Pair dispersion over an inertial range spanning many decades
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New numerical results on scalar pair dispersion through an inertial range spanning many decades are
presented here. These results are achieved through a new Monte Carlo algorithm for synthetic
turbulent velocity fields, which has been developed and validated recently by the a[ihors
Comput. Phys117, 146 (1999]; this algorithm is capable of accurate simulation of a Gaussian
incompressible random field with the Kolmogoroff spectrum over 12-15 decades of scaling
behavior with low variance. The numerical results for pair dispersion reported here are within the
context of random velocity fields satisfying Taylor’s hypothesis for two-dimensional incompressible
flow fields. For the Kolmogoroff spectrum, Richardsot?scaling law is confirmed over a range of

pair separation distances spanning eight decades with a Richardson constant with the value
0.031+0.004 over nearly eight decades of pair separation, provided that the longitudinal component
of the velocity structure tensor is normalized to unity. Remarkably, in appropriate units this constant
agrees with the one calculated by Tatarski's experiment from 1960 within the stated error bars. Other
effects on pair dispersion of varying the energy spectrum of the velocity field and the degree of
isotropy, as well as the importance of rare events in pair separation statistics, are also developed here
within the context of synthetic turbulence satisfying Taylor’s hypothesis. 1996 American
Institute of Physicg.S1070-663196)00504-7

I. INTRODUCTION passive scalar transport problem has the form

Pair dispersion is the simplest and most important statis- i+v(x+v_vt)-VT—0 o
tic, which is a manifestation of the inverse cascade of a pas- gt ’
sive scalar through a range of turbulent velocity scales. After _
Richardson’s pioneering work with his famotidaw, a large ~ Where w#0 is the large-scale sweeping velocity and
effort has focused on predicting and confirming this law anddiv(v)=0. The random velocity fields ifl) are the simplest
its associated fundamental preconstant through actufn€s compatible with the statistical component of the veloc-
experiment€;? turbulence closure theorié€,and numerical 1ty field satisfying Taylor's hypothesis. We remark that the
simulation8—10 energy-power spectrufii(k,w) for the velocity field,v, sat-

Here we present the first numerical experiments, whicHSfieSE(K,0)=&wo—kw)Eq(k), whereEq(k) is the spatial en-

confirm Richardson's® law over many decades of pair sepa- €79y SPectrum of/(x), w is the large-scale sweeping direc-

ration and also give a value of the preconstant for pair disfion, and & is the Dirac-delta function. For this random
elocity field, the temporal correlations at a fixed point in

persion that settles down to a constant within small error ) X hd

over many decades. In both instances our results are valffne aré @ simple scaling through the mean sweegpf the
over nearly eight decades of pair separation. To achieve the§tr3)a‘t'aI correlatlor]s in the d|re_ct|ovm, and this is the essential
results for pair dispersion, we utilize a novel Monte Carlo'€ature of Taylor's hypothesis. However, we also note that

method for generating synthetic, incompressible, Gaussia}ﬁe velocity field in(1) has mean zero so the explicit effect of

random velocity fields devised recently by the authors; thist e constant mean field has been removed. Thus, the statisti-

new method is capable of generating fractal velocity fieldsc‘r’.\LI piece of the_ ﬂ.OW has the statistigs of Taylor's hypothesis
with the Kolmogoroff spectrum with low variance and high W'th\c/)\;] tan eXp“(t:;;[ Ttian' flow adveg'[g)cl)n. locity field), i
accuracy for both the prefactor and scaling exponent for the € assume that the incompressible velocity Tield), 1S

velocity structure function over 12 decadészurthermore, a Gaussian fractal field with mean ze(w)=0, and scaling

the basic algorithm has already been validated for appIicat—)eh"J‘V'or for the velocity differences given by

