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The single-point probability distribution functidi?DF) for a passive scalar with an imposed mean
gradient is studied here. Elementary models are introduced involving advection diffusion of a
passive scalar by a velocity field consisting of a deterministic or random shear flow with a transverse
time-periodic transverse sweep. Despite the simplicity of these models, the PDFs exhibit scalar
intermittency, i.e., a transition from a Gaussian PDF to a broader than Gaussian PDF with large
variance as the ket number increases with a universal self-similar shape that is determined
analytically by explicit formulas. The intermittent PDFs resemble those that have been found
recently in numerical simulations of much more complex models. The examples presented here
unambiguously demonstrate that neither velocity fields inducing chaotic particle trajectories with
positive Lyapunov exponents nor strongly turbulent velocity fields are needed to produce scalar
intermittency with an imposed mean gradient. The passive scalar PDFs in these models are given
through exact solutions that are processed in a transparent fashion via elementary stationary phase
asymptotics and numerical quadrature of one-dimensional formulaR0@ American Institute of
Physics. [DOI: 10.1063/1.1430736

I. INTRODUCTION gradient exhibits a transition from a Gaussian even sub-
Gaussiah PDF at low Pelet numbers to a broader than

Many practical applications in environmental scienceGaussian shape as thecRe number increases? How univer-

and engineering involve the behavior of a passive scalar witkal is the shape of the PDF as theclee number gets arbi-

a mean gradient that is diffused and advected by a velocityrarily large? In particular, are the following structural con-

field at high Pelet numbers. The single-point probability ditions on the velocity field needed for passive scalar

distribution (PDPF of a passive scalar has been the focus ofintermittency:

much interest since the Chicago experiments in Rayleigh— (&) Velocity fields with chaotic particle trajectories and

Benard convectior::? They established that the PDF for the at least one positive Lyapunov exponent?

temperature at the center of a convection cell undergoes a (b) Many turbulent scales in the velocity field?

transition from Gaussian behavior to a probability distribu-  (c) Statistical random fluctuations of at least one scale in

tion with approximate exponential tails over a wide range ofthe velocity field?

its variability as the underlying fluid flow becomes suffi- Our goal in the present paper is to introduce and analyze

ciently turbulent. Such broader than Gaussian distribution& simple class of models where all of the above questions can

for the scalar PDF with long tails exhibit the phenomenabe answered in a precise unambiguous fashion. The models

called passive scalar intermittency. These results have irstudied here involve passive scalar advection—diffusion in

spired a large research effort devoted to studying scalar irfhe nondimensional form

termittency for passive scalars with an imposed mean gradi-

ent through laboratory experimert€ phenomenological

models’ ! and numerical experiment$-*® The phenom-

enological models*! yield either Gaussian or exponential

PDFs and require sufficiently turbulent flow fields with cha- these models utilize the special incompressible two-

otic particle trajectories with positive Lyapunov exponents.gimensional velocity fields given by a time-dependent shear

The numerical experimerts'®yield a much wider class of fiow with a transverse sweep, i.e.

PDFs with scalar intermittency with even broader tails than Y

expon_entlal in some regimes. In this context_, the following v=((y,t),w(t)), )

guestions naturally emerge. What structure is needed for a

velocity field so that the PDF for a passive scalar in a mean,

T
—r TPEV-VT)=AT, 1)

herev(y,t) is deterministic or random and

3Electronic mail: Anne.Bourlioux@UMontreal.ca w(t)=wgy+ B sin(wt) 3)
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is a periodic function of time of periodp,=27/w and of w=0 open streamlines
constant meaw,. The PDF for the scalar in the model with -
(1), (2) is treated in the statistically stationary state with a
mean gradient along theaxis, i.e.,

X
T=—+T'(Xy,1). 4
Lg
The nondimensonalization used(it is completely standard 95 —> 1>~
with spatial units chosen by the largest length statd the . .
velocity field and the Reet number given by PeVL/k, w>0: blocked streamlines

whereV is the typical magnitude of with w assumed to ? ' ' ' =
have comparable magnitude whiteis the diffusivity of the 2> <
scalar. The quantit)Lg’l in (4) measures the magnitude of Y>
the imposed scalar gradient in these nondimensional units.
The passive scalar PDFs in these models are given ' <
through exact solutions that are processed below via elemen > ' : . . =
-4 -3 -2 -1 )0( 1 2 3 3 5

tary stationary phase asymptotics and numerical quadrature 2

of one-dimensional formulas. Despite the simplicity of the
models in(1), (2), (4),the PDF for the scalar exhibits PDF FiG, 1. Effect of the transverse sweep on the topology of the streamlines.
intermittency as the Réet number increases, provided, for
example, the velocity field(y,t) is nonzero and the periodic
transverse sweep(t) has isolated zeros. The universal lim-
iting broad-tail shape is determined analytically through ex- ) . .
plicit formulas. As a preview of the results developed below,MXiNg; this on/off mechanism that controls turbulent mixing
Figs. 2 and 4 explicitly display scalar intermittency with a Vi@ streamlines blocking and opening defines what is meant
universal limiting shape as Pew for the deterministic by intermittency in the present setup by reference to qualita-
steady single spatial mode shear flow with a purely sinutively similar phenomena in more complex systems. This
soidal transverse sweep: intuitive reasoning is made more precise in the detailed
o o analysis below and already played a similar role in previous
vly,)=sinzmy), wH)=sin(o1), ®) work of Kramer and the second autifmvhere scaling laws
while Figs. 5 and 6 below show scalar intermittency for thefor the turbulent diffusivity of the models iql), (2) were
PDFs with a steady single mode shear with Gaussian randogalculated asymptotically at high &let numbers. The phi-
amplitude and the same transverse sweep f&n The |osophy of the work presented here to develop explicit mod-
broad tail PDFs in these figures strongly resemble thosg|s with unambiguous behavior for intermittency of scalar
found in Fig. 1 from Ref. 12 and Fig. 6, Fig. 16, and Fig. 19 ppFs has also been utilized for decaying passive scalars at
from Ref. 13, which were post-processed from numericalong timed®-18 with recent powerful results demonstrating

simulations of much more complex models. These exampleg,yilies of stretched exponential tails in the long time
demonstrate unambiguously that surprisingly, none of the dgj,;; 19-21

. -, . it
tailed structural condition&), (b), (c) above for the velocity The organization of the remaining parts of the paper is as

field arg needed tq get very stron_g passive _scalar mtermlgc llows. Section Il has exact solution formulas for the model
tency with a prescribed mean gradient. What is the source (1), (2), (4) as well as an important collection of elemen-

|_nterm|ttency in the elementary. models with _thg Veloc'tytary formulas for scalar PDFs for the model. The behavior of

field in (2)? Whenw(t) has an isolated zero in time, the e . .

streamline topology for the flow field changes from com-the turpulent diffusivity for the model ift), (2), (4) at finite
large Pelet numbers is studied in Sec. Il in order to link the

pletely blocked behavior in the& direction parallel to the behavior of | . i th : lar statisti th
imposed mean scalar gradient to very rapid transport irxthe ehavior ot farge variance in thé passive scalar statistics wi
the intermittency scenario in the geometry of streamlines

direction for a small interval of time around the zeronft). . . T
This change of topology is illustrated in Fig. 1: when transverse to the mean gradient mentioned earlier; this pro-

