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Abstract

We prove existence and uniqueness of solutions to the Klein-Gordon-Zakharov

system in the energy space H1 × L2 on some time interval which is uniform with

respect to two large parameters c and α. These two parameter correspond to the

plasma frequency and the sound speed. In the simultaneous high-frequency and

subsonic limit, we recover the nonlinear Schrödinger system at the limit. We are

also able to say more when we take the limits seperately.
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1. Introduction

The Klein-Gordon-Zakharov system describes the interaction between Langmuir

waves and ion sound waves in a plasma (see Dendy [9] and Bellan [3]). It can be

derived from the two-fluid Euler-Maxwell system (see Sulem and Sulem [24], Colin

and Colin [8] and Texier [26, 27] for some rigorous derivations). In this paper,

we derive uniform bounds for the energy norms for the Klein-Gordon-Zakharov

and Zakharov systems with two large parameters which correspond to the plasma

frequency and the sound speed. We prove strong convergence of the solution in the

energy space as the parameters tend to infinity.

We start with the (rescaled) Klein-Gordon-Zakharov system for (E, n) with two

parameters (c, α) (see [19, Introduction] for the rescaling). We also refer to Dendy

[9] and Bellan [3] for the physical relevance of the model

c−2Ë −∆E + c2E = −nE, E : R1+3 → R3,

α−2n̈−∆n = ∆|E|2, n : R1+3 → R
(1.1)

where E : R1+3 → R is the electric field, n : R1+3 → R is the density fluctuation of

ions, c2 is the plasma frequency and α the ion sound speed. (1.1) has the following

conserved energy

E =

∫
c2|E|2 + |∇E|2 + c−2|Ė|2 +

1

2
||α∇|−1ṅ|2 +

1

2
|n|2 + n|E|2dx. (1.2)

Notice that this energy is not uniformly bounded when c goes to infinity. First we

consider the simultaneous high-frequency and subsonic limit (c, α) → ∞ from the

above system to the nonlinear Schrödinger equation (NLS):

2iu̇−∆u = |u|2u, u = (u1, u2) : R1+3 → C3 × C3. (1.3)

More precisely E and n can be approximated by

E ∼ eic2tu1 + e−ic2tu2, n ∼ −|u|2. (1.4)

We have to assume that sup(α/c) < 1, which is physically natural since c2/α2 is the

same order as the mass ratio of the ions and the electrons. In [19] we have shown the

convergence in Hs ×Hs−1 for s > 3/2. In this paper we extend this to the energy

space H1 × L2.

First, we recall that local well-posedness for (1.1) in the energy space (E, n) ∈
H1×L2 was performed by Ozawa, Tsutaya and Tsutsumi [21] when α 6= c. We also

point out that (1.1) does not have the null form structure as in Klainerman and

Machedon [15] and this suggests that when α = c the system (1.1) may be locally

ill-posed in H1×L2 (cf. the counter example of Lindblad [17] for similar equations).

Here, we are only interested in the case α < c.
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The main difficulty in this limit is, regardless of regularity, the existence of a

resonant frequency

|ξ| = 2c2

c2 − α2
α, (1.5)

around which the quadratic interactions in (1.1) cannot be controlled if each function

is approximated by the free solution [19, Theorem 10.1]. To overcome it in [19], we

employed a modified energy localized around the resonant frequency (1.5). The

condition s > 3/2 was a natural requirement in controlling the error terms of the

localization, and it seems extremely difficult to lower s down to 1 by that argument.

Here we observe that in the special but most important case s = 1, we do not

need the localization, estimating the whole functions in the modified energy. Some

error terms still remain because the energy diverges in the high-frequency limit

c → ∞, but they can be bounded by non-resonant bilinear estimates with some

loss of regularity. Interestingly, those norms with regularity loss are essentially the

same as what we can afford by iterative estimates, i.e. 1 loss for the Xs,b norms and

1/2 loss for the Strichartz norm. There arises an additional complication due to the

failure of the Sobolev embedding

L2
t (H

1/2
6 (R3)) 6⊂ L2

t (L
∞(R3)), (1.6)

where the left hand side is the Strichartz norm with 1/2 loss for the Schrödinger

equation. It is also related to the failure of the endpoint Strichartz L2
t (L

∞(R3)) for

the wave equation (see [13]). This difficulty is overcome by taking into account the

better decay of the non-resonant frequencies in the Strichartz norm. We also point

out that the proof given here only works for s = 1 and that the case 1 < s ≤ 3/2

remains open.

If we consider the limits c→∞ and α→∞ separately, then the above difficulties

are decoupled, and hence much simpler proofs become available. Indeed, we can

prove the convergence in the high-frequency limit c → ∞ from the Klein-Gordon-

Zakharov (1.1) to the Zakharov system for (u, n):

2iu̇−∆u = −nu, u : R1+3 → C3 × C3,

α−2n̈−∆n = ∆|u|2, n : R1+3 → R,
(1.7)

by the iterative argument in the energy space H1 × L2. Also, the proof we present

here works the same for any s > 1. This is because the resonant frequency (1.5)

is bounded in this limit, so that we can treat it as low frequency or regular part.

However, we encounter another difficulty when E has frequency� c and n has much

smaller one, due to a regularity gap in the Strichartz estimate between the wave and

the Schrödinger equation. We exploit the smallness of the resonant frequency set

to overcome it. The above convergence in the case E ∼ eic2tu, namely only one
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mode of oscillation is present, has been previously proved by [4] in Hs ×Hs−1 with

s > 7/2.

The limit α → ∞ from the Zakharov system (1.7) to the nonlinear Schrödinger

equation (1.3) is even easier. In fact, we can prove the convergence in the energy

space H1, just by the energy conservation and the Sobolev embedding. This is

because the conserved energy is uniformly bounded. Although the nonlinear part of

energy is not positive and can be bigger than the linear part, we can control it by

less regular norms on a uniform short time interval. The convergence in this limit

has been proved in [23, 1, 22, 14], assuming at least H5 uniform bound on the initial

data. The argument in [19] works well giving convergence in Hs for s > 3/2. Our

proof in this paper seems the simplest among them. However, the case 1 < s ≤ 3/2

remains open.

The method used here applies also to the vectorial Zakharov system

2iu̇−∇∇ · u+ β∇×∇× u = −nu, u : R1+3 → C3,

α−2n̈−∆n = ∆|u|2, n : R1+3 → R
(1.8)

The simultaneous limit (α, β) →∞ will be investigated in a forthcoming paper.