tions in turbulent dlfoSI.OﬁL mgludmg pair dispersion on an (V(x+X")—v(x")|2)=Cplx| 2", 2)
exactly solvable model involving random shear layér<.in
contrast, the results on pair dispersion via synthetic turbufor |,<|x|<1 and for G<H<1 with H the Hurst exponent
lence that are reported in Refs. 8 and 10 involve numericaandl 4 roughly the dissipation length scale. The familiar Kol-
methods, where the velocity structure function has the Kolmogoroff spectrum corresponds to the valbe=3, with
mogoroff scaling for roughly one decad®r example, see C,=Ce?? € is the dissipation rate, ard, the Kolmogoroff
Fig. 5 of Ref. 10 with a similar range for typical direct constant for the velocity difference. In our main simulation
simulations involving fluid equatiorss. presented in Sec. Ill for pair dispersion in a velocity field
Here, we consider pair separation statistics for a passiveith Kolmogoroff scaling, we havé,=10"1° with reliable
scalar transported by an incompressible velocity field in twoaccuracy over this entire intertial range generated by our syn-
space dimensions under Taylor's hypothesis. Thus, the basthetic turbulence algorithrif
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We study the statistics of pair separation for the passive If I(t)=|X}—X}| is the separation distance in a given
scalar problem in(1). Thus, we take two particleX; for realization, then fron{1) we derive that
j=1,2 with a fixed initial separation distansgso that

d1 — —
XL XY=, 3) i 3 | AO=IVOGH+WH = VG WH]-(X1=X5). (9)
and follow the pair separation, From the formula in(9), it follows that pair separation sta-
Xt—x%, for t>0, (4) tistics are primarily sensitive to longitudinal displacements

o ~of the velocity field. For an isotropic, incompressible Gauss-
where each particle is advected by the random velocity fieldian field with the structure function in Ed2) in d space

v(x+wt), from (1). The pair separatiorX} —X5, is arandom  dimensions, the longitudinal component of the velocity
variable depending on the velocity statistics and the pair disstructure tensor is given by

persion,o(t,s), is the second moment of this random vari-

x\2\ -
able, <([v<x+x'>—v<x'>]- W) >=Cﬁ|xl2“, (10
(IXi=X3%)=0?(t,9), (5)
) while the full magnitude of the velocity difference is
where(-) denotes ensemble averaging over the random ve- ) T
locity field. Next, we briefly summarize the remainder of this ~ {[V(x+Xx") —=v(x")|%) = (2H+d)Ci|x|*", (11)

paper. Our choice of nondimensionalization and the numeri; o CH:(2H+d)éE| in Eq. (2312 With all of the above

cal method for(1) are discussed in Sec. Il. The main New jnsormation from(9) and(10), the natural definition of eddy
feature of the Monte Carlo method beyond the parts already,.nover time,7(1), in studying pair separation statistics, is

developed and validated in Refs. 11 and 12 is an adaptivg, jlize the longitudinal velocity displacements and define
time step strategy for pair separation that we validate for

velocity fields with the Kolmogoroff spectrum in Sec. Il. It is Te()=Cgtit ", (12
worth emphasizing here that in Sec. Il we nondimensionalize With the definitions for sweep time and eddy turnover
the longitudinal velocity structure constant to have the valuqime in (8) and(12), we define the unit of length through the
1 in all of our simulations. This facilitates simple comparisonsca|e|_, wherer (1) =7 (I_), i.e. where the sweep time equals
between the results presented here and earlier work for bottlﬂe eddy turnce)ver ti?ne, and we define the unit of time

two- and three-d_imensional floyvs. This discussion occurs irfhroughre(l)= 7(1). With this choice of nondimensionaliza-
Sec. VI. The main results of this paper are presented in Seg

_ : X ion, we have the scalar transport problem(in with the
lll, where, with the Kolmogoroff spectrum, we verify Rich- normalizations
3 3 . . . .
ardson’st® law with an accurate constant for pair dispersion . _
over nearly eight decades of pair separation, Cy=1, |w|=1,

a?(t)=pt3> and B=0.031+0.004, (6) ro(D=1""1 ()=,

with the nondimensionalization mentioned earlier. In Sec. lllwhich we assume in presenting our results throughout this

we also study the occurrence of rare events in pair separatiqraper. We remark that the sweep time and eddy turnover time

statistics. We study the effects of an anisotropic Kolmogoroffsatisfy

spectrum on pair dlspe_r5|on statls_t|cs in Sgc. IV. In Sec_. V we r()<ro(l), for <1, (14)

present numerical evidence, which confirms the universal

scaling law for pair dispersioh? so that we have arranged in our numerical experiments for

the standard conditions where Taylor’s hypothesis is usuall

o2(1)=But? M for o(t)>s, ) ylors Wb y

assumed in interpreting experimental data.
for 0<H <3 as the spectrum of the velocity field froh) is
varied. Finally, in Sec. VI we compare and contrast our reB. The numerical method
sults with other work on pair dispersion and discuss some
future directions under current investigation by the authors.