=0, the open streamlines in the horizontal direction, along/id€s important intuition and a link with subsequent results
the mean gradient, lead to large convective transport anfl" scallaer}nterml_ttency. Also, the high étet number scaling
large deformations of the isocontours for the scalar, whictnalysis® is confirmed. The results briefly discussed above
promote strong mixing by diffusion. Whem# 0, however, for the special case of a steady single mode shear are devel-
the transverse sweep corresponds to blocked streamline@ped in Sec. IV. The situation where the velocity field,t)

little transport along the gradient, weak distortion of the scaiS & Gaussian random field in space—time with a finite cor-
lar isocontours, and, hence, ultimately, little opportunity forrelation time is developed in Sec. V; scalar intermittency in
mixing by diffusion. With the time-modulated transverse this case is more subtle because the scalar PDF for the model
sweep used in this paper, blocked streamlines are observénl (1), (2), (4) in the extreme limiting case with correlation
most of the time, except for the rare occasions when thén time in the velocity fieldv(y,t) is Gaussian for alleven
transverse sweep is zero, which leads to bursts of stronarbitrarily large Peclet numbers.
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Il. BASIC FORMULAS FOR THE MODEL The solution forT} is readily obtained via Duhamel's for-
With the model in(1), (2), (4), the first important fact to mula tlo tY'eIdt t(rg fg;oz\lllg)g- explicit formula for the station-
realize is that in the statistically stationary stafé,from (4) ary soiution (o), t/), :

can be chosen as a function pfand t alone so thafT’ Peqw =
satisfies the linear equation: T'(y,H)= L_g Ti(te™y,
9
aT’ - Powt JT’ #T'  Pe . 6 with
—~ t
Of course, in order to be a valid statistically stationary state, Ti(t)= _f SKJ(t,t’)ﬁJ(t’)dt’, (13)
T’ needs to have zero mean over the ensemble average: -
(T'(y,1))=0, (7) WhereSKJ is the explicit solution operator:
. ili "o t
where(-) denotes the ensemble average over the probability SKJ(t,t’):e*Ki“*‘ )o1Ky Pefyw(s)ds (14)

space associated with the shear velocity statistica)
andu(y,t). Here, the transverse sweegt) is always cho-  Note that it is crucial that the integral {3) begins at—= in

sen as a periodic function of time with periog so that the  grder to guarantee statistical stationarity; furthermore, for the
appropriate average over the velocity statisticsviois the  yandom amplitudes ,(t') utilized in this paper that are ei-

time average over a peridd, ther steady of time-dependent complex Gaussian random
1 (t+m variables with rapidly decaying correlations, the integral in
(F)sz — f F(7)dr, (8) (13 converges for almost every realization becaBsgt,t")
pJt }
has the exponential damping teen '3t~ for t’ <t.

where the random variable(r) is tacitly assumed to be a

periodic function ofr that might also depend on other pa- A Formulas for the PDF of T

rameters. In this paper, the shear velocity field,t) will ] ]

have a variety of statistics in different scenarios ranging from _ 1he PDF of a random variable defined on the prob-

a deterministic steady velocity to a general spatiotemporafPility space of the velocity statistics is by definitforihe

Gaussian random fieff. The average over the probability POSitive densitypz(\) with [ pz(A)dA =1, so that

space associated with the shear velocity statistics is denoted .

by (-), and it is always assumed for simplicity that the ve- f d(N)pz(N)AN={d(2)), (15

locity v has zero mean, i.e{v),=0. By combining this o

information with (8), the average(-) over the probability  for all bounded continuous functions. In the applications

space associated with the velocity statistiqs), v(y,t) ofa  pelow for calculating the PDF of, the partial PDF ofT

random variablé=(7,-) is given by the iterated average:  optained by averaging over the shear velocity statistics will
<F>=<<F>v>fp, (9) be known explicitly as a periodic function ofwith period

7p. Thus, assume that
and this yields the concrete form of the important require-

ment in(7) for the statistical stationarity GF". the partial PDFpz, is a given periodic function

To build thg solutior_1 of(6) satisfying the statistically of t with period 7p. (16)
stationary requirement iii7), assume thav(y,t) has the _ _ .
expansion in Spatia| modes with wave numml']s& 0, Then, with the formulas ||'(15) and (8), It Is easy to show

that the complete PDF faf is given by the time average

U(y,t)zz 6JeiKJy! 1 )

J =— dt. (17)
el : N (10 P2 f 0 P20
vi(t)=v _4(t), reality condition,
) . o . Next, the formulas in16), (17) will be applied to the PDF
where the amplitudes(t) are statistically stationary com- ¢, 1 for several different cases developed below. Clearly, the
plex gaaussmn random fields in time in the most generajmnosed deterministic mean gradient foin (4) creates only
case’® Seek the statistically stationary solutioR’ (y,t) a trivial shift in the PDF ofl" so only the PDF off" will be

through the related expansion: calculated throughout the remainder of the paper.

Pex =~ | . = —~
T'(y,t)= L—; TR, with Tj(t)=T'_;, (11) B. A deterministic steady single mode shear
g

—~ For a deterministic single mode shear,
where, by substitution if6), T} satisfies the following linear

inhomogeneous ODEs: v(y)=sin(2my), (k<)
dfl'\j . the stationary solutio’ (y,t) is given by
— 2 i ,: _ 5
g TIKI+IK, Pew(t)]T)=—0,. (12 T (y,t) = o(t)si 27y + 6(1)], (19)
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wherea?(t), 6(t), respectively, are an explicit time periodic The steady case studied in Sec. IV is the formal extreme
amplitude and phase shift with detailed formulas presentetimiting case withR;(|t|)=R;(0). Note thatR;(0)=E;, is

in Secs. lll, IV. For shear velocity fields that are determinis-the energy in thelth mode. Under these assumptions, the
tic and spatially periodic with period 1, the average over thescalar variancer?(t) is given by

shear velocity statistics is the periodic averdge/F), P&

=I$F(y)dy. With this fact and the definition i(15), it is Uz(t)zz_zz <|ﬂ(t)|2>v, (26)
easy to show by changing variables that the explicit PDF of Lg 3

Z= o sin(2my+ 6) with 0>0 is given by with ﬂ determined by(13).

1 [\ We conclude this section with the following remark.
pz(\)= g PO(;), (200  Clearly, with the concrete formulas i21) and (23) the is-
sues regarding passive scalar intermittency in the model de-
with fined in(1), (2), (4) reduce to finding bursting time intervals
of the basic periodrp, where on these intervals the scalar
1[(1-2»)""2  wher\|<1, variance satisfiesr*(t)> (o), . In the next sections, we
PoM)=7 0, when\|=1. establish that this is the situation as theclee number in-

) ) creases, provided that the transverse swedp) in the

T’(y,t) can be calculated in this case through the formula

1 (% 1 A IIl. TURBULENT DIFFUSIVITY IN THE MODEL
Pr (M) = . fo a(t) Po(ﬁ) dt, (21) In this section, explicit expressions are presented for the
turbulent diffusivity resulting from a deterministic steady
which is utilized in Sec. IV below. single mode shear(y) =sin(2my) (as in Sec. I1B. Our ob-
jective in this section is to illustrate via an extremely simple
C. Stationary Gaussian random shear flows example the mechanism by which isolated zeros in the trans-

Assume that the velocity field(y,t) is a stationary VErseé sweep can lead to bursts of activity and an interesting
Gaussian random field so that the wave amplitudesuvfor intermittent passive scalar response. The turbulent diffusivity
from (10) are stationary Gaussian random fields. Then the<T ¢an 1t6)e computed directly according to the following
formulas in(13), (14) guarantee thak’ (y,t), a superposition ~formula:
of Gaussian random variables, is also a Gaussian random KT=Lé<|VT’|2>=2w2LéEZ, 27)
variable that has mean zero and that is stationary for J— 5 5 . ]
each fixed timet. Thus, the partial PDFpy/y , is Gaussian With & =(o*(1))., ando“(t) defined as in(19).

independent of and given explicitly by the formula The Pelet number influences via two competing ef-
fects: on one hand, increasing Pe clearly enhances the mix-
\) ! Nh2e(t T G( A ) ing shear intensity given by R€y), which should result in
Prn(N)= J2mo(t) o) o)) an increase in turbulent diffusivity. On the other hand, it also

enhances the transverse sweep given byw®¥g this will be
a2 =(|T"(V)[?),, shown below to decrease the turbulent diffusivity. Theoreti-
cal predictions of the overall dependencexgfas a function
with G(\) =(27) Y2exp(~\?2) the normalized Gaussian. of Pe as a result of this competition are given next. For the
The partial scalar varianag?(t) is an explicit periodic func-  simplest case witl8=0 in (3) so thatw(t) =w, is a constant,
tion of time that is readily calculated through the formulas inone can derive an explicit expression fef(t) to be used in
(13) and(14) (see Secs. IV, ¥ In this situation, the complete the expression fokt in (27). Otherwise, one can estimate
PDF of T’ is determined througkl?7) and(22) by a?(t) asymptotically in the limit of large Réet numbers; see
1 1 \ Table | for a summary of the discussion below. Finally, an
P
Pr(M= fo o (D) G(a(t) a

(23) alternative would be to obtaia?(t) numerically; this proce-
' dure is described at the end of this section.
We will assume that the random Fourier amplitudes inp steady case =0: Exact results
0,(t) have the forri®

(22

Detailed results in this case have been reported

vy(t)=3 ny(t)—i&y ()], I>0, beforé®—they are summarized here to provide intuition for
) _ (24)  the unsteady case. Witw(t) =wy, the solution is steady
vy =3[ () +i& (D], with o(t) = o given explicitly by

where 7;(t) and &;(t) are real Gaussian random fields that — PezlLé
are independent and also independent)fgid’ with covari- 7 AT (AT PEW))’ (28)
anceRy(|t|) given by

so that according t627), the corresponding turbulent diffu-
(ma(t+10) ma(to))y =(&x(t+10)€x(to)), =Ry([t]). (25  sivity is given by
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TABLE I. Turbulent diffusivity with a deterministic steady single mode shear.

