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Abstract. This is the first of three papers where we present a new method based on the concept of
space-time resonance to prove global existence of small solutions to nonlinear dispersive equations.
The idea is that time resonances (dynamical systems resonances) correspond to interactions between
plane waves; but since for dispersive equations we deal with localized solutions, it is crucial to take
also into account the traveling speeds of the different wave packets. Here we show how this idea,
and the analytical method that this naturally suggests, leads to a simple proof of global existence
and scattering for quadratic nonlinear Schrödinger equations in three dimensions.

1. Introduction

There is a vast body of literature dealing with the global existence of small solutions to nonlinear
Schrödinger (NLS) equations. A prototype of these equations is

∂tu = −i∆u+Q(u)

where Q is a quadratic function of u and ū. Most of the proofs given rely on weighted L2 estimates
and L∞ decay of solutions. Although it is natural to consider these types of estimates for dispersive
equations, the construction of some of the proofs seems to be ad hoc and tailored to a given equation
rather than relying on or developing a general method for dealing with nonlinear equations.

Our aim in this paper is to present a transparent proof of global existence based upon the
concept of space-time resonances and normal forms, which we will explain below. Specifically we
will provide the details of the proof for the initial value problem1

(NLS)

{
∂tu+ i∆u = αu2

u|t=2 = u2
def
= e−2i∆u∗,

where α is a complex number and where u is a complex-valued function of (t, x) ∈ R × R3. We
also remark afterwards how we can trivially generalize the work to the case of Q(u) = αu2 + βū2,
or more generally to systems of the form

(SNLS)
{
∂tu` = −ic`∆u` +

∑
m,nA`mnumun

u`|t=2 = u`2,

where the c` are nonzero real numbers2. Moreover the same method we employ here works for
problems in two space dimensions, which is the subject of a second paper in preparation.

Space-time resonance. The concept of space-time resonance is a natural generalization of reso-
nance for ODEs. If one considers a linear dispersive equation on Rn

∂tu = iL
(1
i
∇
)
u

1The choice of initial data to be given at t = 2 instead of the standard t = 0 is related to the choice of norms and
will be explained later.

2It is not at all obvious how to generalize existing proofs to deal with systems such as (SNLS).
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then the quadratic time resonance can be found by considering plane wave solutions u = ei(L(ξ)t+ξ·x).
In this case time resonance for u2 corresponds to

T = {(ξ1, ξ2);L(ξ1) + L(ξ2) = L(ξ1 + ξ2)}.

However, time resonances tell only part of the story for dispersive equations when one considers
spatially localized solutions. Specifically, if one considers two solutions u1 and u2 with data localized
in space around the origin and in frequency around ξ1 and ξ2, respectively, then the solutions u1 and
u2 at large time t will be spatially localized around (−∇L(ξ1)t) and (−∇L(ξ2)t). Thus quadratic
spatial resonance is defined as the set (ξ1, ξ2) ∈ S where

S = {(ξ1, ξ2);∇L(ξ1) = ∇L(ξ2)}.

Thus we define quadratic space-time resonance as

R = T ∩S .

Spatial localization can be measured by computing weighted norms. Thus if the initial data is
spatially localized around the origin, i.e., ‖xku(0, ·)‖L2 is bounded, then the localization of the
solution u can be measured by computing ‖∂kξ e−iL(·)tû(t, ·)‖L2 , where ˆ is the Fourier transform
in space. This leads to the observation that the absence of space-time resonance can be captured
using Duhamel’s formula for the profile f̂(t, ξ) = e−iL(ξ)tû(t, ξ) and integrating by parts either in
time or in frequency. These ideas which we have been developing for the past two years will be
illustrated in detail for various dispersive equations in a forthcoming review article.

Known results. Global existence of small solutions to nonlinear Schrödinger equations have been
studied extensively. This question was first studied using energy estimates, and dispersion proper-
ties of the Schrödinger semi-group, e.g., see Strauss [14], Klainerman and Ponce [8], Shatah [12].
This approach works for quadratic nonlinearities in dimension greater or equal to 4, or in dimen-
sion 3 for nonlinearities of order strictly greater than 2. The problem which is considered in the
present paper, namely quadratic nonlinearities in dimension 3, is far more subtle. If a polynomial
nonlinearity, in three space dimension, has a quadratic term it is necessary to take resonances into
account. In this case global existence is known only if the dimension of R is zero, in particular
we mention the work of Hayashi and Naumkin [11], Hayashi Mizumachi and Naumkin [6], Kawa-
hara [7]. These authors employ vector fields methods to obtain global existence. The vector field
approach which we understand as a method that addresses space resonances, can be cumbersome
or unintuitive to apply (as in the (SNLS) case), or even limited in applicability since it does not
deal with time resonances directly.