(13

An algorithm for evaluating pair separation statistics re-
quires two main features: first, a Monte Carlo method for
simulating an isotropic incompressible Gaussian random
II. PRELIMINARIES field satisfying the scaling relations i2) and (10) over as
many decades of spatial scaling as possible, and second, a
discrete time stepping procedure. We use the Monte Carlo
For the velocity field defined if2) and given any length  algorithm devised in Ref. 12 for simulating an isotropic in-
scale,l, there are two natural time scales associated with theompressible Gaussian field; the lengthy validation studies in
scalar problem frontl), the sweep timezy(l), and the eddy Ref. 12 verify that this algorithm is capable of satisfying the

A. Nondimensionalization

turnover time,7,(1). The sweep timery(l), is given by scaling relations in2) and (10) over 12—15 decades with
low statistical variance involving only 100 to 1000 realiza-
(1) = |W| (8)  tions, yielding the exponerii exact to four significant fig-

ures and the preconstaft; exact to within 5% over the
We utilize a normalization of the eddy turnover time that isentire range of scales. This algoriththcombines random
natural for studying pair separation statistics. plane wave¥ with suitable explicit one-dimensional wave-
Phys. Fluids, Vol. 8, No. 4, April 1996 F. W. Elliott, Jr. and A. J. Majda 1053
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lets with high moment cancellatidha leisurely introduction
to the basic design of the algorithm in one space dimension
can be found in Ref. 16. The high resolution capabilities of
this Monte Carlo algorithm allow us to pick initial particle
separation distances as small s10 * in the numerical wk
experiments described below. In Ref. 12 we have verified
that a field with 16 plane wavdsver 32 shearing directiohs
achieved a high degree of isotropy, and this value is used in
all the isotropic simulations reported below in Secs. Ill and
IV. We also guarantee that the mean flewdoes not align
exactly with any of these directions.

The smallest time scale in the problem is the sweep time
at the dissipation scaley(l4), and the most straightforward
time step criterion would involve a fixed small multiple of
7s(l4). However, in attempting to simulate pair separation §8
statistics over a large number of decades of separation, such " = :
a straightforward strategy is hopelessly expensive and im- (a)
practical. Instead, with the formula if®) as motivation,
given the locationsX} andX}, of the particle pair in a given
realization, we adopt a variable time step based on the rate of | , .
separation of the two particles; thus we set ?
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for a<1 a fixed constant and utilize Euler’s method with this
time step size in our integration of pair separation statistics,
where we use the formula (9) to evaluated(t)/dt for each
realization. Since formuléB) implies that the denominator in
formula (15) depends on the difference of two nearly equal ,
numbers, it is necessary to do the computation in 64-bit
arithmetic to avoid division by 0. We note that in the simu- o2 : . EE L
lations reported below, in each realization we begin with
only one pair of particles at a fixed separation distance, so % e = T
the above time stepping procedure is well defined. (b)

