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Elementary models with probability distribution function intermittency
for passive scalars with a mean gradient
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The single-point probability distribution function~PDF! for a passive scalar with an imposed mean
gradient is studied here. Elementary models are introduced involving advection diffusion of a
passive scalar by a velocity field consisting of a deterministic or random shear flow with a transverse
time-periodic transverse sweep. Despite the simplicity of these models, the PDFs exhibit scalar
intermittency, i.e., a transition from a Gaussian PDF to a broader than Gaussian PDF with large
variance as the Pe´clet number increases with a universal self-similar shape that is determined
analytically by explicit formulas. The intermittent PDFs resemble those that have been found
recently in numerical simulations of much more complex models. The examples presented here
unambiguously demonstrate that neither velocity fields inducing chaotic particle trajectories with
positive Lyapunov exponents nor strongly turbulent velocity fields are needed to produce scalar
intermittency with an imposed mean gradient. The passive scalar PDFs in these models are given
through exact solutions that are processed in a transparent fashion via elementary stationary phase
asymptotics and numerical quadrature of one-dimensional formulas. ©2002 American Institute of
Physics. @DOI: 10.1063/1.1430736#
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I. INTRODUCTION

Many practical applications in environmental scien
and engineering involve the behavior of a passive scalar w
a mean gradient that is diffused and advected by a velo
field at high Pe´clet numbers. The single-point probabilit
distribution ~PDF! of a passive scalar has been the focus
much interest since the Chicago experiments in Rayleig
Bénard convection.1,2 They established that the PDF for th
temperature at the center of a convection cell undergoe
transition from Gaussian behavior to a probability distrib
tion with approximate exponential tails over a wide range
its variability as the underlying fluid flow becomes suf
ciently turbulent. Such broader than Gaussian distributi
for the scalar PDF with long tails exhibit the phenome
called passive scalar intermittency. These results have
spired a large research effort devoted to studying scalar
termittency for passive scalars with an imposed mean gr
ent through laboratory experiments,3–6 phenomenologica
models,7–11 and numerical experiments.12–15 The phenom-
enological models7–11 yield either Gaussian or exponenti
PDFs and require sufficiently turbulent flow fields with ch
otic particle trajectories with positive Lyapunov exponen
The numerical experiments12,13 yield a much wider class o
PDFs with scalar intermittency with even broader tails th
exponential in some regimes. In this context, the followi
questions naturally emerge. What structure is needed f
velocity field so that the PDF for a passive scalar in a m
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gradient exhibits a transition from a Gaussian~or even sub-
Gaussian! PDF at low Pe´clet numbers to a broader tha
Gaussian shape as the Pe´clet number increases? How unive
sal is the shape of the PDF as the Pe´clet number gets arbi-
trarily large? In particular, are the following structural co
ditions on the velocity field needed for passive sca
intermittency:

~a! Velocity fields with chaotic particle trajectories an
at least one positive Lyapunov exponent?

~b! Many turbulent scales in the velocity field?
~c! Statistical random fluctuations of at least one scale

the velocity field?
Our goal in the present paper is to introduce and anal

a simple class of models where all of the above questions
be answered in a precise unambiguous fashion. The mo
studied here involve passive scalar advection–diffusion
the nondimensional form

]T

]t
1Pe~v"“T!5DT. ~1!

These models utilize the special incompressible tw
dimensional velocity fields given by a time-dependent sh
flow with a transverse sweep, i.e.,

v5„v~y,t !,w~ t !…, ~2!

wherev(y,t) is deterministic or random and

w~ t !5w01b sin~vt ! ~3!
© 2002 American Institute of Physics
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is a periodic function of time of periodtP52p/v and of
constant meanw0 . The PDF for the scalar in the model wit
~1!, ~2! is treated in the statistically stationary state with
mean gradient along thex axis, i.e.,

T5
x

Lg
1T8~x,y,t !. ~4!

The nondimensonalization used in~1! is completely standard
with spatial units chosen by the largest length scaleL of the
velocity field and the Pe´clet number given by Pe5VL/k,
whereV is the typical magnitude ofv with w assumed to
have comparable magnitude whilek is the diffusivity of the
scalar. The quantityLg

21 in ~4! measures the magnitude o
the imposed scalar gradient in these nondimensional un

The passive scalar PDFs in these models are g
through exact solutions that are processed below via elem
tary stationary phase asymptotics and numerical quadra
of one-dimensional formulas. Despite the simplicity of t
models in~1!, ~2!, ~4! the PDF for the scalar exhibits PD
intermittency as the Pe´clet number increases, provided, f
example, the velocity fieldv(y,t) is nonzero and the periodi
transverse sweepw(t) has isolated zeros. The universal lim
iting broad-tail shape is determined analytically through
plicit formulas. As a preview of the results developed belo
Figs. 2 and 4 explicitly display scalar intermittency with
universal limiting shape as Pe→` for the deterministic
steady single spatial mode shear flow with a purely si
soidal transverse sweep:

v~y,t !5sin~2py!, w~ t !5sin~vt !, ~5!

while Figs. 5 and 6 below show scalar intermittency for t
PDFs with a steady single mode shear with Gaussian ran
amplitude and the same transverse sweep from~5!. The
broad tail PDFs in these figures strongly resemble th
found in Fig. 1 from Ref. 12 and Fig. 6, Fig. 16, and Fig.
from Ref. 13, which were post-processed from numeri
simulations of much more complex models. These exam
demonstrate unambiguously that surprisingly, none of the
tailed structural conditions~a!, ~b!, ~c! above for the velocity
field are needed to get very strong passive scalar inter
tency with a prescribed mean gradient. What is the sourc
intermittency in the elementary models with the veloc
field in ~2!? Whenw(t) has an isolated zero in time, th
streamline topology for the flow field changes from co
pletely blocked behavior in thex direction parallel to the
imposed mean scalar gradient to very rapid transport in thx
direction for a small interval of time around the zero ofw(t).
This change of topology is illustrated in Fig. 1: whenw
50, the open streamlines in the horizontal direction, alo
the mean gradient, lead to large convective transport
large deformations of the isocontours for the scalar, wh
promote strong mixing by diffusion. WhenwÞ0, however,
the transverse sweep corresponds to blocked streaml
little transport along the gradient, weak distortion of the s
lar isocontours, and, hence, ultimately, little opportunity
mixing by diffusion. With the time-modulated transver
sweep used in this paper, blocked streamlines are obse
most of the time, except for the rare occasions when
transverse sweep is zero, which leads to bursts of str
Downloaded 20 Feb 2004 to 128.122.81.71. Redistribution subject to AIP
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mixing; this on/off mechanism that controls turbulent mixin
via streamlines blocking and opening defines what is me
by intermittency in the present setup by reference to qua
tively similar phenomena in more complex systems. T
intuitive reasoning is made more precise in the detai
analysis below and already played a similar role in previo
work of Kramer and the second author,16 where scaling laws
for the turbulent diffusivity of the models in~1!, ~2! were
calculated asymptotically at high Pe´clet numbers. The phi-
losophy of the work presented here to develop explicit m
els with unambiguous behavior for intermittency of sca
PDFs has also been utilized for decaying passive scala
long times16–18 with recent powerful results demonstratin
families of stretched exponential tails in the long tim
limit.19–21

The organization of the remaining parts of the paper is
follows. Section II has exact solution formulas for the mod
in ~1!, ~2!, ~4! as well as an important collection of eleme
tary formulas for scalar PDFs for the model. The behavior
the turbulent diffusivity for the model in~1!, ~2!, ~4! at finite
large Pe´clet numbers is studied in Sec. III in order to link th
behavior of large variance in the passive scalar statistics w
the intermittency scenario in the geometry of streamlin
transverse to the mean gradient mentioned earlier; this
vides important intuition and a link with subsequent resu
on scalar intermittency. Also, the high Pe´clet number scaling
analysis16 is confirmed. The results briefly discussed abo
for the special case of a steady single mode shear are d
oped in Sec. IV. The situation where the velocity fieldv(y,t)
is a Gaussian random field in space–time with a finite c
relation time is developed in Sec. V; scalar intermittency
this case is more subtle because the scalar PDF for the m
in ~1!, ~2!, ~4! in the extreme limiting case withd correlation
in time in the velocity fieldv(y,t) is Gaussian for all~even
arbitrarily large! Péclet numbers.

FIG. 1. Effect of the transverse sweep on the topology of the streamlin
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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II. BASIC FORMULAS FOR THE MODEL

With the model in~1!, ~2!, ~4!, the first important fact to
realize is that in the statistically stationary state,T8 from ~4!
can be chosen as a function ofy and t alone so thatT8
satisfies the linear equation:

]T8

]t
1Pew~ t !

]T8

]y
2

]2T8

]y2 52
Pe

Lg
v~y,t !. ~6!

