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Abstract
Systems coupling fluids and polymers are of great interest in many branches of sciences.

One of the most classical models to describe them is the FENE (Finite Extensible Nonlinear
Elastic) dumbbell model. We prove global existence of weak solutions to the FENE dumbbell
model of polymeric flows. The main difficulty is the passage to the limit in a nonlinear
term that has no obvious compactness properties. The proof uses many weak convergence
techniques. In particular it is based on the control of the propagation of strong convergence
of some well chosen quantity by studying a transport equation for its defect measure. In
addition, this quantity controls a rescaled defect measure of the gradient of the velocity.

1. introduction

Systems coupling fluids and polymers are of great interest in many branches of applied
physics, chemistry and biology. They are of course used in many industrial and medical
applications such as food processing, blood flows... Although a polymer molecule may be
a very complicated object, there are simple theories to model it. One of these models is
the FENE (Finite Extensible Nonlinear Elastic) dumbbell model. In this model, a polymer
is idealized as an “elastic dumbbell” consisting of two “beads” joined by a spring, which
can be represented by a vector R (see Bird, Curtis, Amstrong and Hassager [11, 12], Doi
and Edwards [27] for some physical introduction to the model, Ottinger [74] for a more
mathematical treatment (in particular the stochastic point of view) and Owens and Phillips
[76] for the computational aspect). In the FENE model (1), the polymer elongation R cannot
exceed a limit R0. This yields some nice mathematical problems near the boundary, namely
when |R| approaches R0. At the level of the polymeric liquid, we get a system coupling the
Navier-Stokes equation for the fluid velocity with a Fokker-Planck equation describing the
evolution of the polymer density. This density depends on t, x and R. The coupling comes
from an extra stress term in the fluid equation due to the microscopic effect of the polymer
molecules. This is the micro-macro interaction. There is also a drift term in the Fokker-Planck
equation that depends on the spatial gradient of the velocity. This is a macro-micro term.
The coupling satisfies the fact that the free-energy dissipates, which is important from the
physical point of view. Mathematically, this is also important in order to get uniform bounds
and hence prove global existence of weak solutions.

The system obtained attempts to describe the behavior of this complex mixture of polymer
molecules and fluid, and as such, it presents numerous challenges, simultaneously at the
level of their derivation [22], the level of their numerical simulation [76, 46], the level of
their physical properties (rheology) and that of their mathematical treatment (see references
below). In this paper we concentrate on the mathematical treatment and more precisely the
global existence of weak solutions to the FENE dumbbell model (1). These solutions are the
generalization of the Leray weak solutions [55, 54] of the incompressible Navier-Stokes system
to the FENE model. The method of proof has some similarities with the proof of global
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existence of renormalized solutions to the Boltzmann equation [25] and to the proof of global
existence of weak solutions to the compressible Navier-Stokes system [61, 31].

An approximate closure of the linear Fokker-Planck equation reduces the description to
a closed viscoelastic equation for the extra stress tensor. This leads to well-known non-
Newtonian fluid models such as the Oldroyd B model or the FENE-P model (see for instance
[28, 22]). These models have been studied extensively. Guillopé and Saut [38, 39] proved
the existence of local strong solutions, Fernández-Cara, Guillén and Ortega [33], [32] and
[34] proved local well posedness in Sobolev spaces. In Chemin and Masmoudi [14], local
and global well-posedness in critical Besov spaces were given. For global existence of weak
solutions, we refer to Lions and Masmoudi [63]. We also mention Lin, Liu and Zhang [57]
where a formulation based on the deformation tensor is used to study the Oldroyd-B model.
Global existence for small data was proved in [53, 51] and some non-blow-up criteria were
given in [52, 72].

At the micro-macro level, there are also several contributions. Indeed, from the mathe-
matical point of view, the FENE model and some simplifications of it were studied by several
authors. In particular Renardy [77] proved the local existence in Sobolev spaces, where the
potential U is given by U(R) = (1 − |R|2)1−σ for some σ > 1. W. E, Li and Zhang [29]
proved local existence when R is taken in the whole space and under some growth condition
on the potential. Also, Jourdain, Lelievre and Le Bris [45] proved local existence in the case
b = 2k > 6 for a Couette flow by solving a stochastic differential equation (see also [43] for the
use of entropy inequality methods to prove exponential convergence to equilibrium). Zhang
and Zhang [82] proved local well-posedness for the FENE model when b > 76. Local well-
posedness was also proved in [68] when b = 2k > 0 (see also [48]). One of the main ingredients
of [68] is the use of Hardy type inequalities to control the extra stress tensor by the H1 norm
in R which comes from the diffusion in R. In particular no regularity in R is necessary for
the initial data. Moreover, Lin, Liu and Zhang [58] proved global existence near equilibrium
under some restrictions on the potential (see also the related work [51]). Recently many other
works have dealt with different aspects of the system. In particular the problem in a thin film
was considered in [15], the problem of the long time behavior was considered in [79, 42, 4],
the problem of global existence of smooth solutions in 2D for some simplified models (when
there is a bound on τ in L∞) was considered in [18, 59, 19, 72], the problem of non-blow-up
was considered in [52], the stationary problem was considered in [15, 16], and the study of the
boundary condition on ∂B was considered in [67, 66].

More related to this paper, the construction of global weak solutions for simplified (or
regularized) models was considered in [6, 7, 8, 83, 79]. These papers dealt with the case
when the system is regularized by introducing a smoothing operator in certain terms or by a
microscopic cut-off in the drag term in the Fokker-Planck equation.

The existence and equilibration of global weak solutions to FENE-type models with center-
of-mass diffusion was established in [9], and for Hookean-type models with center-of-mass
diffusion in [10]. The case of the co-rotational model was considered in [65]. The co-rotational
model preserves some of the compactness difficulties of the full model. It also allows one to
get more integrability on ψ, which makes the compactness analysis simpler.

We end this introduction by mentioning other micro-macro models. Indeed, a principle
based on an energy dissipation balance was proposed in [17], where the regularity of nonlinear
Fokker-Planck systems coupled with Stokes equations in 3D was also proved. In particular
the Doi model (or Rigid model) was considered in [75] where the linear Fokker-Planck system
is coupled with a stationary Stokes equations. The nonlinear Fokker-Planck equation driven
by a time averaged Navier-Stokes system in 2D was studied in [18] (see also [19]). Recently,
there have been several review papers dealing with different mathematical aspects of these
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models [78, 56, 50]. In particular we refer to [50] for an exhaustive list of references dealing
with the numerical point of view.

1.1. The FENE model. A macro-molecule is idealized as an “elastic dumbbell” consisting
of two “beads” joined by a spring, which can be modeled by a vector R (see [12]). Before
writing our main system (1), let us discuss the main physical assumptions that lead to it:

• The polymer molecules are described by their density at each time t, position x and
elongation R. This is a kinetic description of the polymer molecules.
• The inertia of the polymer molecules is neglected and hence the sum of the forces

applied on each polymer vanishes. We refer to [23] where inertia is taken into account
and where the limit m going to zero it studied, m being the mass of the beads.
• The polymer solution is supposed to be dilute and hence the interaction between

different polymers is neglected. This is why we get a linear Fokker-Planck equation.
Let us also mention that there are models for polymer melts such as the reptation
model (see for instance [74]).
• The polymer molecule is described by one vector R in B(0, R0). Let us mention that

there are models where each polymer molecule is described by one vector R such that
|R| = 1 (the rigid case, see [19]) or by K vectors Ri, 1 ≤ i ≤ K (the bead-spring chain
model, see [9]). Usually the difference between these models comes from the length of
the polymer molecules as well as their electric properties.
• In the Fokker-Planck equation an upper-convected derivative is used. This can be seen

as the most physical one. Other used derivatives are the lower-convected and the co-
rotational ones (see [11, 12]). The co-rotational one has the mathematical advantage
that one has better a priori estimates (see [65]).
• We neglect the diffusion in x in the Fokker-Planck equation, namely the center-of-mass

diffusion. Indeed, this diffusion is much smaller than the diffusion in R. Actually, its
presence makes the mathematical problem simpler.

Under these assumptions, the micro-macro approach consists in writing a coupled multi-
scale system :

(1)



∂tu+ (u · ∇)u− ν∆u+∇p = divτ, divu = 0,

∂tψ + u.∇ψ = divR
[
−∇uRψ + β∇ψ +∇Uψ

]
τij(ψ) =

∫
B(Ri∇jU)ψ(t, x,R)dR (∇Uψ + β∇ψ).n = 0 on ∂B(0, R0).

In (1), ψ(t, x,R) denotes the distribution function for the internal configuration and F (R) =
∇RU is the spring force, which derives from a potential U and U(R) = −klog(1− |R|2/|R0|2)
for some constant k > 0. Moreover, τ(ψ) is the extra stress tensor coming from the effect of
the polymers on the fluid. It is given by the Kramers expression. Besides, β is related to the
temperature of the system and ν > 0 is the viscosity of the fluid.

Here, R is in a bounded open ball B(0, R0) of radius R0; which means that the extensibility
of the polymer molecules is finite and x ∈ Ω where Ω is a smooth bounded domain of RD

where D ≥ 2 or Ω = TD or Ω = RD. In the case when Ω has a boundary, we add the Dirichlet
boundary condition u = 0 on ∂Ω. We also have to add a boundary condition to insure the
conservation of ψ, namely (−∇uRψ+∇Uψ+ β∇ψ).n = 0 on ∂B(0, R0) where n = R

R0
is the

exterior normal vector to B(0, R0). This condition is actually implied by

(2) (∇Uψ + β∇ψ).n = 0 on ∂B(0, R0)
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as we will see later. The reason is that (2) combined with the fact that
√

ψ
ψ∞
∈ H1

k (see the
definition in (14)) implies necessarily that ψ has to vanish on ∂B(0, R0). The boundary con-
dition on ∂B(0, R0) insures the conservation of the polymer density and should be understood
in the weak sense, namely for any function φ(R) ∈ C1(B), we have

(3) ∂t

∫
B
φψdR+ u.∇x

∫
B
φψdR = −

∫
B
∇Rφ.

[
−∇uRψ + β∇ψ +∇Uψ

]
dR.

In particular, if we take φ(R) = 1, we deduce that
∫
B ψdR is transported by u, namely

∂t
∫
B ψdR+ u.∇x

∫
B ψdR = 0. In the sequel, we will take β = 1 and R0 = 1.

When performing numerical simulation on the FENE model, it is usually better to think
of the distribution function ψ as the density of a random variable R, which solves (see [74])

(4) dR+ u.∇Rdt = (∇uR−∇RU(R))dt+
√

2dWt

where the stochastic process Wt is the standard Brownian motion in RD and the additional
stress tensor is given by the following expectation τij = E(Ri ∇jU). Of course, we may need
to add a boundary condition for (4) if R reaches the boundary of B. This is done by requiring
that R stays in B (see [44]). Using this stochastic formulation has the advantage of replacing
the second equation of (2.1), which has 2D + 1 variables by (4). Of course one has to solve
(4) several times to get the expectation τ , which is the only information needed in the fluid
equation. This strategy was used for instance by Keunings [47] (see also [35]) and by Öttinger
[74] (see also [37]).

We would like to explain (at least formally for now) why (2) implies that ψ = 0 on ∂B(0, R0).
Indeed, if we assume that ψ(R) behaves like c( R

|R|) + b( R
|R|)(1− |R|)

α + o((1− |R|)α) for some
α > 0 when R approaches ∂B(0, 1) then, (2) becomes

(5) lim
|R|→1

2k(c+ b(1− |R|)α)
1− |R|2

− bα(1− |R|)α−1 = 0.

Hence, necessarily, c = 0 and α = k or α > 1. Of course, to make this argument rigorous, one
has to put ψ in some function space that comes from our notion of weak solution. As we can de-
duce from the first statement in Lemma 3.2, the fact that

√
ψ
ψ∞
∈ L2(R+;L2(Ω; Ḣ1

R(ψ∞dR)))

and ψ ∈ L∞(R+;L1(Ω×B)) implies that ψ vanishes when |R| goes to 1 (see also Corollary 3.5
for a more precise behavior of ψ and subsection B.1 for more about the boundary condition).

2. Statement of the results

This paper is devoted to the proof of global existence of free-energy weak solutions to
the FENE model. The main difficulty of the construction is the passage to the limit in the
nonlinear term ∇unψn when looking at regularized systems. Indeed, we only have a uniform
bound on ∇un in L2((0, T ) × Ω) and ψn in L∞((0, T ) × Ω;L1(B)) for all T > 0 and so
assuming that un and ψn converge weakly to u and ψ, it is not clear how to deduce that
∇unψn converges weakly to ∇uψ.

Before mentioning our main result, let us recall that the construction of global weak solu-
tions to simplified (or regularized) models was considered in [6, 7, 8, 79, 65, 83]. In particular
in [6], Barrett, Schwab and Süli prove global existence of weak solution with an x−mollified
gradient in the Fokker-Planck equation and an x−mollified probability density function ψ in
the Kramers expression. In [7], the velocity field was mollified (with an anisotropic Friedrichs
mollifier) in certain terms in the model. In [8], a “microscopic” cut-off function was inserted
in the drag term in the Fokker-Planck equation.

Recently, Barrett and Süli [9] extended their results to the case of bead-spring chain models
where each polymer is described by K springs Ri, 1 ≤ i ≤ K, with center-of-mass diffusion
(diffusion in the x variable). Mathematically, the diffusion in the x variable yields a bound
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on ∇x
√
ψ in L2((0, T ) × Ω × B). But, since the space of functions ψ such that ψ ≥ 0 and

∇x
√
ψ is in L2((0, T )× Ω×B) is not a linear space, the Lions-Aubin lemma does not apply

in the passage to the limit in the product ∇unψn. The authors of [9] used a more general
compactness result due to Dubinskii to pass to the limit. Let us note that this extra diffusion
term is physically justifiable but it is much smaller than the diffusion in the R variable and
this is why we did not include it here.

Also, in [65], the co-rotational model was considered. It allowed us to get additional a
priori estimates on ψn, namely one can show that ψn belongs to all Lp spaces. An argument
based on propagation of compactness similar to the one used in [63] allowed us to prove the
existence of global weak solutions.

Here, we consider the noncorotational FENE model without center-of-mass diffusion. The
system (1) has to be complemented with initial data u(t = 0) = u0 and ψ(t = 0) = ψ0.

Notice that (u = 0, ψ∞), where ψ∞ is given by

(6) ψ∞(R) =
e−U(R)∫

B e
−U(R′)dR′

,

defines a stationary solution of (1). To state our result, we first impose some conditions on the
initial data. We take u0(x) ∈ L2(Ω), div(u0) = 0, u0.n = 0 on ∂Ω and ψ0(x,R) ≥ 0 such that
ρ0(x) =

∫
ψ0dR ∈ L∞(Ω). Here ρ0(x) is the initial density of polymer molecules at the posi-

tion x. We also assume the following entropy bound : ψ0

ρ0ψ∞
∈ L logL(Ω×B, dxρ0(x)ψ∞dR))

where

(7) ‖ ψ0

ρ0ψ∞
‖L logL(Ω×B,ρ0(x)ψ∞dRdx) =

∫ ∫
Ω×B

(
ψ0

ρ0ψ∞
log

ψ0

ρ0ψ∞
− ψ0

ρ0ψ∞
+ 1)ρ0(x)ψ∞dRdx.

Finally, we also assume the following L1/2
x L log2 L bound, that we will call “log2” bound:

(8)
∫

Ω

∫
B ψ0 log2 ψ0

ρ0ψ∞
dR

1 +
[∫
B ψ0 log2 ψ0

ρ0ψ∞
dR
]1/2

dx <∞.

Another way of writing (8) is to say that
∫

Ω φ1(
∫
B ψ0 log2 ψ0

ρ0ψ∞
dR) < ∞ where φ1(s) =

min(
√
s, s). Notice that interpolating (8) with the L∞ bound on ρ0, we can deduce the

L logL bound (7).

2.1. Notion of weak solutions. Let us now define precisely the notion of weak solution
(or just solution) (u, ψ) to (1). We require that u ∈ L2(R+; Ḣ1(Ω)) (H1

0 (Ω) in the case of a
bounded domain with a Dirichlet boundary condition), u ∈ L∞(R+;L2(Ω))∩C([0,∞);L2

w(Ω))
where L2

w(Ω) is the L2 space endowed with its weak topology. We also require that ψ ≥ 0,
ψ

ρψ∞
∈ L∞(R+;L logL(Ω × B, dxρ(t, x)ψ∞dR))) where ρ(t, x) =

∫
B ψdR ∈ L∞(R+ × Ω).

Moreover, ψ ∈ C([0,∞);L1
w(K×B)) for any bounded subset K of Ω where L1

w(K×B) is the

space L1(K × B) endowed with its weak topology and
√

ψ
ψ∞
∈ L2(R+;L2(Ω; Ḣ1

R(ψ∞dR))).

One can then deduce from (35) that τ ∈ L2(R+ × Ω). We also require that the free energy
bound (50) holds with an inequality ≤ instead of the equality. Finally, (1) is understood in
the weak sense, namely for each v ∈ C∞([0,∞)× Ω; RD) compactly supported in [0,∞)× Ω
and such that div(v) = 0, we have

(9)
∫ ∞

0

∫
Ω
u.(∂tv + u.∇v)− ν∇u.∇v dxdt+

∫
Ω
v(t = 0).u0 dx =

∫ ∞
0

∫
Ω
τ : ∇v dxdt,

and for each φ ∈ C∞([0,∞)× Ω×B; R) compactly supported in [0,∞)× Ω×B, we have
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(10)

∫ ∞
0

∫
Ω

∫
B
ψ(∂tφ+ u.∇φ) dRdxdt+

∫
Ω

∫
B
φ(t = 0)ψ0 dRdx

=
∫ ∞

0

∫
Ω

∫
B

(−∇uRψ + ψ∞∇R
ψ

ψ∞
).∇RφdRdxdt.

Of course in view of classical density results (see Temam [81]), we can relax the condition
on the test function v. The same holds for (10) (see Appendix 2).

2.2. Main result. Now, we state our main result.

Theorem 2.1. Take a divergence-free field u0(x) ∈ L2(Ω) and ψ0(x,R) ≥ 0 such that ρ0(x) =∫
ψ0dR ∈ L∞(Ω) and (7) and (8) hold. Then, (1) has a global weak solution (u, ψ) in the sense

of Subsection 2.1, namely u ∈ L∞(R+;L2) ∩ L2(R+; Ḣ1), ψ ∈ C([0,∞);L1
w(K ×B)) for any

bounded subset K of Ω, ψ
ρψ∞

∈ L∞(R+;L logL(Ω×B, dxρ(x)ψ∞dR))) where ρ(x) =
∫
B ψdR

and
√

ψ
ψ∞
∈ L2(R+;L2(Ω; Ḣ1

R(ψ∞dR))) and (50) holds with an inequality ≤ instead of the
equality. Moreover, (57) holds (with Ω replaced by any compact K of Ω in the whole space
case).

Remark 2.2. 1) Of course u and ψ have also some time regularity in some negative Sobolev
spaces in x and R. This allows to give a sense to the initial data (see [63] for more details)
and one can then prove the continuity in time of u and ψ in L2

w(Ω) and in L1
w(K × B).

In the definition of weak solutions, we only required that ψ ∈ C([0,∞);L1
w(K × B)) for

any bounded subset K of Ω. Actually, using an argument similar to the one in Proposition
4.3 of [31] and Corollary B.7, we can prove that the solution we are constructing satisfies
ψ ∈ C([0,∞);L1(K ×B)) (see [70] for more details).

2) By f ∈ L logL(Ω×B, dxρ(x)ψ∞dR) we mean that
∫

Ω

∫
B(f log f −f + 1)ρ(x)ψ∞dRdx <

∞. Notice that (7) does not really define a norm. One can of course define a norm using
Orlicz spaces. However, we do not need to do that here.

3) If the domain Ω has finite measure (bounded domain or torus) then, the extra bound (8)

reduces to
∫

Ω

[∫
B ψ0 log2 ψ0

ρ0ψ∞
dR
]1/2

dx <∞. This extra bound (8) on the initial data allows
us to prove the extra bound (57) on the solution. This is useful for two reasons. The first one
is that it yields some sort of equi-integrability of the extra stress tensor (see the proof of Lemma
5.1). Actually, one can still prove Lemma 5.1 without the extra bound (57). Indeed, using de
la Vallée-Poussin Theorem, we can deduce from (7) that there exists an increasing function Φ
such that Φ(t)

t goes to infinity when t goes to infinity and such that Φ( ψ0

ρ0ψ∞
log ψ0

ρ0ψ∞
− ψ0

ρ0ψ∞
+1)

is in L1(Ω×B, dxρ0(x)ψ∞dR). One can then prove an estimate similar to (57) by replacing
log2 by Φ(log). We do not detail this here. The second reason is that the control on ∇Rg
we get from (59) is crucial in the Gronwall argument in subsection 5.5 and it seems that this
argument does not hold if we just replace log2 by Φ(log).