Why do we use the simple, low-order Euler’s method for
time integration rather than higher-order time stepping#IG. 1. Plots of(a) RMS dispersion versus timé)) the logarithmic deriva-
There are two reasons. First, we are computing with nowhertve of RMS, dispersion veysus time with Hurst exoneht 3 and step size
differentiable velocity fields, and it is well known that ge';?;g'ﬁé?é %’j‘ (X), & (+), and 3¢ (+). Initial separations=10""
higher-order time stepping only improves the accuracy for '

smooth velocity fields. Second, the computational overhead

?n th'e v.a.riable time-step strategy v_vith a higher-order methpqn Fig. 1(a) we plot the RMS pair dispersion versus time for
is significant compared to the gfIrSt-Order method. Davidine four different time-step strategies, while in Figbjlwe
Horntrop (private communication® has compared the first- piot the logarithmic derivative of RMS pair dispersion

order Euler method with higher-order time-stepping proce o(t)]. Here and elsewhere in this paper, for all graphs of
dures on the exactly solvable model from Refs. 13 and 1&/\ms pair dispersion versus time, we have rescaled space and
with nonsmooth velocity fields and has verified the abovejme, respectively, via the initial separation distanseand
behavior for higher-order methods. Next, we validate thepne initial eddy turnover timer,(s) in order to display the

time stepping criterion ir(15) and demonstrate its conver- numper of spatial decades of pair separation achieved in each
gence fora<1. simulation.

*X O
* 40
* +X 0
X&
*

* X O

In the time step validation study depicted in Fig. 1, we
have the relatively modest range of nearly four decades of
pair separation for each of the four parameter values. The

To validate the time-stepping procedure, we ran the basigraph in Fig. 1a) visually displays convergence as de-
algorithm with the Kolmogoroff spectruntd =3, and varied creases fronv=3 to a=+, while Fig. 1(b) indicates that all
the time step strategy through the values3, 3, % and4  four cases have confirmed Richardsor?scaling law over
We used an initial pair separation distanse:10"'?2 and  almost two spatial decades of RMS pair dispersion.
computed the RMS pair dispersiar(t), defined earlier in Finally, we report an even more stringent convergence
(6), by averaging over 1024 realizations utilizing the adap-test for the time-step strategy as the parameténcreases.
tive time-step strategy described above for each realizationWe took the RMS dispersion(t) and divided byt and

C. Validation study of the variable time-step strategy
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computedo(t)/t® at the last timef=10% depicted on the
graphs in Fig. 1. We denote this number &yy). We have
the following results:

a=3% 6(a)=0.22,
aI%, 0(a)=0.20,
aZ%, 0(a)=0.18,

a= %6, 0(a)=0.17,

which demonstrate the convergence of this statistical quan-
tity as « decreases. Clearly, the valuew# § is sufficient for
reasonable accuracy in this constant, and we utilize this
value in the variable time-step strategy for all simulations
reported in Secs. Il and IV.

Ill. PAIR SEPARATION STATISTICS OVER MANY
DECADES WITH KOLMOGOROFF SCALING

Here we present the results of Monte Carlo simulations

for pair separation statistics that utilize the algorithm de- s e L A
scribed in Sec. Il with a Kolmogoroff random velocity field, ¥ e b
H=3%, and variable time step strategy with=3. We utilized R R I IR AHE
an initial separation distance=10"1* and computed the av-

erages over 1024 realizations. RN

In Fig. 2, we graph the pair dispersion statistics over ;
many decades of pair separation. The graph of RMS disper- | : ‘ ]
sion in Fig. Z2a) indicates that power law behavior of pair
dispersion occurs after abot=10? (100 initial eddy turn- B
over time$ and persists for eight decades of pair separation.
The graph of the logarithmic derivative of pair dispersion
versus time in Fig. @) oscillates mildly with a mean value
3, which provides a stringent confirmation of Richardsdf’s
law. The logarithmic derivative shows the accuracy oftthe I
power law for every point in timé>10?, whereas the least
squares fit of RMS dispersion, which we discuss below, o
shows a crude average power for10°.

Finally, Fig. 2c) measures the Richardson constant and
its variation over the scaling regime. In Fig(cRwe graph ooa|
the pair dispersion divided bt?,o?(t)/t3, from our Monte
Carlo simulation. Remarkably, as the reader can see by com- =
paring Figs. 2a) and Zc), the Richardson constant settles  oe}
down over more than 7.5 decades of pair separation, with the
value 0.0310.004.