In the case of the nonlinearity |u|2, the space time resonant set R is three-dimensional. In this
case almost global existence has been proved by Ginibre and Hayashi [3], but it is not clear at all if
global existence is true. For the gauge invariant nonlinearity |u|u, the Fourier side approach should
of course be avoided; but using the pseudo-conformal transform, one can obtain global existence:
see Cazenave and Weissler [1], Nakanishi and Ozawa [10].

Finally, let us remark that the quadratic Klein-Gordon equation in dimension 3 is easier to
deal with: global existence is known for all type of quadratic nonlinearities since the papers of
Klainerman [9] and Shatah [13]. This might seem surprising since the dispersive properties of the
(linear) Klein-Gordon and Schrödinger operators are very close, but the main difference is of course
that for Klein-Gordon T = ∅.

Main results. For equation (NLS) let f denote the profile of u, i.e.,

f̂(t, ξ) = e−i|ξ|
2tû(t, ξ) ,
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then by Duhamel’s formula

(1) f̂(t, ξ) = û∗(ξ) +
α

(2π)3/2

∫ t

2

∫
eisϕ(ξ,η)f̂(s, η)f̂(s, ξ − η)dηds,

where ϕ = −|ξ|2 + |η|2 + |ξ − η|2 and f̂(ξ) denotes the Fourier transform of f given by

f̂(ξ) =
1

(2π)3/2

∫
e−ix.ξf(x) dx.

With ξ1 = η and ξ2 = ξ−η, space time resonances correspond to the sets where ϕ = 0 and ∂ηϕ = 0
respectively. Therefore space-time resonance corresponds to a point R = {(0, 0)}. Consequently
we can prove the following

Theorem 1. Define the Banach space X by its norm

‖u‖X = ‖f‖L∞L2 +
∥∥∥∥ x

log t
f

∥∥∥∥
L∞L2

+
∥∥∥∥ x2

√
t
f

∥∥∥∥
L∞L2

+ ‖f̂‖L∞L∞ + ‖t3/2u‖L∞L∞ .

where f is the profile of u, namely f̂(t, ξ) = e−i|ξ|
2tû(t, ξ). For data u∗ such that ‖e−it∆u∗‖X is

small enough, there exists a solution of (NLS) in X. Furthermore, this solution scatters; i.e., f(t)
has a limit in L2 as t→∞.

Here we used the short hand LpLq = Lpt ([2,∞), Lqx(R3)). The choice of initial data at t = 2 is
made to avoid having singularities at t = 0 and t = 1 in the norm on X. If we choose the data to
be given at t = 0, then in the definition of the norm on X t should be replaced by 〈t〉 =

√
2 + t2.

The norm on X can be explained as follows. The first and the last term in the norm are just the
L2 control and the L∞ decay of the linear solution. For data which is strongly localized in space
we expect the profile f(t) to be in L∞L1. However we can not prove that and instead we show that
the profile is such that f̂ ∈ L∞L∞ which is the fourth term in the definition of the norm. Similarly
one expects x

3
2 f to be in L∞L2, however to prove this requires the use of fractional derivatives in

η which is cumbersome to say the least. Thus we opt to use stronger integer weights and allow for
weak time growth of the stronger weighted norms. Finally one expect xf to be in L∞L2, which
is true but is stronger than what is needed for the existence proof. The easier estimate where we
allow logarithmic growth is sufficient for our proof.

The method of proof of theorem 1, which is based on dealing with space-time resonances, enables
us to easily treat a system of Schrödinger equations with different dispersion coefficients (SNLS).
In this case the profile of u` satisfies

f̂`(t, ξ) = û`∗(ξ) +
1

(2π)3/2

∑
m,n

A`mn

∫ t

2

∫
eisϕ`mn(ξ,η)f̂m(s, η)f̂n(s, ξ − η)dηds,

where ϕ`mn = −c`|ξ|2 + cm|η|2 + cn|ξ − η|2. The space-time resonances are R = {(0, 0)} unless
cm + cn = 0 or 1

c`
= 1

cm
+ 1

cn
, in which case R is three dimensional. Consequently we have

Theorem 2. Assume that A`mn = 0 if cm + cn = 0 or 1
c`

= 1
cm

+ 1
cn

(no quadratic resonances).
Then for small enough initial data the (SNLS) has a unique solution in X.