Of course, in order to be a valid statistically stationary sta
T8 needs to have zero mean over the ensemble average

^T8~y,t !&50, ~7!

where^•& denotes the ensemble average over the probab
space associated with the shear velocity statistics forw(t)
andv(y,t). Here, the transverse sweepw(t) is always cho-
sen as a periodic function of time with periodtP so that the
appropriate average over the velocity statistics forw is the
time average over a period,22

^F&tP
5

1

tP
E

t

t1tP
F~t!dt, ~8!

where the random variableF(t) is tacitly assumed to be
periodic function oft that might also depend on other p
rameters. In this paper, the shear velocity fieldv(y,t) will
have a variety of statistics in different scenarios ranging fr
a deterministic steady velocity to a general spatiotemp
Gaussian random field.23 The average over the probabilit
space associated with the shear velocity statistics is den
by ^•&v and it is always assumed for simplicity that the v
locity v has zero mean, i.e.,̂v&v50. By combining this
information with ~8!, the averagê•& over the probability
space associated with the velocity statisticsw(t), v(y,t) of a
random variableF(t,•) is given by the iterated average:

^F&5^^F&v&tP
, ~9!

and this yields the concrete form of the important requi
ment in ~7! for the statistical stationarity ofT8.

To build the solution of~6! satisfying the statistically
stationary requirement in~7!, assume thatv(y,t) has the
expansion in spatial modes with wave numbersKJÞ0,

v~y,t !5(
j

v̂Je
iK Jy,

~10!
v̂J~ t !5 v̂2J~ t !, reality condition,

where the amplitudesv̂J(t) are statistically stationary com
plex Gaussian random fields in time in the most gene
case.23 Seek the statistically stationary solutionT8(y,t)
through the related expansion:

T8~y,t !5
Pe

Lg
(

J
TJ8̂e

iK Jy, with TJ8̂~ t !5T8̂2J , ~11!

where, by substitution in~6!, TJ8̂ satisfies the following linear
inhomogeneous ODEs:

dTJ8̂

dt
1@KJ

21 iK J Pew~ t !#TJ8̂52 v̂J . ~12!
Downloaded 20 Feb 2004 to 128.122.81.71. Redistribution subject to AIP
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The solution forTJ8̂ is readily obtained via Duhamel’s for
mula to yield the following explicit formula for the station
ary solution to~6!, ~7!, ~12!:

T8~y,t !5
Pe

Lg
(

J
TJ8̂~ t !eiK Jy,

with

TJ8̂~ t !52E
2`

t

SKJ
~ t,t8!v̂J~ t8!dt8, ~13!

whereSKJ
is the explicit solution operator:

SKJ
~ t,t8!5e2KJ

2
~ t2t8!e2 iK J Pe*

t8
t

w~s!ds . ~14!

Note that it is crucial that the integral in~13! begins at2` in
order to guarantee statistical stationarity; furthermore, for
random amplitudesv̂J(t8) utilized in this paper that are ei
ther steady of time-dependent complex Gaussian rand
variables with rapidly decaying correlations, the integral
~13! converges for almost every realization becauseSKJ

(t,t8)

has the exponential damping terme2KJ
2(t2t8) for t8,t.

A. Formulas for the PDF of T

The PDF of a random variableZ defined on the prob-
ability space of the velocity statistics is by definition23 the
positive densitypZ(l) with * pZ(l)dl51, so that

E
2`

`

f~l!pZ~l!dl5^f~Z!&, ~15!

for all bounded continuous functionsf. In the applications
below for calculating the PDF ofT, the partial PDF ofT
obtained by averaging over the shear velocity statistics
be known explicitly as a periodic function oft with period
tP . Thus, assume that

the partial PDFpZ~ t ! is a given periodic function

of t with period tP . ~16!

Then, with the formulas in~15! and ~8!, it is easy to show
that the complete PDF forZ is given by the time average

pZ5
1

tP
E

0

tP
pZ~ t !dt. ~17!

Next, the formulas in~16!, ~17! will be applied to the PDF
for T for several different cases developed below. Clearly,
imposed deterministic mean gradient forT in ~4! creates only
a trivial shift in the PDF ofT8 so only the PDF ofT8 will be
calculated throughout the remainder of the paper.

B. A deterministic steady single mode shear

For a deterministic single mode shear,

v~y!5sin~2py!, ~18!

the stationary solutionT8(y,t) is given by

T8~y,t !5s~ t !sin@2py1u~ t !#, ~19!
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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wheres2(t), u(t), respectively, are an explicit time period
amplitude and phase shift with detailed formulas presen
in Secs. III, IV. For shear velocity fields that are determin
tic and spatially periodic with period 1, the average over
shear velocity statistics is the periodic average,22 ^F&v
5*0

1F(y)dy. With this fact and the definition in~15!, it is
easy to show by changing variables that the explicit PDF
Z5s sin(2py1u) with s.0 is given by

pZ~l!5
1

s
P0S l

s D , ~20!

with

P0~l!5
1

p H ~12l2!21/2, whenulu,1,

0, whenulu>1.

With the facts in ~16!, ~17!, ~19!, and ~20!, the PDF of
T8(y,t) can be calculated in this case through the formu

pT8~l!5
1

tP
E

0

tP 1

s~ t !
P0S l

s~ t ! Ddt, ~21!

which is utilized in Sec. IV below.

C. Stationary Gaussian random shear flows

Assume that the velocity fieldv(y,t) is a stationary
Gaussian random field so that the wave amplitudes fov
from ~10! are stationary Gaussian random fields. Then
formulas in~13!, ~14! guarantee thatT8(y,t), a superposition
of Gaussian random variables, is also a Gaussian ran
variable that has mean zero and that is stationary iny for
each fixed timet. Thus, the partial PDF,pT8(t) , is Gaussian
independent ofy and given explicitly by the formula

pT8~ t !~l!5
1

A2ps~ t !
e2l2/2s2~ t !5

1

s~ t !
GS l

s~ t ! D ,

~22!
s2~ t !5^uT8~ t !u2&v ,

with G(l)5(2p)21/2exp(2l2/2) the normalized Gaussian
The partial scalar variances2(t) is an explicit periodic func-
tion of time that is readily calculated through the formulas
~13! and~14! ~see Secs. IV, V!. In this situation, the complete
PDF of T8 is determined through~17! and ~22! by

pT8~l!5
1

tP
E

0

tP 1

s~ t !
GS l

s~ t ! Ddt. ~23!

We will assume that the random Fourier amplitudes
v̂J(t) have the form23

v̂J~ t !5 1
2@hJ~ t !2 i jJ~ t !#, J.0,

~24!
v̂2J~ t !5 1

2@hJ~ t !1 i jJ~ t !#,

wherehJ(t) and jJ(t) are real Gaussian random fields th
are independent and also independent forJÞJ8 with covari-
anceRJ(utu) given by

^hJ~ t1t0!hJ~ t0!&v5^jJ~ t1t0!jJ~ t0!&v5RJ~ utu!. ~25!
Downloaded 20 Feb 2004 to 128.122.81.71. Redistribution subject to AIP
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The steady case studied in Sec. IV is the formal extre
limiting case withRJ(utu)5RJ(0). Note thatRJ(0)[EJ is
the energy in theJth mode. Under these assumptions, t
scalar variances2(t) is given by

s2~ t !52
Pe2

Lg
2 (

J
^uTJ8̂~ t !u2&v , ~26!

with TJ8̂ determined by~13!.
We conclude this section with the following remar

Clearly, with the concrete formulas in~21! and ~23! the is-
sues regarding passive scalar intermittency in the model
fined in ~1!, ~2!, ~4! reduce to finding bursting time interval
of the basic periodtP , where on these intervals the scal
variance satisfiess2(t)@^s2&tP

. In the next sections, we
establish that this is the situation as the Pe´clet number in-
creases, provided that the transverse sweepw(t) in the
model has isolated zeros.

III. TURBULENT DIFFUSIVITY IN THE MODEL

In this section, explicit expressions are presented for
turbulent diffusivity resulting from a deterministic stead
single mode shearv(y)5sin(2py) ~as in Sec. II B!. Our ob-
jective in this section is to illustrate via an extremely simp
example the mechanism by which isolated zeros in the tra
verse sweep can lead to bursts of activity and an interes
intermittent passive scalar response. The turbulent diffusi
kT can be computed directly according to the followin
formula:16

kT5LG
2 ^u“T8u2&52p2LG

2 s̄2, ~27!

with s̄25^s2(t)&tP
ands2(t) defined as in~19!.

The Péclet number influenceskT via two competing ef-
fects: on one hand, increasing Pe clearly enhances the
ing shear intensity given by Pev(y), which should result in
an increase in turbulent diffusivity. On the other hand, it a
enhances the transverse sweep given by Pew(t), this will be
shown below to decrease the turbulent diffusivity. Theore
cal predictions of the overall dependence ofkT as a function
of Pe as a result of this competition are given next. For
simplest case withb50 in ~3! so thatw(t)5w0 is a constant,
one can derive an explicit expression fors2(t) to be used in
the expression forkT in ~27!. Otherwise, one can estimat
s2(t) asymptotically in the limit of large Pe´clet numbers; see
Table I for a summary of the discussion below. Finally,
alternative would be to obtains2(t) numerically; this proce-
dure is described at the end of this section.