Next, we discuss the importance of rare events in the oeor
pair separation statistics. Given the mean flawwe con- wotsh
sider the parallel and perpendicular components of the pair
separation in a given realization defined, respectively, by I

'
!
i
'
'
f
b

0.0451-

0.0251~ i

w-(X]—X5) and wh-(X]—X5). (16) oo
For any zero mean random variahle the skewness$(u), i o 7 = o & o W
and the flatnes$;(u) are the normalized constants, given by ()
S(u)= % F(u)= Ez4—>z
(u%) (u?)

FIG. 2. Plots of(a) RMS dispersion versus time anftl) the logarithmic

For a Gaussian random variable, we h&(@) =0 andF(u)  derivative of mean squared dispersion versus time(b)nthe solid line
=3, indicatesy=3 predicted by formuld6). (c) is a plot of the mean squared

ispersion divided byt® versus time, indicating a Richardson constant of
Next, we evaluate the skewness and the flatness of t “031:+0.004(for t>10%) over nearly eight decades of pair separation. fhe

parallel and perpendicular components of pair separatioBxis in (c) has range 0.00-0.05. Hurst exponéti3. Initial separation
from the Monte Carlo simulation as time varies. The skew-s=10""* Realizations 1024.
Phys. Fluids, Vol. 8, No. 4, April 1996 F. W. Elliott, Jr. and A. J. Majda 1055
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FIG. 3. Plots of(a) skewness of particle separa&ion versus time énd ] ] ] ]
flatness of particle separation versus time withr 3. Parallel component  FIG. 4. Plots of(a) RMS dispersion versus timéb) mean squared disper-

graphed with a solid line. Perpendicular component with a broken lineSion divided byt versus time with Hurst exponeht=3 and two realiza-
Initial separatiors=10"'* Realizations 1024. tions. Note that the scale here for thexis runs from 0.00 to 0.10 and there

is wide scatter compared with the plot in Figc where all the variation is
confined between 0.025 and 0.035.

ness for these two components is graphed in Fig), 3vhile
the flatness for these two components is graphed in Fig. 3 in the pair separation statistics is the variance in computed
In these graphs, the parallel component of the separation Isehavior of pair dispersion averaged over only a small num-
indicated by a solid line while the perpendicular componenber of realizations. In Fig.(4) we graph the RMS dispersion
is denoted by a dotted line. After time=10?, which indi-  averaged over only two pairs of particles initially separated
cates the onset df scaling behavior for pair dispersion, the by 10 '* Clearly, we see the expected nonmonotone behav-
two components of skewness are roughly symmetric aboubr of pair separation for each individual realization. Never-
zero and almost always lie betweer0.5 and+0.5. This  theless, the least squares fit of the RMS dispersion with two
provides a rough indication that the pair separation statisticpairs of particles beyond time=10? yields an exponent of
are likely to have a symmetric distribution. As depicted in1.505 over eight decades of separation, confirming the Rich-
Fig. 3b), the two components of flatness are almost alwaysrdsont® law in a very crude time-averaged fashion. How-
between the values of 5 and 8, after timnel0’. Since the ever, a graph of the logarithmic derivative of pair dispersion
flatness of any Gaussian random variable is 3, this fact indifor two particle pairgnot depicted hepeshows tremendous
cates that the probability density for pair separation has acatter with a minimum value of-0.90 and a maximum
much broader tail than a Gaussian throughout the etttire value of 8.07, in contrast to the data in FigbR which
scaling regime. The confidence levels in the fourth momenindicates small scatter with averaging over 1024 realizations.
statistics preclude an accurate reporting of higher-order moFhe pair dispersion divided by? for two particle pairs is
ments, as well as a full probability density function. graphed in Fig. ). After the timet=1C?, the Richardson
Another manifestation of the importance of rare eventsconstant computed from two pairs of particles has the aver-
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age value of 0.026 over eight decades of pair separation, If we use the formula if(18) with M=2 andH =3, we
with a wide scatter ranging from a minimum of 0.003 to ahave random arrays of coherent eddies oriented along the
maximum value of 0.084 over eight decades of separatiorcoordinate axes with an anisotropic Kolmogoroff spectrum.
Nevertheless, the averaged value for the constant with onlfhe velocity structure function for the field ifil8) with
two realizations, 0.026, is close to the value 0.881004 M =2 scales likex|?® but depends on the angte with the
obtained over the entire eight decade range, with 1024 reak, axis, i.e. the constar@,, from (10) and(11) is a function
izations and depicted earlier in Fig(c2 of the angle¢. A graph of the functiorC(6) is depicted in
Fig. 5@); we remind the reader for comparison that with the
normalizations from(10), (11), and (13) in this paper, the
isotropic value ofC,, is 2.67. The graph of the anisotropic
longitudinal structure function fov =2 in Fig. 5b) shows a
As we mentioned briefly in Sec. Il, one of the main Similar dependence on angle with the significant additional