Cross-sweep

Per[wy+ B sin(wt)] Zeros in each period Streamlines Scaling
0=|8|=|wo| always always open Pe
| B]=0<|wy| never always closed Pe
0<|8|<|wo none always closed Pe
0<|wy|<|B] two simple zeros open twice per period pe
0<|wo|=|8] one double zero open once per period “pe
Pé — | t 2 ’ . t
Krm—— 29 T/ = _f e 4mt(t-th)g-i2m PeftyW(S)dS, 30
T 2(47+ P wj) 29 2. (30

puith az(t)=2(_Pe2/L,§)|T1|2. The expression fof; is of the

form [Lf(t")e PeNt)dt’. At large Pelet, the fast oscilla-

] ) o tions in the integrand cancel out for most of the time inte-

() At small Pe:x~Pe/8m*—the turbulent diffusivity  gration interval. The only potential contributions must come
is very small with a quadratic dependence on the Peggm stationary points’ =t* [i.e., points wheré(t') is ex-

- clet number. tremum; in the present case, they correspond to the zeros of

(i) If wo=0, i.e., in the absence of a transverse sweepy,(i)] where oscillations are much slower. If there are no

In conclusion, for a steady transverse sweep, we have t
following.

the same scalingr=P¢&/8x? holds exactly for all
values of Pe.

stationary points, the next leading-order contribution comes
from the end point’ =t, where cancellation is partial. Those

(iii) At large Pe withwo#0, i.e., with a steady nonzero jjeas can be formalized via the stationary phase meftbe

transverse sweemt— 1/(2W§) ~Pé.

The sensitivity ofxt to the intensity of the transverse
shear via Pe has been explaitféd terms of the topology of
the streamlineswy=0 corresponds to open streamlines,
transport by the shear parallel to the gradient is very effective
while wy#0 corresponds to blocked streamlines, little dis- (i)
tortion, and weak transport.

B. Unsteady case B#0: Asymptotic results

Based on the discussion above for the steady transverse
sweep, one would expect the following behavior in the un-
steady transverse sweep casft) =wgy+ S sin(wt) with 3,

w#0. For small values of Pe, the transverse sweep is ex-
pected to have little impact on the solution. This will be
confirmed in numerical experiments later in this section and
could easily be verified asymptotically as a small perturba-
tion of the zero transverse sweep case: as in the steady case,
the turbulent diffusivity at small Pe is quadratic in Pe—we
will not discuss this further. Instead, we focus on the behav-
ior at large Pe. Most of the time, witB+0, w(t) is quite .
large at large Pe and streamline blocking should result iﬁ")
very limited turbulent mixing. However, should(t) vanish

at some timg*, streamlines would suddenly open with the
potential for a tremendous boost in turbulent diffusivity. For
such cases, the overall scaling of the turbulent diffusivity
over a time period should be intermediate between ttfe Pe
scaling from a constant nonzero transverse sweep and the
P& scaling without a transverse sweep, with the precise ex-
ponent linked to the relative amount of time spent in the
vicinity of the zeros fow(t). Those intuitive considerations
are confirmed next via large” Blet asymptotics. The single
mode casev(y)=sin(2my) corresponds tov;=—i/2=
—v_,. Plugging in Duhamel’s formuléll), (13):

for example, Ref. 2Awith the precise formula, depending
essentially on the order of the zerts. With a transverse
sweep of the formw(t)=wy+ Bsinwt, B#0, only three
cases are possible as far as the order of the zeros are con-
cerned.

0<|B|<|wg|: the transverse sweep is always non-
zera The main contribution to the quadrature comes
from the end point. According to Ref. 24;%(t) is
given to leading order by

g L 1
0= 2 32w, psin(wO P

The turbulent diffusivity is computed using this ex-
pression in(27):
DU @2

T 2we— g
This shows that, for cases where the transverse sweep
never vanishes, the turbulent diffusivity at largeRée
behaves as in the constant nonzero transverse sweep
case and saturates at a finite value.
0=<|wy|<|B|: the transverse sweep has two simple
zerosin each periody ,e[0,7p[ defined by singt*)
=—W,/B. According to the stationary phase method,
the contribution from an order one zero is given to
leading order by

Oz(t) _ O-En aﬁ—&n'z(t—t* )
with

(31)

PeTp

Py s
" 2mLi B -wh
wheret>t*. Substituting this expression i27) and

summing over the two zeros gives the following ex-
pression forkt:

(33
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10 - in Flg. 2, k7(Pe) obtained by direct numerical computations
-9~ W=1>0.85=w for T} using a numerical strategy described below. Results
10° | xj:zav;d:w are shown for &Pe<10* for three cases representative of
B o the three scaling regimes discussed above: the first case has
162 wo=1>0.85=8 (no zerg, the second case hag,=0.85
Kr <1=p (two single zeros and the third case haw,=1
] =B (double zerp As expected, all three curves are very
10 similar for very small Pelet, with a quadratic dependence.
P At large Pelet, the predicted scalings are verified, with, re-
10° spectively, a horizontal asymptote, a linear scaling, and a
superlinear scaling with exponeft
107"} The numerical strategy to comput€(t) directly, with-
out any asymptotic approximation, is based on the following
10- . ) . alternative formul? for the rp-periodic solution of the ODE
10° 10’ 10° 10° 10 in (12):
Pe = = -y
FIG. 2. Validation of scaling fok . HO=T O T, (rp)[1+ SKJ(t'O)]/SKJ( ™0, (37
for 0O<t<rp, whereT, (t) is the solution of the same ODE
(12), but with zero igilial conditions instead of periodic con-
Pe ditions. In general,T, (t) does not satisfy the periodicity
KT:m' (34 condition. The formula in37) exploits the linearity of the
0 o ) ODE to correct for periodicity. The numerical strategy based
so that at large Rdet, kt~Pe. This linear scaling, on (37) has two steps:
intermediate between the Pand P& with and with- .
out constant transverse sweep, is an indication of thg¢i)  Solve the initial value problem foF (t) using Mat-
tremendous contribution of the short time intervals lab’s fourth-order ODE integrator. At large &et, the
where the streamlines open, allowing momentarily for ODE in (12) is not stiff for most parameters but has
intense mixing by the shear. very fine time features that require time-step adaptiv-
(i) 0<|wg|=|Bl: the transverse sweep has one double ity for accuracy(see the discussion of the character-
zero t in [0,7p[ with eithert* =0 if 8 andw, have istic time scales in Sec. IVC

opposite signs or* = 7p/2 otherwise. Again, the main ;) Correctﬁ according to37). This is an explicit exact
contribution to the quadrature comes from the station- ration oncd’ has been computed in the first
ary points. Applying the asymptotic formula to an or- gfe%a on oncd, (p) has been compute efrs

der 2 stationary poift gives

4/3 —~
2& The cost of computingT; increases roughly linearly
leBLS ' with Pe. For example, for the data in Fig. 2, it takes less than
(35 1000 discrete time steps per period at lowclee for four-
with the constanK = 6Y°I'(1/3)/4w /3. This leads to  digit accuracy orw; but up to a million discrete time steps

At)=c? e 8" with o2 =K

max

the following expression fok: per time period when RPe10*. Nevertheless, those ODE so-
K2 pe'3 713 lutions remain extremely chedpt most 30 min on a laptop
kr=g g (36)  with the full resolution of all scales for any data point in Fig.

