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New numerical results on scalar pair dispersion through an inertial range spanning many decades are
presented here. These results are achieved through a new Monte Carlo algorithm for synthetic
turbulent velocity fields, which has been developed and validated recently by the authors@J.
Comput. Phys.117, 146 ~1995!#; this algorithm is capable of accurate simulation of a Gaussian
incompressible random field with the Kolmogoroff spectrum over 12–15 decades of scaling
behavior with low variance. The numerical results for pair dispersion reported here are within the
context of random velocity fields satisfying Taylor’s hypothesis for two-dimensional incompressible
flow fields. For the Kolmogoroff spectrum, Richardson’st3 scaling law is confirmed over a range of
pair separation distances spanning eight decades with a Richardson constant with the value
0.03160.004 over nearly eight decades of pair separation, provided that the longitudinal component
of the velocity structure tensor is normalized to unity. Remarkably, in appropriate units this constant
agrees with the one calculated by Tatarski’s experiment from 1960 within the stated error bars. Other
effects on pair dispersion of varying the energy spectrum of the velocity field and the degree of
isotropy, as well as the importance of rare events in pair separation statistics, are also developed here
within the context of synthetic turbulence satisfying Taylor’s hypothesis. ©1996 American
Institute of Physics.@S1070-6631~96!00504-7#

I. INTRODUCTION

Pair dispersion is the simplest and most important statis-
tic, which is a manifestation of the inverse cascade of a pas-
sive scalar through a range of turbulent velocity scales. After
Richardson’s pioneering work with his famoust3 law, a large
effort has focused on predicting and confirming this law and
its associated fundamental preconstant through actual
experiments,2,3 turbulence closure theories,4,7 and numerical
simulation.8–10

Here we present the first numerical experiments, which
confirm Richardson’st3 law over many decades of pair sepa-
ration and also give a value of the preconstant for pair dis-
persion that settles down to a constant within small errors
over many decades. In both instances our results are valid
over nearly eight decades of pair separation. To achieve these
results for pair dispersion, we utilize a novel Monte Carlo
method for generating synthetic, incompressible, Gaussian
random velocity fields devised recently by the authors; this
new method is capable of generating fractal velocity fields
with the Kolmogoroff spectrum with low variance and high
accuracy for both the prefactor and scaling exponent for the
velocity structure function over 12 decades.11 Furthermore,
the basic algorithm has already been validated for applica-
tions in turbulent diffusion11 including pair dispersion on an
exactly solvable model involving random shear layers.13,14In
contrast, the results on pair dispersion via synthetic turbu-
lence that are reported in Refs. 8 and 10 involve numerical
methods, where the velocity structure function has the Kol-
mogoroff scaling for roughly one decade~for example, see
Fig. 5 of Ref. 10! with a similar range for typical direct
simulations involving fluid equations.9

Here, we consider pair separation statistics for a passive
scalar transported by an incompressible velocity field in two
space dimensions under Taylor’s hypothesis. Thus, the basic

passive scalar transport problem has the form

]T

]t
1v~x1w̄t !–“T50, ~1!

where w̄Þ0 is the large-scale sweeping velocity and
div~v!50. The random velocity fields in~1! are the simplest
ones compatible with the statistical component of the veloc-
ity field satisfying Taylor’s hypothesis. We remark that the
energy-power spectrumE~k,v! for the velocity field,v, sat-
isfiesE~k,v!5d~v2kwG !E0~k!, whereE0~k! is the spatial en-
ergy spectrum ofv~x!, w̄ is the large-scale sweeping direc-
tion, and d is the Dirac-delta function. For this random
velocity field, the temporal correlations at a fixed point in
time are a simple scaling through the mean sweepw̄ of the
spatial correlations in the directionw̄, and this is the essential
feature of Taylor’s hypothesis. However, we also note that
the velocity field in~1! has mean zero so the explicit effect of
the constant mean field has been removed. Thus, the statisti-
cal piece of the flow has the statistics of Taylor’s hypothesis
without an explicit mean flow advection.