computational devices in the Monte Carlo algorithm fromfact that this function vanishes identically a=0° and
Ref. 12 is to approximate an isotropic incompressible Gauss$=90°.
ian random field over a large finite number of plane wave How much does the Richardsohlaw for a pair disper-
directions involving simple shear layelslf, instead, only a ~ Sion change in such a structured random field, with the Kol-
small number of independent shear layer directions, for exoogoroff spectrum under Taylor’s hypothesis? We varied the
ample only two directions, are utilized, then the correspondangle between the mean flow and thex,-coordinate axis
ing random field is anisotropic with ordered behavior at eactsystematically and applied the Monte Carlo algorithm from
scale but with, nevertheless, a similar energy spectrum, as fec. Il withM =2 and 1024 realizations to study this issue.
the isotropic case. Here we use this technical device, togethéf these simulations, we utilized an initial separation distance
with the same adaptive time-stepping procedure described i#=10'? and ran our code for somewhat shorter times than
Sec. Il to develop Monte Carlo simulations for pair disper-described earlier in Sec. lll, so that scaling behavior in pair
sion over many decades in random anisotropic fields, in condispersion was obtained over at least three decades of pair
trast to the isotropic situation discussed earlier. separation. The pair dispersion scaling exponentlefined
First, we briefly summarize the random plane wave deby o?(t) = gt” for t>1, is graphed in Fig. @) as a function
composition from Refs. 12 and 15. We want to build system-of the angle¢, of the mean floww, with the x;-coordinate
atic approximations involving random plane waves to an isoaxis. In all such cases, we find that the pair dispersion over
tropic incompressible Gaussian random field with thethis three decade scaling range proceeds at a slower rate of
velocity structure function in(2). To achieve this we let spreading on the average than tidaw obtained earlier in
{v;li=0,1,2,..} be a sequence of independent and identicallyFig. 2 for an isotropic velocity field. For a sampling of angles
distributed, one-dimensional, scalar Gaussian fields, satisfjpetween the mean flow and tkg-coordinate axis, the expo-
ing nenty varies between 2.98 and 2.92. Furthermore, from Fig.
_ 5(c) we observe that the pair dispersion exponentrops to
{v)=0, its minimum value of 2.92 when the mean flow and the co-
<|vj(x+x’)—v]-(x’)|2>= x| 2. 17) ordinate axis make the smallest computed angle of 6°. This is
not difficult to understand intuitively because the longitudi-
nal component of the structure function vanishes at the zero
angle in this anisotropic settijgee Fig. ¥)], and the large-

IV. THE EFFECT OF ANISOTROPY IN THE VELOCITY
SPECTRUM ON PAIR DISPERSION

For each M, we build the random plane wave
approximationg1®

T 112M-1 i scale sweep tends to localize more particle pairs in the direc-
Vm(X) = (W(H)) Zo Uj (X' U(ﬁ” tion along thex, axis where, from Eq(9), the pair separation
I~ necessarily proceeds more slowly.
i 1 There are intuitive reasons to expect reduced pair disper-
xupm M + 2/ (18 sjon in the situation described here. The fluid flow with

. M =2 is highly structured, and pair dispersion, in general, is
where u(¢)=codb)e,+sin(f)e,. If we select the constant i agied by pairs of particles remaining roughly aligned in
C(H) in (18) so that directions of pair separation, where the longitudinal structure