A. Steady case bÄ0: Exact results

Detailed results in this case have been repor
before16—they are summarized here to provide intuition f
the unsteady case. Withw(t)5w0 , the solution is steady
with s2(t)5s̄2 given explicitly by

s̄25
Pe2/LG

2

4p2~4p21Pe2 w0
2!

, ~28!

so that according to~27!, the corresponding turbulent diffu
sivity is given by
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Downloaded 20 Fe
TABLE I. Turbulent diffusivity with a deterministic steady single mode shear.

Cross-sweep
Pe* @w01b sin(vt)# Zeros in each period Streamlines ScalingkT

05ubu5uw0u always always open Pe2

ubu50,uw0u never always closed Pe0

0,ubu,uw0u none always closed Pe0

0,uw0u,ubu two simple zeros open twice per period Pe1

0,uw0u5ubu one double zero open once per period Pe4/3
t
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kT5
Pe2

2~4p21Pe2 w0
2!

. ~29!

In conclusion, for a steady transverse sweep, we have
following.

~i! At small Pe:kT;Pe2/8p2—the turbulent diffusivity
is very small with a quadratic dependence on the´-
clet number.

~ii ! If w050, i.e., in the absence of a transverse swe
the same scalingkT5Pe2/8p2 holds exactly for all
values of Pe.

~iii ! At large Pe withw0Þ0, i.e., with a steady nonzer
transverse sweep:kT→1/(2w0

2);Pe0.

The sensitivity ofkT to the intensity of the transvers
shear via Pe has been explained16 in terms of the topology of
the streamlines:w050 corresponds to open streamline
transport by the shear parallel to the gradient is very effec
while w0Þ0 corresponds to blocked streamlines, little d
tortion, and weak transport.

B. Unsteady case bÅ0: Asymptotic results

Based on the discussion above for the steady transv
sweep, one would expect the following behavior in the u
steady transverse sweep casew(t)5w01b sin(vt) with b,
vÞ0. For small values of Pe, the transverse sweep is
pected to have little impact on the solution. This will b
confirmed in numerical experiments later in this section a
could easily be verified asymptotically as a small pertur
tion of the zero transverse sweep case: as in the steady
the turbulent diffusivity at small Pe is quadratic in Pe—w
will not discuss this further. Instead, we focus on the beh
ior at large Pe. Most of the time, withbÞ0, w(t) is quite
large at large Pe and streamline blocking should resul
very limited turbulent mixing. However, shouldw(t) vanish
at some timet* , streamlines would suddenly open with th
potential for a tremendous boost in turbulent diffusivity. F
such cases, the overall scaling of the turbulent diffusiv
over a time period should be intermediate between the0

scaling from a constant nonzero transverse sweep and
Pe2 scaling without a transverse sweep, with the precise
ponent linked to the relative amount of time spent in t
vicinity of the zeros forw(t). Those intuitive consideration
are confirmed next via large Pe´clet asymptotics. The single
mode casev(y)5sin(2py) corresponds tov̂152 i /25
2 v̂21 . Plugging in Duhamel’s formula~11!, ~13!:
b 2004 to 128.122.81.71. Redistribution subject to AIP
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e

T18̂5
i

2 E2`

t

e24p2~ t2t8!e2 i2p Pe*
t8
t

w~s!ds, ~30!

with s2(t)52(Pe2/Lg
2)uT18̂u

2. The expression forT18̂ is of the
form *`

t f (t8)ei Peh(t8)dt8. At large Pe´clet, the fast oscilla-
tions in the integrand cancel out for most of the time in
gration interval. The only potential contributions must com
from stationary pointst85t* @i.e., points whereh(t8) is ex-
tremum; in the present case, they correspond to the zero
w(t8)#, where oscillations are much slower. If there are
stationary points, the next leading-order contribution com
from the end pointt85t, where cancellation is partial. Thos
ideas can be formalized via the stationary phase method~see,
for example, Ref. 24! with the precise formula, dependin
essentially on the order of the zerost* . With a transverse
sweep of the formw(t)5w01b sinvt, bÞ0, only three
cases are possible as far as the order of the zeros are
cerned.

~i! 0,ubu,uw0u: the transverse sweep is always no
zero. The main contribution to the quadrature com
from the end point. According to Ref. 24,s2(t) is
given to leading order by

s2~t!5
1

Lg
2

1

4p2@w01b sin~vt!#2 . ~31!

The turbulent diffusivity is computed using this e
pression in~27!:

kT5
uw0u

2uw0
22b2u3/2. ~32!

This shows that, for cases where the transverse sw
never vanishes, the turbulent diffusivity at large Pe´clet
behaves as in the constant nonzero transverse sw
case and saturates at a finite value.

~ii ! 0<uw0u,ubu: the transverse sweep has two simp
zerosin each periodt1,2* P@0,tP@ defined by sin(vt* )
52w0 /b. According to the stationary phase metho
the contribution from an order one zero is given
leading order by

s2~t!5smax
2 e28p2~t2t* !,

with

smax
2 5

PetP

2pLg
2Ab22w0

2
, ~33!

wheret.t* . Substituting this expression in~27! and
summing over the two zeros gives the following e
pression forkT :
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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kT5
Pe

4pAb22w0
2

, ~34!

so that at large Pe´clet, kT;Pe. This linear scaling
intermediate between the Pe0 and Pe2 with and with-
out constant transverse sweep, is an indication of
tremendous contribution of the short time interva
where the streamlines open, allowing momentarily
intense mixing by the shear.

~iii ! 0,uw0u5ubu: the transverse sweep has one dou
zero t* in @0,tP@ with either t* 50 if b andw0 have
opposite signs ort* 5tP/2 otherwise. Again, the main
contribution to the quadrature comes from the stati
ary points. Applying the asymptotic formula to an o
der 2 stationary point24 gives

s2~t!5smax
2 e28p2~t2t* !, with smax

2 5K2
Pe4/3tP

4/3

b2/3Lg
2 ,

~35!
with the constantK561/3G(1/3)/4pA3. This leads to
the following expression forkT :

kT5
K2

4

Pe4/3tP
1/3

b2/3 . ~36!

This time, kT;Pe4/3 grows superlinearly. The addi
tional mixing compared to the case of two simple z
ros can be explained by the fact that, in the pres
case, the flow spends a comparatively longer time
the vicinity of the zeros of the transverse speed, wh
most of the mixing occurs.

Remark: Both formulas~34! and ~36! were derived, as-
suming that exp(28p2tP) is negligible. If tP is not large
enough for this to be the case, we will show that the stati
ary phase asymptotic strategy would not be valid anywa
see Sec. IV C.

C. Numerical validation

The predictions for the various scalings ofkT as a func-
tion of Pe are summarized in Table I. For validation, we p

FIG. 2. Validation of scaling forkT .
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in Fig. 2, kT(Pe) obtained by direct numerical computatio

for T18̂ using a numerical strategy described below. Res
are shown for 1<Pe<104 for three cases representative
the three scaling regimes discussed above: the first case
w051.0.855b ~no zero!, the second case hasw050.85
,15b ~two single zeros! and the third case hasw051
5b ~double zero!. As expected, all three curves are ve
similar for very small Pe´clet, with a quadratic dependenc
At large Péclet, the predicted scalings are verified, with, r
spectively, a horizontal asymptote, a linear scaling, an
superlinear scaling with exponent4

3.
The numerical strategy to computes2(t) directly, with-

out any asymptotic approximation, is based on the follow
alternative formula25 for thetP-periodic solution of the ODE
in ~12!:

TJ8̂~ t !5T
*
8̂ ~ t !2T

*
8̂ ~tP!@11SKJ

~ t,0!#/SKJ
~tP,0!, ~37!

for 0<t<tP , whereT
*
8̂ (t) is the solution of the same ODE

~12!, but with zero initial conditions instead of periodic con

ditions. In general,T
*
8̂ (t) does not satisfy the periodicity

condition. The formula in~37! exploits the linearity of the
ODE to correct for periodicity. The numerical strategy bas
on ~37! has two steps:

~i! Solve the initial value problem forT
*
8̂ (t) using Mat-

lab’s fourth-order ODE integrator. At large Pe´clet, the
ODE in ~12! is not stiff for most parameters but ha
very fine time features that require time-step adap
ity for accuracy~see the discussion of the characte
istic time scales in Sec. IV C!.

~ii ! CorrectT
*
8̂ according to~37!. This is an explicit exact

operation onceT
*
8̂ (tP) has been computed in the firs

step.