The rest of paper is organized as follows. In Section 2, we collect preparatory

materials, mainly on the Xs,b spaces and the Strichartz norms. Sections 3 and 4 are

devoted to the limit from the Klein-Gordon-Zakharov to the nonlinear Schrödinger.

First we prove uniform bounds in Section 3, then we prove the convergence in

Section 4. In Section 5, we deal with the limit from the Klein-Gordon-Zakharov to

the Zakharov. In Section 6, we study the limit from the Zakharov to the nonlinear

Schrödinger.

The main results are Theorems 3.1, 5.1 and 6.1.

2. Preliminaries

In this section, we give some notations and basic estimates used throughout this

paper. In the first subsection, we introduce Fourier multipliers, the Littlewood-Paley

decomposition, and the Besov spaces. Next we recall the Strichartz estimate for the

Klein-Gordon equation, introducing some notations for the mixed norms. In the

third subsection, we introduce the Xs,b space, related operators and formulation of

the integral equations, together with the basic linear estimates and an interpolation

inequality.

First we introduce general notations. For any real numbers a, b and any number

or vector c, we denote

min(a, b) = a ∧ b, max(a, b) = a ∨ b, 〈c〉 =
√

1 + |c|2. (2.1)
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We define the real-valued inner products by

〈a, b〉 := Re(ab),
〈
f

∣∣ g〉
x

:=

∫
Rd

〈f(x), g(x)〉dx,〈
u

∣∣ v〉
t,x

:=

∫
R

〈
u(t)

∣∣ v(t)〉
x
dt.

(2.2)

For any set A, we denote its characteristic function by the same letter A:

A(x) =

{
1 (x ∈ A)

0 (x 6∈ A)
(2.3)

Given any Banach function space Z on R1+d which is Lp in time, we denote for any

space-time function u(t, x) and for any T > 0,

‖u‖Z(0,T ) := ‖(0, T )u‖Z . (2.4)

When X is a Banach space, w-X denotes the same space X endowed with the weak

topology.

2.1. Fourier multipliers. For any measurable function f : Rd → C, we define the

Fourier multiplier by f(i∇) := F−1f(ξ)F , where F denotes the Fourier transform

on Rd. For the Klein-Gordon, we will use the following special multipliers:

Ic := 〈∇/c〉−1, ∆c := −2ωc(∇), ωc(ξ) := c2(〈ξ/c〉 − 1). (2.5)

Next we introduce the Littlewood-Paley decomposition. Fix a cut-off function χ ∈
C∞

0 (R) satisfying

χ(t) =

{
1 |t| ≤ 4/3

0 |t| ≥ 5/3
(2.6)

We denote frequency localization for any function u(t, x), ϕ(τ, ξ) and δ > 0 by

Pϕ(τ,ξ)≤δu :=

{
F−1

t,x χ(ϕ(τ, ξ)/δ)Ft,xu, (δ > 1/2)

0 (δ ≤ 1/2)
,

Pϕ(τ,ξ)>δu := u− Pϕ(τ,ξ)≤δu,

(2.7)

where Ft,x is the space-time Fourier transform for the variables (t, x) 7→ (τ, ξ). The

above convention Pϕ≤1/2u ≡ 0 is just for convenience in treating small frequency.

For the spatial frequency localization, we abbreviate

f≤a := f|ξ|≤a, f>a := f|ξ|>a, fa := f≤a − f≤a/2, (2.8)

and for space-time localization, we use the notation

fa,b := (f|τ |≤a − f|τ |≤a/2)b, (2.9)

where a, b > 0 will be mainly chosen from the dyadic frequencies defined by

D := {2z | z = 0, 1, 2 . . . }. (2.10)
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The inhomogeneous Besov spaces are defined by

‖f‖Bσ
q,r(Rd) =

∥∥‖jσfj‖Lq
x(Rd)

∥∥
`r
j (D)

, (2.11)

and the Sobolev space by Hσ = Bσ
2,2. We will also use the mixed space

‖u‖Bb
2,r(R;Hs(Rd)) =

∥∥∥‖jbksuj,k‖L2
t,x(R1+d)

∥∥∥
`r
j `2k(D2)

. (2.12)

By the Fourier support property, we have for any space functions u, v, w,〈
uv

∣∣w〉
x

=
∑

(j,k,l)∈T

〈
ujvk

∣∣wl

〉
x
, (2.13)

where T ⊂ D3 such that for any (j, k, l) ∈ T , either j. k ∼ l, k. l ∼ j, or l. j ∼ k

holds.

2.2. Strichartz norms. The Strichartz estimate for e−it∆c/2 on R3 can be written

as follows (see [11]). For any θ ∈ [0, 1], p ∈ [2,∞], r ∈ [1,∞] and s ∈ R, we define

Sts,p
θ,r by the norm

‖u‖Sts,p
θ,r

:=
∥∥∥ks+ 1

p
(θ−1)‖I

1
p(1+ 2θ

3 )
c uk‖Lp

t (R;Lq
x(R3))

∥∥∥
`r
k

,
1

q
=

1

2
− 1

p
+

θ

3p
. (2.14)

Then we have, if (p, θ) 6= (2, 0),

‖e−it∆c/2ϕ‖Sts,p
θ,r
≤ Cθ,p‖ϕ‖Bs

2,r
. (2.15)

θ = 0 corresponds to the Strichartz estimate for the wave equation, and θ = 1

without Ic is for the Schrödinger equation. We will use mostly r = 2, omitting it as

Sts,p
θ = Sts,p

θ,2.

2.3. Xs,b space. In this subsection, we give some general setting and estimates for

the Xs,b spaces (see [5, 25]). Let ω : Rd → R be a measurable function. We consider

equations of the form

iu̇+ ω(i∇)u = f, (2.16)

where f(t, x) is a given function. The Xs,b,r space for this equation is defined by

Xs,b,r = {eitω(i∇)v(t) | v ∈ Bb
2,r(R;Hs

x(Rd))},

‖u‖Xs,b,r = ‖e−itω(i∇)u(t)‖Bb
2,rHs

x

(2.17)

for any (s, b, r) ∈ R2× [1,∞]. We denote Xs,b := Xs,b,2. The space Xs,b,r with r 6= 2

will be used only for the limit from the Klein-Gordon-Zakharov to the Zakharov,

where we need the critical spaces b = ±1/2.

