ENERGY CRITICAL NLS IN TWO SPACE DIMENSIONS
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ABSTRACT. We investigate the initial value problem for a defocusing nonlinear
Schrédinger equation with exponential nonlinearity
10pu + Au = u(e‘”lu‘2 — 1) in Ry x R2.

We identify subcritical, critical and supercritical regimes in the energy space.
We establish global well-posedness in the subcritical and critical regimes. Well-
posedness fails to hold in the supercritical case.
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1. WHAT IS THE ENERGY CRITICAL NLS EQUATION ON R??

We consider the initial value problem for a defocusing nonlinear Schrédinger equa-
tion with exponential nonlinearity

0+ Au = f(u), uw: (=T, T*) x R?+— C
(1.1) {U(O, ) — UO() c HI(RQ)

where
(1.2) flu) = u(e4”|“|2 -1).
Solutions of (1.1) formally satisfy the conservation of mass and Hamiltonian
(1.3) M(u(t,)) = llult, )L
= M(u(0,-)),
(1) H(t,) = [Va(e)|, + = e —1 - anfute, )P
' ’ ' "z 4w ’ L1(R2)
— H(u(0,")).

We show that for initial data wug satisfying H(ug) < 1 the initial value problem is
global-in-time well-posed. Well-posedness fails to hold for data satisfying H (ug) > 1.
We compare our theory for (1.1) with work on the H' critical NLS initial value
problem on R? with d > 3. Similar ill-posedness results were also obtained for the
nonlinear Klein-Gordon equation with exponential nonlinearity in [21].

1.1. NLS,(R?) and critical regularity for local well-posedness. We introduce
a family of equations and identify (1.1) as a natural extreme limit of the family
with monomial (or polynomial) nonlinearities when the space dimension is 2. The
monomial defocusing semilinear initial value problem

{i@tu + Au = |ulPtu, u: (=T, T*) xR — C

(1.5) u(0,x) = ug(x)

has solutions which also satisfy conservation of mass and Hamiltonian, where

1
(16) Hy(ult, ) = [Vt ) e+ [l )
rd P+ 1
We will sometimes refer to the initial value problem (1.5) with the notation N LS, (R?).
If u solves (1.5) then, for A > 0,u* : (=T, A2, T*\?) x R? defined by

(1.7) u(t,x) = APy (A2, A )

also solves (1.5). It turns out that Banach spaces whose norms are invariant under
the dilation u —— u* are relevant in the theory of the initial value problem (1.5).

Let s, = % — p%l. Note that for all A > 0 the L?-based homogeneous H** Sobolev

norm is invariant under the the mapping f(x) —— A~2®=Df(A\"1x). Similarly,
note that the Lebesgue LP¢(R%) norm is invariant under the dilation symmetry for
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Pe = g(p — 1). Unless otherwise stated, we will restrict! this discussion to problems
where dimension d and the degree p are constrained to give 0 < s, < 1. It is now
known ([9], [18], [11]) that (1.5) with H* initial data is locally well-posed for s > s,
with existence interval depending only upon ||ug|| s, locally well-posed for s = s,
with existence interval depending upon e”“ug, and is ill-posed for s < s.. Based on
this complete trichotomy, it is natural to refer to H* as the critical reqularity for
(1.5).

1.2. Global well-posedness for NLS,(R?). For the energy subcritical case, when
S. < 1, an iteration of the local-in-time well-posedness result using the a prior:
upper bound on ||u(t)||z: implied by the conservation laws establishes global well-
posedness for (1.5) in H'. Tt is expected that the local-in-time H® solutions of
(1.5) extend to global-in-time solutions. For certain choices of p,d in the energy
subcritical case, there are results ([2], [3], [15], [38], [16]) which establish that H*
initial data uo evolve into global-in-time solutions u of (1.5) for s € (5,4,1) with
5. < Spq < 1 and §, 4 close to 1 and away from s.. For all problems with 0 < s, <1,
global well-posedness in the scaling invariant space H*¢ is unknown but conjectured
to hold.

For the energy critical case, when s. = 1, an iteration of the local-in-time well-
posedness theory fails to prove global well-posedness. Since the local-in-time exis-
tence interval depends upon absolute continuity properties of the linear evolution
ey (and not upon the controlled norm ||u(t)||z1), the local theory does not di-
rectly globalize based on the conservation laws. Nevertheless, based on new ideas
of Bourgain in [3] (see also [4]) (which treated the radial case in dimension 3) and a
new interaction Morawetz inequality [16] the energy critical case of (1.5) is now com-
pletely resolved [14, 39, 33| : Finite energy initial data ug evolve into global-in-time
solutions w with finite spacetime size ||ul| 2040 < 00 and scatter.

t,x

1.3. Energy criticality in two space dimensions. The initial value problem
NLS,(R?) is energy subcritical for all p > 1. To identify an ”energy critical” non-
linear Schrodinger initial value problem on R?, it is thus natural to consider prob-
lems with exponential nonlinearities. In this paper, we establish local and global
well-posedness for (1.1) provided that H(ug) < 1. The case where H(ug) = 1 is
more subtle than the case where H(ug) < 1. We also establish that well-posedness
fails to hold on the set of initial data where H(uy) > 1. Thus, we establish a
complete trichotomy analogous to the energy critical cases of NLS,(R?) in dimen-
sions d > 3. Based on these results, we argue that (1.1) should be viewed as the
energy critical NLS problem on R?. Using a new interaction Morawetz estimate,
proved independently by Colliander-Grillakis-Tzirakis and Planchon-Vega [13, 31],
the scattering was recently shown in [23] for subcritical solutions of (1.1) (with
f(u) = u(e*™ — 1 —4x|ul?)). This problem remains open when H(ug) = 1 due to
d_ _2

1Global well-posedness for the defocusing energy supercritical NLSP(]Rd) with s, = 5 o1 > 1

is an outstanding open problem.
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the lack of uniform global estimates of the nonlinear term and the infinite speed of
propagation.