The idea of the proof. For simplicity in notation we give the idea of the proof for theorem 1.
Consider the phase ϕ = −ξ2 + η2 + (ξ− η)2 which appears in the Duhamel’s formula for the profile
f (1). Since the space-time resonance are a point R = {(0, 0)}, we can take advantage of the
oscillation of the phase in the Duhamel’s formula (1) by integrating by parts in either s or η. In
order to implement this strategy, we notice that ∂seisϕ = iϕeisϕ and ∂ηe

isϕ = is∂ηϕe
isϕ, thus for

any P ,

(2)
1
iZ

(
∂s +

P

s
∂η

)
eisϕ = eisϕ
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where Z
def
= ϕ + P · ∂ηϕ. We now pick a P such that Z vanishes only at (0, 0). There are many

functions P that will do the trick and

P = −η +
1
2
ξ,

is just one of them. For this specific P we have

(3) Z = ϕ+ P · ∂ηϕ = −2η2 − ξ2 + 2ξη < − 1
10

(η2 + ξ2),

which vanishes only at the point where ϕ and ∂ηϕ are zero, which is (ξ, η) = (0, 0). To deal with
the singularity of 1

Z we also consider the smoothened version of (2)

(4)
1

1
s + iZ

(
1
s

+ ∂s +
P

s
∂η

)
eisϕ = eisϕ.

The integration by parts using (2) or (4) takes full advantage of the oscillations of eisϕ and thus
introduces additional decay in s. However after the integration by parts, the resulting expressions
are not simple products in space anymore; instead they belong to a well-known class of bilinear
operators, the Coifman-Meyer operators, which behave as products under Hölder’s inequality. This
fact and the added decay in s make the resulting equation for the profile similar to a Schrödinger
equation with a cubic nonlinearity which has global small solutions.

Acknowledgements: N. M was partially supported by an NSF grant DMS-0703145. After com-
pletion of the present work, we learned that a similar idea had been made use of by Gustafson,
Nakanishi and Tsai in their study of the Gross-Pitaevski equation [4] [5].

2. Background Material

The following are standard inequalities that we include for the convenience of the reader.

Coifman-Meyer operators. Throughout the proof of theorem 1 we will be dealing with Coifman-
Meyer operators. These operators are defined via a Fourier multiplier m(ξ, η) by

Tm(f, g) = F−1

∫
m(ξ, η)f̂(η)ĝ(ξ − η)dη.

The fundamental theorem of Coifman and Meyer states that these operators have the same bound-
edness properties as the ones given by Hölder’s inequality for the standard product.

Theorem C-M (Coifman-Meyer). Suppose that m satisfies

(5) |∂αξ ∂βηm(ξ, η)| ≤ C

(|ξ|+ |η|)|α|+|β|

for sufficiently many multi-indices (α, β). Then the operator

Tm : Lp × Lq → Lr

is bounded for

(6)
1
r

=
1
p

+
1
q
, 1 < p, q ≤ ∞ and 0 < r <∞.

Remark. 1) For condition (5) to hold, it suffices for m to be homogeneous of degree 0, and of class
C∞ on a (ξ, η) sphere. 2) If m(ξ, η) is a Coifman-Meyer multiplier, so is mt(ξ, η) = m(tξ, tη), for
t a real number. Furthermore, the bounds (5) are independent of t, and consequently so are the
norms of Tmt as an operator from Lp × Lq to Lr, for (p, q, r) satisfying (6).
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A stationary phase lemma. The L1 → L∞ decay of solutions to the Schrödinger equation is
just the stationary phase lemma. The following is a more detailed version of this fact.

Lemma 2.1. The Schrödinger semigroup satisfies

(e−it∆g)(x) =
1

(−2it)3/2
e−i

x2

4t ĝ
(
− x

2t

)
+

1
t7/4

O(‖x2g‖2)

with the convention that 1
(−i)3/2 = ei

3π
4 . In particular

‖e−it∆g‖L∞ .
1

t
3
2

‖ĝ‖L∞ +
1
t7/4
‖x2g‖L2 .

Proof. It is well known that

(e−it∆g)(x) =
1

(−4iπt)3/2

∫
e−i

|x−y|2
4t g(y)dy

=
1

(−2it)3/2
e−i

x2

4t ĝ
(
− x

2t

)
+

1
(−4iπt)3/2

e−i
x2

4t

∫
ei
xy
2t

(
e−i

y2

4t − 1
)
g(y)dy.

In order to prove the lemma, it suffices to bound the second term in the last line. This is easily
done as follows∣∣∣∣e−ix24t ∫ e2xy

2s

(
ei
y2

4t − 1
)
g(y)dy

∣∣∣∣ ≤ ∫
|y|≤
√
t

y2

4t
|g(y)|dy +

∫
|y|≥
√
t
|g(y)|dy

≤ C

t1/4
‖y2g‖2.