Of course this is a very mild extra assumption. Actually, it is related to the fact that
the Fokker-Planck equation (without the coupling) satisfies much stronger a priori estimates.
Adding the term divR(−∇uRψ) destroys these estimates. However, one can still get a very
mild estimate in the R variable that is crucial in the rest of the proof. Besides, even if one
does not assume (8) initially, using the regularizing effect of the diffusion in the R variable we
deduce that (8) holds for t > 0. Moreover, due to the local character of the weak compactness
proof, the assumption (57) can be weakened by assuming the bound to hold locally in space,

namely
∫
K

[∫
B ψ0 log2 ψ0

ρ0ψ∞
dR
]1/2

dx <∞ for any compact set K of Ω.
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4) For simplicity of the presentation, the proof will be given in the case when ρ0(x) is
constant, equal to 1, and Ω has finite measure. We will also indicate the necessary changes
required in the general case.

The paper is organized as follows. In the next section, we give some preliminaries where
in particular we prove some Hardy type inequalities. In Section 4, we derive some a priori
estimates for the full model (1). In particular we recall the free energy estimate as well as a
new “log2” a priori estimate, which is very natural and comes from the initial bound (8). In
Section 5, we prove the main theorem 2.1. As is classical when proving global existence of
weak solutions, the main part of the proof is the proof of the weak compactness of a sequence
of global solutions satisfying the a priori estimates and we will only detail this part of the
proof. In Section 6, we present one way of approximating the system. In Section 7 we present
some concluding remarks and open problems. In Appendix A, we recall few facts about
DiPerna-Lions flows and in Appendix B, we prove few results about the linear operator L.

3. Preliminaries

3.1. Notations and conventions. In this article ∇u will denote the matrix (∇u)i,j = ∂ui
∂xj

.
Many other authors in the non-Newtonian fluid mechanics literature use the alternative con-
vention. The product of two matrices A and B will be denoted by AB and the identity
matrix will be denoted by Id. For any two matrices A and B, A : B will denote the trace
of the matrix AB, namely A : B = tr(AB) =

∑D
i,j=1AijBij = AijBij . Here and below,

we use the summation convention over repeated indices and hence
∑D

i,j=1 will be omitted
in many sums. For any two vectors R and Q, R ⊗ Q will denote the matrix whose entries
are given by (R ⊗ Q)ij = RiQj . In particular the definition of τ in (1) can be written as
τ(ψ) =

∫
B(R⊗∇U)ψ(t, x,R)dR . Also, when no confusion can occur we will use ∇ to denote

the gradient of a function. In particular ∇u denotes the gradient of u with respect to the
x variable and ∇U denotes the gradient of U with respect to the R variable. For functions
that depend on x and R, we will denote the gradient with respect to R by ∇Rψ. For any two
distributions u1 and u2 ∈ D′, defined on some domain ω, we will say that u1 ≤ u2 provided
that 〈u2 − u1, φ〉D′×C∞0 ≥ 0 for all nonnegative test functions φ ∈ C∞0 where here 〈., .〉D′×C∞0
denotes the duality bracket between D′ and C∞0 . Also, we will denote by 〈., .〉M×C the duality
bracket betweenM and C, namely the space of Radon measures and the space of continuous
functions. We will sometimes abuse the notation and write

∫
uφ instead of 〈u, φ〉D′×C∞0 . The

notation a . b means that there exists a universal positive constant C such that a ≤ Cb.
In a few formulas, we will omit the variable of integration if no confusion can occur, as

in (53) for example. C will denote any positive constant that may change from one line to
the other, C0 will denote a constant that depends on the initial data and CT a constant that
depends on the initial data and the time T .

For k ∈ R and p ≥ 1, we define the weighted Lebesgue and Sobolev spaces Lpk and W 1,p
k

and their norms by

(11) Lpk = {g |
∫ 1

0
xk |g|p dx <∞} and ‖g‖p

Lpk
=
∫ 1

0
xk |g|p dx,

(12) W 1,p
k = {g ∈ Lpk |

∫ 1

0
xk |g′|p dx <∞} and ‖g‖p

W 1,p
k

=
∫ 1

0
xk [|g|p + |g′|p] dx.

We will mainly be working with the Hilbert spaces L2
k and H1

k = W 1,2
k . Also, we denote

‖g‖2
Ḣ1
k

=
∫ 1

0 x
k [g′2] dx. Finally, notice that Lpk1 ⊂ L

p
k2

if k1 ≤ k2.
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We also define the higher dimensional versions of these spaces: for k > 0 and ψ∞ defined
in (6), namely behaving like (1− |R|)k when |R| goes to 1,

(13) Lpk = {g |
∫
B
ψ∞ |g|p dR <∞} and ‖g‖pLpk =

∫
B
ψ∞ |g|p dR,

(14) W1,p
k = {g ∈ Lpk |

∫
B
ψ∞ |∇g|p dx <∞} and ‖g‖p

W1,p
k

=
∫
B
ψ∞ [|g|p + |∇g|p] dR.

Also, we denote ‖g‖p
Ẇ1,p
k

=
∫
B ψ∞ |∇g|

p dR and H1
k = W1,2

k . We will also use the notation

Lpk = Lp(ψ∞dR).

3.2. Hardy type inequalities. The dissipation term in the free energy estimate (50) mea-
sures the distance between ψ and the equilibrium ψ∞. We would like to use that bound to
control the extra stress tensor in L2. This will be done using an inequality of Hardy type [40].
First, we recall the classical weighted Hardy inequality [49, 41].

Lemma 3.1. i) Assume that g ∈ H1
k . Then the following hold:

1) If k > 1, then g ∈ L2
k−2 and ‖g‖L2

k−2
≤ C‖g‖H1

k
.

2) If k = 1, then we have

(15)
∫ 1

0

g2

x(1 + | log x|)2
dx ≤ C‖g‖2H1

k
.

3) If k < 1, then g has a trace at x = 0. Moreover, we have ‖g − g(0)‖L2
k−2
≤ C‖g‖H1

k
.

ii) We also have the following Lp version of 1), namely, if k > p − 1 > 0 and g ∈ W 1,p
k

then g ∈ Lpk−2 and ‖g‖Lpk−2
≤ C‖g‖

W 1,p
k

.

Proof. The proof of this lemma is classical and can be easily deduced from the change of
variables we do in the proof of the next lemma. Let us only mention that in the case k = 1,
by the change of variable y = − log(x) and h(y) = g(x), (15) is equivalent to

(16)
∫ ∞

0

h2

(1 + y)2
dy ≤ C

∫ ∞
1

[(h′(y)2 + e−2yh(y)2]dy

which can be easily deduced from the classical Hardy inequality. Notice that there is no
condition on the function h at y = 0 since we are dividing by (1 + y)2. �

Lemma 3.2. i) For k > 0; take ψ ∈ L1(0, 1) such that ψ ≥ 0 and
√

ψ
xk
∈ H1

k , then ψ(x) goes
to 0 when x goes to 0.

ii) If in addition k > 1, then we have

(17)
∫ 1

0

ψ

x2
dx ≤ C

∫ 1

0

xk ∣∣∣∣∣
(√

ψ

xk

)′∣∣∣∣∣
2

+ ψ

 dx.
iii) For k > 0, we have

(18)
(∫ 1

0

ψ

x
dx

)2

≤ C
(∫ 1

0
ψdx

) (∫ 1

0

[
xk|

(√
ψ

xk

)′
|2 + ψ

]
dx

)
.

For −1 ≤ β < k ≤ 1, we have

(19)
(∫ 1

0

ψ

x1+β
dx

)
≤ C

(∫ 1

0
ψdx

) 1−β
2

(∫ 1

0

[
xk|

(√
ψ

xk

)′
|2 + ψ

]
dx

) 1+β
2
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and more generally for all γ ≥ 0, if we assume in addition that
∫ 1

0 ψ log
2γ

1−β
(
C+ ψ

xk

)
dx <∞,

then

(20)

∫ 1

0

ψ logγ
(
C + ψ

xk

)
x1+β

dx


≤ C

(∫ 1

0
ψ log

2γ
1−β

(
C +

ψ

xk

)
dx

) 1−β
2

(∫ 1

0

[
xk|

(√
ψ

xk

)′
|2 + ψ

]
dx

) 1+β
2

.

Remark 3.3. Before giving the proof, let us mention that this lemma should be compared to
the results of Section 3.2 of [68]. In particular Proposition 3.1 there was used to control the
extra stress tensor. However, the main difference is that the results of Section 3.2 of [68] are
derived in an L2 framework since we were dealing with strong solutions there, whereas the
results of Lemma 3.2 here are in an L1 frame work since we only have control on the free
energy and its dissipation.

Proof. Inequality (17) for k > 1 is just Hardy’s inequality. Notice that there is no requirement
on the boundary data since k > 1. To prove it, we perform the change of variable y = x1−k,

namely xk = y−α and α = k
k−1 > 1. We also define h(y) = g(x) =

√
ψ(x)
xk

. Notice that the
assumptions on ψ mean that g ∈ H1

k . Hence, to prove (17), it is enough to prove that

(21)
∫ ∞

1

h2

y2
dy ≤ C

∫ ∞
1

[
h′(y)2 +

h2

y2α

]
dy.

Let us explain how we get the term
∫∞

1 h′(y)2dy:

∂

∂x

(√
ψ

xk

)
=
∂y

∂x

∂h

∂y
= (1− k)x−k

∂h

∂y
.

Also, dy = (1− k)dx
xk

which yields dx = xk

1−kdy. Hence,

(22)
∫ 1

0
xk

∣∣∣∣∣
(√

ψ

xk

)′∣∣∣∣∣
2

dx = (k − 1)
∫ ∞

1
h′(y)2dy.

To prove (21), we integrate by parts in∫ A

1

hh′

y
dy =

∫ A

1

h2

2y2
dy +

h(A)2

2A
− h(1)2

2

for each A > 1. The left-hand side is bounded by C(
∫ A

1
h2

y2
dy)1/2 (

∫ A
1 h′(y)2dy)1/2. To bound,

h(1)2 by the right-hand side of (21), we use that h(y) ≤ C√y since
∫∞

1 h′(y)2dy <∞. Hence,
h2

yα goes to zero when y goes to infinity. This yields that

h2(1) = −
∫ ∞

1

(
h2

yα

)′
dy = −

∫ ∞
1

[
2
h

yα
h′ − α h2

yα+1

]
dy

which is controlled by the right-hand side of (21) using the Cauchy-Schwarz inequality and
the fact that α > 1. Letting A go to infinity, we see that (21) holds. Also, the fact that
h2

yα goes to 0 when y goes to infinity is equivalent to the fact that ψ(x) goes to 0 when x

goes to 0. Actually, one can even get a more precise statement regarding the behavior of
ψ when x goes to zero. Indeed, writing h(y) = h(A) +

∫ y
A h
′(z)dz, we see that for each

ε > 0, there exists a constant Cε such that h(y) ≤ Cε + ε
√
y, hence, g(x) ≤ Cε + εx

1−k
2 and
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ψ(x) = xkh2(y) ≤ Cεxk + εx. Therefore ψ(x)
x goes to 0 when x goes to 0 and i) follows in this

case. The proof of (18) when k > 1 follows by the Cauchy-Schwarz inequality.
In the case 0 < k < 1, (17) only holds if we add a vanishing boundary condition at x = 0

(see Lemma 3.1). Nevertheless, we can still prove that (18) holds without any extra condition.

Indeed, making the change of variable y = x1−k and denoting h(y) =
√

ψ(x)
xk

, we see that (18)
is equivalent to

(23)
(∫ 1

0
yα−1h2dy

)2

≤ C
(∫ 1

0
y2αh2 dy

) (∫ 1

0
[h′(y)2 + y2αh2]dy

)
where α = k

1−k . Notice, here that (22) becomes

(24)
∫ 1

0
xk

∣∣∣∣∣
(√

ψ

xk

)′∣∣∣∣∣
2

dx = (1− k)
∫ 1

0
h′(y)2dy.

In particular the fact that
√

ψ
xk
∈ H1

k yields that
∫ 1

0 h
′(y)2dy is finite and hence h has a trace

at 0. Hence, ψ(x) = xkh2(y) goes to 0 when x goes to 0. More precisely, we see in this case
that there exists C such ψ(x) ≤ Cxk. To prove (23), we integrate by parts in∫ 1

0
yαh h′dy = −α

2

∫ 1

0
yα−1h2dy +

h2(1)
2

and notice that the left-hand side is bounded by
(∫ 1

0 y
2αh2dy

∫ 1
0 h
′(y)2dy

)1/2
using the

Cauchy-Schwarz inequality. Moreover, we have

h(1)2 =
∫ 1

0
(y2α+1h2)′dy =

∫ 1

0
[y2α+1hh′ + (2α+ 1)y2αh2]dy

≤ C

(∫ 1

0
y2αh2dy

∫ 1

0
[h′(y)2 + y2αh2]dy

)1/2

.(25)

Hence, (23) follows.
When k = 1, we make the change of variable y = − log x and hence (18) is equivalent to

(26)
(∫ ∞

0
e−yh2dy

)2

≤ C
(∫ ∞

0
e−2yh2 dy

) (∫ ∞
0

[h′(y)2 + e−2yh2]dy
)

and the proof of (26) can be done in a similar way as that of (23). Also, arguing as in the case
k > 1, for each ε > 0, there exists Cε such that h(y) ≤ Cε + ε

√
y. Hence, g(x) ≤ Cε + ε| log x|

and ψ(x) ≤ Cεx+ εx| log x|.
To prove (19), we first notice that if −1 ≤ β ≤ 0, then the inequality can be easily deduced

from (18) by interpolation. When β > 0, (19) is equivalent (in the case k < 1) to

(27)
(∫ 1

0
yαβ−1h2dy

)
≤ C

(∫ 1

0
y2αh2 dy

) 1−β
2
(∫ 1

0
[h′(y)2 + y2αh2]dy

) 1+β
2

where αβ = k−β
1−k and α = k

1−k . Applying (23) with α replaced by αβ, we get

(28)
(∫ 1

0
yαβ−1h2dy

)
≤ C

(∫ 1

0
y2αβh2 dy

)1/2 (∫ 1

0
[h′(y)2 + y2αh2]dy

)1/2

.
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Notice that we kept the exponent α in the last term instead of replacing it by αβ. Indeed,
the last integral comes from the estimate of h2(1) and we can keep α = k

1−k in (25). Now, we
can apply (28) replacing αβ − 1 by 2αβ and we get

(29)
(∫ 1

0
y2αβh2dy

)
≤ C

(∫ 1

0
y2(2αβ+1)h2 dy

)1/2 (∫ 1

0
[h′(y)2 + y2αh2]dy

)1/2

.

We can iterate this, replacing αβ−1 by 2αβ, 2(2αβ +1), ... in (28) till we get an index greater
than 2α = 2 k

1−k . Interpolating with the last inequality, yields (19).
In the case k = 1, (19) is equivalent to

(30)
(∫ ∞

0
e−(1−β)yh2dy

)
≤ C

(∫ ∞
0

e−2yh2 dy

) 1−β
2
(∫ ∞

0
[h′(y)2 + e−2yh2] dy

) 1+β
2

.

The proof of (30) is similar and is left to the reader.
For the proof of (20), we use that it is equivalent (in the case k < 1) to

(31)∫ 1

0
yαβ−1h2 logγ(h2)dy ≤ C

(∫ 1

0
y2αh2 log

2γ
1−β (h2) dy

) 1−β
2
(∫ 1

0
[h′(y)2 + y2αh2]dy

) 1+β
2

.

Again, one can prove (31) in the case β = 0 by an integration by parts similar to the one used
in (23). The case where −1 ≤ β ≤ 0 can be deduced by interpolation from the case β = 0
and the case 0 < β < k can be deduced by a bootstrap argument similar to the one used in
the proof of (19). �

Remark 3.4. 1) We can also state Lemma 3.2 in terms of the function g =
√

ψ
ψ∞

. In

particular, (18) becomes: if g ∈ H1
k , then

(32)
∣∣∣∣∫ 1

0
xk−1g2 dx

∣∣∣∣ ≤ ‖g‖1/2L2
k
‖g‖1/2

H1
k
.

This second formulation has the advantage that it does not require g to be nonnegative as can
be easily seen from the proof of Lemma 3.2.

2) Notice that in terms of scaling and when k = 1, inequality (18) and its version (26) writ-
ten in the y variable (as well as inequality (19) and its y version (30)) are scaling invariant.
However, this is not the case for inequality (15) and its y version (16).

Corollary 3.5. Under the assumptions of Lemma 3.2, we have the following, more precise,
bounds on ψ when x goes to zero

(33)


ψ(x) ≤ C‖

√
ψ
xk
‖2
H1
k
x and ψ(x) ≤ Cεxk + εx if k > 1,

ψ(x) ≤ C‖
√

ψ
xk
‖2
H1
k
x| log x| and ψ(x) ≤ Cεx+ εx| log x| if k = 1,

ψ(x) ≤ C‖
√

ψ
xk
‖2
H1
k
xk if k < 1,

where C is a constant that only depends on k and Cε is a constant that depends on ε > 0 and
on the function

√
ψ.

In terms of g =
√

ψ
xk

, we have

(34)


|g(x)| ≤ C‖g‖H1

k
x

1−k
2 and |g(x)| ≤ Cε + εx

1−k
2 if k > 1,

|g(x)| ≤ C‖g‖H1
k
| log x|1/2 and |g(x)| ≤ Cε + εx| log x|1/2 if k = 1,

|g(x)| ≤ C‖g‖H1
k

if k < 1.
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3.3. Control of the stress tensor. We recall that

ψ∞(R) =
e−U(R)∫

B e
−U(R′)dR′

=
(1− |R|2)k∫

B(1− |R′|2)k dR′
.

Hence, ψ∞(R) behaves like (1−|R|)k when |R| goes to 1. In particular we will apply a variant
of Lemma 3.2 with x = 1− |R|.

Corollary 3.6. There exists a constant C such that for ψ ≥ 0 and
√

ψ
ψ∞
∈ H1

k, we have the
following bound

(35) |τ(ψ)|2 ≤ C
(∫

B
ψdR

)∫
B

∣∣∣∣∣∇R
√

ψ

ψ∞

∣∣∣∣∣
2

ψ∞dR

 .
This Corollary can be seen as the L1 version of Proposition 3.1 of [68]. It will allow us to

control the extra stress tensor by the free energy dissipation.
To prove (35), we recall that since τ is given by the Kramers formula, we can write it as

τij(ψ) =
∫
B

(
ψ(R)
ψ∞

− a2

)
(Ri Rj)
1−R2

ψ∞dR

for any constant a2. Here, we take a such that
∫
B ψ∞(

√
ψ(R)
ψ∞
− a) dR = 0. Hence,

(36) |τ | ≤
∫
B

[
|g|2 + 2a |g|

] 1
1− |R|

ψ∞dR

where g =
√

ψ(R)
ψ∞
− a. Using (32) with x = 1 − |R|, we deduce that the first term on the

right-hand side of (36) is controlled by

(37)
[∫

B
g2ψ∞dR

]1/2 [∫
B
|∇Rg|2 ψ∞dR+

∫
B
g2ψ∞dR

]1/2

.

For the second term, we use the Cauchy-Schwarz inequality, namely∫ 1

0
xk−1|g| dx ≤

(∫ 1

0
xk−1 dx

)1/2(∫ 1

0
xk−1|g|2 dx

)1/2

to reduce it to the first term. Hence, we deduce that

(38) |τ(ψ)|2 ≤ C
(∫

B
ψ∞g

2dR

)[∫
B
|∇Rg|2 ψ∞dR+

∫
B
ψ∞g

2dR

]
.

Using the weighted Poincare inequality since
∫
B ψ∞g dR = 0, we deduce that∫

B
ψ∞g

2dR ≤ C
∫
B
|∇Rg|2 ψ∞dR

and hence (35) follows.

3.4. Weighted Sobolev inequality. In Subsection 5.1, we have to prove the equi-integrability
of Nn

2 . This will require the control of some higher Lp space norm of
√

ψ
ψ∞

. We have

Proposition 3.7. There exists p > 2 and a constant C such that for ψ ≥ 0,
√

ψ
ψ∞
∈ H1

k, we
have the following bound

(39)

(∫
B

∣∣∣∣∣
√

ψ

ψ∞

∣∣∣∣∣
p

ψ∞dR

)1/p

≤ C

∫
B

∣∣∣∣∣∇R
√

ψ

ψ∞

∣∣∣∣∣
2

ψ∞dR+
∫
B
ψdR

1/2

.
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For the proof we first notice that the only difficulty comes from the weight and hence we
can restrict ourselves to the region where |R| > 1

2 . Also, we use spherical polar coordinates,
namely R = (1 − x)ω where ω ∈ SD−1 and 0 < x < 1

2 . The square of the right-hand side of
(39) can be written as the sum of a radial part and an angular part :

(40)
∫

SD−1

∫ 1/2

0

∣∣∣∣∣∂x
√

ψ

ψ∞

∣∣∣∣∣
2

+ |

√
ψ

ψ∞
|2
 xk dx

 dω,

(41)
∫ 1/2

0

∫
SD−1

∣∣∣∣∣∂ω
√

ψ

ψ∞

∣∣∣∣∣
2

+ |

√
ψ

ψ∞
|2
 dω

 xk dx.