Remark 1.1. The critical threshold for local and global well-posedness of (1.1) is
expressed in terms of the size of H(ug). In contrast, the critical threshold for energy
critical (1.5) is expressed in terms of ||ug||g1. Positive results for data satisfying
H(up) > 1 and other conditions may give insights towards proving global well-
posedness results for energy supercritical problems.

1.4. Statements of results. We begin by formally defining our notion of criticality
and well-posedness for (1.1). We then give precise statements of the main results
we obtain and make brief comments about the rest of the paper.

Definition 1.2. The Cauchy problem associated to (1.1) and with initial data ug €

HY(R?) is said to be subcritical if

It is critical if H(ug) = 1 and supercritical if H(ug) > 1.

Definition 1.3. We say that the Cauchy problem associated to (1.1) is locally well-

posed in H(R?) if there exist E > 0 and a time T = T(FE) > 0 such that for every

ug € Bp :={ uy € H(R?); ||[Vugllzz < E } there exists a unique (distributional)

solution u : [=T,T] x R?> — C to (1.1) which is in the space C([-T,T]; H}),

and such that the solution map ug —— u s uniformly continuous from Bg to
A priori, one can estimate the nonlinear part of the energy (1.4) using the follow-

ing Moser-Trudinger type inequalities (see [1], [28], [37]).

Proposition 1.4 (Moser-Trudinger Inequality).

Let a € [0,4m). A constant ¢, exists such that

(1.8) lexp(alul®) = Lpi@e) < callullza s

for all w in H'(R?) such that |Vul||[2@e2y < 1. Moreover, if o > 4m, then (1.8) is
false.

Remark 1.5. We point out that a = 47 becomes admissible in (1.8) if we require
||| rmey < 1 rather than ||[Vul|p2gey < 1. Precisely, we have

sup || exp(4r|ul?) — 1||p1(re) < 400
1 <1
and this is false for a > 4m. See [32] for more details.
To establish an energy estimate, one has to consider the nonlinearity as a source

term in (1.1), so we need to estimate it in the L} (H}) norm. To do so, we use (1.8)
combined with the so-called Strichartz estimate.

Proposition 1.6 (Strichartz estimates).
Let vy be a function in H'(R?) and F € L*(R, H'(R?)). Denote by v the solution
of the inhomogeneous linear Schrodinger equation

1000+ Av=F
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with initial data v(0, ) = vo(x).
Then, a constant C' exists such that for any T > 0 and any admissible couple of
Strichartz exponents (q,r) i.e 0 < % =1-2<1, we have

(1.9) 0]l oqory.m1 @2y < C [llvoll ey + 1 Fll oo, eey)] -

In particular, note that (q,r) = (4,4) is an admissible Strichartz couple and

(1.10) Bi,(R?) — CY2(R?).
Recall that, for 1 < p, ¢ < oo and s € R, the (inhomogeneous) Besov norm ||.|

is defined by
e = (D 27 18ulL)”

j=-1

B34 (R?)

I

with the usual modification when ¢ = co. (Aj> is a (inhomogeneous) dyadic parti-
tion of unity.

Remark 1.7.
e The homogeneous Besov norm is defined in the same manner using a homogeneous

dyadic partition of unity (A]> .
JEZ

e The connection between Besov spaces and the usual Sobolev and Hélder spaces is

given by the following relations

22(R?) = H'(R?), B3, o(R*) = C'(R?).
We recall without proof the following properties of Besov spaces (see [34], [35]
and [36]).

Theorem 1.8 (Embedding result).
The following injection holds

B; (R*) — B! (R?)

P1,91
where

I1<p<p1<oo, 1<qg<qg <00, s,5€R

The following estimate is an L*° logarithmic inequality which enables us to estab-
lish the link between ||e*™l“* — 1| Li(z2(r2)) and dispersion properties of solutions of
the linear Schrodinger equation.

Proposition 1.9 (Log Estimate).
Let B €]0,1[. For any A > ﬁ and any 0 < pu <1, a constant C\ > 0 exists such

that, for any function u € H'(R?) N CP(R?), we have
871" ||ullcs

(1.11) |ul|? o < )\HuHilog(C,\ +
Iim

)7
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where we set

(1.12) lully = 1IVullZ2 + p2[lullZ.

Recall that C#(R?) denotes the space of 3-Hélder continuous functions endowed

with the norm u(z) W)
u(zr) —u(y
= oo (R2 —_—
[ulles ra) [ul| oo = )+iif; 1z — y|?

We refer to [20] for the proof of this proposition and more details. We just point
out that the condition A\ > ﬁ in (1.11) is optimal.

Our first statement describes a local well-posedness result when the initial data
is in the open unit ball of the homogeneous Sobolev space H 1(R?). The sign of the
nonlinearity is irrelevant here. Consider the following equation :

(1.13) i+ Au = o f(u).
We have the following short time existence Theorem.

Theorem 1.10. Let 0 € {—1,+1} and uyp € H'(R?) such that |[Vuol|r2ge2)y < 1.
Then, there ezists a time T' > 0 and a unique solution to the equation (1.13) in the
space Cp(H(R?)) with initial data ug .

Moreover, u € L4(CY?(R?)) and satisfies, for all 0 < t < T, M(u(t,-)) = M (ug)
and H(u(t,-)) = H(up).

