/2 o - 1/2
(PaLPy)(y) = 2 (i1l + DY+ i 1Dy,
=0 V
[22]

It is worthwhile mentioning that from Eq. 20 in terms of the
discrete Hermite coefficients, i#;, 0 </ = N — 1, the operator
Pn(0/dy)Py is a skew-symmetric tridiagonal matrix with the
form

~ Py = Py
YN Det O
0, 1,
-1, 0, 21/2, @)
1 _21/2’ 0 31/2’
== O
\2 .
(N_ 1)1/2
-N-1DY2 0

[23]

Similarly, from Eq. 22, the operator PyyPy is the symmetric
tridiagonal matrix,

yn = PwPy
Def.
0’ 1’
1, 0, 2172, O
1 21/2, 0’ 31/2,
- o
\2
(N _ 1)1/2
N-DY2 0

[24]

With #; defined from Eq. 19, the formulas in Eqgs. 21 and 22
involve O(N?) explicit matrix multiplications to generate the
operators Pn(9/dy)Pyu and PyyLPnu at the y-levels y; for j =
1, ..., N and utilize only local operations for fixed x, z, ¢. For
fixed N, these matrices can be precomputed and called for use
in the algorithm. For moderate values of N such as N = 3,4, 5,
which are sufficient to capture the large-scale symmetric and
antisymmetric equatorially trapped Kelvin, Yanai, and Rossby
waves, these approximations are routine to implement directly
and are completely local in (x, z), because they involve process-
ing of the meriodonal levels, u;, j = 1, ..., N for fixed (x, z, ¢).

There is little physical interest in using such expansions for
large values of N, because the equatorial waves with large N that
are significantly less trapped in the equatorial wave guide are not
observed, and instead nontrivial connections to midlatitude
dynamics dominate. The approximations iny developed here are
akin to the pseudospectral approximations with Fourier modes
familiar to the reader (15). An important difference is that no
fast Fourier transform is known for the operations in Egs. 19, 21,
and 22 to reduce the operation count for large N. This is
irrelevant for the developments presented here, where it is
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Fig. 1. Dispersionrelations forc, = 2and N = 5. Solid exact solution; circles
numerical solution.

suggested that these models should be utilized only with small
values of N to capture physically significant phenomena. The
basic Galerkin approximation needs to be supplemented by a
discrete radiation condition to not excite spurious large-scale
modes that depend on N but are not equatorially trapped. Below,
such a discrete radiation condition is described for the linearized
equatorial primitive equations in the process of analyzing the
basic algorithm presented above.

Application to the Linearized Equatorial Primitive Equations

If the basic meriodonal truncation strategy in Eq. 18 is applied
to Eq. 10, by utilizing the same vertical structure equations in Eq.
13, the following approximations for the shallow water equations
in Eq. 11 emerge:

Piy e, 24 e py P =0
ar | C1gx TN gy =
ou; ap;
] J —
E-ﬁ-cqa—PNyPNVj—O

an i)
o +c,Py @Pij + PyyPpu; =0

forj=1,...,N. [25]
In Eq. 25, ¥y = (u,v) and the superscripts denoting the gth
baroclinic mode have been dropped; the reader should note from
Eqgs. 19-24 that all N of the y-level values v; are coupled in Eq.
25. Here the source terms, Sy, are ignored for simplicity in
exposition. To show that an explicit analysis is possible, it is
useful to introduce the vectors

W= u,v), j=1,...,N
W=, ..., wy)
W=Wo ..., Wy_1)
N
W= 2 wepH, 1=0,1,...,N—1. [26]

j=1

and the 3N X 3N symmetric matrix, 4, defined by

0, ¢, 0
AwW); =\cqs 0, 8W, [27]

s s
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Fig. 2. Dispersion relations for ¢; = 1/2 and N = 5. Solid exact solution;
circles numerical solution.

with W; = (p;, i1;, ¥;). With the explicit matrices in Egs. 23 and
24 and Eqgs. 26 and 27, the meriodonal truncated approximation
in Eq. 25 becomes the constant coefficient equation for the

Hermite coefficients, W, given by

ow ow 5
—+A—+BW=0, [28]
Jat ox

where B is the skew-symmetric 3N X 3N matrix given explicitly
by its action on (p, i, V) by