We recall the following one-dimensional weighted Lp − Lq Hardy inequality (one can also
call it weighted Sobolev inequality)

(42)

(∫ 1/2

0
|F (x)|qxk dx

)1/q

≤ C

(∫ 1/2

0
|F ′(x)|2xk dx

)1/2

.

This inequality can be easily deduced from Theorem 6 of [49], taking u(x) = v(x) = xk for
any q < ∞ if k ≤ 1 and for q ≤ 2(k+1)

k−1 if k > 1. Indeed, Theorem 6 of [49] states that (42)
holds for any F , with F (1

2) = 0 if

sup
0<r< 1

2

(
∫ r

0
xkdx)1/q(

∫ 1
2

r
(xk)−1dx)1/2 <∞.

If we do not assume that F (1
2) = 0, then the inequality (42) still holds if we replace the

right-hand side by
(∫ 1/2

0 [|F ′(x)|2 + |F (x)|2]xk dx
)1/2

. Hence, we obtain control of
√

ψ
ψ∞

in

the space L2(SD−1;Lq((0, 1
2), xkdx)) using the radial part of the norm (40).

On the other hand we can use the classical Sobolev inequality in dimension D−1 to control√
ψ
ψ∞

in the space L2
x((0, 1

2);Ls(SD−1), xkdx) where s = 2(D−1)
(D−1)−2 if D > 3, s < ∞ if D = 3

and s ≤ ∞ if D = 2. Interpolating between the two spaces L2
ωL

q
x and L2

xL
s
ω, we deduce the

existence of some p > 2 such that (39) holds.

3.5. Young measures and Chacon limit. We recall here two important weak convergence
concepts used in this paper, namely the Young measure and Chacon’s biting lemma. Actually,
these two notions are closely related as was observed in Ball and Murat [5] (see also [73]).

Proposition 3.8. (Young measures) If fn is a sequence of functions bounded in L1(U ; Rm)
where U is an open set of RN , then there exists a family (νx)x∈U of probability measures on
Rm (the Young measures), depending measurably on x and a subsequence also denoted by fn

such that if g : Rm → R is continuous, A ⊂ U is measurable and

g(fn) ⇀ z(x) weakly inL1(A; R),

then g(.) ∈ L1(Rm; νx) for a.e. x ∈ A and

z(x) =
∫

Rm
g(λ)dνx(λ) a.e. x ∈ A.
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In the case where fn is bounded in Lp(U ; Rm) for some p > 1 (or when fn is equi-integrable)
and |g(f)| . |f |, we can always take A = U and we have (extracting a subsequence)

g(fn) ⇀
∫

Rm
g(λ)dνx(λ).

Proposition 3.9. (Chacon limit) If fn is a sequence of functions bounded in L1(U ; Rm) where
U is an open set of RN , then there exists a function f ∈ L1(U ; Rm), a subsequence fn and a
non-increasing sequence of measurable sets Ek of U with limk→∞ LN (Ek) = 0 (where LN is
the Lebesgue measure on RN ) such that for all k ∈ N, fn ⇀ f weakly in L1(U − Ek; Rm) as
n goes to infinity. The function f is called the Chacon limit of fn. We denote it f = ch(fn).

It is easy to see that if fn is equi-integrable then the Chacon limit of fn is equal to the
weak limit of fn in L1(U,Rm).

If we consider continuous functions gk : Rm → Rm, k ∈ N, satisfying the conditions :
(a) gk(λ)→ λ when k →∞, for each λ ∈ Rm,
(b) |gk(λ)| ≤ C(1 + |λ|), for all k ∈ N and λ ∈ Rm,
(c) lim|λ|→∞ |λ|−1|gk(λ)| = 0 for each k,

then, under the hypotheses of Proposition 3.8, for each fixed k, the sequence of functions
gk(fn) is equi-integrable and hence (extracting a subsequence) converges weakly in L1(U ; Rm),
to some fk. Applying a diagonal process, as k goes to infinity, the sequence fk converges
strongly to some f in L1(U ; Rm). The limit f is the Chacon’s limit of the subsequence fn

and it is given by

f(x) =
∫

Rm
λdνx(λ) a.e. x ∈ U.

This gives another possible definition of Chacon’s limit, which is equivalent to the one given
in Proposition 3.9. For the proof of these results we refer to the proposition on p.659 of [5].

Remark 3.10. We end this subsection by the following important fact: Let fn be a sequence
of functions bounded in L2(U ; Rm). Extracting a subsequence, we can define f the weak limit
of fn, |fn|2 the weak limit of |fn|2 in the sense of measures and ch(|fn|2) the Chacon’s limit
of |fn|2. It is clear that |fn|2 ≥ |fn|2a ≥ ch(|fn|2) ≥ |f |2 where for any sequence of measures
µn, we denote by µna the part of the weak limit µn which is absolutely continuous with respect
to the Lebesgue measure. It is not difficult to give examples where the three inequalities are
strict. In particular |fn|2−ch(|fn|2) measures the concentration in L2 of the sequence fn and
ch(|fn|2)− |f |2 measures the oscillations.

Also, if fn is bounded in L2(U ; Rm) such that fn converges to f in all Lp, 1 ≤ p < 2, then
ch(|fn − f |2) = 0 and the defect of strong convergence in L2 is only due to concentrations.

4. A priori estimates

In this section, we prove some a priori estimates. We will assume that we have a regular
enough solution (u, ψ) of our system (1), which allows us to perform all the calculations.

4.1. Mass conservation. The second equation of (1) can be written as

(43) ∂tψ + u.∇ψ = divR
[
−∇uRψ

]
+ divR

[
ψ∞∇R

ψ

ψ∞

]
and the boundary condition (2) can be written as

(44) ψ∞∇R
ψ

ψ∞
.n = 0 on ∂B(0, R0).

We define ρ(t, x) =
∫
B ψdR. Integrating (43) over R, we get the transport of ρ, namely

∂tρ + u.∇ρ = 0. In particular, if we assume initially that ρ0(x) ∈ L1(Ω) ∩ L∞(Ω); then,
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we can integrate in x and using that u vanishes at the boundary of Ω, we deduce that∫
Ω ρ(t, x)dx =

∫
Ω ρ0(x)dx, namely we deduce the global conservation of mass. Here, we will

only assume that ρ0(x) ∈ L∞(Ω). We would like to prove that if initially, ψ0(x,R) ≥ 0, then
this property will be propagated in time. Let β : R→ R, be defined by{

β(s) = 0, for s ≤ 0
β(s) = s, for s ≥ 0,

and let βε be a convex regularization of β that can be achieved by mollification.
Multiplying (43) by β′ε(ψ), we get

(45)
∂tβε(ψ) + u.∇βε(ψ) = divR

[
−∇uRβε(ψ)

]
+ ∆Rβε(ψ)− β′′ε (ψ)|∇Rψ|2 +∇RU .∇Rβε(ψ) + ∆RUβ′ε(ψ)ψ.

Sending ε to zero in (45) and using that β′ε(s)s goes to β(s) when ε goes to zero, we recover
in the limit

(46) ∂tβ(ψ) + u.∇β(ψ) ≤ divR
[
−∇uRβ(ψ)

]
+ divR

[
ψ∞∇R

β(ψ)
ψ∞

]
,

where the inequality is understood in the sense of distributions. Integrating over R the
difference between (43) and (46), we get

∂t

∫
B

[ψ − β(ψ)] dR+ u.∇
∫
B

[ψ − β(ψ)] dR ≥ 0.

Since,
∫
B[ψ−β(ψ)]dR = 0 at t = 0 and

∫
B[ψ−β(ψ)]dR ≤ 0, we deduce that

∫
B[ψ−β(ψ)]dR =

0 for all t and hence ψ ≥ 0.

4.2. Free energy. Multiplying (43) by log ψ
ρψ∞

and integrating over R and x, we get

(47)

∂t

∫
Ω

∫
B

[
ψ log(

ψ

ρψ∞
)− ψ + ρψ∞

]
dRdx

=
∫

Ω

∫
B
∇u : (R⊗∇RU)ψ dRdx− 4

∫
Ω

∫
B
ψ∞

∣∣∣∣∣∇R
√

ψ

ψ∞

∣∣∣∣∣
2

dRdx

where we have used that ∇ψ∞ = −ψ∞∇U .
The first equation of (1) yields the classical energy estimate for the Navier-Stokes equation

(48) ∂t

∫
Ω

|u|2

2
= −

∫
Ω
∇u : τ − ν

∫
Ω
|∇u|2.

Adding (47) and (48) yields the following decay of the free-energy

(49)

∂t

∫
Ω

[∫
B

[ψ log(
ψ

ρψ∞
)− ψ + ρψ∞]dR+

|u|2

2

]
dx

= −ν
∫

Ω
|∇u|2dx− 4

∫
Ω

∫
B
ψ∞

∣∣∣∣∣∇R
√

ψ

ψ∞

∣∣∣∣∣
2

dRdx.



16 NADER MASMOUDI

Integrating in time, we get the following uniform bound for all t > 0:

(50)

∫
Ω

[∫
B

[ψ log(
ψ

ρψ∞
)− ψ + ρψ∞]dR+

|u|2

2

]
(t) dx

+ ν

∫ t

0

∫
Ω
|∇u|2dxds+ 4

∫ t

0

∫
Ω

∫
B
ψ∞

∣∣∣∣∣∇R
√

ψ

ψ∞

∣∣∣∣∣
2

dRdxds = C0

where C0 is the initial free energy. To simplify the notations in the rest of this section, we
will assume that ρ0(x) = 1. The proof in the general case is identical and we will indicate
the changes to be made at the end. The general idea is the following: When proving a priori
estimates, one just has to replace ψ∞ by ρ(t, x)ψ∞ and take advantage of the fact that ρ
is merely transported by the flow. When proving weak compactness, one can use that ρn

converges strongly to ρ in all Lp((0, T ) × Ω) spaces and use ρn(t, x)ψ∞ instead of ψ∞. Due
to the local character of the proof of weak compactness, a simpler way is just to use ψ∞ and
so the calculations given in Section 5 hold even when ρ0 is not constant.

4.3. log2 estimate. The free energy only gives an L logL(ψ∞dR) bound on ψ
ψ∞

. For some
integrability reasons, we will need to control a slightly higher growth of ψ in the R variable.

We introduce ψ̃ = ψ + aψ∞ for some a > 1. This is done to insure that log ψ̃
ψ∞

does not
take negative values. It will also add a new term in the equation, which will not present any
extra difficulties. Hence, ψ̃ solves

(51) ∂tψ̃ + u.∇ψ̃ = divR
[
−∇u ·Rψ̃

]
+ divR

[
ψ∞∇R

ψ̃

ψ∞

]
− a∇RU .∇uRψ∞.

We first derive this extra bound in the case the domain Ω is bounded and then discuss the
modification of the argument in the whole space case.

4.3.1. Case of a bounded domain. Multiplying (51) by log2 ψ̃
ψ∞

and integrating by parts in R,
we get

(52)

(∂t + u.∇x)
∫
B
ψ̃[log2(

ψ̃

ψ∞
)− 2 log(

ψ̃

ψ∞
) + 2]dR

= −2ak∇iuj
∫
B

RiRj
1− |R|2

ψ∞ log2 ψ̃

ψ∞
dR

+
∫
B
ψ̃ 2 log(

ψ̃

ψ∞
)
ψ∞

ψ̃
∇uR · ∇R

ψ̃

ψ∞
dR − 8

∫
B
ψ∞

∣∣∣∣∣∣∇R
√

ψ̃

ψ∞

∣∣∣∣∣∣
2

log(
ψ̃

ψ∞
)dR.

Dividing (52) by 2
(∫

B ψ̃[log2( ψ̃
ψ∞

)− 2 log( ψ̃
ψ∞

) + 2]
)1/2

, we get

(∂t + u.∇x)

(∫
B
ψ̃[log2(

ψ̃

ψ∞
)− 2 log(

ψ̃

ψ∞
) + 2]

)1/2

=
−ak∇iuj

∫
B

RiRj
1−|R|2ψ∞ log2 ψ̃

ψ∞(∫
B ψ̃[log2( ψ̃

ψ∞
)− 2 log( ψ̃

ψ∞
) + 2]

)1/2

+

∫
B∇u ·Rψ̃ log( ψ̃

ψ∞
)ψ∞
ψ̃
∇R ψ̃

ψ∞(∫
B ψ̃[log2( ψ̃

ψ∞
)− 2 log( ψ̃

ψ∞
) + 2]

)1/2
−

4
∫
B ψ∞

∣∣∣∣∇R√ ψ̃
ψ∞

∣∣∣∣2 log( ψ̃
ψ∞

)(∫
B ψ̃[log2( ψ̃

ψ∞
)− 2 log( ψ̃

ψ∞
) + 2]

)1/2
(53)

= I1 + I2 + I3.

Let us introduce the notation



GLOBAL EXISTENCE FOR THE FENE MODEL 17

(54) N2 =

(∫
B
ψ̃[log2(

ψ̃

ψ∞
)− 2 log(

ψ̃

ψ∞
) + 2]dR

)1/2

.

To bound I1 we use that, ψ∞ log2 ψ̃
ψ∞
≤ Cψ̃. Hence, the numerator of I1 is bounded by

C|∇u|
∫ ψ̃

1−|R|2dR which is clearly in L1((0, T )× Ω) using (18). Indeed,

∫
ψ

1− |R|2
dR ≤ C

∫
B

ψ∞
∣∣∣∣∣∇R

√
ψ

ψ∞

∣∣∣∣∣
2

+ ψ

 dR
1/2

.

To bound the second term on the right-hand side of (53), we use that the numerator can
be bounded by

∣∣∣∣∣
∫
B
∇u ·Rψ̃ log(

ψ̃

ψ∞
)
ψ∞

ψ̃
∇R

ψ̃

ψ∞

∣∣∣∣∣(55)

≤ C|∇u|

∫
B
ψ∞| log(

ψ̃

ψ∞
)|

∣∣∣∣∣∣∇R
√

ψ̃

ψ∞

∣∣∣∣∣∣
21/2(∫

B
ψ∞| log(

ψ̃

ψ∞
)| ψ̃
ψ∞

)1/2

≤ C|∇u|2
(∫

B
ψ̃| log(

ψ̃

ψ∞
)|

)
+

∫
B
ψ∞| log(

ψ̃

ψ∞
)|

∣∣∣∣∣∣∇R
√

ψ̃

ψ∞

∣∣∣∣∣∣
2

≤ C|∇u|2(1 + a)1/2

(∫
B
ψ̃ log2(

ψ̃

ψ∞
)

)1/2

+

∫
B
ψ∞| log(

ψ̃

ψ∞
)|

∣∣∣∣∣∣∇R
√

ψ̃

ψ∞

∣∣∣∣∣∣
2 .(56)

Dividing by N2 the inequality whose left-hand side is (55) and whose right-hand side in (56),
we deduce that

I2 ≤ C|∇u|2 −
1
4
I3.

Integrating (53) in time and space and using the fact that −I3 is nonnegative, we deduce
the following a priori bound

(57)

∫
Ω

(∫
B
ψ̃[log2(

ψ̃

ψ∞
)− 2 log(

ψ̃

ψ∞
) + 2]dR

)1/2

dx(t)

+
∫ T

0

∫
Ω

∫
B ψ∞

∣∣∣∣∇R√ ψ̃
ψ∞

∣∣∣∣2 log( ψ̃
ψ∞

)dR(∫
B ψ̃[log2( ψ̃

ψ∞
)− 2 log( ψ̃

ψ∞
) + 2]

)1/2
dR

dxds ≤ CT

for 0 ≤ t ≤ T , if the initial condition satisfies
∫

Ω

(∫
B ψ̃0[log2( ψ̃0

ψ∞
)− 2 log( ψ̃0

ψ∞
) + 2]dR

)1/2
dx ≤

C0. Hence, we see that (53) can be written as

(58) (∂t + u.∇)N2 = F

where F is in L1((0, T )× Ω).
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Later in the paper, when (57) will be stated for a sequence ψ̃n that approximates ψ̃, it will
be unclear how one can pass to the limit and recover that the limiting function ψ̃ satisfies
(57). Actually, one can find sequences of functions ψ̃n such that (57) holds and yet the weak
limit ψ̃ does not satisfy (57). This is the reason why we will use the following bound, which
is easily deduced from (57):

(59)

sup
0≤t≤T

∫
Ω

(∫
B
g2 log(g2)ψ∞dR

)1/2

dx(t)

+
∫ T

0

∫
Ω

∫
B

ψ∞ |∇Rg|2 dR(∫
B ψ̃[log2( ψ̃

ψ∞
)− 2 log( ψ̃

ψ∞
) + 2]dR

)1/2
dxds ≤ CT

where g is given by g =
√

ψ̃
ψ∞

log1/2( ψ̃
ψ∞

). The advantage of (59) is that if gn satisfies (59),
then the weak limit g of gn also satisfies (62).

4.3.2. Case of an unbounded domain. In the case Ω = RD, we first take c1 and c2 to be two
constants such that the function φ(x) = x[log2 x − 2 log x + c1] + c2 satisfies the equalities
φ(1 + a) = φ′(1 + a) = 0. This is achieved by taking c1 = 2 − log2(1 + a) and c2 =
2(1 + a)[log(1 + a)− 1]. Notice also that the function φ(x) is nonnegative for x ≥ a since a is
taken large enough. It is clear that the extra bound (8) implies that

(60)
∫

Ω

∫
B φ( ψ̃0

ψ∞
)dR

1 +
[∫
B φ( ψ̃0

ψ∞
)dR

]1/2
dx ≤ C0,

and hence, we can perform the same calculations as (52) and (53) with
∫
B ψ̃[log2( ψ̃

ψ∞
) −

2 log( ψ̃
ψ∞

)+2]dR replaced by
∫
B φ( ψ̃

ψ∞
)dR and with the function s→

√
s used to go from (52)

to (53) replaced by s→ s
1+
√
s

which behaves like φ1(s) = min(
√
s, s). The rest of the proof is

identical.

4.3.3. Case when ρ is not constant. In the case when ρ is not constant and we are in a
bounded domain, we have to modify (52) slightly and multiply by log2 ψ̃

ρψ∞
. In the case

we are also in an unbounded domain, we have to replace
∫
B ψ̃[log2( ψ̃

ψ∞
) − 2 log( ψ̃

ψ∞
) + 2]dR

by
∫
B φ( (1+a)ψ̃

(ρ+a)ψ∞
)dR. The extra factor 1+a

ρ+a is used to insure that when ψ is at microscopic

equilibrium, namely ψ̃ = (ρ+ a)ψ∞, the integrand reduces to φ(1 + a). The rest of the proof
is identical and yields at the end the following bound instead of (57):

(61)
∫

Ω
φ1

(∫
B
φ(

(1 + a)ψ̃
(ρ+ a)ψ∞

)

)
dx(t) +

∫ T

0

∫
Ω

∫
B ψ∞

∣∣∣∣∇R√ ψ̃
ψ∞

∣∣∣∣2 log( (1+a)ψ̃
(ρ+a)ψ∞

)

1 +
(∫

B φ( (1+a)ψ̃
(ρ+a)ψ∞

)
)1/2

dxds ≤ CT .

One can then deduce from (61) that (57) and (59) hold, with the integration set Ω replaced
by any compact K of RD.

5. Weak compactness

As it is classical when proving global existence of weak solutions, it is enough to prove
the weak compactness of a sequence of weak solutions satisfying the a priori estimates of
the previous section. In the next section, we present one way of approximating the system.
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We consider a sequence of weak solutions (un, ψn) to (1) in the sense of Subsection 2.1,
satisfying, uniformly in n, the free energy bound (50) and the log2 bound (57). The sequence
(un, ψn) has an initial data (un0 , ψ

n
0 ) such that (un0 , ψ

n
0 ) converge strongly to (u0, ψ0) in L2(Ω)×

L1
loc(Ω;L1(B)) and ψn0 log ρn0ψ

n
0

ψ∞
−ψn0 +ρn0ψ∞ converges strongly to ψ0 log ψ0

ρ0ψ∞
−ψ0 +ρ0ψ∞ in

L1(Ω×B). We also assume that (un, ψn) has some extra regularity, with bounds that depend
on n, such that we can perform all of the following calculations. In particular, we assume that
ψn

ψ∞
∈ C([0, T );L2

k) ∩ L2((0, T );H1
k). A sequence of approximate weak solutions that satisfy

all of the above mentioned properties will be shown to exist in the next section.
We extract a subsequence such that un converges weakly to u in Lp((0, T );L2(Ω)) ∩

L2((0, T );H1
0 (Ω)) and ψn converges weakly to ψ in Lp((0, T );L1

loc(Ω × B)) for each p < ∞.
We would like to prove that (u, ψ) is still a solution of (1) in the sense of Subsection 2.1. The
main difficulty is to pass to the limit in the nonlinear term ∇unRψn appearing in the second
equation of (1).