The proof of this Theorem is similar to Theorem 1.8 in [19]. It is based on the
combination of the three a prior: estimates given by the above propositions. We
derive the local well-posedness using a classical fixed point argument.

Remark 1.11. In [22] a weak well-posedness result was proved without any restric-
tion on the size of the initial data. More precisely, it is shown that the solution
map is only continuous, while Theorem 1.10 says that it is uniformly continuous
when ||Vuo| 2@y < 1. Well-posedness results with merely continuous dependence
upon the initial data have also been obtained for the KdV equation [24] using the
completely integrable machinery and for the cubic NLS on the line [12], [27] using
PDE methods.

Remark 1.12. In the defocusing case, the assumption H (up) < 1 in particular implies
that [[Vugl|z22) < 1, and consequently we have the short-time existence of solutions
in both subcritical and critical case. So it makes sense to investigate global existence
in these cases.

As an immediate consequence of Theorem 1.10 we have the following global exis-
tence result.

Theorem 1.13 (Subcritical case).
Assume that H(ug) < 1; then the defocusing problem (1.1) has a unique global
solution u in the class
C(R, H'(R?)).
Moreover, u € L} (R, C%(R?)) and satisfies the conservation laws (1.3) and (1.4).

loc
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The reason behind Definition 1.2 is the following: If u denotes the solution given
by Theorem 1.10, where 7™ < oo is the largest time of existence, then the conser-
vation of the total energy gives us, in the subcritical setting, a uniform bound of
Vu(t, )| z2(re2y away from 1, and therefore the solution can be continued in time.
In contrast, for the critical case, we lose this uniform control and the total energy
can be concentrated in the ||[Vu(t, )|/ 2(r2) part. By using a localization result due
to Nakanishi (see Lemma 6.2 in [29]), we show that such concentration cannot hold
in the critical case and therefore we have the following theorem:

Theorem 1.14 (Critical case).
Assume that H(ug) = 1; then the problem (1.1) has a unique global solution u in
the class

C(R, H'(R?)).
Moreover, u € L} (R, CY?(R?)) and satisfies the conservation laws (1.3) and (1.4).

loc
Remark 1.15. Recently in [23] the scattering was established in the subcritical case
using a new estimate obtained independently in [13, 31].

When the initial data are more regular, we can easily prove that the solution
remains regular. More precisely, we have the following theorem:

Theorem 1.16. Assume that ug € H*(R?) with s > 1 and ||Vug| 22y < 1. Then,
the solution u given in Theorem 1.10 is in the space Cr(H*(R?)).

Remark 1.17. In fact, the local well-posedness holds in H® for s > 1 without any
assumption on the size of the initial data.

The last result in this paper concerns the supercritical case.

Theorem 1.18 (The supercritical case).
There exist sequences of initial data uy,(0) and vi,(0) bounded in H' and satisfying

lilgninf H(ug(0)) > 1, lilgninf H(vi(0)) > 1,

with
Jm lwe(0) — v (0)]| 72 =0,

but there exists a sequence of times ty > 0 with tx — 0 and

llglo{}f ||V(uk(tk) — Uk(tk>>||L2 Z 1.

Remark 1.19. The sequences of initial data constructed in Theorem 1.18 do not
have bounded Hamiltonians. Indeed, their potential parts are huge. Unlike for the
Klein-Gordon where the speed of propagation is finite see [21, 22|, we were unable
to prove the above result for slightly supercritical data.

This class of two-dimensional problems with exponential growth nonlinearities has
been studied, for small Cauchy data, by Nakamura and Ozawa in [30]. They proved
global well-posedness and scattering.
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Notation. Let 7" be a positive real number. We denote by X(7") the Banach space
defined by

X(T) = Cr(H'(R?)) N Lz(C'*(R?),

and endowed with the norm

lullz = sup ([lu(t, )llzz + [ Vult, )2) + lullps ).
t€[0,T]
Here and below C7(X) denotes C([0,7); X) and L%(X) denotes LP([0,T); X).
If A and B are nonnegative quantities, we use A < B to denote A < C'B for some
positive universal constant C, and A ~ B to denote the estimate A < B < A.
For every positive real number R, B(R) denotes the ball in R? centered at the origin
and with radius R.

2. LOCAL WELL-POSEDNESS

This section is devoted to the proof of Theorem 1.10 about local existence. We
begin with the following Lemma which summarizes some of the properties of the
exponential nonlinearity.

Lemma 2.1 (Nonlinear Inhomogeneous Estimate). Let f be the function given by
(1.2), T >0 and 0 < A < 1. There exists 0 < v = vy(A) < 3 such that for any two
functions Uy and Uy in X(T') satisfying the following

(2.1) sup [V ()2 < A,
te[0,7
we have
3
(2.2) 1£(U) = fU ey S UL — U2||T{T4 e 2
j=1,2
+ T = 7}
T

Proof of Lemma 2.1. Let us identify f with the C* function defined on R? and
denote by Df the R? derivative of the identified function. Then using the mean
value theorem and the convexity of the exponential function, we derive the following
properties:

|f(21) = f(22)] S 21— 22| Z ( dmlail® _p 4 |zj]2647f|%‘\2> 7

7j=1,2

and

(DF) (1) = (D) ()| S 21 = 2] Z (laetl= + |2 Petmi 1)
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Therefore, for any positive real number ¢ there exists a positive constant C. such
that

(2.3)  |f(z1) = f(z2)| < Celzy — Z2|{647r(1+e)IZ1\2 _ ] 4 etn(e)lzl® 1}’

and

(24) (D)) = (D)(z)] < Celz = 20 D (Jaal + et 0490 — 1)

i=1,2
Now we estimate ||f(U1) — f(U2)||L1 (z2@2))- Applying the Holder inequality and
using (2.3) we infer