The cost of computingTJ8̂ increases roughly linearly
with Pe. For example, for the data in Fig. 2, it takes less th
1000 discrete time steps per period at low Pe´clet for four-
digit accuracy onkT but up to a million discrete time step
per time period when Pe5104. Nevertheless, those ODE so
lutions remain extremely cheap~at most 30 min on a laptop
with the full resolution of all scales for any data point in Fi
2! compared to what it would take to solve the PDE in~1! if
the spatial structure also had to be discretized.25

IV. SCALAR INTERMITTENCY FOR STEADY SINGLE
MODE SHEARS

In the last section, the existence of isolated zeros in
transverse sweep has been linked to a mechanism for in
mittent bursts of intense mixing that result in nontrivial P´-
clet scaling for the turbulent diffusivity. The same mech
nism will now be shown to be associated with broader th
Gaussian passive scalar PDFs. For simplicity in exposit
we restrict our study to the case of a transverse sweep o
form w(t)5b sinvt, with b.0, v52p/tP.0. This trans-
verse sweep has exactly two single zeros in the pe
@0,tP@ : t1* 50 and t2* 5tP/2 and the stationary phase a
proximation from~33! is directly applicable in the limit of
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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large Pe by simply settingw050. Because of the symmetr
in the two zerost* , the period ofs2(t) is now tP/2, with
s2(t) given by

s2~ t !5smax
2 e28p2t, with smax

2 5
Petp

2pLg
2b

, ~38!

for 0<t<tP/2. This expression will now be used in the ge
eral formulas~21!, ~23! to derive explicit asymptotic expres
sions at large Pe´clet numbers for the PDF of the passiv
scalar in the case of a steady single mode shear with, res
tively, a deterministic or a stationary Gaussian random a
plitude. Examples of PDFs obtained using numerical com
tations ofs2(t) are also reported.

A. PDFs for a deterministic steady single mode shear

1. Numerical results: Transition from sub-Gaussian
to broad-tail PDFs

Figure 3 shows the results of numerical experime
with b51, Pe51, 10, 100, 1000, 10 000,tP50.5, and the
deterministic steady single mode shearv(y)5sin(2py) ~also
discussed in Sec. II B!. The PDFs were obtained by the di
crete quadrature of~21! with s2(t) computed numerically
following the strategy outlined in Sec. III. Also shown a
dashed lines are the Gaussian PDFs with the same varia
When Pe51, the PDF displays the typical double-peak si
PDF in ~20!, which is clearly sub-Gaussian. As the Pe´clet

FIG. 3. The PDF as a function of Pe—deterministic single mode. Here
in similar plots below, they axis is the usual logarithmic scale,z5T8/s̄,
and the dashed line represents the Gaussian PDF with the same varia
Downloaded 20 Feb 2004 to 128.122.81.71. Redistribution subject to AIP
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number increases, however, the double-peak core shri
the normalized fluctuations become larger, with the PD
tails clearly becoming progressively broader.

2. Asymptotic limiting shape

In Fig. 4, the PDFs for eight values of Pe in the ran
500,Pe,10 000 are superimposed to demonstrate the e
tence of a limiting shape. This limiting shape is predict
asymptotically, by integrating exactly the general formula
~21! with s2(t) given at large Pe´clet by ~38! to yield the
following.

Self-similar PDF for the deterministic case. In the limit
of large Pe,

p~T8!5
1

s̄
p`S T8

s̄ D , ~39!

with

p`~z!5K1

p22 arcsin~K2uzu!
K2uzu

, ~40!

whereK1 is a normalizing constant andK251/A4p2tP.
This expression is valid forsmin,uT8u,smax with smin

5smaxexp(22p2tP) the very small size of the inner core
This asymptotic PDF shape is shown in Fig. 4 as a th
dashed line. The agreement for moderately large value
the normalized fluctuationsuT8u/s̄ is excellent. As Pe in-
creases, the agreement extends to increasingly large va
of uT8u/s̄ as the asymptotic stationary phase approximat
for s2(t) used to obtain~40! becomes more relevant.

B. PDFs for a stationary Gaussian random shear

1. Numerical results: Transition from Gaussian to
broad-tail PDFs

Using the same data fors2(t) as above, numerical PDF
based on~23! are generated that correspond to the case
shear with steady stationary Gaussian random amplitu
Figure 5 displays the PDFs with increasing Pe´clet numbers,
along with the Gaussian PDFs with the same variance
Pe51, the PDF is Gaussian. At Pe510, there still appears to
be a Gaussian core, but its support has shrunk, the tails
broader, and the PDF resembles an exponential distribu

d

e.

FIG. 4. Asymptotic PDF~dashed line! shape for a deterministic single mod
compared to the numerical results for a range of large Pe´clet numbers~solid
lines!.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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This trend continues for Pe5100 and larger, the PDF ha
even broader tails with an overall shape closer to a stretc
exponential distribution.

2. Asymptotic limiting shape

As for the deterministic case in Sec. IV A, the PD
converge at large Pe´clet to a universal limiting shape that ca
be predicted asymptotically by integrating exactly~23! with
the asymptotic approximation fors2(t) in ~38!.

3. Self-similar PDF for the steady stationary Gaussian
random case

In the limit of large Pe,

p~T8!5
1

s̄
p`S T8

s̄ D , ~41!

with

p`~z!5K1

erf~CK2z!2erf~K2z!

K2z
, ~42!

whereK1 is a normalizing constant,K251/A4p2tP, andC
5exp(2p2tP) is a very large constant.

This formula is valid foruzu outside the inner core. Thi
asymptotic shape is shown in Fig. 6 along with the PDFs
eight values of Pe in the range 500,Pe,10 000 with excel-
lent agreement.

Remark: The rangeuT8u,10s̄ in Figs. 5 and 6 was se
lected because it corresponds to a representative rang
reliable experimental data or numerical data with more co

FIG. 5. The same as in Fig. 3 for the case of a random stationary Gau
single mode.
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plex models. In the present formulation, accurate numer
or asymptotic values could be generated quite easily, e
for arbitrarily rare events. The trend observed for large v
ues of uT8u/s̄ is similar to the one observed in Fig. 4: th
PDF drops markedly since there can be no significant c
tributions at very large values. The regime that appears
follow a stretched exponential applies only for a finite ba
extending over many standard deviations of the Gaussia

To summarize, the transition depicted in Fig. 5 fro
Gaussian PDF to exponential PDF~around Pe510! to a uni-
versal stretched exponential PDF~for Pe.100! is therefore
qualitatively similar to experimental results as well as n
merical results obtained with more complex models, at le
for a reasonable range of values. The asymptotic exp
formula in ~42!, however, indicates that the limiting shap
cannot be described everywhere by the stretched expone
that one typically obtains by a best fit based on a limit
range of values over a few standard deviations of the Ga
ian. Such limited range fits are what is actually used in p
cessing experimental or numerical data.

C. Asymptotic regimes

To conclude this section, we will now address the fo
lowing issue. We have just documented the existence of s
similar PDFs with strong intermittency in the limit of larg
Péclet numbers as a result of a bursting mechanism linke
isolated zeros in the transverse sweep. In the experim
above, good agreement between the numerical PDFs at
but finite Péclet and the asymptotic self-similar PDF o
curred, beginning at values on the order of Pe;100.

In general, how large should the Pe´clet number be for
strong intermittency?

We will answer this question by stating more precise
the conditions on Pe in relation to the other parameters in
model that need to be satisfied for the self-similar interm
tent regime to exist. Withw(t)5b sin(vt), the model~11!,
~13! becomes

T8~y,t !5
Pe

Lg
~TJ8̂e

iK Jy1c.c.!,

with

ian

FIG. 6. The same as in Fig. 4 for the case of a random stationary Gau
single mode.
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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dTJ8̂

dt
1@KJ

21 iK J Peb sin~vt !#TJ8̂52v Ĵ. ~43!

Rescaling the length by 1/KJ and the time by 1/KJ
2 leads to a

convenient formulation that does not depend explic
on KJ :

T8~y,t !5
Pe8

Lg8
~TJ8̂e

iy1c.c.!,

with

dTJ8̂

dt
1@11 i Pe8 b sin~v8t !#TJ8̂52v Ĵ, ~44!

through the rescaled variablesKJy→y, KJ
2t→t, Pe8

5Pe/KJ , Lg85LgKJ , and v852p/tP8 5v/KJ
2. In all the

computations in this section, it will be assumed that the

ergy of the shear has been normalized so thatuEJu52uvJ8̂u
2

51. To analyze the behavior of the solution forTJ8̂, we iden-
tify the following four characteristic time scales in~44!:

• viscous relaxation time,tv851;
• flow forcing period,tP8 52p/v8;
• fast sweep time,t fs8 51/(Pe8 b);
• slow sweep timetss8 5AtP8 /(Pe8 b).