We will use the duality for 1 ≤ r <∞,

(Xs,b,r)∗ = X−s,−b,r/(r−1). (2.18)
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The above equation (2.16) is solved for 0 < t < T (0 < T . 1) by

u(t) = eitω(i∇)[χ(t)u(0) + IT e
−itω(i∇)f(t)], (2.19)

where χ ∈ C∞
0 (R) is the same function as in (2.6), and the time operator IT is

defined by

(ITf)(t) =

∫
0<s<t

t−T<s<T

f(s)ds =

∫ T

0

((0, T )f)(t− s)ds. (2.20)

Thus u(t, x) in (2.19) is defined on the whole t ∈ R, which is convenient to estimate

the Xs,b norms. In the following estimates, implicit constants do not depend on

T for 0 < T . 1. The fundamental (well-known) property of the Xs,b space is the

following.

Lemma 2.1. Let s ∈ R and r ∈ [1,∞]. For any b ∈ R, we have

‖eitω(i∇)χ(t)ϕ‖Xs,b,r . ‖ϕ‖Hs . (2.21)

For any b ∈ (−1/2, 1/2) and any θ ∈ [0, 1], we have

‖eitω(i∇)IT e
−itω(i∇)f‖Xs,b+θ .T 1−θ‖f‖Xs,b . (2.22)

In the critical case b = 1/2, we have

‖eitω(i∇)IT e
−itω(i∇)f‖Xs,1/2,∞∩(L∞∩C)(Hs) . ‖f‖Xs,−1/2,1 . (2.23)

Moreover, let P : Rd → [0,∞] and assume that V is a Banach function space on Rd

satisfying the space-time estimate

‖P (i∇)eitω(i∇)f‖Lq
t Vx

. ‖f‖Hs
x
, (2.24)

for some q ≥ 2. Then we have for any b > 1/2,

‖P (i∇)u‖Lq
t Vx

. ‖u‖Xs,b . (2.25)

Remark 2.2. P (i∇) will be either identity or some frequency cut-off in the later use.

Proof. The first inequality is trivial by the definition of Xs,b,r. The second one is

proved as follows. Since the function (0, T )(t) is uniformly bounded in L∞ ∩ B1/2
2,∞,

we deduce that cut-off by (0, T ) is bounded in Hb(R) if −1/2 < b < 1/2. Hence we

have, denoting g = e−itω(i∇)f , and using the second identity of (2.20),

‖ITg‖Hb
t (R) ≤

∫ T

0

‖((0, T )g)(t− s)‖Hb
t (R)ds ≤ T‖(0, T )g‖Hb

t (R) .T‖g‖Hb
t (R) (2.26)

for −1/2 < b < 1/2. In addition, we have

∂tITg(t) = (0, T )(t) · g(t)− (T, 2T )(t) · g(t− T ), (2.27)
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and so IT is bounded Hb → Hb+1 for −1/2 < b < 1/2. By the complex interpolation

and the definition of Xs,b, we obtain (2.22). The B
1/2
2,∞ bound of (2.23) is proved

in the same way, since the cut-off operator is bounded B
−1/2
2,1 → B

−1/2
2,∞ . The L∞

bound is derived by regarding IT at each fixed t as the duality coupling for B
1/2
2,∞

and B
−1/2
2,1 . Then the continuity follows from the standard density argument.

For the last inequality, we use the trace argument

‖P (i∇)u‖Lq
t Vx

. ‖P (i∇)eitHe−iτHu(τ)‖Lq
t L∞τ Vx

, (2.28)

and then the Sobolev embedding Hb(R) ⊂ L∞(R) and the Minkowski inequality

Hb
τL

q
t ⊂ Lq

tH
b
τ to bound the right hand side by

‖e−iτHP (i∇)eitHu(τ)‖Hb
τ Lq

t Vx
. ‖e−iτHu(τ)‖Hb

τ Hs
x

= ‖u‖Xs,b . (2.29)

�

Remark 2.3. The definition of extension operator ρT in [19, (2.33)] was incorrect. It

should be defined as above, namely twisted by the evolution operator, such as

ρTu(t) = e−it∆c/2χ(t)eitT ∆c/2u(tT ). (2.30)

Next we give an interpolation inequality connecting theXs,b and the energy spaces

yielding the Strichartz bound. An estimate of this type was first derived in [16] with

a small loss of regularity, which has been removed in [20]. Their estimates are

covered by the following lemma with the special choice (b0, b1) = (1, 0), together

with the trivial embedding L2(0, T ) ⊂ T 1/2L∞(0, T ).

Lemma 2.4. Let ω : Rd → R and P,Q,R : Rd → [0,∞] be measurable functions

satisfying

Q(ξ) &Qj := sup
η∈supp ϕj

Q(η), R(ξ) &Rj = sup
η∈supp ϕj

R(η) (2.31)

uniformly for all ξ ∈ suppϕj and all j ∈ D. Let V be a Banach function space on

Rd satisfying the following estimates

‖P (i∇)eitHf‖L2
t Vx

. ‖f‖Hs , ‖f‖2
V .

∑
j∈D

‖fj‖2
V . (2.32)

Let s0, s1, s ∈ R, b0, b1 ∈ [0, 1], b0 6= b1, θ ∈ (0, 1) and assume

s = (1− θ)s0 + θs1, 1/2 = (1− θ)b0 + θb1. (2.33)

Then we have

‖(PQ1−θRθ)(i∇)u(t)‖L2
t Vx

. ‖Q(i∇)u‖1−θ
Xs0,b0

‖R(i∇)u‖θ
Xs1,b1 . (2.34)
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Proof. Let f = (PQ1−θRθ)(i∇)u. We use the trace argument

‖fk‖L2
t Vx

. ‖eitHe−iτHfk(τ)‖L2
t L∞τ Vx

. (2.35)

for ∀k ∈ D. By the real interpolation (and the fact that b0 6= b1) and the Sobolev

embedding, we have (Hb0 , Hb1)θ,1 ⊂ B
1/2
2,1 ⊂ L∞. Hence we have for any g,

‖g‖L∞τ Vx . ‖g‖1−θ

H
b0
τ Vx

‖g‖θ

H
b1
τ Vx

. (2.36)