We assume that the incompressible velocity field,v~x!, is
a Gaussian fractal field with mean zero,^v&50, and scaling
behavior for the velocity differences given by

^uv~x1x8!2v~x8!u2&5CHuxu2H, ~2!

for l d,uxu<1 and for 0,H,1 with H the Hurst exponent
andl d roughly the dissipation length scale. The familiar Kol-
mogoroff spectrum corresponds to the valueH51

3, with
CH5C̄ē2/3, ē is the dissipation rate, andC̄, the Kolmogoroff
constant for the velocity difference. In our main simulation
presented in Sec. III for pair dispersion in a velocity field
with Kolmogoroff scaling, we havel d510215 with reliable
accuracy over this entire intertial range generated by our syn-
thetic turbulence algorithm.12
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We study the statistics of pair separation for the passive
scalar problem in~1!. Thus, we take two particlesX j for
j51,2 with a fixed initial separation distances, so that

uX1
t 2X2

t u5s, ~3!

and follow the pair separation,

X1
t 2X2

t , for t.0, ~4!

where each particle is advected by the random velocity field,
v~x1w̄t!, from ~1!. The pair separation,X1

t 2X2
t , is a random

variable depending on the velocity statistics and the pair dis-
persion,s2(t,s), is the second moment of this random vari-
able,

^uX1
t 2X2

t u2&5s2~ t,s!, ~5!

where^•& denotes ensemble averaging over the random ve-
locity field. Next, we briefly summarize the remainder of this
paper. Our choice of nondimensionalization and the numeri-
cal method for~1! are discussed in Sec. II. The main new
feature of the Monte Carlo method beyond the parts already
developed and validated in Refs. 11 and 12 is an adaptive
time step strategy for pair separation that we validate for
velocity fields with the Kolmogoroff spectrum in Sec. II. It is
worth emphasizing here that in Sec. II we nondimensionalize
the longitudinal velocity structure constant to have the value
1 in all of our simulations. This facilitates simple comparison
between the results presented here and earlier work for both
two- and three-dimensional flows. This discussion occurs in
Sec. VI. The main results of this paper are presented in Sec.
III, where, with the Kolmogoroff spectrum, we verify Rich-
ardson’st3 law with an accurate constant for pair dispersion
over nearly eight decades of pair separation,

s2~ t !5bt3 and b50.03160.004, ~6!

with the nondimensionalization mentioned earlier. In Sec. III
we also study the occurrence of rare events in pair separation
statistics. We study the effects of an anisotropic Kolmogoroff
spectrum on pair dispersion statistics in Sec. IV. In Sec. V we
present numerical evidence, which confirms the universal
scaling law for pair dispersion,6,9

s2~ t !5bHt
2/~12H !, for s~ t !@s, ~7!

for 0,H,1
2 as the spectrum of the velocity field from~1! is

varied. Finally, in Sec. VI we compare and contrast our re-
sults with other work on pair dispersion and discuss some
future directions under current investigation by the authors.

II. PRELIMINARIES

A. Nondimensionalization

For the velocity field defined in~2! and given any length
scale,l , there are two natural time scales associated with the
scalar problem from~1!, the sweep time,ts( l ), and the eddy
turnover time,te( l ). The sweep time,ts( l ), is given by

ts~ l !5
l

uw̄u
. ~8!

We utilize a normalization of the eddy turnover time that is
natural for studying pair separation statistics.

If l (t)5uX1
t 2X2

t u is the separation distance in a given
realization, then from~1! we derive that

d

dt

1

2
l 2~ t !5@v~X1

t 1w̄t !2v~X2
t 1w̄t !#–~X1

t 2X2
t !. ~9!

From the formula in~9!, it follows that pair separation sta-
tistics are primarily sensitive to longitudinal displacements
of the velocity field. For an isotropic, incompressible Gauss-
ian field with the structure function in Eq.~2! in d space
dimensions, the longitudinal component of the velocity
structure tensor is given by

K S @v~x1x8!2v~x8!#–
x

uxu D
2L 5C̃H

2 uxu2H, ~10!

while the full magnitude of the velocity difference is

^uv~x1x8!2v~x8!u2&5~2H1d!C̃H
2 uxu2H, ~11!

i.e. CH5(2H1d)C̃H
2 in Eq. ~2!.3,12 With all of the above

information from~9! and~10!, the natural definition of eddy
turnover time,te( l ), in studying pair separation statistics, is
to utilize the longitudinal velocity displacements and define

te~ l !5C̃H
21l 12H. ~12!