- 2
IFWE ) = FO)E Ay zemey < CellUn = Uallguay Y e ™M 1| ays .

j=1,2
Applying Holder inequality again, we obtain
(2.5)
4m(14€)|U; (t,)]? 3r(1+e)1U; ()13 4 (14¢)|U;(¢,)]? 1
A (1) U (¢, _1‘#3% <|le fCOI ’L;/SHG [

Thanks to the Moser-Trudinger inequality (1.8) and the Log estimate (1.11) we get

7y € i N2
(2.6) ”64 (I+a)|U; ()1 _ 1 < C47r(1+a)A2HUj(ta .)H%Q,
3r(14e)||U; ()2 0o HU( )Hcl/2 !
27) ELCER AN 5( G e )

where we set

A” = A2 £ max sup p2||U;(¢, )% and v :=37A(14¢)A”,
v tel0,1)
and 0 < g < 1 1is chosen such that A" < 1. Remember that Cyr14c)42 is given by
Proposition 1.4. It is important to note that estimate (2.6) is true as long as the
parameter ¢ is such that (1 + ¢)A% < 1. Now, inserting this back into (2.5), and
integrating with respect to time, we obtain

U 1/2
I00) = SO Mgz S 10 = Ualzgaon 3 [+ L W02 o
7=12
Now we estimate ||f(Ur) — f(U2)l 107751 r2))- We write
D((U) — f(U) = ((DS)T3) = (DN)V)|DUL + DF(UL) DU — Vo)

= (I)+(I).

To estimate (I) we use (2.4). Hence for any € > 0 we have

(DYWL = (DAW:)] £ CeUr = U] 3 (0408 — 14 )

7=1,2

and therefore
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(D] £ 10— Ua|[DUL| S (U

j=1,2
|U1 U2||DU1| Z ( m(1+e)|U;1* _ 1> ‘
7=1,2

Applying Holder inequality we infer

(Dl < 10 = Vallzs@s) 1DVl aee) Y 1Ujllzseey
j=1,2
+ HUl - U2||L4(1+%)(R2))HDU1||L4(R2) Z ||€47|—(1—"_€)|Uj|2 - ].||L4(1+5).
j=1,2
Using (2.6) and integrating with respect to time we deduce that
(D2 < iU, — Us|| 5o (1) [1DUL || La(jo,71xR2) Z 1Uj] g z9)
j=12

P ACDI AT

+ [[Ur - U2HL%O(L4<1+§>)HDU1HL4([0,T}X1R2) > T

§=1,2

4_ .
[3’7
T

To estimate the term (1), we use (1.8) with U; = 0. So thanks to the Holder
inequality we get

1D 2@y < DUy = Uzl pa@e) | Ual| s g2y

Y

+ DW= Uo)lla@) 1U2 a1y gay D Ne™ 0 = 1| paciver.
7=1,2
Then we proceed exactly as we did for term (7).
Now since A < 1, we can choose the parameter p such that A’ < 1. Then we chose
¢ > 0 small enough and A\ > % and close to % such that v < 3. Applying Holder
inequality (with respect to time) in the above inequality and in (2.6), we deduce

(2.2) as desired. ]

Proof of Theorem 1.10. The proof is divided into two steps.

First step: Local existence.
Let vg be the solution of the free Schrodinger equation with ug as the Cauchy data.
Namely,

(2.8) i0pvg + Avg =0
v0(0, ) = up.

For any positive real numbers 7" and J, denote by Er(9) the closed ball in X (7')
of radius § and centered at the origin. On the ball £r(d), define the map ® by
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(2.9) v— O(v) =1,
where
(2.10) 100 + AT = (v + vg) (e — 1) 5(0,2) =0,

Now the problem is to show that, if 6 and T" are small enough, the map ® is well
defined from &£7(d) into itself and it is a contraction.

In order to show that the map ® is well defined, we need to estimate the term
(v + UO)( edmlvtuol® _ 1)||L1T(H1).
Let Uy := v + vy. Obviously, U; € X(T'). Moreover, since

IVvo(t, )z = [[Vuol|z2

is conserved along time, and ||Vug||z2 < 1, then the hypothesis (2.1) of Lemma 2.1
is satisfied. Now taking Uy = 0, applying (2.2) and choosing ¢ and 7" small enough
show that ® is well defined. We do similarly for the contraction. [ |

Second step: Uniqueness in the energy space.

The uniqueness in the energy space is a straightforward consequence of the following
lemma and Theorem 1.10. Note that uniqueness in X(7') follows from the contrac-
tion argument. Here we are noting the stronger statement that uniqueness holds in
a larger space.

Lemma 2.2. Let § be a positive real number and ug € H'(R?) such that ||Vug|| 2 <
1. If u € C([0,T], H'(R?)) is a solution of (1.1)-(1.2) on [0,T], then there exists a
time 0 < Ty < T such that v ; Vu € L*([0,Ts], L*(R?)) and

2]l L2 o, 15)x w2y + [ Ve]| Lago, 75 xr2) < 6.
Proof. Fix a > 1 such that
(2.11) al|Vue||7: < 1.
Then choose € > 0 such that

(1+¢)? a
€ a—1
Denote by V := u — vy with vy := e*?uy. Note that V satisfies

2 < 1.