�

A Gagliardo-Nirenberg type inequality. For Schrödinger equation the generator of the pseudo
conformal transformation J

def
= x− 2it∇ plays the role of partial differentiation. Thus we have

Lemma 2.2. The following inequality holds∥∥e−it∆(xf)
∥∥2

4
≤
∥∥e−it∆f∥∥∞ ∥∥e−it∆(x2f)

∥∥
2

Proof. The proof relies on the observation that e−it∆x = Je−it∆, and that J = 2ite−i
x2

4t∇ei
x2

4t .
Thus we get

‖e−it∆xf‖4 = ‖Je−it∆f‖24 = 4t2‖e−i
x2

4t∇ei
x2

4t e−it∆f‖24 . t2‖e−it∆f‖∞‖∆ei
x2

4t e−it∆f‖2
. ‖e−it∆f‖∞‖J2e−it∆f‖2 . ‖e−it∆f‖∞‖e−it∆x2f‖2,

where we used the standard Gagliardo-Nirenberg inequality for the first inequality. �

Fractional integration. By integrating by parts in Duhamel’s formula we will introduce Z and
1
t +Z in the denominators. These terms behave like −∆ and 1

t −∆ in the denominators, and thus
we need the following inequalities which are standard.

Lemma 2.3 (Fractional integration). Let Λβ
def
= (−∆)β/2 and Λβt

def
=
(

1
t −∆

)β/2, then

• If α ≥ 0, 1 < p, q <∞, and 1
q −

1
p = α

3 ,∥∥Λ−αf
∥∥
p
. ‖f‖q.

• If α ≥ 0, and denoting Lp,q for the usual Lorentz space,

‖Λ−αf‖∞ . ‖f‖
L

3
α ,1
.
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• If α ≥ 0, 1 ≤ p, q ≤ ∞, and 0 ≤ 1
q −

1
p <

α
3∥∥Λ−αt f

∥∥
p
. t

α
2

+ 3
2

“
1
p
− 1
q

”
‖f‖q.

We can bound Z and 1
t + Z in the denominator using Coifman-Meyer Theorem and Λ or Λt in

the following manner.

Lemma 2.4. Let Z = ϕ+ P · ∂ηϕ as in (3) and let P` denote a homogeneous polynomial in (ξ, η)
of degree `. Then

(1) The multiplier

m(ξ, η) =
P2k−1(ξ, η)

Zk

satisfies

‖Tm(f, g)‖r .
(∥∥Λ−1f

∥∥
p
‖g‖q + ‖f‖p

∥∥Λ−1g
∥∥
q

)
.

(2) The multiplier

mt(ξ, η) =
P`(ξ, η)

(1
t + Z)k

,

satisfies

‖Tmt(f, g)‖r .
(∥∥∥Λ`−2k

t f
∥∥∥
p
‖g‖q + ‖f‖q

∥∥∥Λ`−2k
t g

∥∥∥
p

)
with 1

r = 1
p + 1

q as in the C-M Theorem.

Proof. Let ψ1 and ψ2 be two functions of ξ and η, homogeneous of degree 0 and C∞ outside (0, 0),
such that

ψ1(ξ, η) + ψ2(ξ, η) = 1 for any (ξ, η)

ψ1(ξ, η) = 0 if |η| ≥ 1
4 |ξ − η|

ψ2(ξ, η) = 0 if |ξ − η| ≥ 1
4 |η|.

(7)

To prove (1) we decompose the Fourier multiplier m into two multipliers

(8) m(ξ, η) = ψ1(ξ, η)m(ξ, η) + ψ2(ξ, η)m(ξ, η)
def
= m1(ξ, η) +m2(ξ, η)

We can rewrite m1 as

m1(ξ, η) = ψ1(ξ, η)
P2k−1(ξ, η)|η|

Zk
1
|η|
.

Observe that ψ1(ξ, η)P2k−1(ξ,η)|η|
Zk

satisfies the hypothesis of the C-M Theorem. Thus we have

‖Tm1(f, g)‖r =
∥∥∥∥TP2k−1(ξ,η)|η|

Zk

(
Λ−1f, g

)∥∥∥∥
r

.
∥∥Λ−1f

∥∥
p
‖g‖q.

The case of m2 being entirely similar permuting the roles of f and g, we finish the proof of (1).
To prove (2) we similarly decompose mt into mt1 +mt2 and rewrite mt1 as

mt1(ξ, η) = ψ1(ξ, η)
P`(ξ, η)

(
1
t + η2

)k− l
2

(1
t + Z)k

1(
1
t + η2

)k− l
2

= µ(tξ, tη)
1(

1
t + η2

)k− l
2

where

µ(ξ, η)
def
= ψ1(ξ, η)

P`(ξ, η)
(
1 + η2

)k− l
2

(1 + Z)k
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satisfies (5). By the C-M Theorem and the remark following it we have

‖Tmt1(f, g)‖r =
∥∥∥Tµ(tξ,tη)

(
Λ`−2k
t f, g

)∥∥∥
r
.
∥∥∥Λ`−2k

t f
∥∥∥
p
‖g‖q.