With the definitions for sweep time and eddy turnover
time in ~8! and~12!, we define the unit of length through the
scalel̄ , wherete( l̄ )5ts( l̄ ), i.e. where the sweep time equals
the eddy turnover time, and we define the unit of time
throughte( l̄ )5ts( l̄ ). With this choice of nondimensionaliza-
tion, we have the scalar transport problem in~1! with the
normalizations

C̃H51, uw̄u51,
~13!

te~ l !5 lH21, ts~ l !5 l ,

which we assume in presenting our results throughout this
paper. We remark that the sweep time and eddy turnover time
satisfy

ts~ l !!te~ l !, for l!1, ~14!

so that we have arranged in our numerical experiments for
the standard conditions where Taylor’s hypothesis is usually
assumed in interpreting experimental data.3

B. The numerical method

An algorithm for evaluating pair separation statistics re-
quires two main features: first, a Monte Carlo method for
simulating an isotropic incompressible Gaussian random
field satisfying the scaling relations in~2! and ~10! over as
many decades of spatial scaling as possible, and second, a
discrete time stepping procedure. We use the Monte Carlo
algorithm devised in Ref. 12 for simulating an isotropic in-
compressible Gaussian field; the lengthy validation studies in
Ref. 12 verify that this algorithm is capable of satisfying the
scaling relations in~2! and ~10! over 12–15 decades with
low statistical variance involving only 100 to 1000 realiza-
tions, yielding the exponentH exact to four significant fig-
ures and the preconstantC̃H exact to within 5% over the
entire range of scales. This algorithm12 combines random
plane waves15 with suitable explicit one-dimensional wave-
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lets with high moment cancellation;11 a leisurely introduction
to the basic design of the algorithm in one space dimension
can be found in Ref. 16. The high resolution capabilities of
this Monte Carlo algorithm allow us to pick initial particle
separation distances as small ass510214 in the numerical
experiments described below. In Ref. 12 we have verified
that a field with 16 plane waves~over 32 shearing directions!
achieved a high degree of isotropy, and this value is used in
all the isotropic simulations reported below in Secs. III and
IV. We also guarantee that the mean floww̄ does not align
exactly with any of these directions.

The smallest time scale in the problem is the sweep time
at the dissipation scalets( l d), and the most straightforward
time step criterion would involve a fixed small multiple of
ts( l d). However, in attempting to simulate pair separation
statistics over a large number of decades of separation, such
a straightforward strategy is hopelessly expensive and im-
practical. Instead, with the formula in~9! as motivation,
given the locations,X1

t andX2
t , of the particle pair in a given

realization, we adopt a variable time step based on the rate of
separation of the two particles; thus we set

Dt5a l ~ t !U ddt l ~ t !U
21

, ~15!

for a,1 a fixed constant and utilize Euler’s method with this
time step size in our integration of pair separation statistics,
where we use the formula in~9! to evaluatedl(t)/dt for each
realization. Since formula~8! implies that the denominator in
formula ~15! depends on the difference of two nearly equal
numbers, it is necessary to do the computation in 64-bit
arithmetic to avoid division by 0. We note that in the simu-
lations reported below, in each realization we begin with
only one pair of particles at a fixed separation distance, so
the above time stepping procedure is well defined.

Why do we use the simple, low-order Euler’s method for
time integration rather than higher-order time stepping?
There are two reasons. First, we are computing with nowhere
differentiable velocity fields, and it is well known that
higher-order time stepping only improves the accuracy for
smooth velocity fields. Second, the computational overhead
in the variable time-step strategy with a higher-order method
is significant compared to the first-order method. David
Horntrop ~private communication!19 has compared the first-
order Euler method with higher-order time-stepping proce-
dures on the exactly solvable model from Refs. 13 and 14
with nonsmooth velocity fields and has verified the above
behavior for higher-order methods. Next, we validate the
time stepping criterion in~15! and demonstrate its conver-
gence fora!1.

C. Validation study of the variable time-step strategy

To validate the time-stepping procedure, we ran the basic
algorithm with the Kolmogoroff spectrum,H5 1

3, and varied
the time step strategy through the valuesa51

2,
1
4,

1
8, and

1
16.

We used an initial pair separation distance,s510212 and
computed the RMS pair dispersions(t), defined earlier in
~6!, by averaging over 1024 realizations utilizing the adap-
tive time-step strategy described above for each realization.

In Fig. 1~a! we plot the RMS pair dispersion versus time for
the four different time-step strategies, while in Fig. 1~b! we
plot the logarithmic derivative of RMS pair dispersion
@s(t)#. Here and elsewhere in this paper, for all graphs of
RMS pair dispersion versus time, we have rescaled space and
time, respectively, via the initial separation distance,s, and
the initial eddy turnover timete(s) in order to display the
number of spatial decades of pair separation achieved in each
simulation.