We introduce gn =
√

ψ̃n

ψ∞
log1/2( ψ̃

n

ψ∞
) and fn =

√
ψ̃n

ψ∞
where ψ̃n = ψn + aψ∞ and a > 1 is

any constant. Notice that from the free energy bound (50), we deduce that gn is uniformly
bounded in L∞((0, T ) × Ω;Lrk) and in L2((0, T ) × Ω;W1,r

k ) for r < 2. We recall that Lrk =
Lr(ψ∞dR).

We also assume, extracting a subsequence if necessary, that gn and fn converge weakly to
some g and f in Lp((0, T );L2(Ω × B, dxψ∞dR)) for each p < ∞. To prove that (u, ψ) is
a solution of (1), it will be enough to prove that (gn)2 = ψ̃n

ψ∞
log( ψ̃

n

ψ∞
) converges weakly to

g2 = ψ̃
ψ∞

log( ψ̃
ψ∞

) in the sense of distributions, which in turn will follow from showing that gn

converges strongly to g in L2((0, T );L2(Ω×B, dxψ∞dR)).
First, it is clear that u, ψ̃ and g satisfy the same a priori estimates that the sequence un, ψ̃n

and gn satisfy since all those functionals have good convexity properties. In particular it is
clear that u, ψ satisfy (50) with an inequality ≤. We just point out that to pass to the limit in
the last term on the left-hand side of (50), we can use the fact that the function φ2(x, y) = x2

y

is convex. To pass to the limit in (59), we also use the fact that φ2(x, y) is convex. Hence, we
deduce that

(62) sup
0≤t≤T

∫
Ω

((∫
B
g2 log(g2)ψ∞dR

)1/2
+Nn

2

)
dx(t) +

∫ T

0

∫
Ω

∫
B

ψ∞ |∇Rg|2

Nn
2

≤ CT

where Nn
2 is the weak limit of

(∫
B ψ̃

n[log2( ψ̃
n

ψ∞
)− 2 log( ψ̃

n

ψ∞
) + 2]

)1/2
.

5.1. The renormalizing factor N . Here, we construct N that will be used as a renormal-
izing factor in the next subsections. We first introduce the unique a.e. flow Xn in the sense
of DiPerna and Lions [26, 3] of un (see Appendix A), i.e. the solution of

(63) ∂tX
n(t, x) = un(t,Xn(t, x)), Xn(t = 0, x) = x.

We also denote by X the a.e. flow of u. Due to the fact that un and u are divergence free,
we deduce that the a.e. mappings x → Xn(t, x) and x → X(t, x) are measure-preserving for
all t ∈ [0, T ). We will also use the flow starting at time t0, namely Xn(t, t0, x) such that

∂tX
n(t, t0, x) = un(t,Xn(t, t0, x)) Xn(t = t0, t0, x) = x.

In particular Xn(t, 0, x) = Xn(t, x).
Let Qn be the solution of (58) with F = Fn replaced by |Fn| and u = un and taking the

same initial data as Nn
2 at t = 0. Therefore, for a.e. x ∈ Ω,

(64)
d

dt
[Qn(t,Xn(t, x))] = |Fn(t,Xn(t, x))|
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and Qn(t = 0, x) = Nn
2 (t = 0, x). Hence, if β ∈ C∞(R), β(s) = s for |s| ≤ 1, β(s) = 2 for

|s| ≥ 4 and βM (s) = Mβ( s
M ), we have

(65)
d

dt
[βM (Qn)(t,Xn(t, x))] = β′M (Qn)|Fn(t,Xn(t, x))|.

To pass to the limit weakly in (65), we first write it in a weak form. Let qn(t, x) =
Qn(t,Xn(t, x)) and hn(t, x) = |Fn(t,Xn(t, x))|. Hence, we have

(66)
{

∂
∂t [βM (qn)] = β′M (qn)hn

βM (qn)(t = 0, x) = βM (Nn
2 (t = 0, x)).

For Φ(t, x) ∈ C∞0 ([0, T )× Ω), we have

(67) −
∫ T

0

∫
Ω
βM (qn)∂tΦ dxdt−

∫
Ω

[βM (Nn
2 )]Φ(t = 0, x)dx =

∫ T

0

∫
Ω
β′M (qn)hnΦ dxdt.

Recall that βM (qn) ∈ L∞((0, T )×Ω) and that β′M (qn)hn is bounded in L1([0, T )×Ω). Passing
to the limit weakly (extracting a subsequence if necessary) in (67), we deduce that

(68) −
∫ T

0

∫
Ω
βM (qn)∂tΦ dxdt−

∫
Ω
βM (Nn

2 (t = 0, x))Φ(t = 0, x)dx =
〈
β′M (qn)hn,Φ

〉
M×C

where βM (qn) is the weak-star limit of βM (qn) in L∞((0, T )×Ω) and β′M (qn)hn ∈M([0, T )×Ω)
is the weak limit of β′M (qn)gn in the sense of measures. In the sequel, an will denote the weak
limit of the sequence an in some appropriate space.

From the stability of the notion of a.e. flow with respect to the weak limit of un to u (see
[21] and Proposition A.3), we get the following equality of weak limits

[βM (qn)(t, x)] = [βM (Qn)(t,Xn(t, x))] = βM (Qn)(t,X(t, x)).

Hence, sending M to infinity in (68), we deduce that

(69) −
∫ T

0

∫
Ω
Q(t,X(t, x))∂tΦ dxdt−

∫
Ω
N2,0(x)Φ(t = 0, x)dx =

〈
F,Φ

〉
M×C

where Q = limM→∞ [βM (Qn)] is the Chacon limit of Qn, N2,0(x) is the Chacon limit of
Nn

2 (t = 0, x) (and hence depends only on the initial data) and F = limM→∞ β′M (qn)gn is the
limit of β′M (qn)gn in the sense of measures, which exists since β′M (qn)gn is increasing in M
and is uniformly bounded inM([0, T )×Ω). Also, it is easy to see that Q ∈ L∞(0, T ;L1(Ω)).
One can deduce from (69) that

(70)
d

dt
[Q(t,X(t, x))] = F

holds in M([0, T ) × Ω). Notice that this does not imply necessarily that Q(0, X(0, x)) =
N2,0(x) since F may have a Dirac part at t = 0. Since, F ≥ 0, we deduce that for a.e.
0 ≤ t < T0 < T , we have Q(t,X(t, x)) ≤ Q(T0, X(T0, x)). For 0 ≤ s ≤ T0, we define
N(s,X(s, x)) by

(71)
∫

Ω
N(s,X(s, x))φ(x) dx =

∫
Ω
N2,0(x)φ(x)dx+

〈
F, h(t)φ(x)

〉
M×C

where h(t) = 1 on [0, T0], h′(t) ≤ 0 and h has its support in [0, T ) and φ is any test function in
C∞0 (Ω). Notice that for 0 ≤ s < T0, N(s,X(s, x)) only depends on x and that Q(s,X(s, x)) ≤
N(s,X(s, x)) ≤ Q(T,X(T, x)). Indeed, N is constant along the characteristics of u. Notice
also that N is in L∞(0, T0;L1(Ω)) and that N(t,X(t, x)) is in L1(Ω;L∞(0, T0)). Hence,

d

dt
β[N(t,X(t, x))] = 0 for 0 < t < T0 and for a.e. x
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for any bounded C1 function on R+ and hence (see Appendix A)

(72) ∂tβ(N) + u.∇β(N) = 0 holds in D′.

In the sequel, we will write T = T0 and will not make the distinction between these two times.
Since, N is bounded from below by 1, it also solves

(73) (∂t + u.∇)
1
N

= 0.

Also, the following three inequalities hold

(74) βM (Nn
2 ) ≤ βM (Qn) ≤ Q ≤ N.

The first one comes from the fact that Nn
2 ≤ Qn and hence for all M > 0, βM (Nn

2 ) ≤ βM (Qn)
and then we pass to the limit in n. The second inequality comes from the fact that Q is
the limit of βM (Qn) when M goes to infinity and that βM (Qn) is increasing in M . Notice
in particular that by monotone convergence βM (Qn) converges almost everywhere and in
L1
loc((0, T ) × Ω) to Q. From (74), we deduce that the weak limit of Nn

2 , which is equal to
the Chacon limit of Nn

2 , is bounded by N , namely Nn
2 = limM→∞ βM (Nn

2 ) ≤ N . The fact
that the weak limit of Nn

2 is equal to its Chacon limit comes from the fact that the sequence
Nn

2 is equiintegrable. This is a simple consequence of the dissipation of the free energy
and the weighted Sobolev inequality (39). Indeed, on the one hand, from (39), we deduce

that
√

ψn

ψ∞
is bounded in L2((0, T ) × Ω;Lp(ψ∞dR)) for some p > 2. On the other hand,

from the conservation of mass, we know that
√

ψn

ψ∞
is bounded in L∞((0, T )×Ω;L2(ψ∞dR)).

Interpolating between these two bounds, we easily deduce that
√

ψn

ψ∞
is bounded in Lr((0, T )×

Ω×B, dtdxψ∞dR) for some r > 2 and hence Nn
2 is equiintegrable. We also deduce that

(75) f and g are bounded in Lr((0, T )× Ω×B, dtdxψ∞dR) for some r > 2.

5.2. Two ways of passing to the limit. Replacing (u, ψ̃) by (un, ψ̃n) in (51) and dividing
by ψ∞, we get

(76)
∂t
ψ̃n

ψ∞
+ un.∇ ψ̃n

ψ∞
= divR

[
−∇unR ψ̃n

ψ∞

]
+∇U .∇unR ψ̃n

ψ∞

+
1
ψ∞

divR
[
ψ∞∇R

ψ̃n

ψ∞

]
− a∇unR.∇RU .

Hence, using Corollary B.7 and the fact that divR(∇unR) = 0, we deduce that, for any
smooth function Θ from (0,∞) to R with Θ′ and Θ′′ bounded on [a,∞), we have

∂tΘ(
ψ̃n

ψ∞
) + un.∇Θ(

ψ̃n

ψ∞
) = −∇unR · ∇RΘ(

ψ̃n

ψ∞
) +∇RU .∇uR

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
)

+
1
ψ∞

divR
[
ψ∞∇RΘ(

ψ̃n

ψ∞
)
]
−Θ′′(

ψ̃n

ψ∞
)|∇R

ψ̃n

ψ∞
|2

− 2ak∇un :
R⊗R

1− |R|2
Θ′(

ψ̃n

ψ∞
),

(77)

with the initial condition Θ( ψ̃
n

ψ∞
)(t = 0) = Θ( ψ̃0

ψ∞
) and the boundary condition

(78) ψ∞∇RΘ(
ψ̃n

ψ∞
).n = Θ′(

ψ̃n

ψ∞
)ψ∞∇R

ψ̃n

ψ∞
.n = 0 on ∂B(0, 1).
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In the case k > 1, we can also justify (78) by the fact that for a.e. t and x, ψn(t,x,.)
ψ∞

∈ D(L)

and hence ψ∞∇R ψn

ψ∞
.n has a trace in L2(∂B(0, 1)) (see also [70] for more details about the

regularity of ψ in the variable R). In the sequel, we take Θ(t) = t1/2 log1/2(t) and recall that
gn = Θ( ψ̃

n

ψ∞
). We introduce the following defect measures γij , γ′ij and βij such that

∇ungn → ∇ug + γ, ∇un ψ̃
n

ψ∞
Θ′(

ψ̃n

ψ∞
)→ ∇u ψ̃

n

ψ∞
Θ′(

ψ̃n

ψ∞
) + γ′,

∇unψ̃n → ∇uψ̃ + β

(79)

where γ, γ′ ∈ L2((0, T ) × Ω;Lr(ψ∞dR)) ∩ L3/2((0, T ) × Ω;Lpk−1) for all r < 2 and p <

min(2, 1 + k) and β ∈ L1((0, T )×Ω;L1( dR
1−|R|)) are matrix valued. We recall that Fn denotes

the weak limit of Fn (modulo a sequence extraction). Indeed, from the bounds on ∇un and
gn, we deduce that ∇ungn is bounded in L2((0, T )×Ω;Lr(ψ∞dR)) and in L1((0, T )×Ω;W1,r

k )
for r < 2. By Hardy’s inequality (see Lemma 3.1 ii)), we deduce that ∇ungn is bounded in
L1((0, T )×Ω;Lpk−2) for p−1 < k and p < 2. Interpolating with the previous bound, we deduce
that ∇ungn is bounded in L3/2((0, T )×Ω;Lpk−1). The proof that β ∈ L1((0, T )×Ω;L1( dR

1−|R|))
is given in Lemma 5.2.

On one hand, we pass to the limit in (77) with Θ(t) = t1/2 log1/2(t). For this, we first have
to pass to the limit in its weak formulation. For all h ∈ C1([0, T ]×Ω×B), h(T ) = 0, we have

−
∫ T

0

∫ ∫
Ω×B

gn(∂th+ un.∇h)ψ∞ dtdxdR−
∫ ∫

Ω×B
gn(t = 0)h(t = 0)ψ∞ dxdR

=
∫ T

0

∫ ∫
Ω×B

[
gn∇unR · ∇R(hψ∞) +∇RU .∇unR

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
)hψ∞

]
dtdxdR

−
∫ T

0

∫ ∫
Ω×B

ψ∞

[
∇Rgn.∇Rh+ hΘ′′(

ψ̃n

ψ∞
)|∇R

ψ̃n

ψ∞
|2
]
dtdxdR

−
∫ T

0

∫ ∫
Ω×B

2ak∇un :
R⊗R

1− |R|2
Θ′(

ψ̃n

ψ∞
)hψ∞ dtdxdR.

(80)

In view of the density of C1(B) in H1
k (see Proposition B.2), we see that (80) still holds if

h ∈ C1([0, T ]× Ω;H1
k) ∩ C([0, T ]× Ω×B) and h(T ) = 0. A simple calculation gives

Θ′(s) =
1
2
s−1/2(log1/2(s) + log−1/2(s)),

Θ′′(s) = −1
4
s−3/2(log1/2(s) + log−3/2(s)).

Now, using that −ψ∞Θ′′( ψ̃
n

ψ∞
)|∇R ψ̃n

ψ∞
|2 = ψ∞|∇Rfn|2

(log1/2 + log−3/2)( ψ̃
n

ψ∞
)

fn , we deduce that this

term is bounded in L1([0, T ]×Ω×B). We denote by ψ∞|∇Rfn|2
(log1/2 + log−3/2)( ψ̃

n

ψ∞
)

fn its weak
limit in the sense of measures in M([0, T ) × Ω × B). We recall that for any sequence of
measures µn, we denote by µna the part of the weak limit which is absolutely continuous with
respect to the Lebesgue measure. Passing to the limit in (80), we deduce that g solves the
following inequality in the sense of Proposition B.6 (the definition there was given without
the x dependence):
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∂tg + u.∇g ≥ divR
[
−∇iujRjg − γijRj

]
+∇RU .∇uR

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
) +∇RUR : γ′

+
1
ψ∞

divR
[
ψ∞∇Rg

]
+
|∇Rfn|2(log1/2 + log−3/2)( ψ̃

n

ψ∞
)

fn

a

− akΘ′(
ψ̃n

ψ∞
)∇un :

2R⊗R
1− |R|2

,

(81)

with the initial condition g(t = 0, x,R) ≥ Θ( ψ̃0

ψ∞
) and the boundary condition ψ∞∇Rg.n ≥ 0.

We only point out that to pass to the limit in the transport term un.∇gn, we write it as
div(gnun) and then use Lemma 5.1 of [61]. In the sequel all the transport terms u.∇b that
we are going to write can be understood as div(bu).

Notice that we only get an inequality in (81), as well as in the corresponding initial and

boundary conditions because the measure ψ∞|∇Rfn|2
(log1/2 + log−3/2)( ψ̃

n

ψ∞
)

fn may have a singular
part, which can only be nonnegative.

Also, notice that (62) does not yield that g ∈ L2((0, T ) × Ω; Ḣ1
k). One has to divide it

by
√
Nn

2 . In Subsection 5.1, we have constructed a renormalizing factor N that satisfies

the inequality Nn
2 ≤ N and hence g̃ = g

N2 ∈ L2((0, T ) × Ω; Ḣ1
k) (the reason that we divide

by N2 and not only
√
N comes from Subsection 5.5). Also, it is easy to see that g

N2 ∈
L∞((0, T ) × Ω;L2

k) since
∫
B g

2 ≤ N2. Moreover, since N satisfies (∂t + u.∇) 1
N = 0, this will

allow us to divide (81) by N2 and deduce the following inequality for g̃:

∂tg̃ + u.∇g̃ ≥ divR
[
−∇iujRj g̃ −

γij
N2

Rj

]
+∇RU .∇uR

1
N2

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
) +∇RU ⊗R :

γ′

N2

− L(g̃) +
1
N2

|∇Rfn|2(log1/2 + log−3/2)( ψ̃
n

ψ∞
)

fn

a

− ak

N2
Θ′(

ψ̃n

ψ∞
)∇un :

2R⊗R
1− |R|2

,

(82)

with the initial condition g̃(t = 0, x,R) ≥ 1
N2 Θ( ψ̃0

ψ∞
) and the boundary condition ψ∞∇Rg̃.n ≥

0. Actually, to rigorously deduce this inequality from (81) (as well as to perform the next
multiplication by χ′ε(g)), we have first to mollify (81) and (73) in the x variable and use
the regularization Lemma 2.3 of [60] and then pass to the limit. We do not include the

details here. It is also important to note that γij
N2 ,

γ′ij
N2 ∈ L2((0, T ) × Ω;L2(ψ∞dR)). Indeed,

|γ|, |γ′| ≤ C(|∇un|2a)1/2(|gn|2)1/2 and (|gn|2)1/2

N ∈ L∞((0, T ) × Ω;L2(ψ∞dR)). This bound on
γ
N2 is crucial so as to be able to apply Proposition B.6 below. Let χ ∈ C∞(R) be such that
χ(t) = t2 for 0 ≤ t ≤ 1

2 , χ(t) = t for t ≥ 1, χ′(t) ≥ 0 and χε(t) = 1
ε2
χ(εt). By Proposition B.6,
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we deduce that

∂tχε(g̃) + u.∇χε(g̃) ≥ divR
[
−∇uRχε(g̃)

]
+∇uR · ∇RU

( ψ̃n
ψ∞

Θ′(
ψ̃n

ψ∞
)
)χ′ε(g̃)
N2

− 1
ψ∞

divR(ψ∞χ′ε(g̃)
γ R

N2
) +∇RU ⊗R :

γ′ − γ
N2

χ′ε(g̃) +
γ R

N2
.∇Rχ′ε(g̃)

− L(χε(g̃))− χ′′ε(g̃)|∇Rg̃|2 +
|∇Rfn|2(log1/2 + log−3/2)( ψ̃

n

ψ∞
)|2

fn

a

χ′ε(g̃)
N2

− akΘ′(
ψ̃n

ψ∞
)∇un :

2R⊗R
1− |R|2

χ′ε(g̃)
N2

,

(83)

with the initial condition χε(g̃(t = 0, x,R)) ≥ χε( 1
N2 Θ( ψ̃0

ψ∞
)) and the boundary condition

ψ∞∇Rχε(g̃).n ≥ 0. The inequality (83) holds in the sense of distributions (see Proposition
B.6). Multiplying (83) by ψ∞ and integrating in R yields (this is equivalent to taking φ = 1
in the weak formulation of (83), see also (153))

(∂t + u.∇)
∫
B
ψ∞χε(g̃) dR ≥ −∇u : τ

(
ψ∞

(
χε(g̃)− χ′ε(g̃)

N2

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
)
))

+
∫
B

[
ψ∞∇RU ⊗R :

(γ′ − γ)
N2

χ′ε(g̃) + ψ∞
γ R

N2
.∇Rχ′ε(g̃)

]
dR

+
∫
B

ψ∞ |∇Rfn|2(log1/2 + log−3/2)( ψ̃
n

ψ∞
)|2

fn

a

χ′ε(g̃)
N2

− ψ∞χ′′ε(g̃)|∇Rg̃|2
 dR

−
∫
B

[
ψ∞akΘ′(

ψ̃n

ψ∞
)∇un :

2R⊗R
1− |R|2

χ′ε(g̃)
N2

]
dR,

(84)

with the initial data
∫
B ψ∞χε(g̃(t = 0))dR ≥

∫
B ψ∞χε(

1
N2 Θ( ψ̃0

ψ∞
))dR. We recall that τij(ψ) =

2k
∫
B ψ

RiRj
1−|R|2dR.