Applying this and the Hölder inequality to the above estimate, and changing the

order of integration for τ and t, we obtain

‖fk‖L2
t Vx

. ‖eitHe−iτHfk(τ)‖1−θ

H
b0
τ L2

t Vx

‖eitHe−iτHfk(τ)‖θ

H
b1
τ L2

t Vx
(2.37)

The right hand side is bounded by using (2.32) as

. ‖e−iτH(Q1−θRθ)(i∇)uk(τ)‖1−θ

H
b0
τ Hs

x

‖e−iτH(Q1−θRθ)(i∇)uk(τ)‖θ

H
b1
τ Hs

x

.Q1−θ
k Rθ

kk
(s−s0)(1−θ)k(s−s1)θ‖e−iτHuk(τ)‖1−θ

H
b0
τ H

s0
x

‖e−iτHuk(τ)‖θ

H
b1
τ H

s1
x
,

(2.38)

where we used (2.31). Taking `2 summation for k ∈ D, and using the relation

s = (1− θ)s0 + θs1, we arrive at the desired estimate. �

By reiterating interpolation, we immediately obtain

Corollary 2.5. Assume (2.32) and |P |. 1. Then we have

‖P (i∇)u‖L2((Hs,V )θ,2) . ‖u‖Xs,θ/2 , (2.39)

for θ ∈ (0, 1), where (·, ·)θ,r denotes the real interpolation space.

Proof. See [18, Lemma 2.2], which was written in the dual form in the case H = |∇|,
but the proof applies to the general case. Alternatively, we may use the above lemma

and the reiteration theorem to get

Xs,θ/2 = (Xs,0, Xs,1)θ/2,2 = (Xs,0, (Xs,0, Xs,1)1/2,1)θ,2

P (i∇)→ (L2Hs, L2V )θ,2 = L2((Hs, V )θ,2).
(2.40)

�

3. Uniform bounds for the Klein-Gordon-Zakharov

In this and the next sections, we consider simultaneous high-frequency and sub-

sonic limit (c, α) → ∞ from the Klein-Gordon-Zakharov system (1.1) to the non-

linear Schrödinger equation (1.3). We recall that the local existence of a unique

solution to (1.1) was proved in [21, Theorem 1.1] in the X1,b × Y 0,b space for any

initial data in the energy space. The main result in this case is the following.
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Theorem 3.1. Let 0 < γ < 1 and consider the limit (c, α) →∞ under the condition

α ≤ γc. For each (c, α), let (Ec,α, nc,α) be a solution of (1.1) given by [21], and

denote its maximal existence time by T c,α. Assume that its initial data satisfy for

some (ϕ, ψ) ∈ H1

(Ec,α(0), c−2IcĖ
c,α(0)) → (ϕ, ψ) in H1,

(nc,α(0), |α∇|−1ṅc,α(0)) bounded in L2,
(3.1)

and that the latter has uniform decay for high frequency, namely,

lim
R→∞

lim sup
(c,α)→∞

‖(nc,α(0), |α∇|−1ṅc,α(0))>R‖L2 = 0. (3.2)

Let E∞ := (E∞+ ,E∞− ) be the solution of (1.3) with the initial condition

E∞(0) =
1

2
(ϕ− iψ, ϕ− iψ), (3.3)

and T∞ be the maximal existence time. Then we have lim inf T c,α ≥ T∞, and for all

0 < T < T∞,

Ec,α − (eic2tE∞+ + e−ic2tE∞− ) → 0 in C([0, T ];H1),

c−2IcĖ
c,α − i(eic2tE∞+ − e−ic2tE∞− ) → 0 in C([0, T ];H1),

nc,α + |E∞|2 − nc,α
f → 0 in C([0, T ];L2),

|α∇|−1(ṅc,α − ṅc,α
f ) → 0 in C([0, T ];L2),

(3.4)

where nc,α
f is the free wave defined by{

α−2n̈c,α
f −∆nc,α

f = 0,

nc,α
f (0) = nc,α(0) + |E∞(0)|2, ṅc,α

f (0) = ṅc,α(0).
(3.5)

Remark 3.2. The uniform decay for high frequency (3.2) is satisfied if the data stay

in a compact subset of L2, but it also allows some part of the data to escape to the

spatial infinity by translation and/or by dispersion, for example.

The main part of proof is uniform bound on the energy norm before taking the

limit, and for notational ease we will suppress the superscript (c, α). Since the

original energy is diverging as c→∞, we introduce a modified energy, eliminating

the oscillation e±ic2t. Then the time derivative of the modified energy has oscillatory

error terms, which can be bounded by using the Xs,b norms of the L2 regularity and

the Strichartz norm on E of the H1/2 regularity.

Those auxiliary norms are bounded in return by using the uniform bound of

energy. Here we use the interpolation inequality (2.34) to bound the Strichartz norm

with 1/2 loss by the Xs,b norm with 1 loss and the energy. Since the Strichartz norm

L2
tB

1/2
6,2 suffers from the logarithmic loss due to the failure of the Sobolev embedding

into L∞, we have to recover summability for the non-resonant frequency.
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Once the uniform bound is derived, the strong convergence in the limit is proved

by using weak compactness and convergence of the modified energy. We carry it out

in the next section.

The rest of this section is organized as follows. In the first subsection, we set up

the integral equation and the function spaces for the proof. In subsection 3.3, we

derive the main estimates on the Xs,b norm, the Strichartz norm and the energy

norm, respectively in Lemmas 3.5, 3.6 and 3.7. Finally in subsection 3.4, we put

those estimates together, and derive a uniform bound for small T and large c.

3.1. Integral equation and function spaces. As in [19], we rewrite (1.1) into

the first order system by introducing new variables E, N :

E = (E1,E2) :=
e−ic2t

2
(1− ic−2Ic∂t)(E

c,α, Ec,α), N := nc,α − i|α∇|−1ṅc,α. (3.6)

Remark that E and N depend on (c, α). The important thing is that the implicit

constants in the estimates are always independent of (c, α). The original variables

are given by

Ec,α = eic2tE1 + e−ic2tE2, Ėc,α = ic2I−1
c (eic2tE1 − e−ic2tE2),

nc,α = ReN, ṅc,α = − Im(|α∇|N),
(3.7)

and the equations are transformed into

2iĖ−∆cE = Icn(E + E∗), n = ReN,

iṄ + |α∇|N = −|α∇|〈E,E + E∗〉,
(3.8)

where we denote E∗ := e−2ic2t(E2,E1).