The case of mt2 being entirely similar, we finish the proof of the lemma. �

3. Proof of Theorem 1

The solution u will be constructed using Picard’s fixed point theorem. Thus we will simply show
that

f̂(t, ξ)→ û∗(ξ) +
α

(2π)3/2

∫ t

2

∫
eisϕ(ξ,ηf̂(s, η)f̂(s, ξ − η)dηds

def
= û∗(ξ) + αB̂(f, f)(t, ξ),

is a contraction on a neighborhood of the origin in X. In other words, we will prove the estimate

‖B(f, f)‖X . ‖f‖
2
X .

Notice that scattering follows immediately from the belonging of f to X. Indeed the L∞ decay of
u, for f in X, is integrable in time.

Control of ‖B̂(f, f)‖L∞L∞. It suffices to estimate the bilinear term B̂ which can be written as

B̂(f, f)(t, ξ) =
∫ t

2
e−is

|ξ|2
2

∫
e2is|ζ|2 f̂(s,

ξ

2
+ ζ)f̂(s,

ξ

2
− ζ)dζds.

Bounding e−is
|ξ|2
2 by 1, and the inner integral by Lemma 2.1, we get∣∣∣B̂(f, f)(t, ξ)
∣∣∣ . ∫ t

2

(
1
s3/2

∣∣∣∣f̂ (s, ξ2
)∣∣∣∣2 +

1
s7/4

∥∥∥∥∂2
ζ

(
f̂

(
s,
ξ

2
+ ζ

)
f̂

(
s,
ξ

2
− ζ
))∥∥∥∥

L2
ζ

)
ds

.
∫ t

2

1
s3/2
‖f‖2Xds+

∫ t

2

1
s7/4

(
‖∂2

ζ f̂(s)‖L2
ζ
‖f̂(s)‖L∞ζ + ‖∂ζ f̂(s)‖2L4

ζ

)
ds

. ‖f‖2X +
∫ t

2

1
s7/4
‖∂2

ζ f̂(s)‖L2
ζ
‖f̂(s)‖L∞ζ ds by Gagliardo-Nirenberg’s

. ‖f‖2X + ‖f‖2X
∫ t

2

1
s7/4

s1/2ds . ‖f‖2X .

Control of ‖B(f, f)‖L∞L2. This is given by a simple energy estimate

|B(f, f)|L∞L2 .
∫ ∞

2

1

s
3
2

‖t3/2u‖L∞L∞‖f‖L∞L2ds . ‖f‖2X .

Control of
∥∥∥ x

log tB(f, f)
∥∥∥
L∞L2

. Applying ∂ξ, one gets

∂ξB̂(f, f) =
∫ t

2

∫
isϕξe

isϕf̂(s, η)f̂(s, ξ − η)dηds+
∫ t

2

∫
eisϕf̂(s, η)∂ξ f̂(s, ξ − η)dηds

def
= I + II.

The standard Hölder inequality suffices to estimate II:

‖II‖2 =
∥∥∥∥∫ t

2
eis∆

(
e−is∆fe−is∆(xf)

)
ds

∥∥∥∥
2

.
∫ t

2
‖u‖∞‖xf‖2ds

.
∫ t

2

ds

s3/2
‖f‖2X . ‖f‖2X .

(9)
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In order to evaluate I, we integrate by parts using 1
iZ

(
∂s + P

s ∂η
)
eisϕ = eisϕ

I =
∫ t

2

∫
sϕξ

1
Z

(
∂s +

P

s
∂η

)
eisϕf̂(s, η)f̂(s, ξ − η)dηds

= +
∫
ϕξ
Z
teitϕf̂(t, η)f̂(t, ξ − η)dη(10a)

− 2
∫
ϕξ
Z
ei2ϕû∗(η)û∗(ξ − η) dη(10b)

−
∫ t

2

∫
ϕξ
Z
eisϕf̂(s, η)f̂(s, ξ − η)dηds(10c)

−
∫ t

2

∫
s
ϕξ
Z
eisϕ∂sf̂(s, η)f̂(s, ξ − η)dηds + similar term(10d)

−
∫ t

2

∫
∂η

(
Pϕξ
Z

)
eisϕf̂(s, η)f̂(s, ξ − η)dηds(10e)

−
∫ t

2

∫
Pϕξ
Z

eisϕ∂ηf̂(s, η)f̂(s, ξ − η)dηds + similar term(10f)

The “similar terms” appearing in the above sum correspond to the cases where the s or η derivative
hits f̂(s, ξ − η) instead of f̂(s, η).

Now observe that, interpolating between the different components of the X norm, one gets easily
that

‖u‖L3,1 .
1√
t

and ‖f‖6/5 . tε .

where ε > 0 can be chosen as small as one wants.
Using the above bounds, and applying lemma 2.4 and lemma 2.3 we get:

‖(10a)‖2 = t
∥∥∥eit∆Tϕξ

Z

(e−it∆f, e−it∆f)
∥∥∥

2
. t‖Λ−1eit∆f‖2‖eit∆f‖∞ . t‖f‖6/5‖u‖∞ . ‖f‖2X .