On the other hand, passing to the limit in the equation (51) with (u, ψ̃) replaced by (un, ψ̃n),
we get that the following holds in the weak sense (see (10)):

(85) ∂tψ̃ + u.∇ψ̃ = divR
[
−∇u ·Rψ̃ − βijRj

]
+ divR

[
ψ∞∇R

ψ̃

ψ∞

]
− 2akψ∞∇u :

R⊗R
1− |R|2

.

To deduce that ψ̃(t = 0) = ψ̃0 and that ψ∞∇R ψ̃
ψ∞

.n = 0 on ∂B, we have to pass to the limit
in the weak formulation (10) of (51) with (u, ψ̃) replaced by (un, ψ̃n). Notice also that since
∂tψ̃

n is bounded in L2(0, T ;W−1,1(Ω×B)), we deduce that ψ̃n is equi-continuous in time with
values in W−1,1(Ω×B). Besides, ψ̃n log( ψ̃

n

ψ∞
) satisfies

(∂t + un.∇)

[∫
B
ψ̃n log(

ψ̃n

ψ∞
)dR

]
= ∇un : τ(ψ̃n)

− 4
∫
B
ψ∞

∣∣∣∣∣∣∇R
√
ψ̃n

ψ∞

∣∣∣∣∣∣
2

dR− 2ak
∫
B
∇un :

R⊗R
1− |R|2

ψ∞ log(
ψ̃n

ψ∞
)dR.

(86)

Here we have used that
∫
B∇u

n : R⊗R
1−|R|2ψ∞dR = C∇un : Id = 0 since un is divergence-free.

We would like to pass to the limit weakly in (86) and deduce that
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(∂t + u.∇)
∫
B
ψ̃n log(

ψ̃n

ψ∞
)dR = ∇u : τ(ψ̃) +

∫
B
βij

RiRj
1− |R2|

dR

− 4
∫
B
ψ∞

∣∣∣∣∣∣∇R
√
ψ̃n

ψ∞

∣∣∣∣∣∣
2

dR− 2ak
∫
B
ψ∞log(

ψ̃n

ψ∞
)∇un :

R⊗R
1− |R|2

dR.

(87)

However, we can not use (79) to pass to the limit in ∇un : τ(ψ̃n) =
∫
B∇u

n RiRj
1−|R|2 ψ̃

ndR and
deduce that

(88) ∇un : τ(ψ̃n) ⇀ ∇u : τ(ψ̃) +
∫
B
βij

RiRj
1− |R2|

dR

since ∇iunj
RiRj

1−|R|2 ψ̃
n is only bounded in L1(dt dx dR). Besides, we can not pass to the limit in

the transport term even if we write it in divergence form.
To overcome these difficulties, we will divide (86) by 1 + δNn

2 where Nn
2 solves (58) before

passing to the limit. Then, we will send δ to zero. To be able to deal with the limit δ to zero,
we need to renormalize (86) too. We denote Nn

1 =
∫
B ψ̃

n log( ψ̃
n

ψ∞
)dR and θκ(s) = s

1+κs and

recall that Nn
2 =

(∫
B ψ̃

n[log2( ψ̃
n

ψ∞
)− 2 log( ψ̃

n

ψ∞
) + 2]dR

)1/2
. We first multiply (86) by θ′κ(Nn

1 )
and get an equation for θκ(Nn

1 ). Dividing the resulting equation by 1 + δNn
2 , using (58) and

writing the weak formulation, we get, for all φ ∈ C∞0 ([0, T )× Ω),

−
∫

Ω

θκ(Nn
1,0)

1 + δNn
2,0

φ(t = 0)dx−
∫ T

0

∫
Ω

θκ(Nn
1 )

1 + δNn
2

(∂t + u.∇)φdxdt

=
∫ T

0

∫
Ω

 ∇un : τ(ψ̃n)
(1 + δNn

2 )(1 + κNn
1 )2
− 4

(1 + δNn
2 )(1 + κNn

1 )2

∫
B
ψ∞

∣∣∣∣∣∣∇R
√
ψ̃n

ψ∞

∣∣∣∣∣∣
2

dR

φdxdt
−
∫ T

0

∫
Ω

[
2ak

(1 + δNn
2 )(1 + κNn

1 )2

∫
B
∇un :

R⊗R
1− |R|2

ψ∞ log(
ψ̃n

ψ∞
)dR

]
φdxdt

−
∫ T

0

∫
Ω

[
δFn

(1 + δNn
2 )2

θκ(Nn
1 )
]
φdxdt.

Taking the weak limit when n goes to infinity (extracting a subsequence if necessary), we
get, for κ, δ > 0,

(∂t + u.∇)
θκ(Nn

1 )
1 + δNn

2

=
∇un : τ(ψ̃n)

(1 + δNn
2 )(1 + κNn

1 )2
− 4

(1 + δNn
2 )(1 + κNn

1 )2

∫
B
ψ∞

∣∣∣∣∣∣∇R
√
ψ̃n

ψ∞

∣∣∣∣∣∣
2

dR

− 2ak
(1 + δNn

2 )(1 + κNn
1 )2

∫
B
∇un :

R⊗R
1− |R|2

ψ∞ log(
ψ̃n

ψ∞
)dR(89)

− δFn

(1 + δNn
2 )2

θκ(Nn
1 ).

The last term on the right-hand side of (89) is bounded in M([0, T ) × Ω) by δ
κ |Fn|. Hence,

if we denote by F0 the Dirac part of this measure at time t = 0, we deduce that the initial
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condition satisfies θκ(Nn
1 )

1+δNn
2

(t = 0) ≤ θκ(N1,0)
1+δN2,0

+ δ
κF0. The fact that we get only an inequality

comes from the fact that the sum of the other terms on the right-hand side of (89) is a measure
inM([0, T )×Ω), which has a non-positive singular part. Indeed, as we will see from Corollary
5.3, the first term on the right-hand of (89) is in L1([0, T ) × Ω). Moreover, it is easy to see
that the third one is in Lploc([0, T )× Ω) for all p < 2.

Before sending δ and κ to zero, we divide the inequality we get after keeping only the
regular part with respect to the Lebesgue measure in (89) by N4. For φ ∈ C∞0 ([0, T ) × Ω),
φ ≥ 0, we have

−
∫

Ω

θκ(Nn
1,0)

1 + δNn
2,0

φ(t = 0)
N4

dx−
∫ T

0

∫
Ω

1
N4

θκ(Nn
1 )

1 + δNn
2

(∂t + u.∇)φdxdt

≤
∫ T

0

∫
Ω

1
N4

∇un : τ(ψ̃n)
N δ,κ

− 4
N δ,κ

∫
B
ψ∞

∣∣∣∣∣∣∇R
√
ψ̃n

ψ∞

∣∣∣∣∣∣
2

dR

a φdxdt(90)

−
∫ T

0

∫
Ω

1
N4

[
2ak
N δ,κ

∫
B
∇un :

R⊗R
1− |R|2

ψ∞ log(
ψ̃n

ψ∞
)dR

]
φdxdt+ C

δ

κ
supφ,

where we have denoted N δ,κ = (1 + δNn
2 )(1 + κNn

1 )2. Now, we can send δ to zero. Notice
that due to the fact that θκ(Nn

1 ) is bounded by 1/κ and that Fn is bounded in L1, we deduce
that the last term goes to zero when δ goes to zero. Then, we send κ to zero and recover in
the limit

(91)
(∂t + u.∇)

θ

N4
≤ 1
N4
∇un : τ(ψ̃n)

δ,κ
− 4
N4

∫
B
ψ∞

∣∣∣∣∣∣∇R
√
ψ̃n

ψ∞

∣∣∣∣∣∣
2

dR

δ,κ,a

− 2ak
N4

∫
B
∇un :

R⊗R
1− |R|2

ψ∞ log(
ψ̃n

ψ∞
)
δ,κ

dR,

where θ = limκ→0 limδ→0
θκ(Nn

1 )
1+δNn

2
= limκ→0 θκ(Nn

1 ) is the Chacon limit of Nn
1 and

Fn
δ,κ = lim

κ→0
lim
δ→0

Fn

(1 + δNn
2 )(1 + κNn

1 )2

for any sequence Fn bounded in L1 and Fnδ,κ,a is the part of that measure which is absolutely
continuous with respect to the Lebesgue measure. It is worth pointing out (see also Remark
3.10) that for any sequence Fn bounded in L1, we have Fn ≥ Fn

δ,κ ≥ Fn
δ,κ,a ≥ ch(Fn).

Also, we deduce from the limit of (90) that θ(t = 0) ≤ N1,0 =
∫
B ψ̃0 log( ψ̃0

ψ∞
)dR. Since

√
ψn

ψ∞

is bounded in Lr((0, T ) × Ω × B, dtdxψ∞dR) for some r > 2, we deduce that Nn
1 is equi-

integrable and hence θ, which is the Chacon limit of Nn
1 , is equal to the weak limit of Nn

1 .
Indeed, it is easy to see that if Fn is equi-integrable then Fnδ,κ = Fn. Also, we can invert the

integral sign and the weak limit and get that θ = Nn
1 =

∫
B ψ̃

n log( ψ̃
n

ψ∞
)dR since the sequence

ψ̃n log( ψ̃
n

ψ∞
) is equi-integrable.

5.3. The term ∇un : τ(ψ̃n)
δ,κ

. In this subsection, we will prove that ∇un : τ(ψ̃n)
δ,κ

= ∇u :
τ +

∫
B βij

RiRj
1−|R2| . This will follow from the following two lemmas
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Lemma 5.1.

(92)
∇un : τ(ψ̃n)

(1 + δNn
2 )(1 + κNn

1 )2
=
∫
B
zδ,κ :

R⊗R
1− |R2|

ψ∞dR,

where zδ,κ = ψ̃n∇un
ψ∞(1+δNn

2 )(1+κNn
1 )2

Lemma 5.2. zδ,κ converges strongly to ∇unψ̃n = ∇uψ̃+β in L1((0, T )×Ω×B; dt dxψ∞ dR
1−|R|)

when δ goes to zero and then κ goes to zero.

Denoting τn,δ,κ = τ(ψ̃n)
(1+δNn

2 )(1+κNn
1 )2

, we get that

Corollary 5.3.

(93) ∇un : τ(ψ̃n)
δ,κ

= lim
κ→0

lim
δ→0
∇un : τn,δ,κ = ∇u : τ(ψ) +

∫
B
βij

RiRj
1− |R2|

dR.

Proof of Lemma 5.1. The proof of (92) follows from the fact that zn,δ,κ = ∇unψ̃n
ψ∞(1+δNn

2 )(1+κNn
1 )2

is equi-integrable in L1((0, T ) × Ω × B; dt dx ψ∞dR
1−|R| ) for δ, κ fixed. Indeed, consider the

real valued function Φ(x) = x log(1 + x) + 1. It is enough to prove that Φ(|zn,δ,κ|) =
Φ
(

|∇unψ̃n|
ψ∞(1+δNn

2 )(1+κNn
1 )2

)
is bounded in X = L1((0, T ) × Ω × B; dt dx ψ∞dR

1−|R| ). To simplify the

notation, we denote Nn = (1 + δNn
2 )(1 + κNn

1 )2. Hence, it is enough to bound

(94)
|∇un|
Nn

[
ψ̃n

ψ∞
log

(
ψ̃n

ψ∞

)
+
ψ̃n

ψ∞
log
(

3 +
|∇un|
Nn

)]

in X (see definition above).
To bound the first term appearing in (94) we use the Hardy type inequality (18) to get that

|∇un|
Nn

∫
B
ψ̃n log

(
ψ̃n

ψ∞

)
1

1− |R|
dR

.
|∇un|
Nn

[∫
B
ψ̃n log

(
ψ̃n

ψ∞

)
dR

]1/2
∫

B
ψ∞

∣∣∣∣∣∣∇
(√ ψ̃n

ψ∞
log1/2 ψ̃

n

ψ∞

)
dR

∣∣∣∣∣∣
21/2

(95)

. |∇un|2 +
1

(Nn)2

[∫
B
ψ̃n log

(
ψ̃n

ψ∞

)
dR

]∫
B
ψ∞

∣∣∣∣∣∣∇
(√ ψ̃n

ψ∞
log1/2 ψ̃

n

ψ∞

)
dR

∣∣∣∣∣∣
2 ,

and using the a priori bound (57), we see that the last term is uniformly bounded in L1((0, T )×
Ω). To bound the second term in (94), we first use the inequality x y ≤ C(x2 log2(x) + y2

log2 y
)

for x, y ≥ 2 with x =
∫
B

ψ̃n

ψ∞
ψ∞

1−|R| dR and y =
(

3 + |∇un|
Nn

)
log
(

3 + |∇un|
Nn

)
and then apply

Jensen’s inequality. Hence,
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|∇un|
Nn

log
(

3 +
|∇un|
Nn

)∫
B

ψ̃n

ψ∞

ψ∞
1− |R|

dR

. 1 + |∇un|2 +
1

(Nn)2

[∫
B

ψ̃n

ψ∞

ψ∞
1− |R|

dR

]2

log2

[∫
B

ψ̃n

ψ∞

ψ∞
1− |R|

dR

]
(96)

. 1 + |∇un|2 +
1

(Nn)2

[∫
B

ψ̃n

ψ∞
log

(
ψ̃n

ψ∞

)
ψ∞

1− |R|
dR

]2

,

and the last term can be bounded as in (95). We notice here that the last inequality implies
in particular that |τn,δ,κ|2 is equi-integrable in L1 for fixed δ and κ. This is actually a very
important fact that will be used again later.

Proof of Lemma 5.2. To prove this lemma, we use the dominated convergence and
monotone convergence theorems. Indeed, |zn,δ,κ| is decreasing in δ, κ, namely for 0 < δ ≤ δ′

and 0 < κ ≤ κ′, we have |zn,δ′,κ′ | ≤ |zn,δ,κ| ≤ |∇unψ̃n|. Passing to the limit weakly in n, we
deduce that

|zn,δ′,κ′ | ≤ |zn,δ,κ| ≤ |∇unψ̃n|

and by monotone convergence, we deduce that G = |zn,δ,κ|
δ,κ
∈ X and that for all 0 < δ and

0 < κ, we have |zδ,κ| ≤ G. Moreover, we have, for 0 < δ ≤ δ′ and 0 < κ ≤ κ′,

(97) |zδ,κ − zδ′,κ′ | ≤
∣∣∣|zn,δ,κ| − |zn,δ′,κ′ |∣∣∣ .

Indeed, recall that

|zδ,κ − zδ′,κ′ | =
∣∣∣zn,δ,κ − zn,δ′,κ′∣∣∣ ≤ |zn,δ,κ − zn,δ′,κ′ |

where we have used that x → |x| is convex. Now, notice that for each t, x, R, 0 < δ ≤ δ′,
0 < κ ≤ κ′ and n, there exists 0 < λ ≤ 1 such that zn,δ

′,κ′ = λzn,δ,κ. Hence, |zn,δ,κ−zn,δ′,κ′ | =
|zn,δ,κ| − |zn,δ′,κ′ | and (97) follows.

Hence, there exists g ∈ X such that zδ,κ converges strongly to g in X. Now, we would
like to prove that the limit g is equal to ∇unψ̃n. This follows from the fact that ∇unψ̃n
is equi-integrable in L1((0, T ) × Ω × B; dt dx dR) (without the weight). Indeed, denoting
Φ(x) = |x| log1/2(1 + |x|), we have

Φ(|∇unψ̃n|) . |∇unψ̃n|
[

log(1 + ψ̃n) + log(1 + |∇un|)
]

. ψ̃n
[
|∇un|2 + log(1 + ψ̃n)

]
,

which is clearly a bounded sequence in L1(dt dx dR). Indeed, for the first term, we use that
ψ̃n is a bounded sequence in L∞(dt dx;L1(dR)) and that |∇un|2 is a bounded sequence in
L1(dt dx). For the second term, we use that ψ̃n log(1 + ψ̃n) . ψ̃n + ψ̃n log

(
ψ̃n

ψ∞

)
.

5.4. Identification of
∫
B βij

RiRj
1−|R2|dR. In this subsection, we give a relation between β and

some defect measure related to the lack of strong convergence of ∇un in L2. First, we give
we consider the case of a smooth bounded domain Ω. To state the main proposition of this
subsection, we introduce a few notations. Let un = vn + wn, where vn and wn solve{

∂tv
n −∆vn +∇pn1 = ∇.τn in Ω

vn(t = 0) = 0, vn = 0 on ∂Ω,(98)
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∂tw

n −∆wn +∇pn2 = −un.∇un in Ω
wn(t = 0) = un(t = 0), wn = 0 on ∂Ω.(99)

We further split wn into wn1 + wn2 where wn1 is the solution with zero initial data and wn2 is
the solution with zero right-hand side.

In the rest of this subsection we will use δ to denote the pair δ, κ. We define vn,δ = vn,δ,κ

the solution of {
∂tv

n,δ −∆vn,δ +∇pn,δ1 = ∇.τn,δ in Ω
vn,δ(t = 0) = 0, vn,δ = 0 on ∂Ω.

(100)

Extracting a subsequence, we assume that (τn,δ,∇vn,δ,∇vn,∇wn) converges weakly in L2 to
some (τδ,∇vδ,∇v,∇w) and that

|∇vn,δ|2 = |∇vδ|2 + µδ

for some defect measure µδ ∈M((0, T )×Ω). We also denote by µ the limit of µδ, when δ and
then κ go to zero in the sense of measures (extracting a subsequence if necessary), namely

µ = lim
κ→0

lim
δ→0

µδ = lim
δ→0

µδ.

The fact that this limit exists comes from the fact that µδ is uniformly bounded inM((0, T )×
Ω), since its total mass is controlled by the initial free energy.

Proposition 5.4. We have

µ = −
∫
B
βij

RiRj
1− |R2|

dR.

Proof. We introduce the following weak limits

τn,δ : ∇vn,δ = W δδ,

τn,δ : ∇vn = W δ.

Step 1: First, we would like to prove that W δδ and W δ have the same limit W when δ
goes to zero and that this limit is in L1((0, T )× Ω). To prove this, we introduce, for M > 0,
the following weak limits:

τn,δ1|τn,δ |≤M : ∇vn,δ = W δδ
M ,

τn,δ1|τn,δ |>M : ∇vn,δ = W δδ −W δδ
M ,

τn,δ1|τn,δ |≤M : ∇vn = W δ
M ,

|τn,δ1|τn,δ |≤M |2 = Gδ
M and |τn,δ|2 = Gδ.

Since for a fixed δ, |τn,δ|2 is equi-integrable, we deduce that Gδ
M converges to Gδ in L1((0, T )×

Ω) when M goes to infinity and is monotone in M . Also, by monotone convergence, we deduce
that there exists G ∈ L1 such that Gδ converges to G in L1((0, T )× Ω) when δ goes to zero.
Actually, G is the weak limit of |τn|2 in the sense of Chacon.

Let us fix ε > 0. We choose δ0 and M0 such that for δ < δ0 and M > M0, we have
‖G−Gδ‖L1 + ‖G−Gδ

M‖L1 ≤ ε. We have

|τn,δ|2 = |τn,δ1|τn,δ |≤M |2 + |τn,δ1|τn,δ |>M |2

= Gδ
M + (Gδ −Gδ

M ).

Hence, we deduce that for δ < δ0 and M > M0, we have for all n, ‖τn,δ1|τn,δ |>M‖2L2 ≤ ε

and hence, by Cauchy-Schwarz we deduce that ‖W δδ − W δδ
M ‖L1 ≤ C

√
ε and that ‖W δ −
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W δ
M‖L1 ≤ C

√
ε. Hence to prove that limδ W

δδ = limδ W
δ, it is enough to prove it for the M

approximation, namely that

(101) lim
δ
W δδ
M = lim

δ
W δ
M .

To prove (101), we first notice that since Ω is a bounded domain, we have that τn,δ − τn
goes to zero in Lp((0, T )×Ω) for p < 2 when δ goes to zero uniformly in n. Then, by parabolic
regularity of the Stokes system (see (8.5) in [2] as well as the earlier works [36, 80]), we deduce
that ‖∇vn,δ − ∇vn‖Lp((0,T )×Ω) goes to zero when δ goes to zero uniformly in n for p < 2.
Hence, (101) holds.

Step 2: In this second step, we will compare the local energy identity of the weak limit of
(100) with the weak limit of the local energy identity of (100).

On one hand, passing to the limit in (100) and multiplying by vδ, we deduce that

(102) ∂t
|vδ|2

2
−∆
|vδ|2

2
+ |∇vδ|2 + div(pδ

1v
δ) = div(vδ.τδ)−∇vδ : τδ

On the other hand, reversing the order, we get

(103) ∂t
|vδ|2

2
−∆
|vδ|2

2
+ |∇vδ|2 + µδ + div(pδ

1v
δ) = div(vδ.τδ)−W δδ.