2) compared to what it would take to solve the PDE1nif

This time, k1~ Pé&”® linearly. The addi- _ o
1S Hme, kr grows superinearty © addl the spatial structure also had to be discretized.

tional mixing compared to the case of two simple ze-
ros can be explained by the fact that, in the present

case, the flow spends a comparatively longer time ifV. SCALAR INTERMITTENCY FOR STEADY SINGLE
the vicinity of the zeros of the transverse speed, whedMODE SHEARS

most of the mixing occurs. In the last section, the existence of isolated zeros in the
. transverse sweep has been linked to a mechanism for inter-
Remark Both formulas(34) and (36) were derived, as- mittent bursts of intense mixing that result in nontriviak Pe

suming that exp¢8?ry) is negligible. If 7o is not large o scaling for the turbulent diffusivity. The same mecha-

enough for this to be the case, we will show that the StatloNgism will now be shown to be associated with broader than

ary phase asymptotic strategy would not be valid anyWay—taussian passive scalar PDFs. For simplicity in exposition,
see Sec. IVC. we restrict our study to the case of a transverse sweep of the
form w(t) = B sinwt, with 8>0, w=27/7p>0. This trans-
verse sweep has exactly two single zeros in the period
The predictions for the various scalingsf as a func- [0,7p[: t7 =0 andt}=rp/2 and the stationary phase ap-
tion of Pe are summarized in Table I. For validation, we plotproximation from(33) is directly applicable in the limit of

C. Numerical validation
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102k Pe=1
-10 -é -6 [} é 10
102 T T T
Pe=10
10°
-10 % 6 [ s 10 -6 -4 -2 ° 2 4 6
. 4
Pe=100 FIG. 4. Asymptotic PDRdashed lingshape for a deterministic single mode
b compared to the numerical results for a range of larggeP@umbergsolid
lines).
a0 T s 4 2 o 2 4 & 8 1w

' number increases, however, the double-peak core shrinks,
Pe=1000 | the normalized fluctuations become larger, with the PDFs
tails clearly becoming progressively broader.

10

S 0 2 4 8 s 2. Asymptotic limiting shape

In Fig. 4, the PDFs for eight values of Pe in the range
500<Pe<10 000 are superimposed to demonstrate the exis-
tence of a limiting shape. This limiting shape is predicted
asymptatically, by integrating exactly the general formula in
(21) with o?(t) given at large Paet by (38) to yield the
following.

_FIG: 3_. The PDF as a functior_l qf Pe—deterministi_c sir_lgle mode. Here and Self-similar PDE for the deterministic caskn the limit
in similar plots below, they axis is the usual logarithmic scale=T'/o,
of large Pe,

and the dashed line represents the Gaussian PDF with the same varianc:

L
-10 -8

1 (T
p(T")= =pw(7), (39

large Pe by simply setting/,=0. Because of the symmetry o
in the two zerog*, the period ofo®(t) is now 7p/2, with
a?(t) given by

Per, m—2 arcsitK,|z|)
204y — 2 -8t ; 2 __"*'p _ 2
o (t)=0omae , o With oy 27TL£2J,8’ (38 P..(2) =Ky K,[2] , (40
for 0<t=<7p/2. This expression will now be used in the gen- whereK; is a normalizing constant aridl,= 1am%rp.
eral formulag(21), (23) to derive explicit asymptotic expres- This expression is valid fotr i, <|T'|<omax With o min

sions at large Réet numbers for the PDF of the passive =oma€Xp(—2727p) the very small size of the inner core.
scalar in the case of a steady single mode shear with, respethis asymptotic PDF shape is shown in Fig. 4 as a thick
tively, a deterministic or a stationary Gaussian random ameashed line. The agreement for moderately large values of
plitude. Examples of PDFs obtained using numerical computhe normalized fluctuation§T’|/a is excellent. As Pe in-

tations ofo?(t) are also reported. creases, the agreement extends to increasingly large values
of |T'|/o as the asymptotic stationary phase approximation
A. PDFs for a deterministic steady single mode shear for o?(t) used to obtair(40) becomes more relevant.
1. Numerical results: Transition from sub-Gaussian B. PDFs for a stationary Gaussian random shear
to broad-tail PDFs 1. Numerical results: Transition from Gaussian to
Figure 3 shows the results of numerical experimentd?road-tail PDFs
with 8=1, Pe=1, 10, 100, 1000, 10000;»=0.5, and the Using the same data fer’(t) as above, numerical PDFs

deterministic steady single mode shedy) =sin(2zy) (also  based on23) are generated that correspond to the case of a
discussed in Sec. [IBThe PDFs were obtained by the dis- shear with steady stationary Gaussian random amplitude.
crete quadrature of21) with o?(t) computed numerically Figure 5 displays the PDFs with increasingcReé numbers,
following the strategy outlined in Sec. lll. Also shown as along with the Gaussian PDFs with the same variance. At
dashed lines are the Gaussian PDFs with the same variandee=1, the PDF is Gaussian. At P40, there still appears to
When Pe=1, the PDF displays the typical double-peak sinebe a Gaussian core, but its support has shrunk, the tails are
PDF in (20), which is clearly sub-Gaussian. As thécRe  broader, and the PDF resembles an exponential distribution.
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Pe=1

FIG. 5. The same as in Fig. 3 for the case of a random stationary Gaussian

single mode.

A. Bourlioux and A. J. Majda

5.10°<Pe<10"

FIG. 6. The same as in Fig. 4 for the case of a random stationary Gaussian
single mode.

plex models. In the present formulation, accurate numerical
or asymptotic values could be generated quite easily, even
for arbitrarily rare events. The trend observed for large val-
ues of|T’|/o is similar to the one observed in Fig. 4: the
PDF drops markedly since there can be no significant con-
tributions at very large values. The regime that appears to
follow a stretched exponential applies only for a finite band
extending over many standard deviations of the Gaussian.
To summarize, the transition depicted in Fig. 5 from
Gaussian PDF to exponential PD&ound Pe-10) to a uni-
versal stretched exponential PDfér Pe>100) is therefore
qualitatively similar to experimental results as well as nu-
merical results obtained with more complex models, at least
for a reasonable range of values. The asymptotic explicit

This trend continues for Pel00 and larger, the PDF has formula in (42), however, indicates that the limiting shape
even broader tails with an overall shape closer to a stretchethnnot be described everywhere by the stretched exponential

exponential distribution.

2. Asymptotic limiting shape

that one typically obtains by a best fit based on a limited
range of values over a few standard deviations of the Gauss-
ian. Such limited range fits are what is actually used in pro-

As for the deterministic case in Sec. IVA, the PDFs cegsing experimental or numerical data.

converge at large et to a universal limiting shape that can

be predicted asymptotically by integrating exad®g) with
the asymptotic approximation far?(t) in (38).

3. Self-similar PDF for the steady stationary Gaussian
random case

In the limit of large Pe,

N 1 T’
p(T")= ?px(7), (41)
with
0.(2)=Ky erf(CK,z) —erf(K,z) 42

K,z '

whereK ; is a normalizing constank ,=1/\/4m?rp, andC
=exp(27p) is a very large constant.

C. Asymptotic regimes

To conclude this section, we will now address the fol-
lowing issue. We have just documented the existence of self-
similar PDFs with strong intermittency in the limit of large
Peclet numbers as a result of a bursting mechanism linked to
isolated zeros in the transverse sweep. In the experiments
above, good agreement between the numerical PDFs at large
but finite Pelet and the asymptotic self-similar PDF oc-
curred, beginning at values on the order of-R€0.

In general, how large should the det number be for
strong intermittency?

We will answer this question by stating more precisely
the conditions on Pe in relation to the other parameters in the
model that need to be satisfied for the self-similar intermit-
tent regime to exist. Witlw(t) = 8 sin(wt), the model(11),

This formula is valid for|z| outside the inner core. This (13) becomes
asymptotic shape is shown in Fig. 6 along with the PDFs for

eight values of Pe in the range 50Pe<10 000 with excel-
lent agreement.

Remark The rangg T’| <100 in Figs. 5 and 6 was se-

' Pe 7K
T (y,t)=L—(TJe Y+c.c),
g

lected because it corresponds to a representative range for
reliable experimental data or numerical data with more comwith
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—~
!

—tJ+[K§+iKJ Peg sin(wt)]T,=— o). (43)
Rescaling the length by K/ and the time by 14§ leads to a
convenient formulation that does not depend explicitly

onKj:

Pe ~
T'(y,t)=—(T;eY+c.c),
Ly
with
¢ 1+ Pe Bsin(w)]IT)=~, (44)
through the rescaled variableK;y—vy, K§t—>t, Pé€
=PeK;, Li=L¢K;, and o'=27/m,=w/K3. In all the

computations in this section, it will be assumed that the en
ergy of the shear has been normalized so tEat:2|5\j|2
=1. To analyze the behavior of the solution far we iden-
tify the following four characteristic time scales {44):

* viscous relaxation times, =1;
« flow forcing period,7p=27/w';
« fast sweep timerj,=1/(P€ B);

* slow sweep timer,=/7p/(P€ B).

The viscous relaxation time,, is unity here because of

Elementary models with PDF intermittency 889

Il. Self-Similar Intermittent

Pe’

I. Gaussian

1ll. Weakly Intermittent

IV. Gaussian

Tp

FIG. 7. Phase diagraifP€, ) of the asymptotic regimes; steady case.