(2.12) (1+¢)*a||[Vul32 <1 and 4

0V + AV = —(V + vg) (e*VHwol® 1),
According to the Strichartz inequalities, to prove that V and VV are in L;{x it is

sufficient to estimate V7 [(V—i—vo) (et +eol® — 1)] in the dual Strichartz norm |- | 4
with j =0, 1.
By continuity of t — V/(¢,-), one can choose a time 0 < 7} < T such that
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sup ||V (t, )|z <e.
[Ole]

Moreover, observe that

a
[V +wol? < aluol® + HWR

W_ol=("=1)(e —1)+ ("= 1)+ (e — 1),
and
. e(l—l—s):p -1
re' < ———
€
We will only estimate the term with derivative, the other case is easier.

IV (V4 wp) (VFl —1)]| < [V(V + ) (e Fl” — 1))
+ [V(V 4 09)|V + vV HuoP
< |V(V ) (e 1V Fl® 1)
+ V(V 1) (etmaFelViwl ),

Hence we only need to estimate ||V (V + vg) (647T(1+E)|V+U0|2 —1) HL% . Applying the

t,x

Holder inequality we obtain

HV(V + UO) (647r(1+£)|V+v0\2 N 1) HL S HV(V + UD)HL?"L%H€47r(1+£)|v+v0‘2 1”

BN

L3L4'

x

Using the above observations we need to estimate the following three terms

L An(1+€)alvo|? dm(l4e) 25 \4E
() = | (e R Il 9

x

T(t) o= ||etmtteeiol g

and

Ty(t) 1= ||t 09—y
Applying Holder inequality we obtain

1

Il(t) < He47r(1+e)a|y0|2 _ 1” §

H 47T(1+8)ﬁ“/|2 1”
L7 Lat+e)

L°Ly ©

Now the choice of the parameters ¢ and a satisfying (2.11)-(2.12) insures that

1. < C(e,a).

et i

||L°°([0,T1],L4
Also
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dm(14€)alvol?

a2
He "L%([O,Tl]7L4(1+E)) < 0(57 a) HeTr(lJFS)aIUO(t7 e Hi“[O,Tﬂ

< Cf(g,a,Ty).

Note that quirra C(e,a,S) =0, hence choosing 77 small enough we derive the desired

estimate. The other terms can be estimated in a similar way. We omit the details
here. [ |

3. GLOBAL WELL-POSEDNESS

In this section, we start with a remark about the time of local existence. Then
we show that the solutions emerging from the subcritical regime in the energy space
extend globally in time by a rather simple argument. The more difficult critical case
is then treated with a nonconcentration argument.

Remark 3.1. In Theorem 1.10, the time of existence 17" depends on ug. However, in
the case HVuOH%Q(RQ) < 1—mn, this time of existence depends only on 7 and ||ug||7, (B2)-

3.1. Subcritical Case. Recall that in the subcritical setting we have H(uy) < 1.
Since the assumption H(ug) < 1 particularly implies that

||VU,0||L2 < 1,

it follows that the equation (1.1) has a unique maximal solution w in the space X(7™)
where 0 < T* < +o0 is the lifespan of u. We want to show that T* = +oo which
means that our solution is global in time.

Proof of Theorem 1.13. Assume that 7" < +oo, then by the conservation of the
Hamiltonian (identity (1.4)), we deduce that

sup || Vu(t, )| r2@ey < H(ug) < 1.
te[0,7*)

Now, let 0 < s < T™ and consider the following Cauchy problem

{ 0w+ Av = f(v)
v(s,z) = u(s,z) € H'(R?).

A fixed point argument (as that used in the proof of Theorem 1.10) shows that
there exists a nonnegative 7 and an unique solution v to our problem on the interval
[s, s+ 7|. Notice that 7 does not depend on s (see Remark 3.1 above). Choosing s
close to T such that T — s < 7 the solution v can be continued beyond the time
T™ which is a contradiction. [ |
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3.2. Critical Case. Now, we consider the case when H(up) = 1, and we want to
prove a global existence result as in the subcritical setting.

The situation here is more delicate than that in the subcritical setting; in fact the
arguments used there do not apply here. Let us briefly explain the major difficulty.
Since H(up) = 1 and by the conservation identities (1.3) and (1.4), it is possible (at
least formally) that a concentration phenomena occurs, namely

limsup ||Vu(t, )|z =1
t—T*

where u is the maximal solution and 7™ < 400 is the lifespan of u. In such a case,
we can not apply the previous argument to continue the solution. The actual proof
is based on proving that the concentration phenomenon does not happen.

Arguing by contradiction we claim the following.

Proposition 3.2. Let u be the mazximal solution of (1.1) defined on [0, T*), and
assume that T is finite. Then

(3.1) limsup ||Vu(t)| r2m@ey = 1,
t—T*

and

(3.2) limsTup ()] 2@2y = 0.
t—T*

Proof. Note that for all 0 <t < T* we have

IVu(t) 2@y < H(ult,-))-
On the other hand, since the Hamiltonian is conserved, we have

limsup ||Vu(t)| r2m@ey < 1.

t—

Assume that

limsup |[Vu(t)|| 2@ = L < 1.
t—T*

Then, a time %, exists such that 0 <ty < T™ and

L+1
th <t< T — ||VU(t)||L2(R2) < —.

2
Take a time s such that {5 < s < T < s+ 7 where 7 depends only on 1;L. Using
the local existence theory, we can extend the solution u after the time 7™ which is
a contradiction. This concludes the proof of (3.1).

To establish (3.2), it is sufficient to note that
647r\u(t,a:)2| -1

47

27r|u(t,:v)|4 < - |u(t,a:)]2
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and then consider the Hamiltonian with (3.1). [

To localize the concentration and get a contradiction, the proof in the case of the
nonlinear Klein-Gordon equation was crucially based on the property of finite speed
of propagation satisfied by the solutions (see [19]). Here that property breaks down.
Instead, we use the following localization result due to Nakanishi (see Lemma 6.2 in
[29]).