In the time step validation study depicted in Fig. 1, we
have the relatively modest range of nearly four decades of
pair separation for each of the four parameter values. The
graph in Fig. 1~a! visually displays convergence asa de-
creases froma51

2 to a5 1
16, while Fig. 1~b! indicates that all

four cases have confirmed Richardson’st3 scaling law over
almost two spatial decades of RMS pair dispersion.

Finally, we report an even more stringent convergence
test for the time-step strategy as the parametera increases.
We took the RMS dispersions(t) and divided byt1.5 and

FIG. 1. Plots of~a! RMS dispersion versus time;~b! the logarithmic deriva-
tive of RMS dispersion versus time with Hurst exonentH5

1
3 and step size

a equal to
1
2 ~s!,

1
4 ~3!,

1
8 ~1!, and

1
16 ~* !. Initial separations510212.

Realizations 1024.
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computeds(t)/t1.5 at the last time,t5103 depicted on the
graphs in Fig. 1. We denote this number byu~a!. We have
the following results:

a5 1
2, u~a!50.22,

a5 1
4, u~a!50.20,

a5 1
8, u~a!50.18,

a5 1
16, u~a!50.17,

which demonstrate the convergence of this statistical quan-
tity asa decreases. Clearly, the value ofa51

8 is sufficient for
reasonable accuracy in this constant, and we utilize this
value in the variable time-step strategy for all simulations
reported in Secs. III and IV.

III. PAIR SEPARATION STATISTICS OVER MANY
DECADES WITH KOLMOGOROFF SCALING

Here we present the results of Monte Carlo simulations
for pair separation statistics that utilize the algorithm de-
scribed in Sec. II with a Kolmogoroff random velocity field,
H51

3, and variable time step strategy witha51
8. We utilized

an initial separation distances510214 and computed the av-
erages over 1024 realizations.

In Fig. 2, we graph the pair dispersion statistics over
many decades of pair separation. The graph of RMS disper-
sion in Fig. 2~a! indicates that power law behavior of pair
dispersion occurs after aboutt5102 ~100 initial eddy turn-
over times! and persists for eight decades of pair separation.
The graph of the logarithmic derivative of pair dispersion
versus time in Fig. 2~b! oscillates mildly with a mean value
3, which provides a stringent confirmation of Richardson’st3

law. The logarithmic derivative shows the accuracy of thet3

power law for every point in timet.102, whereas the least
squares fit of RMS dispersion, which we discuss below,
shows a crude average power fort.102.

Finally, Fig. 2~c! measures the Richardson constant and
its variation over the scaling regime. In Fig. 2~c! we graph
the pair dispersion divided byt3,s2(t)/t3, from our Monte
Carlo simulation. Remarkably, as the reader can see by com-
paring Figs. 2~a! and 2~c!, the Richardson constant settles
down over more than 7.5 decades of pair separation, with the
value 0.03160.004.

Next, we discuss the importance of rare events in the
pair separation statistics. Given the mean floww̄, we con-
sider the parallel and perpendicular components of the pair
separation in a given realization defined, respectively, by

w–~X1
t 2X2

t ! and w'
–~X1

t 2X2
t !. ~16!

For any zero mean random variableu, the skewness,S(u),
and the flatness,F(u) are the normalized constants, given by

S~u!5
^u3&

^u2&3/2
, F~u!5

^u4&

^u2&2
.

For a Gaussian random variable, we haveS(u)50 andF(u)
53.

Next, we evaluate the skewness and the flatness of the
parallel and perpendicular components of pair separation
from the Monte Carlo simulation as time varies. The skew-

FIG. 2. Plots of~a! RMS dispersion versus time and~b! the logarithmic
derivative of mean squared dispersion versus time. In~b! the solid line
indicatesg53 predicted by formula~6!. ~c! is a plot of the mean squared
dispersion divided byt3 versus time, indicating a Richardson constant of
0.03160.004~for t.102! over nearly eight decades of pair separation. They
axis in ~c! has range 0.00–0.05. Hurst exponentH5