This definition makes sense only when' Bes sufficiently
large for a solution forrg,eepto exist; we will get back to this
condition later. The quantity,e.{to) takes on a range of
values for 0<ty< 7p/2 with the fastest timer, correspond-
ing to to= 7p/4 whenw(t) is maximum and the slowest time
correspondmg tdg=0 whenw(ty) =0. The formulas forr
and 7., are obtained by Taylor expansion of the general ex-

the choice of characteristic Iength and time scales above. Theression forrg,,.e,in (45 at these locations.

forcing time scaler;, is self-explanatory. As described in the

Previously, we have explained the intermittent behavior

Introduction, the transverse sweep affects the topology of thas a result of a burst of intense mixing by the shear when the
streamlines, with important consequences regarding the tutransverse sweep is zero compared to very little mixing when

bulent diffusivity. The topology of the streamlines is an Eu-the transverse sweep is large. In terms of the time scales we
lerian view of the physics of the problem; as far as extractindhave just identified, it is clear that this mechanism is relevant

a time scale, a Lagrangian view provides in the present casenly if the following order is respected:

a more useful diagnostic: the effect of the transverse sweep is
measured in terms of the time it takes a particle to sweep
vertically across the shear’s period due to advection. This

sweep time concept remains valid even when the transverﬁﬁmh the formulas for the time scales above, this condition is

sweep is modulated in time, at least forcR¢ numbers suf- equivalent to Peg ) being sufficiently large; we will come
ficiently large, with the only difference that the sweep tlmeback to this condition later on in the discussion. There are
will also be modulated in time in that case. When the transzo ways to orderr’ =1 in (46); next, we show that each

Stder corresponds to a regime characterized by a definite
type of PDF and mixing intensity:

T TeZ Th (46)

its minimum value, called from now on tHast sweep time
scale little turbulent diffusion is expected for values of the
sweep time in the neighborhood of the fast sweep time. At Regime I'Tf'5< Tes< Té< =1,

the zero-crossing of the transverse sweep, however, theRegime Il rfs<7 <7,=1<7};

sweep time reaches its maximum value, called from now on Regime III: Tfs<7- = 1< 7-; <7','3;

the slow sweep time scalét is associated with bursts of ¢ Regime IV:7,=1<7 <7, <7

intense turbulent mixing. Explicit formulas for the fast and

slow sweep times are derived by first introducing the expres-  Figure 7 shows a phase diagram with the boundary of
sion for the characteristic Sweep t"'n‘éweer(to) around an each reg|me in terms of PandTP NeXt a detailed deSCI‘Ip-

arbitrary timet, in the period. It is given implicitly by tion is developed where we identify for each regime the ap-
propriate asymptotic strategy to derive an explicit expression

for o?(t). This expression is then used to characterize each
regime via two representative scalar quantities that are very
easily computed.

ftmsweeét“ Pe/|w(t)|dt=1.

to

With w(t) = B sin 2rt/7;, this formula becomes

, (i) The turbulent diffusivity,xt= L
Pe B8 cos( 277:%) —c0s< M) = 2_7’7 (45 (i) The intermittency ratid,2 deflned aszrmag}’ In the
Tp Tp Tp present setup, the ratl®,2 is a very good indicator of
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the intermittency and the behavior of the tails of the (i)
PDFs; it is extremely easy to compute with an explicit

A. Bourlioux and A. J. Majda

The intermittency ratidR,2= 75, is large, away from
the boundary with regime | to the left. This indicates

formula for o%(t). Because of its definitiorR,2=1.
Values close to one correspond to Gaussian PDF;
large values indicate broad tails and a large departuréi)
from Gaussianity.

strong intermittency, along with the fact thai;
~Pé€ can become arbitrarily large at large Pe.
Also, R,z is independent of PeThis indicates self-
similar intermittency at fixedp .

At the end of this section, we confirm the predictions
developed below through numerical quadrature of the solu3. Regime lll: 7 <7<z

tion. This corresponds to the condition that Pe B<rj. In
_ that regime, large fluctuations in the scalar are still associated
1. Regime I: 7p<7,=1 with the neighborhood of the stationary points, due to

In regime |, viscous effects are very slow. Viscosity is streamline blocking away from those points, as in regime |II.

the main mechanism by which the solution adjusts to thdiowever, on the time scale of the slow sweep time interval,
forcing, including the adjustment to the effect of the trans-the role of viscosity is much more significant than it was in
verse sweep. Hence, in regime |, the viscous time is too lon§e9ime Il. Therefore, a good asymptotic approximation is
for the solution to respond significantly to the perturbationsthat viscous relaxation forces the solution to adjust fully to
due to the transverse sweep, small or large, because thofe forcing while the transverse sweep is slow. This is the
perturbations occur on much shorter time scales. A rigorou§uasisteady approximation: instantaneous adjustment is as-
treatment of this regime can be found in Appendix B of Ref,Sumed. Strictly speaking, it is not quite valid for the entire
25. The solution is built as a series expansion in terms of thMe period, because the effect of streamline blocking asso-
small parameter). The zeroth-order term is shown to be ciated with the fast sweep time still occur on a very fast time
time independent. Solvability for the first-order term leads toSCale compared to the viscous time. However, this turns out
the condition that the leading-order term is the steady solyto make little difference as long as the dominant contribution

tion without the transverse sweep. It is trivial to sol4g)  from the slow sweep time interval is well captured. Setting
for T)(t) and computer2(t): the time derivative to zero if44), one can solve explicitly

for T)(t) and computer?(t):

= Pe?
IT)|2=E,2=1/2, az(t):?:afm:?. (47) ()= Pe? 1
9 Lgf 1+Pée? g2sin(2mt/ 75)%"
Using this expression in the formula far andR,2:

Notice that this is very different from the steady solution in
regime |, where the solution is completely steady because the
This last value indicates that the PDF in regime | is Gausstransverse sweep is ignored altogether. In the present regime,
lan. the transverse sweep plays a big role and the solution is very
timedependent. The maximum instantaneous variance is
02 =P€ 2/Lé2 and the average variance over a time period

is o°=Pe?/(L;?\1+Pe? g?). This leads to

Pe?
- R=\I+P&?p.
T ieperg VLrPETE

Rere are some remarks regarding Regime III.

Regime | k;=P€?, R,2=1.

2. Regime Il: 7/ <7, <7p

This corresponds to the condition thatk,<P¢€ 3.
During most of the time period, streamlines are blocked, and Regime Il
the amplitudeo(t) is small. During the short slow sweep
time interval, however, streamlines are open and the solutio
grows very rapidly. Becausg <, , this growth is basically
inviscid and o(t) increases until the streamlines become(i)
blocked again, at the end of the slow sweep time interval. At
that point,o(t) will tend to decrease back to a much smaller (ii)
value, with the decay controlled exclusively by molecular
viscosity. This dynamics of an inviscid burst followed by a
viscous relaxation phase is precisely captured by the station-
ary phase asymptotic approximation that was utilized earlier
in this section. Formul#38) for () can be used directly;
the value foro 5 can be linked very precisely to the inviscid )
growth phase, followed by the viscosity controlled exponen-4 Regime IV: 7, <
tial decay. Processing the explicit expressiondd(t) from This corresponds to the condition that Pec1. If P€ is
(38) leads to decreased further, so thagf becomes smaller than any other
time scale in the system, in particular, smaller than the fast
K1=—, Rgp2=7p. sweep time, then the quasisteady approximation used in re-
B gime lll becomes rigorously applicable at all times; also see
Here are some remarks regarding regime 1. the discussion in Ref. 25. The results fey and R,2 in

Here k1 andR,2 are independent of;. This is con-
sistent with the quasisteady asymptotic approach.
Here kt and R,z both increase as a function of Pe
starting from near-Gaussian values whengRd. un-

til the exit into regime 1l when Pe8~ 75, where
maximum intermittency is achieved at a given value
of 5.

Regime I
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TABLE II. Asymptotic regimes for the steady single mode case.