Lemma 3.3. Let u be a solution of (1.1) on [0,T) with 0 < T < +oo and suppose
that E := H(uo) + M(up) < oco. A constant C(E) exists such that, for any two
positive real numbers R and R’ and for any 0 <t < T, the following holds:

(3.3) / lu(t, ) Pdz > / g () Pd — C(E) =
B(R+R') B(R) R

For the sake of completeness, we shall give the proof here.

Proof of Lemma 2.6 [29]. Let dg(z) := d(z, B(R)) be the distance from z to the
ball B(R). Obviously we have |Vdg(x)| < 1. Define the cut-off function

where h is a smooth function such that h(7) = 1if 7 > 1 and h(7) = 0if 7 < 0.
Note that £ satisfies

E(x)=1 if zeB(R), &x)=0 if |z|>R+R and [[V&(x)|r~ S 1/R.

Multiplying equation (1.1) by €24, integrating on R? and taking the imaginary part,
we get the following identity

C(E)

oleuls =1 ([ evevaar) = -
R2

This completes the proof of the Lemma. ]

Proof of Theorem 1.14. The proof of Theorem 1.14 is now straightforward. Assum-
ing that 7" < 400 and applying Holder inequality to the left hand side of (3.3), we
infer

t

/ [uo(@)Pde — C(E) g < v (R+ R) [[u(®)Zsze)-
B(R)

Taking first the limsup as t goes to T* and then R’ to infinity we deduce that wug

should be zero which leads to a contradiction and therefore the proof is achieved.

[
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4. INSTABILITY OF SUPERCRITICAL SOLUTIONS OF NLS

The aim of this section is to show that the Cauchy problem (1.1) is ill-posed for
certain data satisfying H(ug) > 1. A typical example of supercritical data is the
function f; defined by:

(0 it |2 >1,

log ||

@) = § " Vi

it eR2 < x| <1,

£ if || < e k2

These functions were introduced in [28] to show the optimality of the exponent 47
in Trudinger-Moser inequality (see also [1]).

An easy computation shows that ||V fi||122) = 1. Since the sequence of functions
fr is not smooth enough, we begin by regularizing it in a way that preserves its
“shape” i.e. : Let x be a smooth function such that 0 < y < 1 and

0 if r<3/2,

X(m) =
1 if > 9,

For every integer k > 1, let n(z) = x(e*2|z])x(e*/2(1 — |z|)) and fi = ne fr. An
easy computation show that, for all j > 0, we have

Il < 72

For any nonnegative o and A > 0, denote by

G, A k(Y) = <1 + %) Fey)e (uk?(JA)) ;

where ¢ is a cut-off function such that

supp(p) C B(2), ¢=1 on B(l), 0<¢p<1,

and the following choice of the scale v

vi(A) = exp <—§>

The cut-off function ¢ is made to insure that the rescaled g, 4 x(vx(A)z) has a finite
L? norm. Now, let u solve the Cauchy problem

10+ Azu = f(u)
(4.1)
w(0,2) = goak(vk(A)x).

Define v(t, v (A)x)) = u(t,x). Then v satisfies
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10 + v (A)?Ayv = f(v)
(4.2)
U(Ov y) = Ga,Ak (y)

For the sake of clarity, we omit the dependence of u and v upon the parameters «,
k and A. We begin by showing that the initial data is supercritical.

Lemma 4.1. There exists a positive constant Cy such that for every A > 0, we have

.. C
hgg)lf H(ga,ak(vk(A))) > 1+7r_/i2'

Proof of Lemma 4.1. For simplicity, we shall denote g, 4% by g and vx(A) by v.
Recall that, by definition, we have

3
gly) =0 if |y|>2v or |yl < §€_k/2
and
9(y) = (1 + %) fily) if |yl <v o and 2e7H? <y <1— 272

Remark that
H(g) > [IVygll7= > (I) + (IT),
where

() = ||vg||%2(25*k/2§|y|gy)

(1) = ||v.g||%2(1/§|y\§21/)‘
On the set {2¢7%/2 < |y| < v} we have g(y) = —(1 + a/k)% and thus
2 2(a — log 2) 4oy 4alog 2

4. I)=1- — —

( 3) ( ) A\/E + k Ak3/2 k2
For the second term, we write

(4.4) (1) = (a) + (b) + (c)

where

@ = @+ [ VAP
® = 0+ 2 [P Py

© = 20+ 557 [ eV Te(ldy

Clearly

(4.5) (a) = %(1 £ (/12 Mdr) ,
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and

1 o Y
b) = 1+—)° log? =)|Pdy.
0= a0+ [ g lIve)ay

2
But since, for k large, <log2 — ‘/7E> < log?|y| < £, we deduce that

(1457 (mgz - %) ([, Iwetra) <o) < g0 azm?

and therefore,

2
(4.6) (1+ %)2 (732 - 2:55(;1 L& ;Olf 2) < (b) < %(1 +a/k)?.
The constant Cy = ||Vel|7.. For the last term, we simply write
© = 42 [ oswrioglhe) “E o
(4.7) — (1+ 2y (i - L) ,
k k7 AVE
where the constants a and b are given by

a= 2/ log |z|g0(z)Lﬁ(z) dz and b= 2/ @(Z)Li(z) dz
1<|z|<2 2| 1<|2|<2 |2

Finally, (4.3), (4.4) together with (4.5), (4.6) and (4.7) imply that for every A > 0,

Cy
—— < limi .
1+ S ll}ggf H(g)
The main result of this section reads.