1
3. Initial separation

s510214. Realizations 1024.
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ness for these two components is graphed in Fig. 3~a!, while
the flatness for these two components is graphed in Fig. 3~b!.
In these graphs, the parallel component of the separation is
indicated by a solid line while the perpendicular component
is denoted by a dotted line. After time,t5102, which indi-
cates the onset oft3 scaling behavior for pair dispersion, the
two components of skewness are roughly symmetric about
zero and almost always lie between20.5 and10.5. This
provides a rough indication that the pair separation statistics
are likely to have a symmetric distribution. As depicted in
Fig. 3~b!, the two components of flatness are almost always
between the values of 5 and 8, after timet5102. Since the
flatness of any Gaussian random variable is 3, this fact indi-
cates that the probability density for pair separation has a
much broader tail than a Gaussian throughout the entiret3

scaling regime. The confidence levels in the fourth moment
statistics preclude an accurate reporting of higher-order mo-
ments, as well as a full probability density function.

Another manifestation of the importance of rare events

in the pair separation statistics is the variance in computed
behavior of pair dispersion averaged over only a small num-
ber of realizations. In Fig. 4~a! we graph the RMS dispersion
averaged over only two pairs of particles initially separated
by 10214. Clearly, we see the expected nonmonotone behav-
ior of pair separation for each individual realization. Never-
theless, the least squares fit of the RMS dispersion with two
pairs of particles beyond timet5102 yields an exponent of
1.505 over eight decades of separation, confirming the Rich-
ardsont3 law in a very crude time-averaged fashion. How-
ever, a graph of the logarithmic derivative of pair dispersion
for two particle pairs~not depicted here! shows tremendous
scatter with a minimum value of20.90 and a maximum
value of 8.07, in contrast to the data in Fig. 2~b!, which
indicates small scatter with averaging over 1024 realizations.
The pair dispersion divided byt3 for two particle pairs is
graphed in Fig. 4~b!. After the timet5102, the Richardson
constant computed from two pairs of particles has the aver-

FIG. 3. Plots of~a! skewness of particle separation versus time and~b!
flatness of particle separation versus time withH5

1
3. Parallel component

graphed with a solid line. Perpendicular component with a broken line.
Initial separations510214. Realizations 1024.

FIG. 4. Plots of~a! RMS dispersion versus time;~b! mean squared disper-
sion divided byt3 versus time with Hurst exponentH5

1
3 and two realiza-

tions. Note that the scale here for they axis runs from 0.00 to 0.10 and there
is wide scatter compared with the plot in Fig. 2~c!, where all the variation is
confined between 0.025 and 0.035.
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age value of 0.026 over eight decades of pair separation,
with a wide scatter ranging from a minimum of 0.003 to a
maximum value of 0.084 over eight decades of separation.
Nevertheless, the averaged value for the constant with only
two realizations, 0.026, is close to the value 0.03160.004
obtained over the entire eight decade range, with 1024 real-
izations and depicted earlier in Fig. 2~c!.

IV. THE EFFECT OF ANISOTROPY IN THE VELOCITY
SPECTRUM ON PAIR DISPERSION

As we mentioned briefly in Sec. II, one of the main
computational devices in the Monte Carlo algorithm from
Ref. 12 is to approximate an isotropic incompressible Gauss-
ian random field over a large finite number of plane wave
directions involving simple shear layers.15 If, instead, only a
small number of independent shear layer directions, for ex-
ample only two directions, are utilized, then the correspond-
ing random field is anisotropic with ordered behavior at each
scale but with, nevertheless, a similar energy spectrum, as in
the isotropic case. Here we use this technical device, together
with the same adaptive time-stepping procedure described in
Sec. II to develop Monte Carlo simulations for pair disper-
sion over many decades in random anisotropic fields, in con-
trast to the isotropic situation discussed earlier.

First, we briefly summarize the random plane wave de-
composition from Refs. 12 and 15. We want to build system-
atic approximations involving random plane waves to an iso-
tropic incompressible Gaussian random field with the
velocity structure function in~2!. To achieve this we let
$v j u j50,1,2,...% be a sequence of independent and identically
distributed, one-dimensional, scalar Gaussian fields, satisfy-
ing

^v j&50,
~17!

^uv j~x1x8!2v j~x8!u2&5uxu2H.

For each M , we build the random plane wave
approximations,12,15

vM~x!5S p

MC~H ! D
1/2

(
j50

M21

v jF S x•uS p j

M D G
3uFpS j

M
1
1

2D G , ~18!

where u~u!5cos~u!e11sin~u!e2. If we select the constant
C(H) in ~18! so that

C~H !5
G~ 1

2!G~H1 1
2!