The viscous relaxation timetv8 is unity here because o
the choice of characteristic length and time scales above.
forcing time scaletP8 is self-explanatory. As described in th
Introduction, the transverse sweep affects the topology of
streamlines, with important consequences regarding the
bulent diffusivity. The topology of the streamlines is an E
lerian view of the physics of the problem; as far as extract
a time scale, a Lagrangian view provides in the present c
a more useful diagnostic: the effect of the transverse swee
measured in terms of the time it takes a particle to sw
vertically across the shear’s period due to advection. T
sweep time concept remains valid even when the transv
sweep is modulated in time, at least for Pe´clet numbers suf-
ficiently large, with the only difference that the sweep tim
will also be modulated in time in that case. When the tra
verse sweep intensity is maximum, the sweep time reac
its minimum value, called from now on thefast sweep time
scale; little turbulent diffusion is expected for values of th
sweep time in the neighborhood of the fast sweep time.
the zero-crossing of the transverse sweep, however,
sweep time reaches its maximum value, called from now
the slow sweep time scale; it is associated with bursts o
intense turbulent mixing. Explicit formulas for the fast an
slow sweep times are derived by first introducing the expr
sion for the characteristic sweep timetsweep8 (t0) around an
arbitrary timet0 in the period. It is given implicitly by

E
t0

t01tsweep8 ~ t0!
Pe8uw~ t !udt51.

With w(t)5b sin 2pt/tP8 , this formula becomes

Pe8 bUcosS 2pt0

tP8
D 2cosS 2p~ t01tsweep8 !

tP8
D U5 2p

tP8
. ~45!
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This definition makes sense only when Pe8 b is sufficiently
large for a solution fortsweep8 to exist; we will get back to this
condition later. The quantitytsweep8 (t0) takes on a range o
values for 0,t0,tP8 /2 with the fastest timet fs8 correspond-
ing to t05tP8 /4 whenw(t) is maximum and the slowest tim
corresponding tot050 whenw(t0)50. The formulas fort fs8
andtss8 are obtained by Taylor expansion of the general
pression fortsweep8 in ~45! at these locations.

Previously, we have explained the intermittent behav
as a result of a burst of intense mixing by the shear when
transverse sweep is zero compared to very little mixing wh
the transverse sweep is large. In terms of the time scales
have just identified, it is clear that this mechanism is relev
only if the following order is respected:

t fs8 !tss8 !tP8 . ~46!

With the formulas for the time scales above, this condition
equivalent to Pe8 btP8 being sufficiently large; we will come
back to this condition later on in the discussion. There
four ways to ordertv851 in ~46!; next, we show that each
order corresponds to a regime characterized by a defi
type of PDF and mixing intensity:

• Regime I:t fs8 ,tss8 ,tP8 ,tv851;
• Regime II:t fs8 ,tss8 ,tv851,tP8 ;
• Regime III: t fs8 ,tv851,tss8 ,tP8 ;
• Regime IV:tv851,t fs8 ,tss8 ,tP8 .

Figure 7 shows a phase diagram with the boundary
each regime in terms of Pe8 andtP8 . Next, a detailed descrip
tion is developed where we identify for each regime the
propriate asymptotic strategy to derive an explicit express
for s2(t). This expression is then used to characterize e
regime via two representative scalar quantities that are v
easily computed.

~i! The turbulent diffusivity,kT5Lg8
2s̄2.

~ii ! The intermittency ratioRs2 defined assmax
2 /s̄2. In the

present setup, the ratioRs2 is a very good indicator of

FIG. 7. Phase diagram~Pe8, tP8 ! of the asymptotic regimes; steady case
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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the intermittency and the behavior of the tails of t
PDFs; it is extremely easy to compute with an expli
formula for s2(t). Because of its definition,Rs2>1.
Values close to one correspond to Gaussian P
large values indicate broad tails and a large depar
from Gaussianity.

At the end of this section, we confirm the predictio
developed below through numerical quadrature of the s
tion.

1. Regime I: tP8Ëtv8Ä1

In regime I, viscous effects are very slow. Viscosity
the main mechanism by which the solution adjusts to
forcing, including the adjustment to the effect of the tran
verse sweep. Hence, in regime I, the viscous time is too l
for the solution to respond significantly to the perturbatio
due to the transverse sweep, small or large, because t
perturbations occur on much shorter time scales. A rigor
treatment of this regime can be found in Appendix B of R
25. The solution is built as a series expansion in terms of
small parametertP8 . The zeroth-order term is shown to b
time independent. Solvability for the first-order term leads
the condition that the leading-order term is the steady s
tion without the transverse sweep. It is trivial to solve~44!

for TJ8̂(t) and computes2(t):

uTJ8̂u
25EJ/251/2, s2~ t !5

Pe82

Lg8
2 5smax

2 5s̄2. ~47!

Using this expression in the formula forkT andRs2:

Regime I kT5Pe82, Rs251.

This last value indicates that the PDF in regime I is Gau
ian.

2. Regime II: tss8 Ëtv8ËtP8

This corresponds to the condition that 1,tP8 ,Pe8 b.
During most of the time period, streamlines are blocked,
the amplitudes(t) is small. During the short slow swee
time interval, however, streamlines are open and the solu
grows very rapidly. Becausetss8 ,tv8 , this growth is basically
inviscid and s(t) increases until the streamlines becom
blocked again, at the end of the slow sweep time interval
that point,s(t) will tend to decrease back to a much smal
value, with the decay controlled exclusively by molecu
viscosity. This dynamics of an inviscid burst followed by
viscous relaxation phase is precisely captured by the sta
ary phase asymptotic approximation that was utilized ear
in this section. Formula~38! for s2(t) can be used directly
the value forsmax can be linked very precisely to the invisc
growth phase, followed by the viscosity controlled expone
tial decay. Processing the explicit expression fors2(t) from
~38! leads to

Regime II kT5
Pe8

b
, Rs25tP8 .

Here are some remarks regarding regime II.
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~i! The intermittency ratioRs25tP8 is large, away from
the boundary with regime I to the left. This indicate
strong intermittency, along with the fact thatkT

;Pe8 can become arbitrarily large at large Pe.
~ii ! Also, Rs2 is independent of Pe8. This indicates self-

similar intermittency at fixedtP8 .

3. Regime III: t fs8 Ëtv8Ëtss8

This corresponds to the condition that 1,Pe8 b,tP8 . In
that regime, large fluctuations in the scalar are still associa
with the neighborhood of the stationary points, due
streamline blocking away from those points, as in regime
However, on the time scale of the slow sweep time interv
the role of viscosity is much more significant than it was
regime II. Therefore, a good asymptotic approximation
that viscous relaxation forces the solution to adjust fully
the forcing while the transverse sweep is slow. This is
quasisteady approximation: instantaneous adjustment is
sumed. Strictly speaking, it is not quite valid for the ent
time period, because the effect of streamline blocking as
ciated with the fast sweep time still occur on a very fast tim
scale compared to the viscous time. However, this turns
to make little difference as long as the dominant contribut
from the slow sweep time interval is well captured. Setti
the time derivative to zero in~44!, one can solve explicitly
for TJ8̂(t) and computes2(t):

s2~ t !5
Pe82

Lg8
2

1

11Pe82 b2 sin~2pt/tP8 !2 .

Notice that this is very different from the steady solution
regime I, where the solution is completely steady because
transverse sweep is ignored altogether. In the present reg
the transverse sweep plays a big role and the solution is
timedependent. The maximum instantaneous variance
smax

2 5Pe82/Lg8
2 and the average variance over a time per

is s̄25Pe82/(Lg8
2A11Pe82 b2). This leads to

Regime III kT5
Pe82

A11Pe82 b2
, Rs25A11Pe82 b2.

Here are some remarks regarding Regime III.

~i! HerekT andRs2 are independent oftP8 . This is con-
sistent with the quasisteady asymptotic approach.

~ii ! Here kT and Rs2 both increase as a function of Pe8,
starting from near-Gaussian values when Peb;1 un-
til the exit into regime II when Pe8 b;tP8 , where
maximum intermittency is achieved at a given val
of tP8 .

4. Regime IV: tv8Ët fs8

This corresponds to the condition that Pe8 b,1. If Pe8 is
decreased further, so thattv8 becomes smaller than any oth
time scale in the system, in particular, smaller than the
sweep time, then the quasisteady approximation used in
gime III becomes rigorously applicable at all times; also s
the discussion in Ref. 25. The results forkT and Rs2 in
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Downloaded 20 Fe
TABLE II. Asymptotic regimes for the steady single mode case.

Regime Time scales order kT Rs25smax
2 /s̄2

I Gaussian
~steady!

tP8 ,tv8
(tPKJ

2,1)
Pe2

KJ
2

1

II Self-similar intermittent
~stationary phase!

tss8 ,tv8,tP8
(1,tPKJ

2,Peb/KJ)
Pe

KJb

tPKJ
2

III Transition weakly
intermittent~quasisteady!

t fs8 ,tv8,tss8
(1,Peb/KJ,tPKJ

2)
Pe2

KJAKJ
21Pe2 b2

A11
Pe2 b2

KJ
2

IV Gaussian
~regular limit III!

tv8,t fs8
(Peb/KJ,1)

Pe2

KJ
2

1
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regime IV can therefore be obtained directly by taking t
regular limit of Pe8 b very small in the expressions in Re
gime III:

Regime IV kT5Pe82, Rs251.