The treatment of (10b) (10c) and (10e) is very similar, so we skip it. Coming to (10d), we write

‖(10c)‖2 .
∫ t

2
s
∥∥∥eis∆Tϕξ

Z

(
u2, u

)∥∥∥
2
ds .

∫ t

2
s
(∥∥Λ−1u

∥∥
∞ ‖u

2‖2 + ‖u‖2‖Λ−1u2‖∞
)
ds

.
∫ t

2
s (‖u‖3,1‖u‖∞‖u‖2) ds . ‖f‖3X

∫ t

2

ds

s
. ‖f‖3X log t.

Finally, it suffices to apply the Coifman-Meyer theorem to deal with (10f), as follows

‖(10e)‖2 .
∫ t

2

∥∥∥∥eis∆TPϕξ
Z

(
e−is∆f, e−is∆xf

)∥∥∥∥
2

ds .
∫ t

2
‖xf‖2‖u‖∞ds . ‖f‖2X

∫ t

2
sε
ds

s3/2
. ‖f‖2X .

Control of ‖t3/2e−it∆B(f, f)‖L∞L∞. The bound on ‖e−it∆B(f, f)‖∞ is usually achieved by using
normal forms, i.e., integrating by parts in time. Using 1

1
s

+iZ

(
1
s + ∂s + P

s ∂η
)
eisϕ = eisϕ, we have

B̂(f, f) =
∫ t

2

∫
1

1
s + iZ

(
1
s

+ ∂s +
P

s
∂η

)
eisϕf̂(s, η)f̂(s, ξ − η)dηds = ĝ(ξ) + ĥ(ξ)



GLOBAL SOLUTIONS FOR 3D QUADRATIC SCHRÖDINGER EQUATIONS 9

where

ĝ(ξ) =ĝ1(ξ) + ĝ2(ξ)
def
=
∫

1
1
t + iZ

eitϕf̂(t, η)f̂(t, ξ − η)− 1
1
2 + iZ

ei2ϕû∗(η)û∗(ξ − η)dη

ĥ(ξ)
def
=
∫ t

2

∫ 1
s + P∂ηϕ

1
s + iZ

eisϕf̂(s, η)f̂(s, ξ − η)dηds− i
∫ t

2

∫
1
s2

1
(1
s + iZ)2

eisϕf̂(s, η)f̂(s, ξ − η)dηds

− 2
∫ t

2

∫
1

1
s + iZ

eisϕ∂sf̂(s, η)f̂(s, ξ − η)dηds.

We want to estimate the L∞ norm of e−it∆B(f, f) = e−it∆g + e−it∆h, which will be achieved in
different manners for each term.

To estimate e−it∆g, let us first notice that the second summand, g2, is very easily dealt with
since it is constant in time. Focusing on g1, we can proceed directly using that

F(e−it∆g1)(ξ) =
∫

1
1
t + iZ

û(t, η)û(t, ξ − η)dη

so that by the C-M Theorem and fractional integration (lemma 2.3) we have

‖e−it∆g1‖∞ =

∥∥∥∥∥F−1 1
1
t + ξ2

∫ 1
t + ξ2

1
t + Z

û(η)û(s, ξ − η)dη

∥∥∥∥∥
∞

=

∥∥∥∥∥Λ−2
t T 1

t+ξ2

1
t+Z

(u, u)

∥∥∥∥∥
∞

. t3/4
∥∥∥∥∥T 1

t+ξ2

1
t+Z

(u, u)

∥∥∥∥∥
6

. t3/4‖u‖6‖u‖∞ . ‖f‖2Xt−7/4.

Also notice that the norm of ĝ1 in L∞ξ is easily bounded:

|ĝ1|L∞ξ ≤
∫

1
|η|2

∣∣∣f̂(s, η)
∣∣∣ ∣∣∣f̂(s, ξ − η)

∣∣∣ dη . ‖f̂‖2L∞η ∩L2
η
. ‖f‖2X .(11)

The L∞ norm of the term e−it∆h is harder to estimate directly. However we will prove in the
next subsection that

(12) ‖x2h(t)‖2 . tε,

with ε a constant arbitrarily small. This estimate on h is to be contrasted with the L2 norms of
x2f or x2g, for which we only expect a bound of C

√
t. In other words, having removed g from f ,

the remainder h = B(f, f)− g has a better decay. This enables us to use Lemma 2.1 as follows

‖e−it∆h‖∞ .
1
t3/2
‖ĥ‖∞ +

1
t7/4
‖x2h‖2 .

1
t3/2

(
‖B̂(f, f)‖∞ + ‖ĝ‖∞

)
+

1
t7/4
‖x2h‖2 .

1
t3/2
‖f‖2X ,

where the last inequality follows from (11) and (12).
So to conclude the proof of Theorem 1, the only thing which is left is the proof of (12); this is

the aim of the next subsection.