2~H11!G~H11!
,

then asM→` the random plane wave field from~18! con-
verges to the isotropic incompressible Gaussian random field
satisfying~10! and~11! with the constantC̃H51, i.e. satisfy-
ing the nondimensionalization of~13! in this paper. In fact,
we use this formula withM516 to yield an approximation
that is very nearly isotropic12 in the algorithm described in
Sec. II. These 16 plane waves divide the unit circle into 32
equal arcs or ‘‘shearing directions,’’ as claimed in the Intro-
duction and in Ref. 10.

If we use the formula in~18! with M52 andH5 1
3, we

have random arrays of coherent eddies oriented along the
coordinate axes with an anisotropic Kolmogoroff spectrum.
The velocity structure function for the field in~18! with
M52 scales likeuxu2/3 but depends on the anglef with the
x1 axis, i.e. the constantCH from ~10! and~11! is a function
of the anglef. A graph of the functionCH~u! is depicted in
Fig. 5~a!; we remind the reader for comparison that with the
normalizations from~10!, ~11!, and ~13! in this paper, the
isotropic value ofCH is 2.67. The graph of the anisotropic
longitudinal structure function forM52 in Fig. 5~b! shows a
similar dependence on angle with the significant additional
fact that this function vanishes identically atf50° and
f590°.

How much does the Richardsont3 law for a pair disper-
sion change in such a structured random field, with the Kol-
mogoroff spectrum under Taylor’s hypothesis? We varied the
angle between the mean floww̄ and thex1-coordinate axis
systematically and applied the Monte Carlo algorithm from
Sec. II withM52 and 1024 realizations to study this issue.
In these simulations, we utilized an initial separation distance
s510212 and ran our code for somewhat shorter times than
described earlier in Sec. III, so that scaling behavior in pair
dispersion was obtained over at least three decades of pair
separation. The pair dispersion scaling exponent,g, defined
by s2(t)5btg for t@1, is graphed in Fig. 5~c! as a function
of the angle,f, of the mean flow,w̄, with thex1-coordinate
axis. In all such cases, we find that the pair dispersion over
this three decade scaling range proceeds at a slower rate of
spreading on the average than thet3 law obtained earlier in
Fig. 2 for an isotropic velocity field. For a sampling of angles
between the mean flow and thex1-coordinate axis, the expo-
nentg varies between 2.98 and 2.92. Furthermore, from Fig.
5~c! we observe that the pair dispersion exponent,g, drops to
its minimum value of 2.92 when the mean flow and the co-
ordinate axis make the smallest computed angle of 6°. This is
not difficult to understand intuitively because the longitudi-
nal component of the structure function vanishes at the zero
angle in this anisotropic setting@see Fig. 5~b!#, and the large-
scale sweep tends to localize more particle pairs in the direc-
tion along thex1 axis where, from Eq.~9!, the pair separation
necessarily proceeds more slowly.

There are intuitive reasons to expect reduced pair disper-
sion in the situation described here. The fluid flow with
M52 is highly structured, and pair dispersion, in general, is
arrested by pairs of particles remaining roughly aligned in
directions of pair separation, where the longitudinal structure
function vanishes. To elucidate these differences, in Fig. 6
we graph for a typical realization both the flow field in the
nearly isotropic case utilized earlier in Sec. III and the flow
field in the structured case withM52, which we have just
described.

Finally, we end this section with an important remark.
We have also studied pair dispersion in the anisotropic situ-
ation withM54 in Eq.~18!. This value ofM is already large
enough for the random field to look completely disordered,
and our computational results in this case~not reported here!
essentially confirm Richardson’st3 law with nearly the same
accuracy as for the isotropic results presented earlier in this
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section. We have argued earlier that there are special direc-
tions where pair dispersion is arrested for the situation with

M52, because the general formula in~9! applies and the
longitudinal velocity structure function vanishes in these di-
rections@see Fig. 5~b!#. On the other hand, a plot similar to
the one in Fig. 5~b! for the case withM54 confirms that the
longitudinal structure function never vanishes at any angle in
this case, and this is a significant reason for the validity of
the t3 law in this situation. Thus, the case of a velocity field
with random plane waves andM52 is exceptional in many
respects; nevertheless, our numerical results do seem to con-
firm the possibility that there are some exceptional aniso-
tropic ordered random flows with the Kolmogoroff spectrum,
where, under Taylor’s hypothesis alone, Richardson’st3 law
may not be satisfied.