For a justification of these two calculations, we refer to [63]. Comparing (102) and (103), we
deduce that W δδ = ∇vδ : τδ − µδ. We would like now to send δ to zero.

First, it is clear that τδ converges strongly to τ in L2((0, T )×Ω) when δ goes to zero. Hence,
∇vδ also converges to∇v in L2((0, T )×Ω). Besides, from the energy estimate, we recall that un

is bounded in L∞((0, T );L2(Ω))∩L2((0, T ); Ḣ1(Ω)) and hence by Sobolev embeddings that un

is bounded in L
2(D+2)
D ((0, T )×Ω) and that un∇un is bounded in L

D+2
D+1 ((0, T )×Ω). By parabolic

regularity of the Stokes operator applied to (99) with zero initial data, we deduce that ∇wn1 is
bounded in L

D+2
D+1 ((0, T );W 1,D+2

D+1 Ω) and that ∂twn1 is bounded in L
D+2
D+1 ((0, T )× Ω). Since τn

is bounded in L2((0, T )×Ω), we deduce from (98) that ∇vn is also bounded in L2((0, T )×Ω)
and hence ∇wn is also bounded in L2((0, T )×Ω). Moreover, it is clear that ∇wn2 is compact
in L2((0, T ) × Ω) and hence ∇wn1 is also bounded in L2((0, T ) × Ω) and from the previous
bounds on ∇wn1 , we deduce that ∇wn1 is compact in Lp((0, T ) × Ω) for p < 2. Hence, we

deduce that ∇wn : τ(ψ̃n)
δ,κ

= ∇w : τ(ψ) (where we have used that τn,δ is equi-integrable

for each fixed δ) and from Corollary 5.3 that limδ W
δδ = limδ W

δ = ∇vn : τ(ψ̃n)
δ,κ

= ∇v :
τ(ψ) +

∫
B βij

RiRj
1−|R2|dR. Finally, we deduce that µ = limδ→0 µ

δ = −
∫
B βij

RiRj
1−|R2|dR.

Remark 5.5. For later application, it is worth noting that if hn is a sequence bounded in
L2((0, T ) × Ω × B) and such that |hn|2 is equi-integrable, then |∇unhn − ∇uh| = |∇vnhn −
∇vh| ≤ Cµ(hn − h)2

1/2
. In particular one can deduce (see Remark 3.10), that ch(|∇un −

∇u|2) = ch(|∇vn −∇v|2) ≤ µ.

Let us now indicate the changes to be made in the whole space case. The only problem is
that we do not necessarily have that τn is in Lp((0, T ) × Ω) for some p < 2 and hence the
argument after (101) does not hold. One has just to localize the last argument at the end of
Step 1. This can be done in several different ways and we leave this to the reader. One way
is to use the parabolic regularity of the Stokes operator in Lploc. �

5.5. Gronwall along the characteristics. We recall that gn = Θ( ψ̃
n

ψ∞
) where Θ(t) =

t1/2 log1/2(t) and that g is the weak limit of gn in L2((0, T );L2(Ω × B, dxψ∞dR)). We
also denote η = Nn

1 −
∫
B g

2ψ∞ =
∫
B[(gn)2 − g2]ψ∞dR. Hence η

N4 = limε→0 ηε weakly in
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L2
loc((0, T )×Ω) where ηε = θ

N4 −
∫
B ψ∞χε(g̃)dR. In particular η measures the lack of strong

convergence of gn to g in L2((0, T )×Ω;L2
k). Notice also that by the choice of the renormalizing

factor N , the defect measure η
N is in L∞((0, T )× Ω). The following Proposition holds.

Proposition 5.6. For a.e. x ∈ Ω, the following holds in D′(0, T ):

d

dt

( η

N4
(t,X(t, x))

)
.

[
1 +

∫
B
ψ∞
|∇Rg|2

N
+
|∇u|2

N3

]
η

N
(1 + | log(

η

N
)|)(t,X(t, x))(104)

and η
N4 (0, X(0, x)) = 0 for a.e. x ∈ Ω. Besides, the factor (1 + | log( ηN )|) is not needed if

k > 1.

Proof. Taking the difference between (91) and (84), we get that the inequality

(∂t + u.∇)ηε ≤
1
N4
∇un : τ(ψ̃n)

δ,κ
+∇u : τ

(
ψ∞

(
χε(g̃)− χ′ε(g̃)

N2

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
)
))

− 4
N4

∫
B
ψ∞|∇Rfn|2

δ,κ,a

−
∫
B
ψ∞

 |∇Rfn|2(log1/2 + log−3/2)( ψ̃
n

ψ∞
)

fn

a

χ′ε(g̃)
N2

− χ′′ε(g̃)|∇Rg̃|2
dR

− 2ak
∫
B
ψ∞

 1
N4

(
log(

ψ̃n

ψ∞
) + 1

)
∇un

δ,κ

− χ′ε(g̃)
N2

Θ′(
ψ̃n

ψ∞
)∇un

 :
R⊗R

1− |R|2

dR
−
∫
B
ψ∞

[
∇RU ⊗R :

(γ′ − γ)
N2

χ′ε(g̃) +
γ R

N2
.∇Rχ′ε(g̃)

]
dR

(105)

holds in D′((0, T ) × Ω) where we recall that ηε = θ
N4 −

∫
B ψ∞χε(g̃)dR and ηε(t = 0) ≤

N1,0

N4 −
∫
ψ∞χε( 1

N2 Θ( ψ̃0

ψ∞
)) dR. We denote by −Aεi , 1 ≤ i ≤ 4, the term appearing on the

i-th line of the right-hand side of (105). We would like to send ε to zero and deduce that
(106) holds. It is not difficult to prove (see also the proof of Lemma 5.7 below) that all
the terms appearing on the right-hand side of (105) are bounded in L1((0, T ) ×K) for any
compact set K of Ω (and actually dominated by a fixed L1

loc function G(t, x)), except the term
|∇Rfn|2(log1/2 + log−3/2)( ψ̃

n

ψ∞
)|2

fn

a

χ′ε(g̃)
N2 which is nonnegative. Testing (105) with a nonnegative test

function, we deduce that for t < T we have
∫ t

0

∫
K

|∇Rfn|2(log1/2 + log−3/2)( ψ̃
n

ψ∞
)|2

fn

a

χ′ε(g̃)
N2 ≤ Ct,K ,

independent of ε. Hence, we can use Fatou’s Lemma to pass to the limit in that term and use
dominated convergence to pass to the limit in the remaining terms and deduce that
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(∂t + u.∇)
η

N4
≤ −

4∑
i=1

Ai(t, x)

=
1
N4

[
∇un : τ(ψ̃n)

δ,κ
+∇u : τ

(
ψ∞

(
g2 − 2g

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
)
))]

− 4
N4

∫
B
ψ∞|∇Rfn|2

δ,κ,a

+
1
N4

∫
B
ψ∞

2|∇Rg|2 −
|∇Rfn|2(log1/2 + log−3/2)( ψ̃

n

ψ∞
)

fn

a

2g

dR
(106)

− 2ak
N4

∫
B
ψ∞

( log(
ψ̃n

ψ∞
) + 1

)
∇un

δ,κ

−
(

2Θ′(
ψ̃n

ψ∞
)∇un

)
g

 :
R⊗R

1− |R|2
dR

+
2
N4

∫
ψ∞

∣∣γ : R⊗∇g −∇RU ⊗R : (γ − γ′)g
∣∣ dR

and η
N4 (0, X(0, x)) ≤ 0 for a.e. x ∈ Ω. Of course, one has to pass to the limit in the weak

formulation of (105) with a test function φ ∈ C∞([0, T ) × Ω) to also deduce the bound on
the initial data. We skip the details. Here, we denote the terms appearing on the (i+1)st line
of (106) by −Ai, 1 ≤ i ≤ 4. Notice that, from Proposition A.5, one can understand (106) in
different ways. In particular for a.e. x ∈ Ω, η

N4 (t,X(t, x)) ∈ BV (0, T ).
In the next Lemma, we will estimate the right-hand side of (106). We denote by $, the

following integral $ =
∫
B ψ∞ |∇R(fn − f)|2 dR

δ,κ,a
. Notice that

$ =
∫
B
ψ∞ |∇R(fn − f)|2 dR

δ,κ,a

≥
∫
B
ψ∞|∇R(fn − f)|2

δ,κ,a
dR.

Lemma 5.7. We have the following bounds:

A2 ≥ 1
N4

∫
B
ψ∞ |∇R(fn − f)|2 dR

δ,κ,a

=
1
N4

$,

A1 ≥ µ

N4
− C(1 + |∇u|2)

η

N4
− 1

10N4
$,

|A3| ≤
1

10N4
(µ+$) +

C

N4
|∇u|2η,

|A4| ≤
1

10N4
(µ+$) + C

[
1 +

∫
B
ψ∞
|∇Rg|2

N

]
η

N
(1 + | log(

η

N
)|).

For the proof of the first estimate, we rewrite |∇Rg|2 as

|∇Rg|2 =
∣∣∣∇Rfn(log1/2(fn)2 + log−1/2(fn)2)

∣∣∣2
=
∣∣∣∇Rfn(log1/2(fn)2)

∣∣∣2 +
∣∣∣∇Rfn(log−1/2(fn)2)

∣∣∣2(107)

+ 2∇Rfn(log1/2(fn)2) · ∇Rfn(log−1/2(fn)2).

Hence, we deduce that

A2 =
1
N4

[∫
B
ψ∞(α + β + γc + γo) + 4

∫
B
ψ∞|∇Rfn|2dR

δ,κ,a

− 4
∫
B
ψ∞|∇Rfn|2

δ,κ,a
dR

]
,

where α,β, γc and γo are given by
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α

2
=
|∇Rfn|2(log1/2( ψ̃

n

ψ∞
))

fn

a

fn log1/2(
ψ̃n

ψ∞
)−

∣∣∣(∇Rfn) log1/2(
ψ̃n

ψ∞
)
∣∣∣2,

β

2
=
|∇Rfn|2(log−3/2( ψ̃

n

ψ∞
))

fn

a

fn log1/2(
ψ̃n

ψ∞
)−

∣∣∣(∇Rfn) log−1/2(
ψ̃n

ψ∞
)
∣∣∣2,

γc
2

= 2|∇Rfn|2
δ,κ,a − 2ch(|∇Rfn|2),

γo
2

= 2ch(|∇Rfn|2)− 2(∇Rfn) log1/2(
ψ̃n

ψ∞
) . (∇Rfn) log−1/2(

ψ̃n

ψ∞
).

Notice that γc is some measure of concentration of the sequence |∇Rfn|2 whereas γo is some
measure of oscillations. We introduce the Young measure νt,x,R(Λ, λ) associated with the

sequence (∇Rfn, fn) where Λ ∈ RD and λ ∈ R. Hence, the defect measure |∇R(fn − f)|2
δ,κ,a

satisfies (see Remark 3.10) :

|∇R(fn − f)|2 ≥ |∇R(fn − f)|2
δ,κ,a

=
γc
4

+
∫
|Λ−

∫
Λ′νt,x,R(Λ′, λ′)|2νt,x,R(Λ, λ)

=
γc
4

+
1
2

∫ ∫
|Λ− Λ′|2νt,x,R(Λ′, λ′)νt,x,R(Λ, λ).

Indeed, it is easy to see that |∇R(fn − f)|2
δ,κ,a

is bounded from above by the weak limit and
that it is given by the sum of γc

4 and the Chacon limit of |∇R(fn − f)|2. In the sequel, we will
drop the t, x and R dependence of ν and will denote ν ′ = ν(Λ′, λ′) and ν = ν(Λ, λ). Besides,
α,β and γo satisfy

α ≥
∫ ∫

A(Λ, λ,Λ′, λ′)ν(Λ′, λ′)ν(Λ, λ)

and the same is true for β and γo, with A replaced by B or C where A,B and C are given by

A =
|Λ|2 log1/2(λ2)

λ
λ′ log1/2(λ′)2 +

|Λ′|2 log1/2(λ′)2

λ′
λ log1/2(λ2)− 2Λ.Λ′ log1/2(λ2) log1/2(λ′)2,

B =
|Λ|2 log−3/2(λ2)

λ
λ′ log1/2(λ′)2 +

|Λ′|2 log−3/2(λ′)2

λ′
λ log1/2(λ2)− 2Λ.Λ′ log−1/2(λ2) log−1/2(λ′)2,

C = 2|Λ|2 + 2|Λ′|2 − 2Λ.Λ′
(

log1/2(λ2) log−1/2(λ′2) + log−1/2(λ2) log1/2(λ′)2
)
.

To prove the first estimate of Lemma 5.7, it is enough to show that A+B +C ≥ c
2 |Λ−Λ′|2.

First, we rewrite A+B + C as

A+B + C = |Λ|2B1 + |Λ′|2B2 − 2Λ.Λ′B3

= |Λ− Λ′|2 + |Λ|2(B1 − 1) + |Λ′|2(B2 − 1)− 2Λ.Λ′(B3 − 1),
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where B1, B2 and B3 are given by

B1 =
log1/2(λ2)

λ
λ′ log1/2(λ′2) +

λ′ log1/2(λ′2)
λ log3/2(λ2)

+ 2,

B2 =
log1/2(λ′2)

λ′
λ log1/2(λ2) +

λ log1/2(λ2)
λ′ log3/2(λ′2)

+ 2,

B3 = log1/2(λ2) log1/2(λ′2) +
1

log1/2(λ2) log1/2(λ′2)
+

log1/2(λ2)
log1/2(λ′2)

+
log1/2(λ′2)
log1/2(λ2)

.

Actually, we will prove that if a is chosen large enough then (B1 − 1)(B2 − 1) ≥ (B3 − 1)2

from which we deduce that A + B + C ≥ |Λ − Λ′|2 and the lemma will follow. Indeed, after
simple calculations, we get

(B1 − 1)(B2 − 1)− (B3 − 1)2 =

log1/2(λ2) log1/2(λ′2)

[
λ

λ′
+
λ′

λ
+ 2− 2

log1/2(λ2)
log1/2(λ′2)

− 2
log1/2(λ′2)
log1/2(λ2)

]

+ 2

[
log1/2(λ2)
log1/2(λ′2)

+
log1/2(λ′2)
log1/2(λ2)

− 2

]

+
1

log1/2(λ2) log1/2(λ′2)

[
λ log(λ2)
λ′ log(λ′2)

+
λ′ log(λ′2)
λ log(λ2)

+ 2− 2
log1/2(λ2)
log1/2(λ′2)

− 2
log1/2(λ′2)
log1/2(λ2)

]
.

We will prove that the three terms appearing inside the brackets are nonnegative. This is
obvious for the second one since it is of the form x + 1

x − 2 for some x > 0. We recall that
since (fn)2 ≥ a, we get that λ ≥

√
a on the support of ν. For the first bracket, we assume

that λ′ ≥ λ and write λ′ = λ(1 + ε). Hence, the term in the first bracket is given by

(108) 1 + ε+
1

1 + ε
+ 2− 2

√
1 +

log(1 + ε)
log λ

− 2
1√

1 + log(1+ε)
log λ

and one can check easily that if λ ≥
√
a is big enough then (108) is nonnegative. The same

argument can be used for the third bracket. This completes the proof of the estimate of A2.
To bound A1, we first observe that

g2 − 2g
ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
) = −fn log1/2(fn)2 fn log−1/2(fn)2

and hence,

A1 = − 1
N4

[
∇un : τ(ψ̃n)

δ,κ
+∇u : τ

(
ψ∞

(
g2 − 2g

ψ̃n

ψ∞
Θ′(

ψ̃n

ψ∞
)
))]

= − 1
N4

[
∇un : τ(ψ̃n − ψ)

δ,κ
+∇u : τ(ψ − ψ∞(fn log1/2(fn)2 fn log−1/2(fn)2))

]
=

1
N4

[
µ−∇u : τ(ψ − ψ∞(fn log1/2(fn)2 fn log−1/2(fn)2))

]
.
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By convexity, it is clear that (fn − f)2 = (fn)2− f2 ≥ (fn)2− fn log1/2(fn)2 fn log−1/2(fn)2

and hence, using (37), we get

|τ(ψ − ψ∞(fn log1/2(fn)2 fn log−1/2(fn)2))|

≤
(∫

B
ψ∞(fn − f)2dR

)1/2
(∫

B
ψ∞|∇(fn − f)|2dR

δ,κ,a

+
∫
B
ψ∞(fn − f)2dR

)1/2

.

Hence,

−A1 ≤ −
µ

N4
+
|∇u|
N4

η + C
|∇u|
N4

(∫
B
ψ∞(fn − f)2dR

∫
B
ψ∞|∇(fn − f)|2dR

δ,κ,a
)1/2

≤ − µ

N4
+ C(|∇u|+ |∇u|2)

η

N4
+

1
10N4

∫
B
ψ∞|∇(fn − f)|2dR

δ,κ,a

.

For A3, we use that the term between parentheses in the definition of A3 can be written as

∇un
fn

(
log1/2(fn)2 + log−1/2(fn)2

)[
fn log1/2(fn)2 − fn log1/2(fn)2

]
.

If we denote by νt,x,R(Π, λ) the Young measure associated to the sequence (∇xun, fn), then
we see easily that A3 is given by

A3 = −2ak
N4

∫
B

∫ ∫ (
Π
λ

(log1/2 λ2 + log−1/2 λ2)− Π′

λ′
(log1/2 λ′2 + log−1/2 λ′2)

)
(λ log1/2 λ2 − λ′ log1/2 λ′2) :

R⊗R
1− |R|2

ψ∞ dν dν ′ dR.

The absolute value of the two factors inside the integral can be bounded respectively by

|Π−Π′|( log1/2 λ2

λ
+

log1/2 λ′2

λ′
) + (|Π|+ |Π′|)( log1/2 λ2

λ
− log1/2 λ′2

λ′
)

and

|λ− λ′|(log1/2 λ2 + log1/2 λ′2).

Hence

|A3| ≤
1

10N4

∫
B

∫ ∫
|Π−Π′|2(

log λ2

λ
+

log λ′2

λ′
)2 1

1− |R|2
ψ∞ dν dν

′ dR

+
C

N4

∫
B

∫ ∫
(|Π|+ |Π′|)|λ− λ′|2(

log λ2

λ2
+

log λ′2

λ′2
)2 1

1− |R|2
ψ∞ dν dν

′ dR

+
C

N4

∫
B

∫ ∫
(1 + |Π|+ |Π′|)|λ− λ′|2 1

1− |R|2
ψ∞ dν dν

′ dR

≤ 1
10N4

µ+
1

10N4
$ +

C

N4
|∇u|2η,

where we have used that
∫ ∫
|λ− λ′|2dν dν ′ = ch(|∇un −∇u|2) ≤ µ (see Remark 5.5).
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Finally, to bound −A4, we split it into two terms. For A1
4, we use Cauchy-Schwarz to

deduce that

|A1
4| ≤

2
N4

∫
B
ψ∞|γij ||∇g| dR

≤ 1
10N4

|∇vn −∇v|2δ,κ +
C

N4

(∫
B
ψ∞(gn − g)|∇Rg| dR

)2

≤ 1
10N4

µ+
C

N4

(∫
B
ψ∞|∇Rg|2dR

) ∫
B
ψ∞(gn − g)2dR.

To bound A2
4, we first consider the case k > 1 where the term can be treated using (17):

|A2
4| ≤

2
N4

∫
B
ψ∞(|γij |+ |γ′ij |)

g

1− |R|
dR

≤ 1
10N4

|∇vn −∇v|2δ,κ +
C

N4

(∫
B
ψ∞
|gn − g| g
(1− |R|2)

dR

)2

≤ 1
10N4

µ+
C

N4

∫
B
ψ∞(gn − g)2dR

∫
B
ψ∞

|g|2

(1− |R|)2
dR(109)

≤ 1
10N4

µ+
C

N4

(∫
B
ψ∞|∇Rg|2 dR

)
η.

In the case k ≤ 1, we have to use (20) instead of (17) to control the second term on the
second line of (109). We define fg by g = fq log1/2(f2

g ). We have

(110) |gn − g| . (|fn − f |+ |f − fg|)
(

log1/2(g2) + log1/2(C + (fn − f)2)
)

where we have used that log1/2(f2
g ) + log1/2((fn)2) . log1/2(g2) + log1/2(C + (fn − f)2). To

control the four terms appearing on the right-hand side of (110), it is enough to control the
two terms coming from |fn − f | since |f − fg|2 . |fn − f |2.

The term involving log1/2(C + (fn − f)2) can be treated as follows:

(111)

(∫
B
ψ∞
|fn − f | log1/2(C + (fn − f)2)g

(1− |R|2)
dR

)2

≤
∫
B
ψ∞

(fn − f)2 log1/2(C + (fn − f)2)
(1− |R|2)

dR

∫
B
ψ∞

g2 log1/2(C + (fn − f)2)
(1− |R|2)

dR.