Regime Time scales order KT R,2=02,,/0?
| Gaussian <1, pe 1
(steady (rpK3<1) rd
Il Self-similar intermittent TS T <7h Pe K3
(stationary phage (1< 7pK2<Pep/Kj) KB
Il Transition weakly T < T, < Teg p& P& 32
intermittent(quasisteady 1<PepIK;< pK? —_— 1+ ———

(1<PeplK,<7pK?) TR %
IV Gaussian T, <Tig pe& 1
(regular limit 111) (PepIK;<1) ra

J

regime IV can therefore be obtained directly by taking the  As a first validation, we reinterpret the series of PDFs
regular limit of Pé 8 very small in the expressions in Re- reported in Fig. 5. The parameters in those experiments are
gime Il 7p=0.5,K;=27, and 8=1. This givesrp=K37p=19>1,

: o2 _ larger than the critical value below which the PDF is always
Regime IV «x7=Pe€*,  R,=1. Gaussian at all Réet numbers. Increasing Pe at constént
The PDF reduces to a Gaussian distribution, unlike in regimend 7, corresponds to a vertical trajectory in the phase dia-

I, however, absolute fluctuations are asymptotically smalgram: Pe=1 corresponds to Pg=0.16<1, regime IV, the
since kt~Pé€ 2 is very small in this regime. With P@ so  range 16<Pe<100 correspond to regime Ill and $&00 to
small, the whole transverse sweep time concept is questiomegime Il. The monotone increase in non-Gaussianity until a
able anyway, as the equati¢A5) no longer has a solution self-similar PDF is reached as observed in Fig. 6 is consis-
that definesry,eefto) at anyt, in the time period. tent with the predictions foR,2 in regimes Il and III.

Remark It is easy to verify that the condition i#6) is A second set of PDFs is presented in Fig. 8. In these
automatically satisfied in regimes Il and Ill, the only two experiments, Pe1000,7,=0.5 and8=1 are fixed, buK is
regimes where intermittency is possible, so {d#) does not  varied withK ;=27{1,2,3,4,5,6,7,8,16,32,64,128This cor-
constitute an additional constraint for intermittency. responds to a trajectory in phase space describedby

The formulas applicable in each regime are summarized- o,5|<§ and Pé=1000K;. The different test cases can be
in Table Il, where the explicit dependence wih has been roughly classified as follows: modds-2—3 are irregime I,
reintroduced. Next, the PDF regimes in Table Il are con-modes 4 to 64 are in regime lll, and mode 128 is in regime
firmed through numerical quadrature. IV. The numerical results are in excellent agreement with the

predicted behavior in each regime.

(i) Going from mode 1 to mode 3, the PDFs become

SR Mode =t oA Mode =7 broader ask; increases. This is consistent with the
7 X - A expression foR,2= 7pK3 in regime |II.
(i) Once in regime lllmodes 4 to 6% the PDFs become
N //W
4, \}
1% Mode =3 A Mode =16
[ \
- N G \
//\\Mg Mode =32
4 \Y
//QME\:S Mode =64 F 1
N . /\ = = quasi-steady prediction )

—~ stationary phase prediction N

o o o] ical dat:
) LA Mode =6 Y Mode =128 e .
I C -1 ~
o P X 5 107 N
o o slope=-2 \\
10 0 5 10 -0 5 0 5 10 100 16, 1(‘)2

z z K/(2n)
FIG. 8. The PDFs corresponding to mode numberswith K
=27{1,2,3,..}. FIG. 9. Turbulent diffusivity corresponding to Fig. 7.
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narrower asK; is increased further, in good agree- developed in Sec. IV C for the steady case will be very use-
ment with the prediction tha® .= \/1+ P& g%K2in  ful here to guide the possible regimes of behavior for the

regime 1l scalar PDF in the present situation.
(i) Finally, at mode 128, the PDF is Gaussian, as pre-
dicted in regime IV. A. Random spatiotemporal single mode shears

. . Here we consider unsteady stationary Gaussian random
Figure 9 showskt corresponding to all those cases.

Agai . . . - flows, with a single modé&; and the temporal behavior at
gain, excellent agreement with the theoretical predictions I?hat mode characterized by a correlation time such that
observed, with a<31 dependence at sm&l; both in regime y me

Il and regime Ill, and, ultimately, & ; 2 dependence at large Ry(|t)=E,et/m, (48)

Ky in regimes Il and IV. Jith R;y(|t|) the covariance introduced i25) and E; the

We conclude this discussion by answering the questio Lhear enerav at modé. . The formulas to be aiven below
formulated at the beginning of this section. The interesting gy I 9

self-similar intermittent regime identified previously, with a:gt;c;rr?;;. d-gir:ilzr:nigo?huecfjutrht?mleg:glrgs Sr((:;/#i%lljnslthﬁjen-
very large turbulent diffusivity and large fluctuations in the problem, ' . P y
scalar(on an absolute scaleorresponds to regime i, the tified in the steady case. First we show that, to a large extent,

egme where stalonry prase asympoics s pproprndie ECL U e e selecan b udersioos e
Besides the existence of isolated zeros in the transversreéla ation %{me scF;Ie y o gl+ 1 K2)
sweep, the analysis in terms of time scales has identified twg, <o ! Ty unstead§” 7o, steact | K31,

additional conditions for intermittent bursts to occur and Iead?)nevlrr:port";]ant c:nsetqléenGce of ithr:S gtl:))s':erv?:o:lh N Tr:ﬁtt onfe
to an interesting scalar PDF. ecovers the expecte aussia S N ©

Condition 1: The slow sweep time must be shorter than&correlated shear flows. Indeed, with the expression for the

the viscous timeThis guarantees that the sudden amplifica—redl:\f:lin\{'?cﬁlﬁz Iri?rl]ixalflsnrtlmﬁ 2b01:r/§’ tit\t]evli?ﬁ_l;o rleslax
tion in the scalar response linked to the streamlines openingqu 0 ot very short etiective VIScous

when the transverse sweep is very small occurs on a tim 222 Svr;:ﬁsé;’:'gggncggiip?%i t;S r;g'ggclzng} g;st(s)t.euas(:?/
scale short enough not to be hampered by molecular viscos-.” "’ ' ymp y Justify

ity. This condition is always satisfied in the limit of very his result is given next, along with a discussion of the other

large Pe. If condition 1 is not satisfied, then the system is iﬁasymptotlc regimes. All these predictions are validated by

the quasisteady asymptotic regime. It is possible that thQumerlcal simulations to be found at the end of this section.

PDFs still display broad tails with large normalized fluctua- .thﬂt‘ﬁ first step in th‘: f‘r:‘a'%’s'rsnfg)toéezca'e It,hef eq“""lt'ons'
tions, but on an absolute scale, fluctuations and the turbule &'3) r? ;:ol;/zarlatnce ot the Tor » Duhamels formuia
diffusivity are small, so that the system would be character- generalizes to

ized as weakly intermittent. ) P& (t [t , _ e
Condition 2: The forcing period must be long compared? (V)= 12 f_mf_xSK,J(t,t )Sk,(LORy(t" —t))dt'dt.
to the viscous timeCondition 2 guarantees that the trans- g (49)

verse sweep will have a noticeable effect on the solution. If _
condition 2 is not satisfied, then oscillations are too fast forlt IS an exercise for the reader to check fr¢4®) that when

the transverse sweep to be effective and the bursting mechRu([t]) is @ delta functiong®(t) is constant, and the PDF is
nism associated with the modulation in transverse sweefp@ussian. A more practical formulation is derived in the ap-
does not apply, no matter how large theRenumber—very ~Pendix, where it is shown that?(t) can be computed alter-
strong mixing can be observed, but the PDFs are necessarifiatively as

Gaussian. &
2 P 2
o (t):?U ()+D(1)],
[¢]
V. SCALAR INTERMITTENCY FOR RANDOM wherel ()= I?SIZ, with ﬂ the periodic solution of the fol-
SPATIOTEMPORAL AND MULTIMODE SHEARS lowing equation:

Unlike the steady singlemode shears analyzed so far, real dT)(t)
turbulent flows usually have energy spectra with a wide gt
range of space and time scales. Here scalar intermittency is ) o )
studied in the elementary models when the shear figyyt) ~ While D(t) is the periodic solution of
is a spatiotemporal Gaussian random field to mimic some of  gp(t) ,
these effects. In Sec. V A we describe the effect of unsteadi- T +2K35D— P 12=0. (51
ness via a finite correlation time while in Sec. V B the effect J
of the distribution of the shear energy over several modes i$he complex ODE in50) is identical to the ODE front15)
studied. The objective is to identify the conditions whereused in the steady case, except that the viscous coeffi¢fent
self-similar strongly intermittent PDFs, as analyzed for thein (15) has been replaced here by the enhanced coefficient
steady single mode case can be observed with more compl¢§<§+ 1/7;. This suggests we rescale time and lengtli50)
spatiotemporal flows. The template of asymptotic regimesvith T=1/(K§+ 1/7;) andL=1/K;. This rescaling leads to