Next we introduce notations for space-time norms, for which we will derive uni-

form bounds. First we fix parameters µ, ν ∈ (0, 1/2) such that

max(1/3 + ν, 1/2− ν) < µ <
1− ν

2
. (3.9)

For instance, we can take (µ, ν) = (21/48, 1/12). We denote the energy space by

H := L∞t H
1
x × L∞t L

2
x. (3.10)

We denote the Xs,b spaces for E and N respectively by

Xs,b := e−it∆c/2Hb
tH

s
x, Y s,b := eit|α∇|Hb

tH
s
x. (3.11)

Then we introduce the following specific spaces

X ′ := I1−ν
c X0,1 + Icc

−2νX0,1−ν , X := X ′ × I−ν
c αY 0,1. (3.12)

For the Strichartz norm, we fix θ ∈ (0, 1/2) such that

µ+ ν > 1/2 + θ/3, (3.13)
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which is possible by (3.9). Using the notation in subsection 2.2, we define ∗

M : = Iµ
c (St

1/2,2
1,1 ∩ St

1/2,2
θ,1 ). (3.14)

Here we chose `1 for the frequency to have the Sobolev embedding into L∞x :

‖Iν
c E‖L2L∞ . ‖Iν

c E‖L2B0
∞,1

. ‖Iν
c E‖

L2B
θ/2
6/θ,1

. ‖E‖M, (3.15)

where we used that `1kL
2
t ⊂ L2

t `
1
k and (3.13).

To use the frequency localization of E and N , we have to extend them to the

whole space time. This will create some technical problems since we also need a

precise dependence on T in the estimates. Using the notation in subsection 2.3,

we transform the equation (3.8) on t ∈ (0, T ) into the following integral equations

which hold for t ∈ R. Define a map Φ : (E, N) 7→ (E], N ]) by

E](t) := e−it∆c/2

[
χ(t)E(0) +

i

2
IT e

it∆c/2Icn(E + E∗)
]

=: E0 + E1,

N ](t) := eit|α∇| [χ(t)N(0) + iIT e
−it|α∇||α∇|〈E,E + E∗〉

]
=: N0 +N1.

(3.16)

Then we have

Lemma 3.3. Let (E, N) ∈ C([0, T ];w-(H1×L2)) and let (E], N ]) = Φ(E, N), given

by (3.16). Then we have (E], N ]) ∈ C(R;S ′(R3)) and

‖(E], N ])‖H . ‖(E], N ])‖H(0,T ). (3.17)

Moreover,

(i) If (E, N) is a weak solution of (3.8) on (0, T ), then (E], N ]) = (E, N) on

(0, T ), and so (E], N ]) = Φ(E], N ]) on R.

(ii) If E ∈ St1,p
0 (0, T ) for all p > 2, then (E], N ]) ∈ X and E] ∈M.

In particular, if (E, N) is a solution of (3.8) given by [21], then E ∈ X1,1/2+ ⊂
St1,p

0 (0, T ) by (2.25), and so all the above conclusions hold.

Proof. (3.17) follows from the identity

g(t) := eit∆c/2E1(t) =

{
g(T )− g(t− T ) (T < t < 2T ),

0 (t ≤ 0, or 2T ≤ t)
. (3.18)

(i) is obvious, since the right hand side of (3.16) is the Duhamel formula for (3.8)

on (0, T ), and it depends only on the values on (0, T ). For (ii) we have on (0, T ),

‖I−ε
c NE‖L2L2 . cε‖NE‖L2Lp′

. cε‖N‖L∞L2‖E‖L2L3/ε . cεT ε/3‖N‖L∞L2‖E‖St1,p
0
,

(3.19)

∗There is no inclusion between St1 and Stθ. We will mostly use Stθ, but St1 is also needed for
(3.34), which is used to bound the quadratic term in the derivative of the modified energy.
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where 1/p = 1/2− ε/3 = 1− 1/p′. Similarly, we have

‖I−ε
c |α∇|(E)2‖L2L2 .αcεT ε/3‖E‖L∞H1‖E‖St1,p

0
. (3.20)

Hence by choosing ε = ν/2 and using (2.22), we deduce that (E], N ]) ∈ X . Then

Lemma 2.4 implies that I
(ν−1)/2
c E] ∈ St1/2+ν/4,2

a for any a ∈ (0, 1]. Since µ < (1−ν)/2
and ν > 0, we get E] ∈M. �

3.2. Resonant frequency and nonresonant interactions. We denote the non-

resonant frequencies by

DX := {j ∈ D | | log(j/M)| > 5}, M :=
2c2

c2 − α2
α, (3.21)

where the resonant frequency M is determined by the equation αM = ωc(M).

Since α/c < 1, we have M ∼ α. As in [19], we estimate interactions of the form〈
Re(N)E

∣∣F〉
t,x

for N ∈ Y s,b and E,F ∈ Xs,b, splitting each function with respect

to the distance from each characteristic surfaces. We define

NC = P|τ−α|ξ||≤δN, E
C = P|τ−ωc(ξ)|≤δE, E

∗C = P|τ+ωc(ξ)+2c2|≤δE
∗,

NF = P|τ−α|ξ||>δN, E
F = P|τ−ωc(ξ)|>δE, E

∗F = P|τ+ωc(ξ)+2c2|>δE
∗,

(3.22)

where δ > 0 will be mostly determined according to Lemma 3.4. We decompose F

in the same way as E. We denote nF := Re(NF ), nC := Re(NC). Notice also that

E∗C = EC∗ = e−2ic2t(EC
2 ,EC

1 ). In addition, for any interval I ⊂ R, we denote

IC = P|τ |≤δI, I = IC + IF . (3.23)

The nonresonance property is expressed in the following way.

Lemma 3.4. Let α/c ≤ γ < 1. There exists ε0 > 0, depending only on γ, such that

for all j, k, l ∈ D,

(i) if δ ≤ ε0(α+ (c ∧ l))l and either k/ε0 < j ∈ DX or k/ε0 < l ∈ DX , then we

have
〈
nC

j E
C
k

∣∣FC
l

〉
t,x

= 0 =
〈
nC

j E
C
k

∣∣ ICFC
l

〉
t,x

.

(ii) if δ ≤ ε0(c+j+k+l)c, then we have
〈
nC

j E
∗C
k

∣∣FC
l

〉
t,x

= 0 =
〈
nC

j E
∗C
k

∣∣ ICFC
l

〉
t,x

.