The PDF reduces to a Gaussian distribution, unlike in reg
I, however, absolute fluctuations are asymptotically sm
sincekT;Pe82 is very small in this regime. With Pe8 b so
small, the whole transverse sweep time concept is ques
able anyway, as the equation~45! no longer has a solution
that definestsweep8 (t0) at anyt0 in the time period.

Remark: It is easy to verify that the condition in~46! is
automatically satisfied in regimes II and III, the only tw
regimes where intermittency is possible, so that~46! does not
constitute an additional constraint for intermittency.

The formulas applicable in each regime are summari
in Table II, where the explicit dependence withKJ has been
reintroduced. Next, the PDF regimes in Table II are co
firmed through numerical quadrature.

FIG. 8. The PDFs corresponding to mode numbersJ with KJ

52p$1,2,3,...%.
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As a first validation, we reinterpret the series of PD
reported in Fig. 5. The parameters in those experiments
tP50.5, KJ52p, andb51. This givestP8 5KJ

2tP519@1,
larger than the critical value below which the PDF is alwa
Gaussian at all Pe´clet numbers. Increasing Pe at constantKJ

andtP corresponds to a vertical trajectory in the phase d
gram: Pe51 corresponds to Pe8 b50.16,1, regime IV, the
range 10,Pe,100 correspond to regime III and Pe.100 to
regime II. The monotone increase in non-Gaussianity unt
self-similar PDF is reached as observed in Fig. 6 is con
tent with the predictions forRs2 in regimes II and III.

A second set of PDFs is presented in Fig. 8. In the
experiments, Pe51000,tP50.5 andb51 are fixed, butKJ is
varied withKJ52p$1,2,3,4,5,6,7,8,16,32,64,128%. This cor-
responds to a trajectory in phase space described bytP8
50.5KJ

2 and Pe851000/KJ . The different test cases can b
roughly classified as follows: modes1–2–3 are inregime II,
modes 4 to 64 are in regime III, and mode 128 is in regi
IV. The numerical results are in excellent agreement with
predicted behavior in each regime.

~i! Going from mode 1 to mode 3, the PDFs becom
broader asKJ increases. This is consistent with th
expression forRs25tPKJ

2 in regime II.
~ii ! Once in regime III~modes 4 to 64!, the PDFs become

FIG. 9. Turbulent diffusivity corresponding to Fig. 7.
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narrower asKJ is increased further, in good agre
ment with the prediction thatRs25A11Pe2 b2/KJ

2 in
regime III.

~iii ! Finally, at mode 128, the PDF is Gaussian, as p
dicted in regime IV.

Figure 9 showskT corresponding to all those case
Again, excellent agreement with the theoretical prediction
observed, with aKJ

21 dependence at smallKJ both in regime
II and regime III, and, ultimately, aKJ

22 dependence at larg
KJ in regimes III and IV.

We conclude this discussion by answering the ques
formulated at the beginning of this section. The interest
self-similar intermittent regime identified previously, wit
very large turbulent diffusivity and large fluctuations in th
scalar~on an absolute scale! corresponds to regime II, th
regime where stationary phase asymptotics is appropr
Besides the existence of isolated zeros in the transv
sweep, the analysis in terms of time scales has identified
additional conditions for intermittent bursts to occur and le
to an interesting scalar PDF.

Condition 1: The slow sweep time must be shorter th
the viscous time.This guarantees that the sudden amplific
tion in the scalar response linked to the streamlines ope
when the transverse sweep is very small occurs on a
scale short enough not to be hampered by molecular vis
ity. This condition is always satisfied in the limit of ver
large Pe. If condition 1 is not satisfied, then the system is
the quasisteady asymptotic regime. It is possible that
PDFs still display broad tails with large normalized fluctu
tions, but on an absolute scale, fluctuations and the turbu
diffusivity are small, so that the system would be charac
ized as weakly intermittent.

Condition 2: The forcing period must be long compar
to the viscous time.Condition 2 guarantees that the tran
verse sweep will have a noticeable effect on the solution
condition 2 is not satisfied, then oscillations are too fast
the transverse sweep to be effective and the bursting me
nism associated with the modulation in transverse sw
does not apply, no matter how large the Pe´clet number—very
strong mixing can be observed, but the PDFs are necess
Gaussian.

V. SCALAR INTERMITTENCY FOR RANDOM
SPATIOTEMPORAL AND MULTIMODE SHEARS

Unlike the steady singlemode shears analyzed so far,
turbulent flows usually have energy spectra with a w
range of space and time scales. Here scalar intermittenc
studied in the elementary models when the shear flowv(y,t)
is a spatiotemporal Gaussian random field to mimic some
these effects. In Sec. V A we describe the effect of unste
ness via a finite correlation time while in Sec. V B the effe
of the distribution of the shear energy over several mode
studied. The objective is to identify the conditions whe
self-similar strongly intermittent PDFs, as analyzed for t
steady single mode case can be observed with more com
spatiotemporal flows. The template of asymptotic regim
Downloaded 20 Feb 2004 to 128.122.81.71. Redistribution subject to AIP
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developed in Sec. IV C for the steady case will be very u
ful here to guide the possible regimes of behavior for
scalar PDF in the present situation.

A. Random spatiotemporal single mode shears

Here we consider unsteady stationary Gaussian ran
flows, with a single modeKJ and the temporal behavior a
that mode characterized by a correlation timetJ , such that

RJ~ utu!5EJe
2utu/tJ, ~48!

with RJ(utu) the covariance introduced in~25! and EJ the
shear energy at modeKJ . The formulas to be given below
are for EJ51. This introduces the new time scaletJ in the
problem, in addition, to the four time scales previously ide
tified in the steady case. First we show that, to a large ext
the effect of this new time scale can be understood in te
of the steady shear problem by considering a reduced visc
relaxation time scaletv,unsteady5tv,steady/@111/(tJKJ

2)#.
One important consequence of this observation is that
recovers the expected Gaussian PDFs in the limit
d-correlated shear flows. Indeed, with the expression for
reduced viscous relaxation time above, the limittJ→0 is
equivalent to the limit of very short effective viscous rela
ation times, which correspond to regime IV in the stea
case, with Gaussian PDFs. The asymptotic analysis to jus
this result is given next, along with a discussion of the oth
asymptotic regimes. All these predictions are validated
numerical simulations to be found at the end of this secti

The first step in the analysis is to rescale the equatio
With the covariance of the form~48!, Duhamel’s formula
~13! generalizes to

s2~ t !5
Pe2

Lg
2 E

2`

t E
2`

t

SK2J
~ t,t8!SKJ

~ t, t̃ !RJ~ ut82 t̃u!dt8dt̃.

~49!

It is an exercise for the reader to check from~49! that when
RJ(utu) is a delta function,s2(t) is constant, and the PDF i
Gaussian. A more practical formulation is derived in the a
pendix, where it is shown thats2(t) can be computed alter
natively as

s2~ t !5
Pe2

Lg
2 @ I 2~ t !1D~ t !#,

whereI 2(t)5uTJ8̂u
2, with TJ8̂ the periodic solution of the fol-

lowing equation:

dTJ8̂~ t !

dt
1@KJ

211/tJ1 iK J Peb sin~vt !#TJ8̂5vJ8̂, ~50!

while D(t) is the periodic solution of

dD~ t !

dt
12KJ

2D2
2

tJ
I 250. ~51!

The complex ODE in~50! is identical to the ODE from~15!
used in the steady case, except that the viscous coefficienKJ

2

in ~15! has been replaced here by the enhanced coeffic
KJ

211/tJ . This suggests we rescale time and length in~50!
with T51/(KJ

211/tJ) andL51/KJ . This rescaling leads to
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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Downloaded 20 Fe
TABLE III. Asymptotic regimes for the single mode case with correlation timetJ8 .

Regime smax
2 kT Rs25smax

2 /s̄2

I Gaussian
Pe2

Lg
2KJ

2~KJ
211/tJ!

Pe2

KJ
211/tJ

1

II Self-similar intermittent
PetP

Lg
2bKJ

Pe

bKJ
tPKJ

2

III Weakly intermittent
Pe2

Lg
2KJ

2~KJ
211/tJ!

Pe2

A~KJ
211/tJ!

21KJ
2 Pe2 b2

A11
KJ

2 Pe2 b2

~KJ
211/tJ!

2

IV Gaussian
Pe2

Lg
2KJ

2~KJ
211/tJ!