+[K2+1/ry+iK, Pegsin(wt) |T)=0), (50
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TABLE lIl. Asymptotic regimes for the single mode case with correlation tifhe

Regime 2o KT R,2= 02 /0”
| Gaussi P& P& 1
aussian m W
Il Self-similar intermittent Pe Pe K2
’ L2BK; BK; PR
g J J
N P& P& [ KIPE 2
Il Weakly intermittent —LéKﬁ(KﬁJr Tmy) \/(K§+ Trts K§ e 7 1+ W
IV Gaussian —Pe2 _Pe? 1
LIK3(K3+1/1y) K3+ 1/7,
dT t) PR the steady case, i.e., the solution belongs to regime Il when
c;t +[1+i Pe Bsin(w"t)]Tj=v}, 1/75=0. According to the diagrarfsee also Table Il and the
asymptotic analysis that followsone can see that decreasing
pg2 (52 the correlation timeincreasing 1#}) will correspond to de-
Uz(t)zﬁ(|2+ D), creasing intermittency with a transition from regime Il to
g

regime I, and ultimately to regime IV and Gaussian PDFs.
with 12(t) and D(t) defined as above, provided that”Pe This is the expected behavior in the limit @correlated
=P€/(1+1/7}), o"=w'l(1+1/7}), with 7j=7,K5 and shears; this limit is valid regardless of théclke number
Pe =PeK;, o'=w/K3, Ly=LgK, as in the steady case. whenever the correlation time is shorter than any other time
The rescaled equatiofb2) is now identical to the rescaled scale in the problem, including the fast sweep time. Numeri-
steady-case version {@#4) analyzed in Sec. IV C so that the cal results that confirm the scenario just described are given
numerical and asymptotic strategies used previously in that the end of this section.
steady case can be generalized in a very straightforward There are many qualitative similarities between this
fashion to obtain the solution 1®2). The second part of the phase diagram and the one presented in Ref. 12, Fig. 2,
problem is to compute the correcti@t) according to the where three regimes for the PDF&aussian, exponential,
equation(51). This is a linear equation with constant coeffi- stretched exponentjabre identified through processing di-
cients that is trivial to solve, numerically or asymptotically, rect numerical simulations of a more complex random field
once the forcing terml?(t) is known. A systematic model. The PDFs that we observe in each regime roughly
asymptotic analysis is summarized below. First we describeorrespond to the same classification as in Ref. 12, with
the key results with a phase diagram and with Table 1l thatGaussian PDFs in regime IV, exponential PDFs in regime I,

generalizes the steady-case results in Table II. and stretched exponentials in regime($kee, however, the
comments in Sec. IV B regarding the range of data typically
1. Phase diagram (Fig. 10) used for fitting such a specific distributipn

In the unsteady case with correlation timg, the same
regimes that were identified in Sec. IV C for the steady case
exist and are defined by the same constraints on the param-
eters as those in Table Il as long as everything is rescalec | Il. Self-Similar
according to the reduced viscous relaxation time, Intermittent
=1/(K3+1/r;), i.e., P& replaces Pe 7}, replacesrp,.

() Regime I,7p<1;
(i) regime Il, 7 <1<7p;
(i)  regime I, Th<1<7i;

ss? .
(iv) regime IV, 1< 7). lll. Weakly Intermittent

o
0.
where 7i;= 1/(P¢ B) and 7=\ 7p 74 similar to the expres-

sion for the steady case. The phase diagram in Fig. 10 show:
the boundaries of the regimes in terms of P&eK; and
1/75=1/(;K3) for fixed values ofrjp=7pK3 and B. This
diagram applies whenevef> 1. Because > 7p>1 for all
values of7}, it is clear that the solution in the present case
never belongs to regime |, even in the steady limit with 1/7
1/7}—0. The effect of a finite correlation time can be under- J

stood by considering, for e_xampl_e, avalu_e of sﬂfﬁdemly _ FIG. 10. Phase diagrarP€, 1/7}) of the asymptotic regimes; unsteady
large that the self-similar intermittent regime is observed inrandom case.

IV. Gaussian

Downloaded 20 Feb 2004 to 128.122.81.71. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



894 Phys. Fluids, Vol. 14, No. 2, February 2002 A. Bourlioux and A. J. Majda

2. Solution in each regime (Table 1) 1 J=0 i1 f =8
s N\ /A
Table Ill generalizes the formulas from Table Il to the /A\ /\

unsteady case with correlation timg. Again, to prepare for

the multimode analysis, the explicit dependence with respec | 1/7;=0.25 e =16
to K, has been reintroduced. The derivations in each regim /A\
are very similar to the corresponding steady case, so fe\ ! ' f A
details are given here. 7,05 T, =32
(i) Regime |. The steady approximation applies ¢t) /A\ /f\\
via the solution of(52). This implies necessarily that L 2
D(t) is also a constant that does not depend on time T =1 T =6

and so doesr?(t)=12+D: AN
Pe? f/ A /\

0'22(1+1/T3) ?2—

g9 1/1‘-‘.1 =2 1/’17’J =128
Notice that this regime is observed only whep JN
<1/(K%+1/r;), hence a necessary condition is that f \ /\

<73, i.e., that the correlation time be long com-
1/1,"J =256

pared to the forcing period. /\
-5 0 5
z

(i)  Regime Il. The stationary phase is used Ifg(t), the
asymptotic expression fde(t) is simple, andD(t) P 5 s " )
can be found exactly, with the result that(t) Z
=12(t)+ D(t) does not depend on4y, even though
both |2(t) and D(t) do. The explicit formula for FIG. 11. The PDFs corresponding to various correlation timjesNote that
o-z(t) in regime Il turns out to remain unchanged the second column resembles the exponential to Gaussian transition often

. ) documented elsewhe(Refs. 3 and 1R
compared to the expression {38 for the steady
case, and, as a consequence, so are the formula for
kT, etc. for regime I, Table lll. An intuitive explana- Fig. 12 with a series of computations for decreasing correla-
tion of this somewhat unexpected result is as follows.tion timesr;. Here,K;=2, Pe=1000, 7p=0.5, andg=1
As in the steady case, the dynamics of the solution inyhile 1/7-3:1/(7-JK§)=0, 1/4,1/2,1, 2, 4, 8, 16, 32, 64, 128,
regime Il is characterized by two important phases.256. With those data, we expect the following asymptotic
The first phase occurs during the slow sweep timeregimes: the range<01/7)<4 corresponds to regime I, the
interval during which horizontal transport by the shearrange 4<1/7;<100 to regime Ill, and 1081/} to regime
is very intense witho%(t) growing to its maximum |V, There is very good agreement between the asymptotic
value in a time too short for either molecular viscosity predictions in each regime and the numerical experiments.
or the finite correlation time of the shear to have anyfor instance, in Fig. 11, there is basically no impact—"pbn
effect. The second phase follows: as soon as streamhe PDFs corresponding to regime Il cases, as predicted in
lines are blocked again, outside the slow sweep timerable 11l and discussed above. For shorter correlation times
interval, the shear becomes ineffective at distorting(as 1K} increaseks a progressive narrowing of the PDFs oc-
the scalar andr?(t) will tend to drop back to rela- curs as the system moves through regime Ill, reducing finally
tively small values. What controls the decay is mo-
lecular viscosity only, as in the steady case. In particu-
lar, the finite correlation time of the shear can play no
role in this decay because the effect of the shear has
been blocked altogether by the transverse sweep. Nu-
merical results reported at the end of this section con-
firm this prediction.

(i) Regime lll. The quasisteady approximation can be sol —— asymptofic prediction
used to solve fol?(t). It can also be used to solve for g O numerical data
D(t) only if 75>1. We will restrict our study to cases
where this condition is satisfied, in which case one
has the following formula for?(t):

PDF(2)

>
”
PDF(Z)

10

0

©
<
[

70+

(=]

601

(=]

301

o) =(1+1/7} Pe” !
=(1+ - .
©=( ™) Ly® 1+Pé? g2sin(w't)? 20l
(iv) Regime IV. As in the steady case, this is simply the
limit for P€” very small compared to 1 in the expres- 10 = - = = 5
. . 10 10 10 1/T’ 10 10 10
sions for regime |II. J
The asymptotic predictions are verified in Fig. 11 and FIG. 12. Turbulent diffusivity corresponding to Fig. 11.
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to a Gaussian PDF, as expected in the limit afeorrelated 10°
shear(1/7} very largg. Similar conclusions can be drawn

from Fig. 12. reducing the correlation time has no effect on

the turbulent diffusivity at large correlation times, but has ar\'l\w’z»

S’

LL
o

much more significant impact with a marked reductioncin
for very short correlation timer;.