For the proof we refer to [19, Lemma 5.1]. We use the Xs,b norms for the parts

far from the characteristics to gain δ−b. For IF , we have

‖IF‖L1(R) . |I| ∧ δ−1. (3.24)

For the proof, see [19, (6.12)].

3.3. Main estimates. First we estimate the Xs,b norm X , using mainly the Hölder

inequality, and also the bilinear estimate for some interaction of frequency � c.

Lemma 3.5 (Xs,b bound). Let (E], N ]) = Φ(E, N), given by (3.16). Then

‖(E], N ])‖X . ‖(E, N)‖H(1 + ‖E‖M + c−1/2‖(E, N)‖X ). (3.25)
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Proof. Since the free part is trivial, it suffices to consider the nonlinear part (E1, N1).

By (2.22) with θ = 0 and the duality (2.18), we have

‖Iν
cN

1‖αY 0,1 . sup{
〈
Iν
c |∇|〈E,E + E∗〉

∣∣u〉
t,x
| ‖u‖L2

t L2
x
≤ 1}. (3.26)

Decomposed into the frequency as in (2.13), the above integral is bounded by∫
dt

∑
(j,k,l)∈T

k≥l

〈l/c〉νj
〈j/c〉νk

‖Ek‖H1
x
‖Iν

c El‖L∞x ‖uj‖L2
x
. ‖E‖L∞H1‖Iν

c E‖L2B0
∞,1
‖u‖L2L2

(3.27)

where we first took the summation over T using the `2k, `
1
l and `2j of the spatial

norms, and then integrated in time. Using (3.15), we obtain

‖N1‖I−ν
c αY 0,1 . ‖E‖L∞H1‖E‖M. (3.28)

Similarly by (2.22) and (2.18), we have

‖E1‖I1−ν
c X0,1+Icc−2νX0,1−ν . sup{

〈
n(E + E∗)

∣∣u〉
t,x
| ‖u‖Iν

c L2
t L2

x∩c2νX0,ν ≤ 1}, (3.29)

where the (t, x) integral is decomposed by using (2.13),〈
n(E + E∗)

∣∣u〉
t,x

=

∫
dt

∑
(j,k,l)∈T

〈
nj(Ek + E∗k)

∣∣ul

〉
x
. (3.30)

Let m := min(j, k, l) and h := max(j, k, l). The x integral can be bounded by

〈l/c〉−ν〈k/c〉ν(m/k)θ/2‖Nj‖L2
x
‖Ek‖I−ν

c B
θ/2
6/θ,2

‖ul‖Iν
c L2

x
. (3.31)

Next we consider the summation over T . In view of the spaces H and M, we may

take `2j , `
1
k and `2l on the space norms ofNj, Ek and ul, respectively. Ifm = k ≤ j ∼ l,

then the coefficient is bounded, and summability for m = k is provided by the norm

of Ek, and for h ∼ l ∼ j by the norms of Nj and ul. If m = j or m = l ≤ k ∼ j. c,

then the coefficient is bounded by (m/h)θ/2, which gives summability for m, while

that for h comes from two of the norms of nj, Ek and ul which we put in `2. Hence,

in these three cases, (3.30) is bounded by

‖Nj‖L∞t `2jL2
x
‖Ek‖L2

t `1kI−ν
c B

θ/2
6/θ,2

‖ul‖L2
t `2l Iν

c L2
x
. ‖N‖L∞L2‖E‖M, (3.32)

where we used the Hölder in t.

In the remaining case, namely l+ c� j ∼ k, the coefficient is not bounded, since

θ/2 < ν by (3.13) and the right inequality in (3.9). If we allow to lose some Ic, then

the integral in (3.30) can be bounded by

〈l/c〉µ−5/6〈k/c〉5/6−µ(l/k)1/2‖Nj‖L2
x
‖Ek‖I

µ−5/6
c B

1/2
6,2
‖ul‖I

µ−5/6
c L2

x
, (3.33)

where the coefficient is summable for l because µ > 1/3. In particular, we have

‖I5/6−µ
c NE‖L2L2 . ‖N‖L∞L2‖E‖M. (3.34)
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This is useful in the later nonlinear energy estimate, but not sufficient to close all

the estimates in X , M and H. To recover summability, we utilize its non-resonant

property with distance δ ∼ ch = ck from the characteristics. By Lemma 3.4, we can

decompose the above (t, x) integral as〈
nF

j Ek

∣∣ul

〉
t,x

+
〈
nC

j E
F
k

∣∣uC
l

〉
t,x

+
〈
nC

j Ek

∣∣uF
l

〉
t,x

=: A1 + A2 + A3, (3.35)

where we denote both Ek and E∗k by Ek, since they have the same non-resonance

property in this case. Hence, each integral is bounded by

A1 . (ch)−1α(j/c)νk−1l3/2‖Nj‖I−ν
c αY 0,1‖Ek‖L∞H1‖ul‖Iν

c L2L2 ,

A2 . (ch)−1(k/c)−1+νl3/2‖Nj‖L∞L2‖Ek‖I1−ν
c X0,1+c−2νIcX0,1−ν‖ul‖Iν

c L2L2 ,

A3 . (ch)−ν(k/c)ν(l/k)θ/2c2ν‖Nj‖L∞L2‖Ek‖I−ν
c L2B

θ/2
6/θ,2

‖ul‖c2νX0,ν ,

(3.36)

where the powers of ch come from δ, and those of m from the Sobolev embedding.

For l + c� k ∼ j, the coefficient on each line is bounded respectively by

c−να

c
h−2+νl3/2, c−νh−2+νl3/2, (l/h)θ/2. (3.37)

The first two are summable for (l, h) in the region l + c� h ∼ j ∼ k, and the sum

is bounded by c−1/2. The last one is summable only for l and the sum is bounded

by 1, hence we use the summability for k of the norm on Ek. Thus we obtain

‖E1‖X ′ . ‖(E, N)‖H(‖E‖M + c−1/2‖(E, N)‖X ). (3.38)

Gathering all the estimates, we obtain (3.25). �

Next we estimate E in M, using the interpolation Lemma 2.4 and also the non-

resonant bilinear estimate for the frequency DX 3 k. c.