Pe2

KJ
211/tJ
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dTJ8̂~ t !

dt
1@11 i Pe9 b sin~v9t !#TJ8̂5vJ8̂,

~52!

s2~ t !5
Pe92

L8g
2 ~ I 21D !,

with I 2(t) and D(t) defined as above, provided that P9
5Pe8/(111/tJ8), v95v8/(111/tJ8), with tJ85tJKJ

2 and
Pe85Pe/KJ , v85v/KJ

2, Lg85LgKJ as in the steady case
The rescaled equation~52! is now identical to the rescale
steady-case version in~44! analyzed in Sec. IV C so that th
numerical and asymptotic strategies used previously in
steady case can be generalized in a very straightforw
fashion to obtain the solution to~52!. The second part of the
problem is to compute the correctionD(t) according to the
equation~51!. This is a linear equation with constant coef
cients that is trivial to solve, numerically or asymptotical
once the forcing termI 2(t) is known. A systematic
asymptotic analysis is summarized below. First we desc
the key results with a phase diagram and with Table III t
generalizes the steady-case results in Table II.

1. Phase diagram (Fig. 10)

In the unsteady case with correlation timetJ8 , the same
regimes that were identified in Sec. IV C for the steady c
exist and are defined by the same constraints on the pa
eters as those in Table II as long as everything is resc
according to the reduced viscous relaxation time,tv
51/(KJ

211/tJ), i.e., Pe9 replaces Pe8; tP9 replacestP8 .

~i! Regime I,tP9 ,1;
~ii ! regime II, tss9 ,1,tP9 ;
~iii ! regime III, t fs9 ,1,tss9 ;
~iv! regime IV, 1,t fs9 ;

wheret fs9 51/(Pe9 b) andtss9 5AtP9 t fs9 similar to the expres-
sion for the steady case. The phase diagram in Fig. 10 sh
the boundaries of the regimes in terms of Pe85Pe/KJ and
1/tJ851/(tJKJ

2) for fixed values oftP8 5tPKJ
2 and b. This

diagram applies whenevertP8 .1. BecausetP9 .tP8 .1 for all
values oftJ8 , it is clear that the solution in the present ca
never belongs to regime I, even in the steady limit w
1/tJ8→0. The effect of a finite correlation time can be und
stood by considering, for example, a value of Pe8 sufficiently
large that the self-similar intermittent regime is observed
b 2004 to 128.122.81.71. Redistribution subject to AIP
e
rd

e
t

e
m-
ed

ws

-

n

the steady case, i.e., the solution belongs to regime II w
1/tJ850. According to the diagram~see also Table III and the
asymptotic analysis that follows!, one can see that decreasin
the correlation time~increasing 1/tJ8! will correspond to de-
creasing intermittency with a transition from regime II
regime III, and ultimately to regime IV and Gaussian PDF
This is the expected behavior in the limit ofd-correlated
shears; this limit is valid regardless of the Pe´clet number
whenever the correlation time is shorter than any other t
scale in the problem, including the fast sweep time. Num
cal results that confirm the scenario just described are g
at the end of this section.

There are many qualitative similarities between th
phase diagram and the one presented in Ref. 12, Fig
where three regimes for the PDFs~Gaussian, exponentia
stretched exponential! are identified through processing d
rect numerical simulations of a more complex random fi
model. The PDFs that we observe in each regime roug
correspond to the same classification as in Ref. 12, w
Gaussian PDFs in regime IV, exponential PDFs in regime
and stretched exponentials in regime II~see, however, the
comments in Sec. IV B regarding the range of data typica
used for fitting such a specific distribution!.

FIG. 10. Phase diagram~Pe8, 1/tJ8! of the asymptotic regimes; unstead
random case.
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2. Solution in each regime (Table III)

Table III generalizes the formulas from Table II to th
unsteady case with correlation timetJ8 . Again, to prepare for
the multimode analysis, the explicit dependence with resp
to KJ has been reintroduced. The derivations in each reg
are very similar to the corresponding steady case, so
details are given here.

~i! Regime I. The steady approximation applies toI 2(t)
via the solution of~52!. This implies necessarily tha
D(t) is also a constant that does not depend on t
and so doess2(t)5I 21D:

s25~111/tJ8!
Pe92

L8g
2 .

Notice that this regime is observed only whentP

,1/(KJ
211/tJ), hence a necessary condition is th

tP,tJ , i.e., that the correlation time be long com
pared to the forcing period.

~ii ! Regime II. The stationary phase is used forI 2(t), the
asymptotic expression forI 2(t) is simple, andD(t)
can be found exactly, with the result thats2(t)
5I 2(t)1D(t) does not depend on 1/tJ8 , even though
both I 2(t) and D(t) do. The explicit formula for
s2(t) in regime II turns out to remain unchange
compared to the expression in~38! for the steady
case, and, as a consequence, so are the formula
kT , etc. for regime II, Table III. An intuitive explana
tion of this somewhat unexpected result is as follow
As in the steady case, the dynamics of the solution
regime II is characterized by two important phas
The first phase occurs during the slow sweep ti
interval during which horizontal transport by the she
is very intense withs2(t) growing to its maximum
value in a time too short for either molecular viscos
or the finite correlation time of the shear to have a
effect. The second phase follows: as soon as stre
lines are blocked again, outside the slow sweep ti
interval, the shear becomes ineffective at distort
the scalar ands2(t) will tend to drop back to rela-
tively small values. What controls the decay is m
lecular viscosity only, as in the steady case. In parti
lar, the finite correlation time of the shear can play
role in this decay because the effect of the shear
been blocked altogether by the transverse sweep.
merical results reported at the end of this section c
firm this prediction.

~iii ! Regime III. The quasisteady approximation can
used to solve forI 2(t). It can also be used to solve fo
D(t) only if tP8 .1. We will restrict our study to case
where this condition is satisfied, in which case o
has the following formula fors2(t):

s2~t!5~111/tJ8!
Pe92

Lg8
2

1

11Pe92 b2 sin~v9t!2
.

~iv! Regime IV. As in the steady case, this is simply t
limit for Pe9 very small compared to 1 in the expre
sions for regime III.

The asymptotic predictions are verified in Fig. 11 a
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Fig. 12 with a series of computations for decreasing corre
tion timestJ . Here,KJ52p, Pe51000,tP50.5, andb51
while 1/tJ851/(tJKJ

2)50, 1/4, 1/2, 1, 2, 4, 8, 16, 32, 64, 128
256. With those data, we expect the following asympto
regimes: the range 0,1/tJ8,4 corresponds to regime II, th
range 4,1/tJ8,100 to regime III, and 100,1/tJ8 to regime
IV. There is very good agreement between the asympt
predictions in each regime and the numerical experime
For instance, in Fig. 11, there is basically no impact oftJ8 on
the PDFs corresponding to regime II cases, as predicte
Table III and discussed above. For shorter correlation tim
~as 1/tJ8 increases!, a progressive narrowing of the PDFs o
curs as the system moves through regime III, reducing fin

FIG. 11. The PDFs corresponding to various correlation timestJ8 . Note that
the second column resembles the exponential to Gaussian transition
documented elsewhere~Refs. 3 and 12!.

FIG. 12. Turbulent diffusivity corresponding to Fig. 11.
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to a Gaussian PDF, as expected in the limit of ad-correlated
shear~1/tJ8 very large!. Similar conclusions can be draw
from Fig. 12. reducing the correlation time has no effect
the turbulent diffusivity at large correlation times, but has
much more significant impact with a marked reduction inkT

for very short correlation timetJ .

B. Random spatiotemporal multimode shears

According to the predictions in Table III, it is clear tha
either increasing the wave numberKJ or decreasing the cor
relation timetJ always leads eventually to less intermitte
PDFs because the effective viscous relaxation time s
1/(KJ

211/tJ) decreases. One could therefore wonder if
strongly intermittent behavior that we have identified in th
paper could be observed in cases where the shear has a
realistic energy spectrum with multiple spatiotempo
modes, including many with high mode numbers and sh
correlation times. In this section, we demonstrate that thi
the case if the most energetic mode individually belongs
the self-similar strongly intermittent regime. The analysis
carried out by assuming an energy spectrum of the form

EJ}KJ
2a , ~53!

for modesKJ52p$1,2,...,N%. Typical choices fora area51
~Batchelor! or a55

3 ~Kolmogorov!. The correlation time of
each mode is also expressed by a power law, with large
ues ofKJ corresponding to shorter correlation times:

tJ5tCKJ
2a8 , ~54!

with tC.0 the correlation time constant. Again, typic
choices fora8 area851 ~eddy sweeping time! or a852

3 ~Kol-
mogorov Lagrangian decorrelation time!.16

Based on the results in Table III, next we predict t
scaling withKJ for the multimode case. Assume a spectru
of N modes withKJ52pJ, J51,2,...,N and total energy
Pe2. The energy fraction in modeJ is given by EJ

5KJ
2a/(KJ

2a . We will consider test cases where mode
(K152p) belongs to regime II, so that if the energy is co
centrated in that mode, the self-similar strongly intermitte
behavior is observed. To address the question of the im
of spreading the shear energy over a larger number of mo
we use the values in Table III with the scalings in~53!, ~54!
to predict the overall dependence onKJ of the higher modes
With mode 1 belonging to regime II, higher modes belo
necessarily to either regime II, regime III, or regime IV, b
never to regime I.