T(HT(H+D) function vanishes. To eIuc?dat.e these diﬁerence§, in. Fig. 6
2A+LTH+D)" we graph for a typical realization both the flow field in the

nearly isotropic case utilized earlier in Sec. Ill and the flow

then asM —« the random plane wave field frofd8) con- field in the structured case withl =2, which we have just
verges to the isotropic incompressible Gaussian random fieldescribed.
satisfying(10) and(11) with the constan€,=1, i.e. satisfy- Finally, we end this section with an important remark.
ing the nondimensionalization @iL3) in this paper. In fact, We have also studied pair dispersion in the anisotropic situ-
we use this formula withV =16 to yield an approximation ation withM =4 in Eq.(18). This value ofM is already large
that is very nearly isotropté in the algorithm described in enough for the random field to look completely disordered,
Sec. Il. These 16 plane waves divide the unit circle into 32and our computational results in this cadeet reported hepe
equal arcs or “shearing directions,” as claimed in the Intro-essentially confirm Richardsort$ law with nearly the same
duction and in Ref. 10. accuracy as for the isotropic results presented earlier in this

C(H)=
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FIG. 6. Plots of a typical realization @) an isotropic velocity field and
(b) an anisotropic field with two shearing directions and Hurst exponent
3 H=3
298 [l el ” ] M =2, because the general formula (@ applies and the
longitudinal velocity structure function vanishes in these di-
B S N _ rections[see Fig. B)]. On the other hand, a plot similar to
K N the one in Fig. B) for the case withM =4 confirms that the
g longitudinal structure function never vanishes at any angle in
R : ' ’ this case, and this is a significant reason for the validity of
/ thet® law in this situation. Thus, the case of a velocity field
262} . with random plane waves and =2 is exceptional in many
respects; nevertheless, our numerical results do seem to con-
firm the possibility that there are some exceptional aniso-
( )5 10 1 2 % ® % “© “® tropic ordered random flows with the Kolmogoroff spectrum,
C

where, under Taylor’s hypothesis alone, Richardsohlaw

o may not be satisfied.
FIG. 5. Plots of(a) the structure constar@@y, (¢) and (b) the longitudinal

structure constant(¢). Note thatCy(¢) vanishes aip=0; (c) the simu-
lated exponemyvsizsfor an isotropic field with two shearing directions and V. PAIR DISPERSION UNDER TAYLOR’'S HYPOTHESIS

Hurst exponenH =3. The value ofy drops to 2.92 as the direction of sweep WITH VARYING VELOCITY SPECTRA
nearly becomes parallel with a coordinate axis whegg¢) vanishes.

Here we report the results of Monte Carlo simulations

with the numerical algorithm described in Sec. Il to compute

section. We have argued earlier that there are special direpair dispersion in an anisotropic velocity field with a varying
tions where pair dispersion is arrested for the situation wittHurst exponent, from (2), defining its spectrum under the
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TABLE I. The Richardson exponent [see Eq.(6)] as a function of the  \/|. CONCLUDING DISCUSSION
Hurst exponent. In all cases, initial separatiorss=10"12 and 1024 real-

izations used. Average, minimum, and maximum calculated from logarith-A. The Richardson constant

mic derivative of mean squared dispersion for time greater than 100 eddy

turnover timest>10%. The main result presentgd ip this.paper is confirmation
of Richardson’st® law for pair dispersion over a range of
Richardson exponerty) . pair separation spanning eight decades. In fact, the Richard-
Hurst Separation

exponent Predicted Average Minimum Maximum (decadep son constant has the value 0.631004 over nearly eight
decades of pair separation for an isotropic Kolmogoroff ve-
8'2 g'gg g'gg 2'2471 g'gg g§ locity field under Taylor’s hypothesis, provided that the lon-
04 333 330 320 346 42 gitudinal component of the velocity structure tensor is nor-
malized to unity. These results were achieved with a new
Monte Carlo method developed recently by the authdrs'®
with the capability of generating many decades of scaling
] ) ] ] behavior through a Gaussian random velocity field with the
assumptions of Taylor's hypothesis. We are especially 'merKoImogoroﬁ spectrum. Since the value of Richardsor?s
ested in checking the validity of the theoretically predicted|gy, has been the object of extensive experimeital,
scaling lav® for pair dispersion fron{7), which generalized theoretical” and numeric&™® investigation in various con-