V. PAIR DISPERSION UNDER TAYLOR’S HYPOTHESIS
WITH VARYING VELOCITY SPECTRA

Here we report the results of Monte Carlo simulations
with the numerical algorithm described in Sec. II to compute
pair dispersion in an anisotropic velocity field with a varying
Hurst exponentH, from ~2!, defining its spectrum under the

FIG. 5. Plots of~a! the structure constantCH ~f! and ~b! the longitudinal
structure constantC̃H~f!. Note thatC̃H~f! vanishes atf50; ~c! the simu-
lated exponentg vsf for an isotropic field with two shearing directions and
Hurst exponentH5

1
3. The value ofg drops to 2.92 as the direction of sweep

nearly becomes parallel with a coordinate axis whereC̃H~f! vanishes.

FIG. 6. Plots of a typical realization of~a! an isotropic velocity field and
~b! an anisotropic field with two shearing directions and Hurst exponent
H5

1
3.
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assumptions of Taylor’s hypothesis. We are especially inter-
ested in checking the validity of the theoretically predicted
scaling law6,9 for pair dispersion from~7!, which generalized
Richardson’s law to other velocity fields with a general Hurst
exponent,H.

For the results of the numerical simulations reported
here, we began with an initial separation distances510212

with the nondimensionalization from~13!, and in each case
we utilized the Monte Carlo method from Sec. II with 1024
realizations.

We varied the Hurst exponent through the three values
H50.2, 0.3, and 0.4. In all three cases, the graphs for pair
dispersion qualitatively resembled those described earlier in
detail in Fig. 2 for the case of the Kolmogoroff spectrum
with H51

3; after an initial period of order 102 eddy turnover
times, the pair dispersion settled into a power law scaling
regime,

s2~ t !5btg, t@1, ~19!

for many decades of pair separation.
In Table I we compare the theoretically predicted scaling

exponent 2/~12H! from ~7! with the average exponentg
computed over many decades of pair separation for the cases
with H50.2, 0.3, and 0.4. We also present the minimum and
maximum of the local exponent determined from the loga-
rithmic derivative in the scaling regime, as depicted earlier in
Fig. 2~b!, for H51

3 and the number of decades of pair sepa-
ration where this scaling behavior was achieved in each case.
In all three cases, the computed exponent,g, agreed with the
theoretical exponent 2/~12H! within the small error 0.03.
Thus, the theoretical predictions of~7! for pair dispersion are
confirmed by our Monte Carlo simulations within the nu-
merical precision.

We observe from Table I that the number of decades of
pair separation where scaling has been achieved decreases as
the value ofH increases. For a given initial separation dis-
tance, the reasons are computational; we only have computer
resources to generate all the~over 250!! ! Gaussian random
variables by the method of Ref. 12 for the velocity field in
the unit circle. At the larger values of the Hurst exponent,
particles escape from the unit circle more rapidly, and the
computation must be terminated before this happens. We
achieved more decades of scaling behavior for pair separa-
tion for the Kolmogoroff spectrum in Sec. III by picking an
even smaller initial pair separation,s510214.

VI. CONCLUDING DISCUSSION

A. The Richardson constant

The main result presented in this paper is confirmation
of Richardson’st3 law for pair dispersion over a range of
pair separation spanning eight decades. In fact, the Richard-
son constant has the value 0.03160.004 over nearly eight
decades of pair separation for an isotropic Kolmogoroff ve-
locity field under Taylor’s hypothesis, provided that the lon-
gitudinal component of the velocity structure tensor is nor-
malized to unity. These results were achieved with a new
Monte Carlo method developed recently by the authors11,12,16

with the capability of generating many decades of scaling
behavior through a Gaussian random velocity field with the
Kolmogoroff spectrum. Since the value of Richardson’st3

law has been the object of extensive experimental,2,3,17

theoretical,4–7 and numerical8,10 investigation in various con-
texts, we compare the results obtained here with those devel-
oped elsewhere.