~i! Contribution from a mode in regime II:

smax
2 ;KJ

2~11a! ; s2;KJ
2~31a! ; kT;KJ

2~11a! .
~ii ! Contribution from a mode in regime III:

smax
2 ;KJ

2~41a! ; s2;KJ
2~31a! ; kT;KJ

2~11a! .
~iii ! Contribution from a mode in regime IV:

smax
2 ;KJ

2~41a! ; s2;KJ
2~41a! ; kT;KJ

2~21a! .

The conclusions from this analysis are as follows.

~i! Higher modes will contribute little to the far tails o
the intermittent PDFs because the maximum range
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which they contribute, as measured bysmax
2 , de-

creases likeKJ
212a ~in regime II! or even faster in

regimes III and IV. They will contribute even less t
the bulk of the PDF because their contribution,
terms of s̄2, decreases even faster. As a result,
noticeable change in the overall shape of the PDF
the most energetic mode is to be expected when
energy is spread among many modes.

~ii ! With a8,2, the effect of the correlation time com
pared to the effect of the molecular viscosity dimi
ishes as the mode number increases: therefore,
correlation timetJ is expected to have no impact o
the solution at very high modes, even if it can have
significant impact at low modes.

~iii ! The turbulent diffusivity will include contributions o
orderKJ

212a from all modesKJ , up to the cutoff in
regime IV, where contributions decrease much fas
and are negligible. Summing over all modes gives
approximation

kT,N

kT,1
5

(KJ
212a

(KJ
2a , ~55!

wherekT,i is the turbulent diffusivity with an energy
spectrum that includesi modes.

These predictions are validated in Figs. 13 and 14 for

FIG. 13. The PDFs corresponding to varioustJ and the number of modes in
the energy spectrum,a51.

FIG. 14. ~Scaled! turbulent diffusivity corresponding to Fig. 13.
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spectral exponentsa5a851, similar results~not reported
here! are obtained with the other choices of exponents
~53!, ~54!. Five combinations of modes were considered:~1!
just one modeK152p; ~2! two modesK1 , K2 ; ~3! four
modesK1 , K2 , K3 , K4 ; ~4! eight modes fromK1 up toK8 ;
~5! 16 modes fromK1 up to K16. Five choices for the cor-
relation time parametertC are also considered: 1/tC050,
1/tC152p, 1/tC258p, 1/tC3532p, 1/tC451000~the first
set with 1/tC050 corresponds to steady cases already sho
in Fig. 11!. All 25 PDFs are superimposed in Fig. 13. Th
most striking feature is that it is impossible to distingui
between the different mode combinations for a given va
of the correlation-time constanttC ; this is in agreement with
the predictions that the presence of higher modes should
affect the overall shape of the PDF. The other observatio
that decreasing the correlation time constanttC results in a
transition from a broad tail PDF when 1/tC50 to a Gaussian
PDF for 1/tC51000; this effect was discussed at length
Sec. V A in the case of a single mode shear. Figure 14 sh
the turbulent diffusivity corresponding to those cases. T
values ofkT for a given combination of modes are renorm
ized bykT1 corresponding to the single mode, with the sa
correlation time constant. WhilekT1 was seen in Fig. 12 to
vary substantially with 1/tC , the fact that all five sets of dat
collapse onto one curve in Fig. 14 confirms that the resca
quantity kTN /kT1 depends only on the number of mod
included, not on the correlation time constant. Agreem
with the crude approximation in~55!, shown as a dashe
line, is excellent.

VI. CONCLUDING DISCUSSION

An elementary model has been introduced in this pa
and utilized to establish scalar intermittency in PDFs with
imposed large-scale gradient in an unambiguous fash
through elementary analytical techniques and numer
quadrature of exact formulas. The PDF shapes that emer
the regime of intermittency resemble those that have b
documented from post-processing of numerical solutions
much more complex models.12,13Analytical theory has been
utilized to successfully predict the asymptotic shape of
PDFs for Pe@1. The simplest examples from Sec. IV invol
ing steady deterministic or random single mode shears wi
time-dependent transverse sweep prove that neither pos
Lyapunov exponents for the particle trajectories nor a mu
mode turbulent spectrum are needed to generate scalar
mittency. What these models have is a mechanism wh
there is an intermittent burst in time of strong transport p
allel to the mean gradient due to a change in stream
structure. As documented in Secs. III and IV, this effect co
spires with molecular diffusivity to produce the intermitte
PDFs at larger Pe´clet numbers. The results in Sec. V fo
random spatiotemporal shears, showing a decrease in s
intermittency as the decorrelation timetJ tends to zero for a
fixed large Pe´clet number, also provide unambiguous the
retical predictions and supporting evidence in a sim
model for such behavior, which has been documented ea
in more complex simulations~see Fig. 2 of Ref. 12!. It would
be interesting to investigate scalar intermittency for gener
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zations of the model with a random transverse sweep
with a multiscale turbulent inertial range for the shear flow16

In the present paper we focus on scalar PDFs for the elem
tary model introduced in~1!, ~2!, ~4!. Other interesting sta-
tistics of the scalar such as the conditional dissipation
PDFs for scalar increments iny can be calculated in a simila
fashion and will be presented elsewhere by the authors in
near future. All these statistics are important in testing c
sure strategies for nonpremixed turbulent combustion26–29 in
an unambiguous fashion and the present models are
useful in that context.26 It would be interesting to check th
structure of the PDFs at large Pe´clet numbers for scalar in
termittency for the wide variety of space–time period
flows, where homogenization theory is valid.16
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APPENDIX: FORMULATION FOR THE RANDOM
SPATIOTEMPORAL CASE

Duhamel’s formula~49! for s2(t) in the unsteady case i
of the form

I 5E
t̃ 52`

t̃ 5t E
t852`

t85t
S2KJ

~ t,t8!SKJ
~ t, t̃ !Rj~ ut82 t̃ u!dt8dt̃,

~A1!

with

SKJ
~ t,t8!5expS 2KJ

2~ t2t8!2 iK J PeE
t8

t

w~s!dsD ,

~A2!

with w(t)5b sinvt the transverse shear. Split the integr
into two parts:

I 5I 11I 2 , ~A3!

whereI 1 corresponds the half of the domain, wheret̃.t8, I 2

the other half. First, we develop a strategy to computeI 1 .
For I 1 , one has

Rj~ ut82 t̃ u!5Rj~ t̃2t8!. ~A4!

Therefore

I 15E
t̃ 52`

t̃ 5t
e22KJ

2
~ t2 t̃ !

3E
t852`

t85 t̃
e2KJ

2
~ t̃ 2t8!eiK J Pe*

t8
t̃

w~s!dsRj~ t̃2t8!dt8dt̃,

~A5!

5E
t̃52`

t̃5t
e22KJ

2
~ t2 t̃ !J1~ t̃ !dt̃, ~A6!

where
 license or copyright, see http://pof.aip.org/pof/copyright.jsp
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J1~ t̃ !5E
t852`

t85 t̃
e2KJ

2
~ t̃ 2t8!eiK J Pe*

t8
t̃

w~s!dsRj~ t̃2t8!dt8,

~A7!

with the important remark thatJ1( t̃) is independent oft it-
self. BothJ1( t̃) and I 1(t) are periodic functions of their ar
gument with periodtv from the velocity forcing.

If one assumes the following special form for the cor
lation function:

Rj~ t̃2t8!5e2~ t̃ 2t8!/tJ. ~A8!

Then the expression forJ1( t̃) becomes

J1~ t̃ !5E
t852`

t85 t̃
e2~KJ

2
11/tJ!~ t̃ 2t8!eiK J Pe*

t8
t̃

w~s!dsdt8. ~A9!

Both I 1(t) and J1( t̃) can be computed as solutions of th
following ODEs:

dJ1~ t̃ !

dt̃
512S KJ

21
1

tJ
2 iK J Pew~ t̃ ! D J1~ t̃ !, ~A10!

dI1~ t !

dt
5J1~ t !22KJ

2I 1~ t !. ~A11!

Similarly,

dJ2~ t̃ !

dt̃
512S KJ

21
1

tJ
1 iK J Pew( t̃)J2( t̃) D , ~A12!

dI2~ t !

dt
5J2~ t !22KJ

2I 2~ t !. ~A13!

It is easy to verify thatI 2(t)5I 1(t) and J2(t)5J1(t). One
can then easily derive the ODEs satisfied byuJ(t)u2

5J1(t)J2(t) and byI (t)5I 1(t)1I 2(t):

duJu2

dt
5J1~ t !1J2~ t !22~KJ

211/tJ!uJu2,

~A14!
dI

dt
5J1~ t !1J2~ t !22~KJ

2!I .

Define I (t)5uJ(t)u21D(t). Then the differenceD(t) satis-
fies

dD

dt
522KJ

2D~ t !1
2

tJ
uJu2. ~A15!

For the special case with 1/tJ50, it is clear that the only
periodic solution of this last equation isD(t)50. Hence,
D(t) can be viewed as a finite correlation time correction
uJu2 to get the varianceI 5s2(t).
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