Theorem 4.2. Let a > 0 and A > 0 be real numbers, and
ue(0,2) = gaan(vi(A)z),

ve(0,2) = goar(ve(A)z).
Denote by uy, and vy, the associated solutions of (1.1). Then, there exists a sequence
tr — 07 such that

(4.8) lim inf IV (ur, — vi) (s ) | 2mey 2 1

A general strategy to prove such instability result is to analyze the associated
ordinary differential equation (see for instance, [10, 11]). More precisely, let ® solve

i 0:@(ty) = f(@(ty)),

®0,9) = Gaar(y)

(4.9)
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The problem (4.9) has an explicit solution given by:

Ot y) = gaanly) exp (=it~ 1))

‘= Ganr(y) exp (—itK (gaar)y))
> _

where K (z) = e*?F — 1.

In the case of a power type nonlinearity, the common element in all arguments is

a quantitative analysis of the NLS equation in the small dispersion limit
i0® +1° AP =0 |DP 1D
where (the dispersion coefficient) v is small. Formally, as v — 0 this equation
approaches the ODE
i0:® = o [P 1D
which has an explicit solution (see [10, 11] for more details). This fact and the
invariance of equations of the type (1.5) under the scaling ® — ®* defined by
PNt ) = AP (A2 A a)

play a crucial role in the ill-posedness results obtained in [10, 11] to make the
decoherence happen during the approximation.

Unfortunately, no scaling leaves our equation invariant and this seems to be the
major difficulty since it forces us to suitably construct the initial data in Theorem
4.2. Our solution to this difficulty (and others) proceeds in the context of energy
and Strichartz estimates for the following equation

(4.10) i0:® +1v* AD = f(D)

It turns out that given the scale v (A), then for times close to %, equation (4.10)
approaches the associated ODE (4.9).

Proof of Theorem 4.2. The proof is divided into two steps.

First Step: "Decoherence”

The key Lemma is the following.

Lemma 4.3. Let C; denote the ring {2e7%/% < |y| < 3e7%/2} and t; = 5%. Then,
we have

@ a2 1 Q2
(4.11) ce?e Ot <V () r2en S (1 + %)3 (% + ee%%)

where C' stands for an absolute positive constant which may change from term to
term.

Proof of Lemma 4.3. Write ®3 for ®3** | then
« Uy 2
IVOE )72y = IV, + 6477 g% VygllL2c,)
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In view of the definition of n; and ¢, we get

VG ()II72c,) = (1 + %)QI+ 64m%t%(1 + %)6j
where
2 3 1
7 = 2y = Zlog(2) < =
Clefk(y)l y=7 0g(2) ST

J = / | Fo() [V fu(y)|2eSm R gy
Ck

2 3e™H/2 8 o dr
— e 1 - 21 2 1 4 -
312 /%m exp <k( + )" log 7") og'r —

We conclude the proof by remarking that, for 2e7%/2 < r < 3e7/2, we have

Ehek/2pha 2k ,~C —ce; < exp (2(1 + %)210g2 r) log r < Eheb/2eto 2k OF
r

Corollary 4.4. Let o > 0 be a real number. Then,

(4.12) lim in Hv (CDO‘A'“ c1>‘“““) (£2)

> 2a0 1).
ey 1)

Proof. In view of the previous lemma, we have

|v (@5 - %) ()

> || (@5 - ) )

L2(R?) L2(Cr)

> |vesen)

— IV®)(t;
‘LQ(Ck) H o(f2)

o ol 1
ce2eCre 0z — (E +5)

‘ L2(Cy)

vV

and the conclusion follows.

Second Step: Approrimation
The end of the proof of Theorem 4.2 lies in the following technical lemmas.

Lemma 4.5. The solution &7 of (4.9) satisfies

ek

4.13 V3OUAR ()10 < o (1 4 th1/3 k)
(4.13) (V2 ()] 22 S \/E( )
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Proof of Lemma 4.5.
Write &, for @8"A’k and g for g 4. Clearly,

Ve, = (Vg itgk'(g)Vg)e KW = gm0,
V2c1>0 = (vgl _ itglK/(g)Vg> e K(9) .— gze—it}((g)7

Vo, = <V92 - itQQK/(Q)V9> e W) = ge K W),

SO
IVP®ll2 S IVgallie + oK' (9)Vyll 12,
S HV?’gHLz + tAl + t2A2 + tSAg,

where

Ay = |K'(9)V?Vgllre + | K (9)(V9)?|| 2

+ lgK" " (9)(V9)*|lz2 + 19K (9)VgV gl 2 + lgK " (9) V2| 2,

Ay = |(K'(9)*(V9)3 |z + 19K (9) K (9)(V9)?[| 2 + l9(K"(9))*V?gV gl 12,

As = |9(K'(9))*(V9)*| 12
Now,

IV3l2: < / VO Py + Lo,
Zek/2<|y|<20y(A)

1 2@ g

< —/ —T+l.o.t,
k %e—k/z rd
2k

< &

~ ok

On the other hand
19K () (Va2 < / g% |V gl dy

1 [2v(4)

k7 8 o—k/2

dr

log® r ¢ (1T%)*1og®r — +lot
r

N

The next lemma states the energy and Strichartz estimates for NLS with small
dispersion coefficient v.
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Lemma 4.6. Let vy be a function in H'(R?) and F € L'(R, H(R?)). Denote by v
the solution of the inhomogeneous linear Schrodinger equation

0w +1° Ay = F(t,y)

with initial data u(0,y) = vo(y).
Then, a constant C' exists such that for any T > 0, we have

1/2

1 1
VUl s (r2) + ;||U||L§>9(L2) T v vllaery S Vvollrz + ;||U0||L2

1
(4.14) + [IVFLy 22 + ;HFHLlT(L?)'