Lemma 3.6 (Strichartz bound). Let (E], N ]) = Φ(E, N) and E] = E0 + E1, given

by (3.16). Then

‖E0‖M . ‖E(0)‖H1 , ‖E0‖M(0,T ) . (T 1/4 + c−1/2)‖E(0)‖H1 ,

‖E1‖M . (T 1/4 + c−1/2)‖E]‖L∞H1∩X ′

+ T 1/4‖(E, N)‖H
[
‖(E, N)‖H∩X + ‖E‖M

]
.

(3.39)

Proof. Using the real interpolation, we have for any a ∈ (0, 1] and I ⊂ R,

‖E0‖
Iµ
c St

1/2,2
a,1 (I)

. ‖E0
≤2c‖(St1,2

1 ,St0,2
1 )1/2,1(I) +

∑
c≤k∈D

(k/c)µk−1/2‖E0
k‖St1,2

a (I)

. ‖E0‖1/2

St1,2
1

‖E0‖1/2

L2
t L6

x(I)
+ c−1/2‖E0

>c‖St1,2
a,∞(I)

(3.40)

where we have used that in the frequency ≤ c, St1 dominates the other Stθ by the

Sobolev embedding. Then we get the desired bounds on E0 for I = (0, T ) and I = R
by the Strichartz estimate and the Sobolev embedding H1

x ⊂ L6
x.
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Next we estimate
∑

l>c ‖E1
l ‖M and

∑
l<c ‖E1

l ‖2
M by interpolation between X and

H as follows. First there is a canonical splitting for the sum space in X , namely

E1 = E2 + E3, Ẽ2(τ, ξ) = Ẽ1(τ, ξ){|τ − ωc(ξ)| < c|ξ|}. (3.41)

Then we have

‖E2‖L2H1 + ‖E3‖L2H1 . ‖E1‖L2H1 ≤ T 1/2‖E1‖L∞H1 ,

‖I−1+ν
c E2‖X0,1 + ‖I−1+ν

c E3‖c−νXν,1−ν . ‖E1‖X ′ ,
(3.42)

where we used the embedding c−νIν
cX

0,1−ν ⊂ Xν,1−ν . Since 1− ν > 1/2, we can use

Lemma 2.4 for E2 and E3, deriving

‖I(−1+ν)/2
c E1‖

St
1/2,2
a,2

. ‖E2‖1/2

L2H1‖I−1+ν
c E2‖1/2

X0,1 + ‖E3‖1−b
L2H1‖I−1+ν

c E3‖b
Xν,1−ν

. (T 1/4 + T (1−b)/2c−bν)‖E1‖L∞H1∩X ′ ,
(3.43)

for any a ∈ (0, 1], where we set b = 1/(2− 2ν) ∈ (1/2, 1). Hence, we have

‖E1
≤c‖St

1/2,2
1,2

+ ‖E1
>c‖M . (T 1/4 + c−1/2)‖E1‖L∞H1∩X ′ , (3.44)

where we used the condition µ < (1 − ν)/2 in (3.9) for the summability in the

frequencies > c.

Thus it remain to bound E1
l for DX 3 l ≤ c†. Indeed, the resonant frequencies

l 6∈ DX have a finite number and hence the above `2 bound controls the `1 norm.

By the Strichartz estimate, we have

‖E1
l ‖St

1/2,2
1

. ‖(0, T )(nE)l‖L1B
1/2
2,1 +L4/3B

1/2
3/2,1

+X1/2,−1/2+ε . (3.45)

Hence, by duality and (2.13), it is enough to estimate∑
(j,k,l)∈T
DX3l≤c

〈
njEk

∣∣ (0, T )ul

〉
t,x
,

(3.46)

for E = E and E∗, and for all u ∈ C∞
0 (R4) satisfying

sup
l
‖ul‖L∞H−1/2∩L4B

−1/2
3,∞

+ ‖u‖X−1/2−ε,1/2−ε ≤ 1. (3.47)

For the summation on l. j ∼ k, we bound the (t, x) integral in (3.46) by

(l/k)1/2〈k/c〉5/6−µ‖Nj‖L∞t L2
x
‖k1/2Ek‖I

µ−5/6
c L2

t L6
x
T 1/4‖l−1/2ul‖L4

t L3
x
. (3.48)

Since µ > 1/3, we can bound the coefficient as

sup
k

∑
l . c∧k

(l/k)1/2〈k/c〉5/6−µ . sup
k
〈k/c〉−1/2+5/6−µ ≤ 1, (3.49)

†As the following argument shows, we have actually better bound for the non-resonant frequency.
For example, we can derive the same bound for the weighted norm ‖w(k)k1/2E≤c‖L2L6 , where
w(k)4 = min(max(k, α/k),max(k/α, c/k)).
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so the summation for l. j ∼ k in (3.46) is bounded by using the Hölder in (j, k, l)

.T 1/4‖Nj‖`∞j L∞t L2
x
‖Ek‖`1kIµ

c St
1/2,2
1

‖ul‖`∞l L4
t B

−1/2
3,∞

.T 1/4‖N‖L∞L2‖E‖M. (3.50)

The case j < k ∼ l(≤ c) is treated similarly, but we sum for j first, and then

integrate in space and time. Hence, (3.46) for this part is bounded by∑
k∼l≤c

T 1/4‖N<k‖L∞L2‖k1/2Ek‖L2L6‖l−1/2ul‖L4
t L3 , (3.51)

Then, we take the summation in k and deduce that the contribution in (3.46) enjoys

the same bound as (3.50).

In the remaining case, namely k < j ∼ l ≤ c, we use the bilinear estimate with

the non-resonant distance δ ∼ (α+ j)j, decomposing the space-time integral as〈
njEk

∣∣ Iul

〉
t,x

=
〈
nF

j Ek

∣∣ (0, T )Icul

〉
t,x

+
〈
nC

j E
F
k

∣∣ (0, T )Icul

〉
t,x

+
〈
nC

j E
C
k

∣∣ (0, T )Icu
F
l

〉
t,x

+
〈
nC

j E
C
k

∣∣ (0, T )F Icu
C
l

〉
t,x

=:B1 +B2 +B3 +B4,

(3.52)

by Lemma 3.4. We estimate the first three terms by

B1 . (αj)−1αl1−ε‖NF
j ‖αY 0,1‖Ek‖L∞H1‖ul‖L2B−1+ε

3,2
,

B2 . (j2)−1kl1−ε‖NC
j ‖L∞L2‖EF

k ‖X0,1+c−2νX0,1−ν‖ul‖L2B−1+ε
3,2

B3 . (j2)−1/2+εk1−3/4l3/4−3εT 1/4‖NC
j ‖L∞L2‖EC

k ‖L4B
3/4
3,2
‖uF

l ‖X−3/4+3ε,1/2−ε ,

(3.53)

where we choose ε ∈ (0, 1/12), and the first factor on each line is coming from

δ. Since the coefficient is summable on k. j ∼ l, it suffices to bound the norms

on Nj, Ek and ul. The norms on ul have regularity room at least 1/4 − 4ε.