Q107

B. Random spatiotemporal multimode shears

According to the predictions in Table Ill, it is clear that 10
either increasing the wave numbey or decreasing the cor-

relation timer; always leads eventually to less intermittent

-
-6

895
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10

07

FIG. 13. The PDFs corresponding to variatjsand the number of modes in

PDFs because the effective viscous relaxation time scal@e energy spectrumuy=1.

1/(K§+ 1/7;) decreases. One could therefore wonder if the
strongly intermittent behavior that we have identified in this
paper could be observed in cases where the shear has a more
realistic energy spectrum with multiple spatiotemporal
modes, including many with high mode numbers and short
correlation times. In this section, we demonstrate that this is
the case if the most energetic mode individually belongs to
the self-similar strongly intermittent regime. The analysis is
carried out by assuming an energy spectrum of the form

E,=<Ky“, (53

(ii)
for modesK ;=2m{1,2,...N}. Typical choices fow area=1
(Batcheloy or a=2 (Kolmogoroy. The correlation time of

each mode is also expressed by a power law, with large val-
ues ofK; corresponding to shorter correlation times:

(iii )

Ty=1cKy Y, (54)

with 7>0 the correlation time constant. Again, typical
choices fora’ area’ =1 (eddy sweeping timeor o’ =3 (Kol-
mogorov Lagrangian decorrelation tijié@

Based on the results in Table Ill, next we predict the
scaling withK; for the multimode case. Assume a spectrum
of N modes withK;=2=7J, J=1,2,..N and total energy
P€. The energy fraction in model is given by E,
=K7*ZKJ*. We will consider test cases where mode 1
(K{=2m) belongs to regime Il, so that if the energy is con-
centrated in that mode, the self-similar strongly intermittent
behavior is observed. To address the question of the impact
of spreading the shear energy over a larger number of modes.

which they contribute, as measured Iy, de-
creases likeK; 1~ (in regime 1) or even faster in
regimes Il and IV. They will contribute even less to
the bulk of the PDF because their contribution, in
terms of o, decreases even faster. As a result, no
noticeable change in the overall shape of the PDF of
the most energetic mode is to be expected when the
energy is spread among many modes.

With o'<2, the effect of the correlation time com-
pared to the effect of the molecular viscosity dimin-
ishes as the mode number increases: therefore, the
correlation timer; is expected to have no impact on
the solution at very high modes, even if it can have a
significant impact at low modes.

The turbulent diffusivity will include contributions of
orderK; '~ from all modesK ;, up to the cutoff in
regime |V, where contributions decrease much faster
and are negligible. Summing over all modes gives the
approximation

Ky SKITE
KT1 - EK;Q ’
where s+ ; is the turbulent diffusivity with an energy
spectrum that includeismodes.

(59

These predictions are validated in Figs. 13 and 14 for the

we use the values in Table Il with the scalings(§8), (54) K ' o Tt =;;-;§
. . . T, =/Y.
to predict the overall dependence Ién of the higher modes. Y S
. . . . 0.9+ \ + Tep Ky =70
With mode 1 belonging to regime Il, higher modes belong \ v T iKp=7913
necessarily to either regime Il, regime 11, or regime |V, but v O ToyiKpy=56.09
never to regime |. 08k “‘ - = - theoretical prediction ||
(i) Contribution from a mode in regime |l ¥E ‘\\
~(1+a). ~(3+a). -1 0.7} .
Tra Ky Y5 P ~K BT K, ;l— MR
(i)  Contribution from a mode in regime Il “..
—(dta). ~(3+a). —(1+ 0.6 I
02max~K3( “; U'ZNKJ( “; KTNKJ( “. S e.
(iii) Contribution from a mode in regime |V: RRE TN
—(4+a). —(4+a). -2+ osr el
UrznaxNKJ< ; 02”KJ( ; KTNKJ< o R
The conclusions from this analysis are as follows. 0.4y 2 4 6 8 o 12 12 16
N

(i)

Higher modes will contribute little to the far tails of
the intermittent PDFs because the maximum range to

FIG. 14. (Scaled turbulent diffusivity corresponding to Fig. 13.
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spectral exponentar=a'=1, similar results(not reported zations of the model with a random transverse sweep and
here are obtained with the other choices of exponents inwith a multiscale turbulent inertial range for the shear ft6w.
(53), (54). Five combinations of modes were considerdd: In the present paper we focus on scalar PDFs for the elemen-
just one modeK;=27; (2) two modesK;, K,; (3) four  tary model introduced iri1), (2), (4). Other interesting sta-
modesK 4, Ky, K3, K4; (4) eight modes fronK; up toKg; tistics of the scalar such as the conditional dissipation and
(5) 16 modes fronK; up to K4¢. Five choices for the cor- PDFs for scalar increments yncan be calculated in a similar
relation time parametetc are also considered: 44,=0, fashion and will be presented elsewhere by the authors in the
Urc1=2m, lrcy,=8m, lltc3=32m, 1l7c,=1000(the first  near future. All these statistics are important in testing clo-
set with 1kc,=0 corresponds to steady cases already showsure strategies for nonpremixed turbulent combuéticiiin

in Fig. 11. All 25 PDFs are superimposed in Fig. 13. The an unambiguous fashion and the present models are very
most striking feature is that it is impossible to distinguishuseful in that context® It would be interesting to check the
between the different mode combinations for a given valuestructure of the PDFs at large &t numbers for scalar in-

of the correlation-time constant ; this is in agreement with  termittency for the wide variety of space-time periodic
the predictions that the presence of higher modes should néibws, where homogenization theory is valft.

affect the overall shape of the PDF. The other observation is

that decreasing the correlation time constaatresults in a

transition from a broad tail PDF whens/=0 to a Gaussian ACKNOWLEDGMENTS
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vary substantially with X, the fact that all five sets of data

collapse onto one curve in Fig. 14 confirms that the rescale

quanFt)ity KN/ k71 depends or?ly on the number of modesg‘PPENDIX: FORMULATION FOR THE RANDOM

. . . SPATIOTEMPORAL CASE

included, not on the correlation time constant. Agreement

with the crude approximation if55), shown as a dashed Duhamel’s formulg49) for o%(t) in the unsteady case is
line, is excellent. of the form

t=t
I:

t' =t ~ ~ ~
VI. CONCLUDING DISCUSSION ft,:_wS—Kj(t't IS (LORy(t' —thdt'dt,

=—

An elementary model has been introduced in this paper (AL)
and utilized to establish scalar intermittency in PDFs with arwith
imposed large-scale gradient in an unambiguous fashion ¢
through elementary analytical techniques and numerical SKJ(t,t’)zexp( —Kﬁ(t—t’)—iKJ Pef W(s)ds),
quadrature of exact formulas. The PDF shapes that emerge in t (A2)

the regime of intermittency resemble those that have been
documented from post-processing of numerical solutions oWith w(t)= B sinwt the transverse shear. Split the integral
much more complex modeté:}3 Analytical theory has been into two parts:

utilized to successfully predict the asymptotic shape of the =1t (A3)
PDFs for Pe-1. The simplest examples from Sec. IV involv- i _
ing steady deterministic or random single mode shears with wherel ; corresponds the half of the domain, wheret’, |,
time-dependent transverse sweep prove that neither posititbe other half. First, we develop a strategy to comgyte
Lyapunov exponents for the particle trajectories nor a multi-For I, one has

mpde turbulent spectrum are needed'to generate §calar inter- Rj(|t’ — = R T-t"). (A4)
mittency. What these models have is a mechanism where

there is an intermittent burst in time of strong transport par-Therefore
allel to the mean gradient due to a change in streamline .t
structure. As documented in Secs. Il and 1V, this effect con- I1=J_-
spires with molecular diffusivity to produce the intermittent
PDFs at larger Raet numbers. The results in Sec. V for it o 3 _ _
random spatiotemporal shears, showing a decrease in scalar X f e Tl F’eft"'v(s)dSRj(t—t’)dt’d't.
intermittency as the decorrelation time tends to zero for a e

fixed large Pelet number, also provide unambiguous theo- (A5)
retical predictions and supporting evidence in a simple -

model for such behavior, which has been documented earlier = J:
in more complex simulationee Fig. 2 of Ref. 12 It would

be interesting to investigate scalar intermittency for generaliwhere

e—2K§(t—T)

=—

e~ 2K5t=0 3 @)df, (AB)

= —
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