Richardson’s law to other velocity fields with a general HurSttexts, we compare the results obtained here with those devel-
exponentH. _ _ _ oped elsewhere.
For the results of the numerical simulations reported = 14 4o this. we use more conventional notation from tur-

. . e . . 712
here, we began with an initial separation distaseelO bulence theory, where the longitudinal component of the ve-
with the nondimensionalization frort13), and in each case oty structure tensor with Kolmogoroff's law is given by
we utilized the Monte Carlo method from Sec. Il with 1024

realizations.

We varied the Hurst exponent through the three values
H=0.2, 0.3, and 0.4. In all three cases, the graphs for pair ) ,
dispersion qualitatively resembled those described earlier ifNdCL IS @ universal constant from turbulence theory related
detail in Fig. 2 for the case of the Kolmogoroff spectrumto the Kolmogoroff constant. The Richardson law for pair

with H=2; after an initial period of order Fleddy turnover ~ diSPersion assumes the form

2
<([v(x+x’)—v(x’)]- %) >=CL?’3|X|2’3, (20

timgs, the pair dispersion settled into a power law scaling  52(t)=G et3, (21)
regime,
where G, is the Richardson constant. The experimental
dA(t)=pt?, t>1, (19 measurement8give a value ofC, =2.0+0.1, and a value of
C_=2 is obtained in three dimensions with a choice of the
for many decades of pair separation. spectral Kolmogoroff constar@,=1.5

In Table | we compare the theoretically predicted scaling ~ Thus, with(20) and(21) we use the valu€ =2 so that
exponent 2f1—H) from (7) with the average exponent the Monte Carlo simulations developed here in two space
computed over many decades of pair separation for the cas@énensions with an isotropic Kolmogoroff spectrum under
with H=0.2, 0.3, and 0.4. We also present the minimum andraylor’s hypothesis predict a Richardson constant,
maximum pf the !ocal equnent dgtermined from the I.ogg— G,=0.062+0.008, 22)
rithmic derivative in the scaling regime, as depicted earlier in
Fig. 2(b), for H=3 and the number of decades of pair sepa-valid over nearly eight decades of pair separation. Remark-
ration where this scaling behavior was achieved in each casably, the valug22) agrees with the one obtained by Tatarski,
In all three cases, the computed exponenfigreed with the  G,=0.06, in his experiments; Ozimodbvhas also argued
theoretical exponent @I—H) within the small error 0.03. from his experimental data that the appropriate range&fopr
Thus, the theoretical predictions @f) for pair dispersion are is O(.1). Sabelfeld studied pair dispersion under Taylor’s hy-
confirmed by our Monte Carlo simulations within the nu- pothesis over crude separation distand@ssthe standards of
merical precision. this paper involving only one decade of pair separation and

We observe from Table | that the number of decades obbtained the valueG,=0.24+0.03. Funget al,’ in an in-
pair separation where scaling has been achieved decreaseg@®sting paper, did not study the behavior of Richardson’s
the value ofH increases. For a given initial separation dis-law under Taylor’s hypothesis, but, instead, built synthetic
tance, the reasons are computational; we only have computerrbulent velocity fields with spatiotemporal Kolmogoroff
resources to generate all tliever 2%) Gaussian random statistics where the scaling {0) was satisfied for less than
variables by the method of Ref. 12 for the velocity field in one decaddin contrast to the 15 decades in the methods
the unit circle. At the larger values of the Hurst exponent,utilized herg; nevertheless, the Richardsohlaw was ob-
particles escape from the unit circle more rapidly, and theserved for a couple of decades of pair separation with a con-
computation must be terminated before this happens. WetantG,=0.1, where these authors assun@d=1.5, so that
achieved more decades of scaling behavior for pair separ&, =2. All of the work just mentioned points to a small value
tion for the Kolmogoroff spectrum in Sec. Ill by picking an of the Richardson constan@,, and our direct simulations
even smaller initial pair separatioa=10"14, spanning many decades of pair separation confirm a small
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