Control of ‖ x2

t1/2
g‖L∞L2 and ‖x2

tε h‖L∞L2. The idea is always to look at these quantities expressed
in the Fourier variable, apply ∂2

ξ , and estimate each of the terms which appear. In the case of

‖ x2

t1/2
g‖L∞L2 this is straightforward, so we skip this and focus on estimating ‖x2

tε h‖L∞L2 , which
requires much more work.

Recall that we denote P` any homogeneous polynomial in (ξ, η) of degree `. Applying ∂2
ξ to ĥ(ξ)

produces terms of the following types: I thik this may be difficult to follow for the reader.
May be it is better to first give the precise equation. Also, should we be more specific
in terms of k.
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Also, when the 2 derivaties hit f̂ in the second term, it does not seem to me it is of
the type 13f.∫ t

2

∫
1
sj

P2k−4−2j(
1
s + iZ

)k eisϕ∂sf̂(s, η)f̂(s, ξ − η)dηds with k ≥ 0 and k − 2 ≥ j ≥ −2(13a)

∫ t

2

∫
1
sj

P2k−3−2j(
1
s + iZ

)k eisϕ∂sf̂(s, η)∂ξ f̂(s, ξ − η)dηds with k ≥ 0 and k − 3
2 ≥ j ≥ −1(13b)

∫ t

2

∫
1
sj

P2k−2−2j(
1
s + iZ

)k eisϕ∂sf̂(s, η)∂2
ξ f̂(s, ξ − η)dηds with k ≥ 0 and k − 1 ≥ j ≥ 0(13c)

∫ t

2

∫
1
sj

P2k−2−2j(
1
s + iZ

)k eisϕf̂(s, η)f̂(s, ξ − η)dηds with k ≥ 0 and k − 1 ≥ j ≥ 0(13d)

∫ t

2

∫
1
sj

P2k−1−2j(
1
s + iZ

)k eisϕf̂(s, η)∂ξ f̂(s, ξ − η)dηds with k ≥ 0 and k − 1
2 ≥ j ≥ 0(13e)

∫ t

2

∫
1
sj

P2k−2j(
1
s + iZ

)k eisϕf̂(s, η)∂2
ξ f̂(s, ξ − η)dηds with k ≥ 0 and k − 1 ≥ j ≥ 0(13f)

∫ t

2

∫
s

P2k(
1
s + iZ

)k eisϕf̂(s, η)f̂(s, ξ − η)dηds(13g)

∫ t

2

∫
s

P2k+1(
1
s + iZ

)k eisϕf̂(s, η)∂ξ f̂(s, ξ − η)dηds(13h)

∫ t

2

∫
s2ϕ2

ξ

Pϕη(
1
s + iZ

)eisϕf̂(s, η)f̂(s, ξ − η)dηds.(13i)

• Control of (13a), (13b), (13c). These three terms are easy to deal with, and can be handled in
a similar fashion. We will only illustrate the estimate on (13a). By lemmata (2.3) and 2.4,

‖(13a)‖2 ≤
∫ t

2

1
sj

∥∥∥∥∥∥eis∆TP2k−4−2j

( 1
s+iZ)k

(
e−is∆f, u2

)∥∥∥∥∥∥
2

ds

.
∫ t

2

1
sj
(∥∥Λ−2j−4

s e−is∆f
∥∥

2

∥∥u2
∥∥
∞ +

∥∥e−is∆f∥∥
2

∥∥Λ−2j−4
s u2

∥∥
∞
)
ds

.
∫ t

2

1
sj
sj+2‖u2‖∞‖f‖2ds . ‖f‖2X

∫ t

2
s2 1
s3
ds . ‖f‖2X log t.

• Control of (13d). By lemmata 2.3 and 2.4,

‖(13d)‖2 ≤
∫ t

2

1
sj

∥∥∥∥∥∥eis∆TP2k−2−2j

( 1
s+iZ)k

(
e−is∆f, e−is∆f

)∥∥∥∥∥∥
2

ds

.
∫ t

2

1
sj
∥∥Λ−2−2j

s e−is∆f
∥∥

2

∥∥e−is∆f∥∥∞ ds
.
∫ t

2

1
sj
sj+

1
2 ‖f‖6/5‖u‖∞ds . ‖f‖2X

∫ t

2

√
ssε

1
s3/2

ds . ‖f‖2Xtε.
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• Control of (13e). By lemmata (2.3) and 2.4,

‖(13e)‖2 ≤
∫ t

2

1
sj

∥∥∥∥∥∥eis∆TP2k−1−2j

( 1
s+Z)k

(
e−is∆f, e−is∆xf

)∥∥∥∥∥∥
2

ds

.
∫ t

2

1
sj
(∥∥Λ−2j−1

s e−is∆xf
∥∥

2

∥∥e−is∆f∥∥∞ +
∥∥e−is∆xf∥∥

2

∥∥Λ−2j−1
s e−is∆f

∥∥
∞
)
ds

.
∫ t

2

1
sj
sj+

1
2 ‖xf‖2‖u‖∞ds . ‖f‖2X

∫ t

2

√
s log s

1
s3/2

ds . ‖f‖2Xtε.