0 0 9
b b C(]) a)f;N
B = 0, 0, —In [29]
d

Recall from Egs. 23 and 24 that 9/dyy is skew-symmetric,
whereas yn is symmetric, so that B is necessarily an explicit
skew-symmetric matrix. Thus, in terms of the discrete Hermite
coefficients, W}, the meriodonal truncation approximation for
the linearized primitive equations has the form in Eq. 28 for any
of the higher baroclinic modes with 4 a symmetric matrix and B
a skew-symmetric matrix. This has two important implications:
first, the meriodonal truncation strategy is a linearly stable
numerical procedure because

"ot 1
>3 f (@} + ¥} + p)dr = f (@, Wy + 0, V) + (p, Pl
j=0

[30]

is conserved in time. Secondly, because 4 is symmetric and B is
skew-symmetric, Eq. 28 is a dispersive wave equation so that the
dispersion relations and corresponding eigenvectors for Eq. 28
can be calculated and compared with those for the equatorial
shallow water equations in Eq. 11. The analysis presented below
reveals the need for an additional discrete radiation condition to
supplement the basic algorithm.

Spurious Modes and a Discrete Radiation Condition
With the variables

[31]

g=p+u, r=p-u,

and the corresponding discrete Hermite expansion coefficients,
gj, 7, V;, the dispersion wave system from Eq. 28 above can be
rewritten as the coupled equations,
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Fig.3. Dispersionrelationsforc, = 2and N = 3.Solid exact solution; circles
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aq; ag; 1 A /2m
e, (= (e, + 1Y
ot Cq ox \/E( (Cq 1)j Vi-1

+le, =D+ DY, )=0

ar; ar; 1 e ) ~

E ¢ a + E(*(Cq - 1)11/2"/'71 + (Cq + 1§ + 1)1/2";+ =0
av; 1 e
i 1\il/2s
P 2\/5( (cq = 1)j"7q; 1

+ (g + DG+ DV 00— (g + DjYV37

+,— DG+ DY) =0,j=0,1,...,N—-1, [32]

with the convention g; = 7 = V; = 0,j = —1, N. For the simplest
case with ¢, = 1, #y—1, V-1, and 7y, solve the equations

at ox

a;N*Z aFN*Z Iy ~
7_74_ / — 1/2 _ =
ot ox \2(N 1) VN -1 0

VN -1
at

1
- %E(N — DYy _,=0. [33]
v

The first equation yields a completely spurious westward prop-
agating “Kelvin-like” wave with a meriodonal structure strongly
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Fig. 4. Dispersion relations for c; = 1/2 and N = 3. Solid exact solution;
circles numerical solution.
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Table 1. Mean square relative error over the first 30 wave
numbers in the dispersion relation

Wave N g =2 g = 1/2 g =1/4
Kelvin 3 0 0 0
Yanai 0.0130 0.0280 0.1562
Rossby (M = 1) 0.1805 0.1650 0.5215
Gravity (M = 1) 0.0193 0.0402 0.2146
Kelvin 4 0 0 0
Yanai 0.0057 0.0052 0.0768
Rossby (M = 1) 0.1886 0.1650 0.5215
Gravity (M = 1) 0.0193 0.0402 0.2146
Rossby (M = 2) 0.1769 0.1935 0.2281
Gravity (M = 2) 0.0342 0.0646 0.3091
Kelvin 5 0 0 0
Yanai 0.0064 0.0052 0.0768
Rossby (M = 1) 0.1670 0.0987 0.6201
Gravity (M = 1) 0.0037 0.0078 0.0943
Rossby (M = 2) 0.1769 0.1935 0.2281
Gravity (M = 2) 0.0342 0.1935 0.3091
Rossby (M = 3) 0.1355 0.1565 0.0609
Gravity (M = 3) 0.0501 0.0876 0.3832

dependent on N, whereas the second two equations yield
spurious analogues of the Yanai waves with completely incorrect
phases. On the other hand, for N = 2 and ¢, = 1, the
approximation has the attractive feature that it exactly repro-
duces the equatorial Kelvin wave, Yanai wave, and all equatorial
Rossby and gravity waves of index M with 1 = M = N — 2
together with their dispersion relations (10). These facts moti-
vate the discrete radiation conditions for general solutions of the
linearized equatorial primitive equations for N-meriodonal dis-
crete levels,

;Nfl(xazat):;N72(x’zat):&Nfl(x’z’t)z()a [34]
with the corresponding condition imposed on the source terms,
S(x, y, z, t), which supplement the basic algorithm in Eq. 18
involving meriodonal truncation. Of course, these discrete ra-
diation conditions in Eq. 34 should be applied only after the
barotropic components have been removed by a straightforward
vertical average.