To bound the second term on the right-hand side of (111), we use the following Young’s

inequality for a, b ≥ 1, ab ≤ a logγ a+ e(b
1
γ ) with γ = 1/2. We denote d = 1− |R|2 and hence

∫
B
ψ∞

g2 log1/2(C + (fn − f)2)
(1− |R|2)

dR ≤
∫
B
ψ∞

[
g2

d
log1/2 g

2

d
+ C + |fn − f |2

]
dR.

On the set {g2 ≥ 1
dε } where ε = k

2 , we have log1/2 g2

d ≤ C log1/2 g2. Using (20), we have,

(112)
∫
B
ψ∞

g2 log1/2 g2

d
dR ≤

(∫
B
ψ∞g

2 log g2dR

) 1
2
(∫

B
ψ∞(|∇Rg|2 + g2)dR

) 1
2

.

On the set {g2 ≤ 1
dε }, we have

(113)
g2

d
log1/2 g

2

d
≤ C

d1+ε
log1/2(

1
d

),
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which is integrable in the ball B with the measure ψ∞dR.
To bound the first term on the right-hand side of (111), we use (20):

∣∣∣ ∫
B
ψ∞

(fn − f)2 log1/2(C + (fn − f)2)
(1− |R|2)

dR
∣∣∣(114)

≤
(∫

B
ψ∞(fn − f)2 log(C + (fn − f)2)dR

) 1
2
(∫

B
ψ∞|∇R(fn − f)|2dR

) 1
2

≤ C

λ2

(∫
B
ψ∞(fn − f)2 log(C + (fn − f)2)dR

)
+ λ2

(∫
B
ψ∞|∇R(fn − f)|2dR

)
,

for each λ > 0. Passing to the limit weakly (more precisely, applying Fn
δ,κ,a) to both sides of

(111) and optimizing in λ, we deduce that,

1
N4

(∫
B
ψ∞
|fn − f | log

1
2 (C + (fn − f)2)g

(1− |R|2)
dR

)2

≤ C

N4

(∫
B
ψ∞g

2 log g2

∫
B
ψ∞(|∇Rg|2 + g2)

) 1
2

η
1
2$

1
2 .

The term involving log1/2(g2) in (110) can be treated as follows: Let ε > 0 be such that
3ε < r − 2 where r is as in (75). On the set where {gε ≥ 1

d}, we have

(115)

(∫
B∩{gε≥ 1

d
}
ψ∞
|fn − f | log1/2(g2)g

(1− |R|2)
dR

)2

.

(∫
B
ψ∞|fn − f | log1/2(g2)g1+ε dR

)2

.
∫
B
ψ∞(fn − f)2dR

∫
B
ψ∞g

2+3εdR.

On the set where {gε ≤ 1
d}, we have log1/2(g2) . log1/2(1

d), hence

(116)(∫
B∩{gε≤ 1

d
}
ψ∞
|fn − f | log

1
2 (g2)g

(1− |R|2)
dR

)2

.
∫
B
ψ∞
|fn − f |2 log

1
2 (1
d)

d
dR

∫
B
ψ∞

g2 log
1
2 (g2)
d

dR.

The second term on the right-hand side of (116) can be estimated as in (112). For the first
term, we first look at the set { ηN

1
dε ≤ C + |fn − f |2} where ε = k/2:

(117)∫
B∩{ η

N
1
dε
≤C+|fn−f |2}

ψ∞|fn − f |2 log
1
2 (1
d)

d
dR .

∫
B
ψ∞
|fn − f |2

(
log

1
2 (C + |fn − f |2) + | log( ηN )|

1
2

)
d

dR

The first term on the right-hand side of (117), involving log1/2(C + |fn − f |2), is treated as
in (114). For the second term, we use that

(118)
∫
B
ψ∞
|fn − f |2| log( ηN )|1/2

d
dR . η

1
2$

1
2 | log(

η

N
)|1/2.

On the set { ηN
1
dε ≥ C + |fn − f |2}, we have

(119)
∫
B∩{ η

N
1
dε
≥C+|fn−f |2}

ψ∞
|fn − f |2 log

1
2 (1
d)

d
dR .

∫
B
ψ∞

η log
1
2 (1
d)

N ddε
dR .

η

N
.
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Next, we claim that
∫
B ψ∞g

2 log g2dR ≤ CN2. Indeed, if we introduce hn = gn log1/2 gn,

we see that Nn
2 ≥

(∫
B ψ∞(hn)2

)1/2 and then it is easy to see using that (x, y)→ x2

y is convex
that (∫

B
ψ∞(hn)2

)1/2

≥
(∫

B
ψ∞h

2

)1/2

,

from which we deduce the claim. Hence, we get

1
N4

(∫
B
ψ∞
|gn − g| g
(1− |R|2)

dR

)2

≤ $

10N4
+ C

[
1 +

∫
B
ψ∞
|∇Rg|2

N

]
η

N
(1 + | log(

η

N
)|)(t,X(t, x)).

This ends the proof of Lemma 5.7. Putting the estimates of the terms Ai, 1 ≤ i ≤ 4, together,
and writing the outcome along the characteristics of u using Proposition A.5, we see that
(106) implies (104). The fact that we also get that the initial condition η

N4 (0, X(0, x)) = 0
for a.e. x ∈ Ω comes from the fact that η

N4 (0, X(0, x)) ≤ 0 and that η ≥ 0. This completes
the proof of Proposition 5.6. �

Using (104), we can now conclude the proof of the weak compactness argument. Indeed,
notice that the right-hand side of (104) is in L1((0, T ) × K) for any bounded measurable
subset K of Ω. To prove this, we can observe that η

N is bounded and that using (62), the
term between the brackets in (104) is in L1((0, T )×K)).

Now, since the term between the brackets in (104) is in L1((0, T )×K), we deduce that for
almost all x,

∫ T
0

[
1 +

∫
B ψ∞

|∇Rg|2
N

]
(t,X(t, x)) is finite. Besides, for almost all x, N(t,X(t, x))

(which is constant in t) is bounded. Hence, we deduce that for almost all x,∫ T

0
N3

[
1 +

∫
B
ψ∞
|∇Rg|2

N

]
+ |∇u|2(t,X(t, x)) dt is finite.

If k > 1, then we can apply Gronwall’s lemma and deduce that for a.e. x, we have for all
t < T , η(t,x)

N4 ≤ η(0,x)
N4 eCT (x) and since η(0, x) = 0 due to the initial strong convergence, we

deduce that η(t,x)
N4 = 0 and hence η = 0 for a.e. x ∈ Ω. If k < 1, we have to replace Gronwall’s

lemma by Osgood’s Lemma (see Lemme 5.2.1 in [13]) to infer that η = 0 for all t < T , for
a.e. x ∈ Ω. Hence, we deduce the strong convergence of gn to g. This yields that (u, ψ) is a
weak solution of (1) with the initial data (u0, ψ0).

Remark 5.8. Notice that one also gets that µ = $ = 0 and that equality should hold in
(91), (81),... In particular this means that (77) holds with (ψ̃n, un) replaced by (ψ̃, u) and so
the defect measure in (81) has to vanish. It seems unclear if one can deduce this fact just
from the limit equation (85). Let us compare this on the one hand to other works (related to
the Boltzmann equation) where a defect measure due to renormalization or absence of equi-
integrability is present in the final formulation even if it formally has to vanish (see for instance
[1] and [64]). On the other hand, we can compare the fact that we also obtain a renormalized
solution of (85) to the works [61, 31] about the compressible Navier-Stokes system where the
notion of renormalized solution to the continuity equation is very important.

6. Approximate system

In the previous section, we proved the weak compactness of a sequence of solutions to
the system (1). Of course one has to construct a sequence of (approximate) weak solutions
to which we can apply the strategy of the previous sections. The only thing we have to
make sure is that the calculations performed in the previous section can be carried out on
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the approximate system. We consider a sequence of global smooth solutions (un, ψn) to the
following regularized system

(120)



∂tu
n + (ũn · ∇)un − ν∆un +∇pn = div(τn?ωn), divu = 0,

∂tψ
n + ũn.∇ψn = divR

[
−∇un?ωnRψn + β∇ψn +∇Uψn

]
τn =

∫
B(R⊗∇U)ψn(t, x,R)dR (∇Uψn + β∇ψn).n = 0 on ∂B(0, R0).

where ωn(x) = nDω(nx), ω ∈ C∞0 (RD),
∫

RD ω = 1, Supp(ω) ∈ B(0, 1) and τn?ωn denotes the
convolution in the x variable. Here, when performing convolutions in the case of a bounded
domain Ω, all functions are extended by 0 in Ωc. Besides, ũn is a regularized version of
un that has the same boundary condition. In particular, if Ω = RD or TD, we can take
ũn = un?ωn. If Ω is a smooth bounded domain, we take ũn = vn?ωn where vn solves
−∆vn + vn +∇pn = −∆un +un in Ω 1

n
, divvn = 0 in Ω 1

n
and Ω 1

n
= {x ∈ Ω, dist(x, ∂Ω) > 1

n}.
System (120) is complemented with smooth initial data (un0 , ψ

n
0 ) such that (un0 , ψ

n
0 ) converges

strongly to (u0, ψ0) in L2(Ω)×L1(Ω×B) and ψn0 log ψn0
ρn0ψ∞

−ψn0 +ρn0ψ∞ converges strongly to

ψ0 log ψ0

ρ0ψ∞
−ψ0 + ρ0ψ∞ in L1(Ω×B). We also assume that (8) holds uniformly in n. In the

case Ω is a bounded domain of RD, we also impose the Dirichlet boundary condition un = 0
at the boundary ∂Ω. We do not detail the proof of existence for the system (120). We only
mention that we have to combine classical results about strong solutions to the Navier-Stokes
system with the study of the linear Fokker-Planck equation (see [68]). Following the proof of
existence given in [68], we can prove the following result.

Proposition 6.1. Take un0 ∈ Hs(Ω) and ψn0 ≥ 0 such that ψn0 − ρn0ψ∞ ∈ Hs(Ω;ψ∞L2( dRψ∞ ))
with ρn0 =

∫
ψn0 dR ∈ L∞(Ω). Then, there exists a global unique solution (un, ψn) to (120)

such that (un, ψn − ρnψ∞) is in C([0, T );Hs) × C([0, T );Hs(RN ;L2( dRψ∞ ))) for all T > 0.
Moreover, un ∈ L2([0, T );Hs+1) and ψn − ρnψ∞ ∈ L2([0, T );Hs(RN ;ψ∞H1

k)).

Remark 6.2. The proof is exactly the same as the proof of Theorem 2.1 in [68] with a few
differences:

• In [68], we only had local existence whereas here, we have global existence since we
have a regularized system.
• Theorem 2.1 of [68] was stated in the whole space. Of course in the case of a bounded

domain, we have to use energy bounds for Navier-Stokes written in a bounded domain.
• In Theorem 2.1 of [68] we assumed that

∫
ψ0dR = 1. The result can be easily extended

to this more general case. We also point out that there is a small mistake in the state-
ment of the Theorem 2.1 of [68]. Indeed, one has to read ψ0 − ψ∞ ∈ Hs(Ω;L2( dRψ∞ ))
instead of ψ0 ∈ Hs(Ω;L2( dRψ∞ )) when the problem is in the whole space.

It is clear that the solutions constructed in Proposition 6.1 satisfy the free-energy bound
(50) and the extra bound (57) (with Ω replaced by K in the whole space case).

Once we have our sequence of regular approximate solutions, we have to check that all the
computations performed in the previous section can be done on this sequence (un, ψn). The
only point to be checked is that Proposition 5.4 still holds since the rest of the proof only
involves the transport equation. Now, vn and wn solve{

∂tv
n −∆vn +∇pn1 = ∇.(τn?ωn) in Ω

vn(t = 0) = 0, vn = 0 on ∂Ω,(121)
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∂tw

n −∆wn +∇pn2 = −ũn.∇un in Ω
wn(t = 0) = un(t = 0), wn = 0 on ∂Ω,(122)

and we define vn,δ to be the solution of{
∂tv

n,δ −∆vn,δ +∇pn,δ1 = ∇.τn,δ in Ω
vn,δ(t = 0) = 0, vn,δ = 0 on ∂Ω,

(123)

where τn,δ is now given by τn,δ = τn?ωn
(1+δNn

2 )(1+κNn
1 )2

. Step 1 of the proof of Proposition 5.4
is the same with the only difference that we replace τn by τn?ωn. Hence, we deduce that
‖∇vn,δ − ∇vn‖Lp((0,T )×Ω) goes to zero when δ goes to zero uniformly in n for p < 2. The
second step is then identical to the one in the proof of Proposition 5.4.

7. Conclusion

In this paper we gave a proof of existence of weak solutions to the system (1), using the
fact that a sequence of regular solutions to the approximate system (120) converges weakly
to a weak solution of (1). We would like here to mention few important open problems (with
increasing level of difficulty, at least in the author’s opinion):

• The zero diffusion limit in x. If we add a center-of-mass diffusion term ε∆xψ in the
Fokker-Planck equation of (1) with a boundary condition for ψ when x ∈ ∂Ω in the
case Ω is a smooth bounded domain, then one can prove the global existence of weak
solutions to the model (see [9] for an existence result for the FENE model with center-
of-mass diffusion). A natural question is whether we recover a weak solution of the
unregularized system (1) when ε goes to zero. This is the object of a forthcoming
paper [71]. The difficulty comes from the fact that the calculation of section 5 used
in a critical way the fact that we had a transport equation in the x variable.
• Relaxing the assumption (57). This extra bound was only used to give some extra

control for the stress tensor and to justify the calculation in section 5. Can we prove
the same existence result without it?
• Other models. A natural question is whether we can extend the result of this paper to

the Hookean model (where the system can be reduced to a macroscopic model). We
were not able to perform this. The main difficulty is that we do not know whether the
extra stress tensor τ is in L2. Nevertheless, we know how to use the strategy of this
paper to prove global existence for the FENE-P model [69]. We should also mention the
new paper [10] where global existence to the Hookean-type bead-spring chain model
is proved when center-of-mass diffusion is taken into account and the potential U(R)
grows faster than |R|2 when R goes to infinity. Moreover, in [20], global existence is
proved for the Hooke model (which is equivalent to the macroscopic Oldroyd-B model)
when the data is small in L∞.
• Regularity in 2D. Many works on polymeric flows are motivated by similar known

results for the Navier-Stokes system. In particular a natural question is whether one
can prove global existence of smooth solutions to (1) in 2D. We point out that this
is known for the co-rotational model [59, 68]. This seems to be a difficult problem
since, we only have an L2 bound on τ and that an L∞ bound on τ was necessary in
the previously mentioned works. In particular a similar result is not known for the
co-rotational Oldroyd-B model where one can prove Lp bounds on τ for each p > 1.
• Is system (1) better behaved than Navier-Stokes? One does not expect to prove results

on (1) which are not known for Navier-Stokes since (1) is more complicated than
Navier-Stokes. However, one can speculate that due to the polymer molecules and the
extra stress tensor, system (1) may behave better than Navier-Stokes and that one
can prove global existence of smooth solutions to (1) even if such result is not proved
or disproved for the Navier-Stokes system.
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Appendix A. About the DiPerna-Lions flows

Most papers dealing with the theory of DiPerna-Lions flows for Sobolev vector fields u are
stated in the whole space. Extending them to the case of a bounded domain, when u vanishes
at the boundary, is easy. One has just to extend u by 0 in Ωc (see also [24]). In addition, in
that case the flow keeps Ω invariant. In the sequel, we will consider the problem in RD.

Proposition A.1. (Existence of DiPerna-Lions flow) If u ∈ L2(0, T ;H1(RD)) and div(u) =
0. Then there exists a unique flow X(t, t0, x) such that for all t0 ∈ (0, T ) and for a.e. x ∈ RD,
t→ X(t, t0, x) is absolutely continuous and satisfies

(124)
{

∂X
dt (t, t0, x) = u(t,X(t, t0, x)), t ∈ (0, T )
X(t = t0, t0, x) = x,

and for t, t0 ∈ (0, T ), the map x→ X(t, t0, x) is measure-preserving.

We will also denote X(t, x) = X(t, 0, x). One of the main ingredients in proving Proposition
A.1 is the following stability result.

Proposition A.2. (Stability of the flow) Assume that un is bounded in L2(0, T ;H1(RD)),
div(un) = 0 and un converges to u in L2

loc((0, T ) × RD). Let Xn(t, t0, x) and X(t, t0, x) be
the DiPerna-Lions flows associated respectively with un and u. Then the flows Xn(t, t0, x)
and X(t, t0, x) satisfy the following stability result. For all t0 ∈ (0, T ), we have Xn(t, t0, x)
converges to X(t, t0, x) locally in measure in RD, uniformly with respect to t ∈ (0, T ).

In particular this means that, for all t0 ∈ (0, T ),

(125) lim
n→∞

|{x ∈ B(0, R) | |Xn(t, t0, x)−X(t, t0, x)| > δ}| = 0, for everyR > 0 and δ > 0,

uniformly in t ∈ (0, T ). This is also equivalent to the fact that

(126) min(1, |Xn(t, t0, x)−X(t, t0, x)|) → 0, in L1
loc(RD) uniformly in t ∈ (0, T ).

Proposition A.3. (Weak limit along the flow) Assume that un is bounded in L2(0, T ;H1(RD)),
div(un) = 0 and un converges to u in L2

loc((0, T ) × RD). Let fn be a sequence bounded in
L∞((0, T ) × RD) such that fn converges weakly to f in Lploc((0, T ) × RD), 1 < p < ∞. Let
Xn(t, t0, x) and X(t, t0, x) be the DiPerna-Lions flows associated respectively with un and u.
Then, fn(t,Xn(t, x)) converges weakly to f(t,X(t, x)) in Lploc((0, T )× RD), 1 < p <∞.

Let us denote qn(t, x) = fn(t,Xn(t, x)). Hence, for any test function φ(t, x) ∈ C∞0 ((0, T )×
Ω), we have

(127)
∫ T

0

∫
RD

qn(t, x)φ(t, x) dxdt =
∫ T

0

∫
RD

fn(t, y)φ(t, (Xn)−1(t, y))dydt,

where for each time t, we made the change of variable y = Xn(t, x). Hence, x = (Xn)−1(t, y) =
Xn(0, t, y). Recall that this change of variable is measure-preserving. The left-hand side of
(127) converges to

∫ T
0

∫
RD q

nφ(t, x) dxdt. To pass to the limit in the right-hand side, we notice
that fn converges to f weak∗ in L∞((0, T )× RD) and that for each t0 ∈ (0, T ), we have
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(128)

‖φ(t0, (Xn)−1(t0, y))− φ(t0, (X)−1(t0, y))‖L1(RD)

≤ 2‖φ‖W 1,∞

∫
X(t0,K)∪Xn(t0,K)

min(1, |(Xn)−1(t0, y)− (X)−1(t0, y)|)dy

= 2‖φ‖W 1,∞

∫
X(t0,K)∪Xn(t0,K)

min(1, |Xn(0, t0, y)−X(0, t0, y)|)dy

where K is a compact set that contains the support of φ in the x variable, namely Supp(φ) ⊂
(0, T ) × K. In the sequel, we assume that K is included in a ball B(0, r) for some r > 0.
From Proposition A.2, we know that

(129) min(1, |Xn(0, t0, x)−X(0, t0, x)|) → 0, in L1
loc(RD).

However, the set on which we are integrating in (128), namely X(t0,K) ∪ Xn(t0,K) is not
necessarily included in a compact set since it is not necessarily bounded. To overcome this
problem, we have to adapt the proof of Proposition A.2 to include our case. Arguing as in
[21], we introduce, for each λ > 0, the set

(130) Gλ = {x ∈ RD | |X(t, x)| ≤ λ, ∀t ∈ [0, T ]}

and the set Gnλ where X(t, x) is replaced by Xn(t, x). Notice that if we knew that u is
bounded in L∞((0, T )×RD) then the set Gλ would be equal to the whole ball B(0, λ). From
Proposition 3.2 of [21], we know that

(131) |B(0, R) \Gλ|+ |B(0, R) \Gnλ| ≤ ε(R, λ),

where ε(R, λ) only depends on the norm of u and un in L2((0, T )×RD) and for each R fixed,
ε(R, λ) goes to zero when λ goes to infinity. Arguing as in the proof of Theorem 3.8 of [21],
we introduce, for each λ > 0, the function

(132) gn(t) =
∫
X(t0,Gλ)∩X(t0,Gnλ)

log
(
|X(t, t0, x)−Xn(t, t0, x)|

δ
+ 1
)
dx,

where δ = δn(λ) = ‖u − un‖L1((0,T )×B(0,λ)). A calculation similar to the one given in the
proof of Theorem 3.8 of [21] yields that |(gn)′(t)| ≤ Cλ, where Cλ depends on λ, but does not
depend on n or t0 ∈ (0, T ). Hence |g(0)| ≤ CλT since g(t0) = 0. Fix ε > 0, let R = 2r and
recall that K ⊂ B(0, r). Using (131), we deduce that there exists λ0 such that if λ > λ0, then
|B(0, R)\ (Gλ∩Gnλ)| ≤ ε. In particular this implies that |K \ (Gλ∩Gnλ)| ≤ ε and since X(t0, .)
and Xn(t0, .) are measure-preserving, we deduce that |X(t0,K) \X(t0, (Gλ ∩ Gnλ))| ≤ ε and
|Xn(t0,K) \Xn(t0, (Gλ ∩Gnλ))| ≤ ε. Using that |gn(0)| ≤ CλT , we can find a measurable set
Pn ⊂ X(t0, (Gλ ∩Gnλ)) such that |X(t0, (Gλ ∩Gnλ)) \ Pn| ≤ ε and

(133) log
(
|X(0, t0, x)−Xn(0, t0, x)|

δ
+ 1
)
≤ CλT

ε
for allx ∈ Pn.