This lemma can be obtain from the standard Strichartz estimates through an
obvious scaling. It can be seen as a semiclassical Strichartz estimate which permits
an extension of the approximation time. Also, this lemma plays a role in the NLS
analysis that is played by finite propagation speed in the corresponding NLW ar-
guments. Now we are ready to end the proof of Theorem 4.2. For this purpose,
denote (for simplicity) by w := ® — &, where @ is given by (4.10) and ® solves the
problem

(4.15) {iat‘b(t?y) + 17 8,0(1y) = f(D(t.y)),
®(0,y) = 9(y)-
Set
def
Mo(w,t) = [lwlre(oaiz2)
def 1
M1<w>t> = HVWHL"O(([O,t};L?) + ;HwHL‘”(([O,t];L?) + V1/2Hw||L4(([0,t];(f1/2)

We will prove the following result.

ek

Lemma 4.7. For tj = e and k large, we have
(4.16) Moy(w,t5) < e %2 132,

(4.17) My (w,t5) < v
Proof of Lemma 4.7. Since w solves
0w + v Ayw = f(Pg +w) — f(Pg) — v* APy, w(0,y) =0,
then using the L? energy estimate, we have
Mo(w, t) < v I(t) + v 14(t),

where we set

1
L(t): = > 1f (Do +w) — f(Po)llz1((0,0:22)5

[4(15)2 = UV ||v2(1)0||L1(([0’t];L2).
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Note that we have the following
1(£(@0 +w) = F@) (e S ot ez (@0 + w) (1, ) 7 (B 0
bt e,
Integrating in time we have
t
s w) (8,12 0o

H (f(q)o + w) — f(q)O))<t7 ')”Ll([[),T],LQ) S / Mo('w, 8) (H ((I)Q + ’U)) (S, )”%oo 64 ||(<I>0+ )( s )“L

0

s, ) et ) s

Using Lemma 4.5 and the following simple fact

m/2
(4.18) sup <93m e‘”Q) = (Qﬂ) e meN, y>0,
>0 g

we deduce that
¢
(4.19) Mo(w, t) < ho(t) +/ Ao(s)My(w, s)ds,
0

where we set

¢
ho(t) = v* ek/2/ (1 + skek)? ds <t eP2(1 + (tke®)?),
0

Ag(s) = k AR (P0+0) ()13 | g, Ar(1+1/) s,

Applying the logarithmic inequality (1.11) ( for A = %) and using the fact that
Mi(w,t) S V2 we obtain
AO(S) S, kek (C+ V*1/2 ||w||01/2)451(k) +k (C+ V71/2 HwH01/2)452(k)

where

5 (k) =1+ 1/k) (v +v"*VEk) and (k) = (1+1/k)v.

Now, using Holder inequality in time we deduce that

t 461 (k)
/ Ao(s)ds < keb t1m0®) <t1/4 + 712 HU}HL;l(Cl/2)> 1
0

4(52(]6)
+ kR0 (t1/4 12 ||w||L§(Cl/2)>

w (e 1\ / w (e 1\
Vv N



24 J. Colliander et al./ Energy Critical NLS

It is easy to see that for ¢t ~ 7,
t
/ Ao(s)ds < eV
0

Hence, by Gronwall’s lemma

Mo(w, ) ho(£5) exp(CeVk)

~Y

< R emh2 % (1+ &% k)exp (C’a\/_ — ;/_j>

S U3/2 efk/Q

provided that ¢ < 4.
Similarly we proceed for M;. According to Lemma 4.6, we have

Mi(w,t) S Ii(t) + Ia(t) + I3(t) + Lu(t),
where in addition we set

Li(t): = |IV(f(®o+w) = f(Po))llL1((0,:22)

and
L(t): = v [[V2®ollL(o:L2)-
Note that

2
IV (f(®o+w) — f(Dy)) HL% S ||w|’Lg\|VCI>O|\LgO (”CI)OHL;o Aol oo

T T

x
+ Jwlze e‘”“w”igo)
x

+ ||VUJHL92€ ||CI)0 + w”%go e47r||<130+w||ig%O

+ ||vaL2€4ﬂ-“q>D+wH2Lg°'
xT

Arguing as before, we have

(4.20) Mi(w,t) < hy(t) +%/Ot A0<S)M0(w,8)d8+/0t Aq(s)My(w, s)ds

+ /Ot Ao(s) M (w, 5)ds

with in addition
k

(& 3
h(t) = vIIV3®lLirz) S NG (1 4tk )",

A(s) = VEPA sk ef) (b + Vi APl
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Here we used the Poincaré inequality and (4.18). Now we return to M;(w,t) for
which we have to prove (4.17). Using Lemma 4.5, (4.16) and Logarithmic inequality,

we get for ¢ ~ ],
5 e
it S v—- (1+—%=
w0 5 vg (v ),

1 t
— / Moy(w,s) Ag(s) ds < e 212 e Vi,
v-Jo

t
/ My(w,s) Ai(s)ds < v¥%eck (1+¢eVk).
0
Gronwall’s lemma yields
Mi(w,t) < v'? <V1/2 +evke ek (1+ 5\/%)) exp(CeVk) < v1/?

provided that € < <. This completes the proof of Lemma 4.7 [ |

Finally, a comparison of (4.11) with the approximation bounds (4.16), (4.17)
implies (4.8). This completes the proof of Theorem 4.2.
|
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