To do this, we use more conventional notation from tur-
bulence theory, where the longitudinal component of the ve-
locity structure tensor with Kolmogoroff’s law is given by

K S @v~x1x8!2v~x8!#–
x

uxu D
2L 5CLē

2/3uxu2/3, ~20!

andCL is a universal constant from turbulence theory related
to the Kolmogoroff constant. The Richardson law for pair
dispersion assumes the form

s2~ t !5GDēt3, ~21!

where GD is the Richardson constant. The experimental
measurements18 give a value ofCL52.060.1, and a value of
CL.2 is obtained in three dimensions with a choice of the
spectral Kolmogoroff constantCK51.5

Thus, with~20! and~21! we use the valueCL52 so that
the Monte Carlo simulations developed here in two space
dimensions with an isotropic Kolmogoroff spectrum under
Taylor’s hypothesis predict a Richardson constant,

GD50.06260.008, ~22!

valid over nearly eight decades of pair separation. Remark-
ably, the value~22! agrees with the one obtained by Tatarski,
GD50.06, in his experiments; Ozimodov17 has also argued
from his experimental data that the appropriate range forGD

isO~.1!. Sabelfeld studied pair dispersion under Taylor’s hy-
pothesis over crude separation distances~by the standards of
this paper! involving only one decade of pair separation and
obtained the value,GD50.2460.03. Funget al.,10 in an in-
teresting paper, did not study the behavior of Richardson’s
law under Taylor’s hypothesis, but, instead, built synthetic
turbulent velocity fields with spatiotemporal Kolmogoroff
statistics where the scaling in~20! was satisfied for less than
one decade~in contrast to the 15 decades in the methods
utilized here!; nevertheless, the Richardsont3 law was ob-
served for a couple of decades of pair separation with a con-
stantGD50.1, where these authors assumedCK51.5, so that
CL.2. All of the work just mentioned points to a small value
of the Richardson constant,GD , and our direct simulations
spanning many decades of pair separation confirm a small

TABLE I. The Richardson exponentg @see Eq.~6!# as a function of the
Hurst exponentH. In all cases, initial separationss510212 and 1024 real-
izations used. Average, minimum, and maximum calculated from logarith-
mic derivative of mean squared dispersion for time greater than 100 eddy
turnover times,t.102.

Hurst
exponent

Richardson exponent~g!
Separation
~decades!Predicted Average Minimum Maximum

0.2 2.50 2.48 2.27 2.75 6.2
0.3 2.86 2.83 2.64 2.99 5.7
0.4 3.33 3.30 3.20 3.46 4.2
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value forGD50.06260.008 under the assumptions of Tay-
lor’s hypothesis over an extremely long scaling range for
pair dispersion.

On the other hand, turbulence closure theories4–7 pro-
duce values ofGD that are nearly two orders of magnitude
larger. With LHDI, Kraichnan4 predictedGD52.42, with
modified LHDI, Lundgren5 predictedGD53.00, an EDQN
procedure6 leads toGD53.50, and a random flight model has
GD52.00. What are the reasons for the wide discrepancies
between these closure theories and the results mentioned in
the previous paragraph regarding the predicted value ofGD?

Perhaps, these turbulence theories are applied in a re-
gime of spatiotemporal spectra for the velocity field, which
is very far from the circumstances of Taylor’s hypothesis.
There is unambiguous mathematical evidence14,15 that the
nature of the spatiotemporal velocity spectrum can have a
substantial influence on pair dispersion. For example, for an
isotropic incompressible velocity field with the spatial spec-
trum in ~2! for any Hurst exponent,H, but with short-range
temporal correlation independent of spatial wave number,
rigorous theory15 establishes that the pair dispersion scales
like

s2~ t !5bt1/~12H !, t@1, ~23!

and this exponent isone-half the one from~7!, which we
have just confirmed under Taylor’s hypothesis in Sec. V of
this paper. On the other hand, the interesting numerical study
in Ref. 9 suggests that there are even velocity fields without
a sufficient scaling regime where Richardson’st3 law re-
mains valid; we consider the interesting work of Fung
et al.10 to be essentially another example of this phenom-
enon.

B. Future directions

With the above discussion, a very interesting research
direction is to develop reliable Monte Carlo methods to
simulate pair separation statistics with velocity fields having
both a large-scale sweep and a spatiotemporal spectrum
ranging over many scales.14 With such a method, all of the
competing effects of velocity structure on pair dispersion
could be studied in a controlled fashion. Furthermore, the
interesting effects of anisotropy in random structured veloc-
ity fields in reducing pair dispersion, as studied under Tay-
lor’s hypothesis in Sec. IV, warrant further investigation in
this broader context. Such a numerical method has been de-
veloped by the authors very recently by modifying the pro-
cedure utilized here, and the results of numerical experi-
ments on all of these issues will be reported elsewhere in the
near future.
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