Hence, we deduce that

(134)

∫
X(t0,K)∪Xn(t0,K)

min(1, |Xn(0, t0, x)−X(0, t0, x)|)dx

≤ |X(t0,K) \X(t0, (Gλ ∩Gnλ))|+ |Xn(t0,K) \Xn(t0, (Gλ ∩Gnλ))|

+ |X(t0, (Gλ ∩Gnλ)) \ Pn|+
∫
Pn
|Xn(0, t0, x)−X(0, t0, x)|

≤ 3ε+ Cδe
CλT

ε ≤ 3ε+ Ce
CλT

ε ‖u− un‖L1((0,T )×B(0,λ)).
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Now, we choose N large enough, so that Ce
CλT

ε ‖u − un‖L1((0,T )×B(0,λ)) ≤ ε for all n ≥
N . Hence, we deduce that the left-hand side of (134) goes to zero when n goes to infin-
ity, uniformly in t0 ∈ (0, T ), and we infer from (128) that φ(t0, (Xn)−1(t0, y)) converges
strongly to φ(t0, (X)−1(t0, y)) in L1(RD) when n goes to infinity uniformly in t0 ∈ (0, T ).
Since, this holds for all t0 ∈ (0, T ), we deduce that φ(t, (Xn)−1(t, y)) converges strongly to
φ(t, (X)−1(t, y)) in L1((0, T ) × RD) when n goes to infinity. Therefore, using that fn con-
verges to f weak∗ in L∞((0, T ) × RD), we deduce that the right-hand side of (127) goes to∫ T

0

∫
RD f(t, y)φ(t, (X)−1(t, y))dydt when n goes to infinity. Hence, we get that fn(t,Xn(t, x)) =

qn(t, x) = f(t,X(t, x)).

Remark A.4. One can extend Proposition A.3 to the case where fn converges weakly to f
in L1

loc((0, T ) × RD). Indeed, this implies that locally, fn is equiintegrable and hence we can
approximate fn by min(fn,M) uniformly in n and apply Proposition A.3 to min(fn,M) and
conclude by sending M to infinity. In our paper, we only use the case where fn is bounded.

Finally, we prove a Proposition similar to Theorem A on p.361 of [25].

Proposition A.5. (mild formulation) Assume that u ∈ L2(0, T ;H1
0 (Ω)) and that X(t, x) is

its DiPerna-Lions flow. Let f ∈ L∞((0, T ) × Ω), f0 ∈ L∞(Ω) and h ∈ L1((0, T ) × Ω). The
following three systems are equivalent :

(135)
{
∂tf + u.∇f ≥ h in D′((0, T )× Ω)
f(t = 0, x) ≥ f0(x),

(136)
{

d
dt [f(t,X(t, x))] ≥ h(t,X(t, x)) in D′((0, T )× Ω)
f(t = 0, x) ≥ f0(x),

(137)
{

d
dt [f(t,X(t, x))] ≥ h(t,X(t, x)) in D′((0, T )) for a.e.x ∈ Ω,
f(t = 0, x) ≥ f0(x).

In this case, we also have that f(t,X(t, x)) ∈ BV (0, T ;M(Ω)) and that for a.e. x ∈ Ω, the
function f(t,X(t, x)) ∈ BV (0, T ) and h(t,X(t, x)) ∈ L1(0, T ).

Recall that f solves (135) in the weak sense means that for φ ∈ C∞0 ([0, T )× Ω), we have

(138)
∫ T

0

∫
Ω
f(−∂tφ− u.∇φ)dxdt−

∫
Ω
f0φ(t = 0)dx ≥

∫ T

0

∫
Ω
hφdxdt.

We will only give a sketch of the proof. We first use Lemma 2.3 of [60] to regularize (135)
in the x variable. Let ωε(x) = ε−Dω(xε ), ω ∈ C∞0 (RD),

∫
RD ω = 1 and Supp(ω) ∈ B(0, 1).

Hence, (135) yields

(139)
{
∂tfε + u.∇fε ≥ hε + rε in M((0, T )× Ω)
fε(t = 0, x) ≥ f0,ε(x),

where fε = f?ωε, hε = h?ωε, f0,ε = f0?ωε and rε goes to zero in L1((0, T ) × Ω). Hence,
we deduce by making the change of variable x → X(t, x) that d

dt [fε(t,X(t, x))] ≥ (hε +
rε)(t,X(t, x)) and then we send ε to zero to deduce (136). Taking a test function of the
form φ1(t)φ2(x) in (136), we deduce that (137) holds. Finally, to prove that (137) yields
(135), we take φ(t, y) ∈ C∞0 ([0, T ) × Ω) and denote ψ(t, x) = φ(t,X(t, x)) and hence, ∂tψ =
∂tφ+ u.∇yφ ∈ L2((0, T )× Ω). Hence, for a.e. x ∈ Ω we can use ψ(t, x) as a test function in
(137) and deduce that for a.e. x ∈ Ω, we have

−
∫ T

0
f(t,X(t, x))∂tψ(t, x)dt− f0(x)ψ(t = 0, x) ≥

∫ T

0
h(t,X(t, x))ψ(t, x)dt.

Since, both sides are in L1(Ω), we can integrate in Ω and making the change of variable
y = X(t, x), we infer that (138) holds for φ(t, y).
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Appendix B. The linear operator L

Here, we study the linear operator L in the R variable given by

(140) Lh = − 1
ψ∞

div(ψ∞∇h)

on the space H0 = L2
k = L2(ψ∞dR) and with the domain

(141) D(L) = {h ∈ H0|∇h ∈ H0,
1
ψ∞

div(ψ∞∇h) ∈ H0 andψ∞n.∇h|∂B = 0}.

For a more detailed version of this appendix, we refer to [70]. We also refer to Subsection 3.3 of
[68] where the operator Lφ = −div(ψ∞∇ ψ

ψ∞
) is studied. It is easy to see that Lh = 1

ψ∞
L(ψ∞h)

and hence properties of L can be deduced from properties of L. We also recall that H1
k was

defined in (14) and we define H2
k by

H2
k = {g ∈ H1

k |
∫
B
ψ∞ |∇2g|2 dx <∞} and ‖g‖2H2

k
=
∫
B
ψ∞ [g2 + |∇g|2 + |∇2g|2] dR.

It is not difficult to see (using elliptic regularity) that D(L) =
{
h ∈ H2

k| ψ∞n.∇h|∂B = 0
}
.

One can give a sense to the boundary condition in the sense of traces or in a weak sense,
namely h ∈ D(L) if and only if h ∈ H2

k and for any g ∈ H1
k, we have

(142)
∫
B
ψ∞(Lh)gdR =

∫
B
ψ∞∇h.∇g dR.

We have the following proposition. For a proof, we refer to Proposition 3.6 of [68].

Proposition B.1. L is self-adjoint and positive. Moreover, it has a discrete spectrum formed
by a sequence (`n) such that `n →∞ when n→∞.

Let us define H1
k,0 = C∞0 (B)

H1
k . Hence, we have the following result.

Proposition B.2. If k > 0, then C1(B)
H1
k = H1

k and if k ≥ 1 then

(143) C∞0
H1
k = H1

k,0 = H1
k.

Proof. We will only give the proof of the second statement when k = 1 (see also Remark 3.7
of [68]). From (15), we have

(144)
∫
B

|h|2

x(1 + log(x)2)
dR ≤ C|h|2H1

k
.

We define the function χ ∈ C∞(R) by χ(t) = 1 for 0 ≤ t ≤ 1, |χ′(t)| ≤ 2 for 1 ≤ t ≤ 2 and
χ(t) = 0 for t ≥ 2. For h ∈ H1

k, we take

hn(R) = h(R)χ(
− log(1− |R|)

n
).

It is clear that hn ∈ H1
k. Moreover,

‖h− hn‖2H1
k
≤ C

∫
1−|R|≤e−n

|h|2

x(1 + log(x)2)
+ ψ∞|∇ψ|2 dR

which goes to 0 when n goes to infinity. Now, it is easy to see (using mollifiers) that hn can
be approximated in H1

k by a sequence in C∞0 (B). This completes the proof of (143). �

It is clear that (143) does not hold when k < 1. Indeed, when k < 1, functions in H1
k have

a trace on ∂B, namely for h ∈ H1
k, γ(h) = h|∂B ∈ H

1−k
2 (∂B) and γ is surjective from H1

k onto

H
1−k
2 (∂B).
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Remark B.3. We point out that if k ≥ 1, then the boundary condition ψ∞n.∇h|∂B = 0 is
a consequence of the fact that h ∈ H2

k and hence D(L) = H2
k. For the proof, we use the fact

that, for all h ∈ H2, (142) holds for all g ∈ C∞0 . Then, we use that any g ∈ H1 can be
approximated in H1 by a sequence gn ∈ C∞0 . Hence, by passing to the limit we deduce that
(142) holds for all g ∈ H1. This implies that ψ∞n.∇h|∂B = 0 and hence, D(L) = H2

k (see
Remark 3.8 of [68] and [44] for a probabilistic interpretation).

The previous remark shows that when k ≥ 1, L is similar to a Dirichlet boundary value
problem. Whereas when k < 1, it is similar to a Neumann boundary value problem.

We can also define H−1
k = (H1

k,0)′. Since C∞0 is dense in H1
k,0,we deduce that H−1

k ⊂ D
′(B).

It is not difficult to see that

H−1
k = {φ ∈ D′(B) |∃ fi ∈ L2

k |φ =
1
ψ∞

∂i(ψ∞fi)} and

that the operator T (g) = − 1
ψ∞

div(ψ∞∇g) is an isomorphism from H1
k,0 into H−1

k (see [70]).

B.1. More about the boundary condition.

Definition B.4. i) For a vector v ∈ L1(B), we say that v.n = 0 on ∂B if for all φ ∈ C∞(B),
φ ≥ 0, there exists a sequence χn ∈ C∞0 (B) such that 0 ≤ χn ≤ 1 and χn converges to 1 in all
Lp(B), 1 ≤ p <∞, and

(145)
∫
B

div(v)φχn dR+
∫
B
v.∇φdR → 0

when n goes to infinity. Here, we abused the notation since div(v) is only a distribution and
hence the left-hand side should be understood as 〈div(v), φχn〉D′×C∞0 .

ii) Under the same hypotheses as in i), we say that v.n ≥ 0 on ∂B if (145) is replaced by

(146) lim inf
n→∞

∫
B

div(v)φχn dR+
∫
B
v.∇φdR ≥ 0.

In the sequel, we will mostly use (145) and (146) when we also have a bound on div(u) in
L1(B). If we also know that div(v) ∈ L1(B), then (145) is equivalent to the fact that

(147)
∫
B

div(v)φdR =
∫
B
−u.∇φdR

and (146) is equivalent to
∫
B div(v)φdR +

∫
B u.∇φdR ≥ 0. One can then easily extend

the Definition B.4 to the case where v also depends on other variables such as t and x. In
particular if v ∈ L1((0, T )×B) and div(v) ∈W−s,p((0, T );L1(B)), then v.n = 0 on ∂B means
that for φ ∈ C∞(B) and φ1 ∈ C∞0 (0, T ), we have

(148)
〈∫

B
div(v)φdR, φ1

〉
D′×C∞0

=
〈∫

B
−u.∇φdR, φ1

〉
D′×C∞0

.

It is easy to see that (148) and (3) give equivalent interpretations of (2).

Proposition B.5. If v ∈ L1(B) and v.R
d(1+| log d|) ∈ L

1(B) then v.n = 0 on ∂B, where we recall
that d = 1− |R|.

Proof. Let χ be defined as in the proof of Proposition B.2 and χn(R) = χ(− log(1−|R|)
n ). Hence,

for φ ∈ C∞(B), we have

(149)
∫
B

div(v)φχn dR = −
∫
B
v.∇φχn + φ v · R

|R|
χ′(
− log(d)

n
)

1
dn

dR.
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Now, notice that χ′(− log(d)
n ) vanishes unless n ≤ − log(d) ≤ 2n and hence the second term on

the right-hand side is bounded by

(150)
∫
d≤e−n

|v.n| 1
d (1− log(d))

dR

which goes to zero when n goes to infinity. �

B.2. Renormalization of L. We would like to understand how we can renormalize the
singular parabolic inequality

(151)
{
∂th+ Lh ≥ divR(A(t, R)) +B(t, R),
ψ∞∇h.n ≥ 0, h(t = 0, R) ≥ h0(R),

with the force term F = divR(A(t, R)) +B(t, R), where A ∈ L1((0, T );L1
k−1) ∩ L2((0, T );L2

k)
and B ∈ L1((0, T );L1(ψ∞dR)). We have the following Proposition, which is used in justifying
the passage from (82) to (83).

Proposition B.6. Assume that h ∈ L∞((0, T );L2
k)∩L2((0, T );H1

k) solves (151) in the weak
sense, namely for all φ ∈ C∞([0,∞)×B; R) compactly supported in [0,∞)×B, φ ≥ 0,

∫ ∞
0

∫
B
ψ∞[∇h.∇φ− h∂tφ]dRdt+

∫
B
φ(t = 0)h0dRdx ≥

∫ ∞
0

∫
B

[ψ∞φB −A.∇(ψ∞φ)]dRdt.

(152)

Hence, for β ∈ C∞(R), β convex and β′ bounded and nonnegative, β(h) ∈ L∞((0, T );L2
k) ∩

L2((0, T );H1
k) solves

(153){
∂tβ(h) + Lβ(h) + β′′(h)|∇h|2 ≥ divR(β′(h)A(t, R))− β′′(h)∇h.A+ β′(h)B(t, R),
ψ∞∇β(h).n ≥ 0, β(h)(t = 0, R) ≥ β(h0)(R).

Proof. From the fact that ∂th = −Lh+ divR(A(t, R)) +B(t, R) + µ for some measure µ ≥ 0
such that ψ∞µ ∈ M([0, T ) × B), we deduce as in the Appendix C of [60] (see also Lemma
6.3 of [31] and [62]), that h ∈ BV ([0, T );L2

k − w) where L2
k − w denotes the space L2

k en-
dowed with its weak topology (we refer to Chapter 5 of [30] for more about BV functions).
Hence, the initial condition can be understood as ess lim inft→0+ h(t) ≥ h0 where the limit
is understood in the weak topology of L2

k. In other words, for all φ ∈ L2
k, φ ≥ 0, we have

ess lim inft→0+

∫
B φψ∞h(t)dR ≥

∫
B φψ∞h0dR. Since, β is convex and |β(h)| ≤ Ch, we deduce

that limt→0+ β(h(t)) ≥ β(limt→0+ h(t)) ≥ β(h0). To prove the rest of the proposition, we
write divR(A(t, R)) = 1

ψ∞
divR(ψ∞A(t, R)) + ∇U .A and notice that by Proposition B.5, we

deduce that ψ∞A.n = 0 on ∂B. Hence, we get that

(154) ψ∞∂th− divR(ψ∞(∇h+A(t, R))) ≥ ψ∞[B(t, R) +∇U .A] ∈ L1((0, T )×B).

The rest of the proof is similar to the proof of Theorem E.1 in [60]. We regularize h in t by
convolution and hence we can assume that h is smooth in t. Therefore, we have just to prove
that if −divR

(
ψ∞(∇h + A(t, R))

)
≥ H(R) with H(R) ∈ L1(B), h ∈ H1

k and ψ∞∇h.n ≥ 0,
then

(155) −divR
(
ψ∞(∇β(h) + β′(h)A)

)
+ ψ∞β

′′(h)∇h.(∇h+A) ≥ β′(h)H.

To check this, we use a weak formulation, namely for φ ∈ C∞(B), φ ≥ 0, we have∫
B
ψ∞(∇h+A(t, R)).∇φdR ≥

∫
B
H(R)φ(R) dR.
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By density, this also holds for φ ∈ L∞ ∩H1
k. We use φ̃ = β′(h)φ as a test function, hence∫

B
ψ∞

[
β′′(h)∇h.(∇h+A)φ+ (∇β(h) + β′(h)A)∇φ

]
dR ≥

∫
B
β′(h)HφdR,

which is the weak formulation of (155) with the boundary condition ψ∞(∇β(h)+β′(h)A).n ≥ 0
on ∂B, which is equivalent to ψ∞∇β(h).n ≥ 0 on ∂B. �

Corollary B.7. Assume that h ∈ C([0, T );L2
k) ∩ L2((0, T );H1

k) solves

(156)
{
∂th+ Lh = divR(A(t, R)) +B(t, R),
ψ∞∇h.n = 0, h(t = 0, R) = h0(R),

in the weak sense, namely for all φ ∈ C∞([0,∞)× B; R) compactly supported in [0,∞)× B,
φ ≥ 0, (152) holds with an equality. Hence, for β ∈ C∞(R) such that β′ and β′′ are bounded,
β(h) ∈ C([0, T );L2

k) ∩ L2((0, T );H1
k) solves (153) with the inequalities replaced by equalities.

The proof is the same as that of Proposition B.6. We just have to replace the ≤ sign
by = in (154) and (155). The only difference is that we can deduce the equality β(h)(t =
0, R) = β(h0)(R) by using that h ∈ C([0, T );L2

k) and hence that limt→0+ h(t) = h0 in L2
k. In

particular we do not need that β is convex.
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[43] B. Jourdain, C. Le Bris, T. Lelièvre, and F. Otto. Long-time asymptotics of a multiscale model for
polymeric fluid flows. Arch. Ration. Mech. Anal., 181(1):97–148, 2006.
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[50] C. Le Bris and T. Lelièvre. Multiscale modelling of complex fluids: a mathematical initiation. In Multiscale
modeling and simulation in science, volume 66 of Lect. Notes Comput. Sci. Eng., pages 49–137. Springer,
Berlin, 2009.

[51] Z. Lei, C. Liu, and Y. Zhou. Global solutions for incompressible viscoelastic fluids. Arch. Ration. Mech.
Anal., 188(3):371–398, 2008.

[52] Z. Lei, N. Masmoudi, and Y. Zhou. Remarks on the blowup criteria for Oldroyd models. J. Differential
Equations, 248(2):328–341, 2010.

[53] Z. Lei and Y. Zhou. Global existence of classical solutions for the two-dimensional Oldroyd model via the
incompressible limit. SIAM J. Math. Anal., 37(3):797–814 (electronic), 2005.
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Linéaire, 16(3):373–410, 1999.

[63] P.-L. Lions and N. Masmoudi. Global solutions for some Oldroyd models of non-Newtonian flows. Chinese
Ann. Math. Ser. B, 21(2):131–146, 2000.

[64] P.-L. Lions and N. Masmoudi. From the Boltzmann equations to the equations of incompressible fluid
mechanics. II. Arch. Ration. Mech. Anal., 158(3):195–211, 2001.

[65] P.-L. Lions and N. Masmoudi. Global existence of weak solutions to some micro-macro models. C. R.
Math. Acad. Sci. Paris, 345(1):15–20, 2007.

[66] C. Liu and H. Liu. Boundary conditions for the microscopic FENE models. SIAM J. Appl. Math.,
68(5):1304–1315, 2008.

[67] H. Liu and J. Shin. Global well-posedness for the microscopic fene model with a sharp boundary condition.
preprint 2010.

[68] N. Masmoudi. Well-posedness for the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math.,
61(12):1685–1714, 2008.

[69] N. Masmoudi. Global existence of weak solutions to macroscopic models of polymeric flows. J. Math. Pures
Appl. (9), 96(5):502–520, 2011.

[70] N. Masmoudi. Regularity of solutions to the FENE model in the polymer elongation variable R. In prepa-
ration, 2011.

[71] N. Masmoudi. Zero diffusion limit in the FENE model of polymeric flows. In preparation, 2011.
[72] N. Masmoudi, P. Zhang, and Z. Zhang. Global well-posedness for 2D polymeric fluid models and growth

estimate. Phys. D, 237(10-12):1663–1675, 2008.

[73] S. Mischler. Kinetic equations with Maxwell boundary conditions. Ann. Sci. Éc. Norm. Supér. (4),
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