Error Analysis for the Approximation for ¢, + 1

Because the algorithm exactly reproduces all the trapped equa-
torial waves with index M = N — 2 for a given N with ¢, = 1,
it is obviously interesting to evaluate the errors in the algorithm
for ¢, # 1 via the theoretical procedure sketched above. Below,
such errors are reported for the values, ¢, = 1/2 and ¢, = 2,
which correspond to dimensional Kelvin wave speeds of 12.5 m/s
and 50 m/s, according to the nondimensionalization described
earlier. As a more severe test case, some results are also reported
for ¢, = 1/4, which corresponds to a Kelvin wave speed of 6.25
m/s. Also the errors are reported here for N = 3, 4, 5 so that
there are only three, four, or five meriodonal levels of truncation;
the values of N = 4, 5 are small but still allow for exact resolution
by the numerical algorithm for ¢, = 1, the Kelvin, Yanai, and
M =1, 2 equatorial Rossby and gravity waves, which are part of
the observational record (3). The case with three meriodonal
levels, N = 3, is also interesting as a minimal model with Kelvin,
Yanai, and symmetric, M = 1, Rossby and gravity waves.

In Figs. 1 and 2, the numerical dispersion relation for N = 5
and ¢, = 1/2, 2, respectively, are compared with the exact
dispersion relation for the Kelvin, Yanai, and equatorial Rossby
and gravity waves with M = 1, 2, 3. Clearly, the phases of the
Kelvin wave are exact and the Yanai wave nearly so, with small
phase errors in the Rossby waves and M = 1 gravity wave, and
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Fig. 5. Meriodonal structure of pressure for N = 5, ¢ = 1/2 and wave
number 5 (k = 5k4). Solid exact solution; circles numerical solution.

somewhat larger phase errors for the M = 2, 3 gravity waves.
Figs. 3 and 4 depict the same approximate dispersion relation
with N = 3, with similar behavior.

To quantify these errors, recall that the fundamental wave
number one for the earth is given by ky = 27L,./P with P =
40,000 kmand L, = V¢/B withc = 25 m/sand 8 = 2Q/R; thus,
ki = 0.16 and integer multiples of k; denote the higher wave
numbers. The first 30 wave numbers span scales down to 1,333
km. The mean square relative error over the first 30 wave
numbers in the dispersion relation for N = 3, 4, 5 and ¢, = 2,
1/2, 1/4 is presented in Table 1.

Note that the Kelvin wave has an exact dispersion relation,
whereas the errors in the Yanai wave are small even for N = 3
and ¢, = 1/4. The largest relative errors in the dispersion
relation occur consistently for the Rossby waves and are between
15 and 20% for ¢, = 2, 1/2; this could be anticipated, because
the Rossby wave dispersion relation is nearly zero, so relative
errors are exaggerated when compared with the excellent qual-
itative trends observed in Figs. 1-4 above.

How well does the algorithm resolve the spatial structure of
the equatorial waves with the accurate dispersion relation de-
scribed above for N = 3, 4, 5? In Fig. 5, the meriodonal structure
of pressure computed from the algorithm is compared with the
exact answer for a representative wave number 5 and N = 5 for
the Kelvin, Yanai, and M = 1, 2 Rossby and Gravity waves with
¢q = 1/2. In Fig. 6, the same results are presented for wave
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Fig. 6. Meriodonal structure of pressure N = 3 and ¢; = 1/2 and wave-
numbers 5 and 10. Solid exact solution; circles numerical solution.

numbers 5 and 10 and N = 3 for the Kelvin, Yanai, and M = 1
equatorial Rossby wave. Considering the crudeness of the ap-
proximation, the qualitative discrepancies in the meriodonal
structure are not very significant.

Summary and Conclusion

A numerical algorithm designed specifically for efficient cou-
pling of the equatorially trapped planetary waves with detailed
two-dimensional cloud-resolving models (7-9) has been devel-
oped here. For the equatorial primitive equations, this algorithm
amounts to the basic meriodonal truncation strategy developed
in Egs. 18, 21, and 22 combined with the readily implemented
discrete radiation condition in Eq. 34 for the solution and
heating sources. An explicit rigorous numerical analysis of the
basic algorithm for the linearized equatorial primitive equations
presented above reveals that only a small number of judiciously
chosen meriodonal levels, N = 3, 4, 5, are needed to adequately
represent a wide range of equatorially trapped waves, which form
a significant part of the observational record (3). Detailed
application of this basic algorithm for specific issues in tropical
meteorology may be the subject of future research.
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