• Control of (13f). By lemmata (2.3) and 2.4,

‖(13f)‖2 ≤
∫ t

2

1
sj

∥∥∥∥∥∥eis∆T P2k−2j

( 1
s+iZ)k

(
e−is∆f, e−is∆x2f

)∥∥∥∥∥∥
2

ds

.
∫ t

2

1
sj
(∥∥Λ−2j

s e−is∆x2f
∥∥

2

∥∥e−is∆f∥∥∞ +
∥∥e−is∆x2f

∥∥
2

∥∥Λ−2j
s e−is∆f

∥∥
∞
)
ds

.
∫ t

2

1
sj
sj‖x2f‖2‖u‖∞ds . ‖f‖2X

∫ t

2

√
s

1
s3/2

ds . ‖f‖2X log t.

• Control of (13g). In order to deal with this term, we need to integrate by parts using the identity
1

1
s

+iZ

(
1
s + ∂s + P

s ∂η
)
eisϕ = eisϕ which means writing

(13g) =
∫ t

2

∫
s

P2k(
1
s + iZ

)k 1
1
s + iZ

(
1
s

+ ∂s +
P

s
∂η

)
eisϕf̂(s, η)f̂(s, ξ − η)dηds

and performing the integrations by parts in s and η. Upon doing so, all terms that appear are of
the form (13a) - (13f), except the time boundary integral term, which is easily estimated. This
gives the desired estimate

‖(13g)‖2 . ‖f‖2Xtε.

• Control of (13h). In this case we proceed as above that is we write

(13h) =
∫ t

2

∫
s

P2k+1(
1
s + iZ

)k 1
1
s + iZ

(
1
s

+ ∂s +
P

s
∂η

)
eisϕf̂(s, η)∂ξ f̂(s, ξ − η)dηds

and perform the integration by parts in s and η. All terms which appear then are of the form (13a)
- (13f), except for two terms. The first∫ t

2

∫
P2k+1P(

1
s + iZ

)k+1
eisϕ∂ηf̂(s, η)∂ξ f̂(s, ξ − η)dηds

which by C-M Theorem and Lemma 2.2, can be bounded by∫ t

2

∥∥e−it∆f∥∥∞ ∥∥e−it∆(x2f)
∥∥

2
ds.

The second ∫ t

2

∫
s

P2k+1(
1
s + iZ

)k+1
eisϕf̂(s, η)∂s∂ξ f̂(s, ξ − η)dηds,
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for which we remove the ∂ξ integral from the last term, using the fact that ∂ξ f̂(s, ξ−η) = −∂ηf̂(s, ξ−
η), and then integrating by parts in η. The terms resulting from this integration by parts are all
of the form (13a) - (13f), thus controlled. This gives the desired estimate

‖F−1(13g)‖2 . ‖f‖2Xtε.

• Control of (13i). We just need to rewrite this term as

(13i) =
∫ t

2

∫
sϕ2

ξ

P(
1
s + iZ

)∂ηeisϕf̂(s, η)f̂(s, ξ − η)dηds.

Performing the integration by parts in η, one obtains terms of the form (13g) and (13h). Since these
terms are controlled, this concludes the bound on ‖x2

tε h‖L∞L2 . Thus if the initial data ‖e−it∆u∗‖X
is small enough then the map f → u∗ + B(f, f) is a contraction, and this completes the proof of
Theorem 1.

Sketch of the proof of theorem 2. From Duhamel’s formula the bilinear terms for the (SNLS) are

B̂`mn(fm, fn)(t, ξ) = A`mn

∫ t

2

∫
eisϕ`mn(ξ,ηf̂m(s, η)f̂n(s, ξ − η)dηds

where ϕ`mn = −c`|ξ|2 + cm|η|2 + cn|ξ−η|2. Since all ϕ`mn have space-time resonances R = {(0, 0)}
then we can choose a function

P`mn = (c`cm + c`cn − cmcn + 1)(η − cn
cm + cn

ξ)

which is well defines since cn + cm 6= 0 by the non resonance hypothesis. It is easy to check that if
we define Z`mn = ϕ`mn + P`mn · ∂ηϕ`mn then

|Z`mn| & |c`cm + c`cn − cmcn|(|ξ|2 + |η|2) & (|ξ|2 + |η|2),

since c`cm + c`cn − cmcn 6= 0 by the non resonance hypothesis. From here on the proof of theorem
2 proceeds verbatim as in the proof of theorem 1.

�
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