By using the above interpolation argument together with another interpolation

[L∞H1, L2B
1/2
6,2 ]1/2 = L4B

3/4
3,2 , we have for k. c,

‖EC
k ‖L4B

3/4
3,2

. ‖EC
k ‖

1/2

L∞H1‖EC
k ‖

1/2

L2B
1/2
6,2

. ‖EC
k ‖

3/4

L∞H1‖EC
k ‖

1/4
X ′ . (3.54)

For B4, we use (3.24), the Hölder and the Sobolev inequalities

B4 . (T ∧ j−2)k1/2l‖nC
j ‖L∞L2‖EC

k ‖L∞H1‖uC
l ‖L∞H−1 , (3.55)

where we have 1/2 regularity room for ul, and the sum of the coefficient for k � l ∼ j

is bounded by T 1/4.

Thus we can bound the summation of (3.53). Gathering all the terms, we obtain∑
DX3l≤c

‖E1
l ‖St

1/2,2
1

.T 1/4‖(E, N)‖H
[
‖(E, N)‖H∩X + ‖E‖M

]
. (3.56)

Adding the previously estimated parts, we get (3.39). �

Finally we estimate the energy norm by using a modified nonlinear energy.
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Lemma 3.7 (Energy bound). Assume that (E[, N [) solves (3.8) on (0, T ). Let

(E, N) = Φ(E[, N [) given by (3.16), and HS := sup0≤t≤S ‖(E(t), N(t))‖H1×L2 . Then

HT .H0 +H2
0 + T 1/3H

7/3
T

+ ‖E‖2
M(0,T )HT + ‖E‖M(0,T )‖(E, N)‖X + c−1/2‖(E, N)‖2

H∩X .
(3.57)

Remark 3.8. This estimate concerns the true nonlinear solutions, in contrast with

the preceeding lemmas 3.5 and 3.6, which are essentially iterative. The difference is

reflected by the notation (E, N) = Φ(E[, N [) in the above and (E], N ]) = Φ(E, N) in

the previous lemmas 3.5 and 3.6. In practice, we start with a local solution (E[, N [)

and define the extended solutions iteratively by

(E, N) := Φ(E[, N [), (E], N ]) := Φ(E, N). (3.58)

Then (E], N ]) = (E, N) by Lemma 3.3. We distinguished them in the previous

lemmas in order to emphasize their iterative nature with minimal assumptions.

Proof. First we recall that ‖(E, N)‖H ∼ HT and (E, N) = (E[, N [) on (0, T ) by

Lemma 3.3. Inner multiplying the first equation of (3.8) with 2I−1
c (Ė+ iE), and the

second one with |α∇|−1Ṅ and adding the real parts, we get

∂t

[
E(t) +

〈
nE

∣∣ E
〉

x

]
= −

〈
nE∗

∣∣ 2Ė
〉

x
−

〈
ṅE∗

∣∣ E
〉

x
−

〈
nE∗

∣∣ 2iE
〉

x

=
〈
inE∗

∣∣ (2−∆c)E + IcnE)
〉

x
−

〈
(Re i|α∇|N)E∗

∣∣ E
〉

x
,

(3.59)

where we denote the linear part of energy by

E(t) :=
〈
I−1
c (2−∆c)E

∣∣ E
〉

x
+

1

2
‖N‖2

L2
x
∼ ‖E‖2

H1
x

+ ‖N‖2
L2

x
, (3.60)

The last trilinear term in (3.59) has a stronger Fourier multiplier than the other one

when N has frequency � α, for which we need to integrate by parts. Denoting

Pαf :=
|α∇|
2c2

Re f<α, (3.61)

we have〈
(Re i|α∇|N<α)E∗

∣∣ E
〉

x

= ∂t

〈
(PαiN)E∗

∣∣ iE〉
x
−

〈
(PαiṄ)E∗

∣∣ iE〉
x
−

〈
(PαiN)E∗

∣∣ 2iĖ
〉

x
,

(3.62)

and the last two terms are equal to〈
Pα|α∇|(n+ 〈E,E + E∗〉)

∣∣ 〈iE,E∗〉〉
x
−

〈
(PαiN)E∗

∣∣ ∆cE− IcnE
〉

x
. (3.63)

Thus we obtain

∂t

[
E(t) +

〈
nE

∣∣ E
〉

x
−

〈
(PαiN)E∗

∣∣ iE〉
x

]
=

〈
inE∗

∣∣ (2−∆c)E + IcnE
〉

x
−

〈
(Re i|α∇|N≥α)E∗

∣∣ E
〉

x

+
〈
Pα|α∇|(n+ 〈E,E + E∗〉)

∣∣ 〈iE,E∗〉〉
x
−

〈
(PαiN)E∗

∣∣ ∆cE− IcnE
〉

x
.

(3.64)
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In order to derive the uniform bound on the energy norm, it suffices to dominate

those error terms as well as the trilinear part on the left, which is bounded by

‖N‖L2
x
‖(E)2‖L2

x
. ‖N‖L2

x
‖E‖2

L4
x
.HT‖E(0)‖2

H3/4 +H
8/3
T ‖E1‖1/3

H
−1/2
x

, (3.65)

where we used [H−1/2, H1]5/6 = H3/4 ⊂ L4. The H−1/2 norm is estimated by using

the equation

‖E1‖L∞H−1/2 . ‖nE‖L1H−1/2(0,T ) .T‖n‖L∞L2‖E‖L∞H1 . (3.66)

Thus we obtain

|
〈
nE

∣∣ E
〉

x
|+ |

〈
(PαiN)E∗

∣∣ iE〉
x
|.HTH

2
0 + T 1/3H

10/3
T . (3.67)

Next we estimate the time integral of the error terms on I := [0, T1], for any T1 ∈
(0, T ). Thanks to (3.34), we can dominate the quartic terms including N by

‖I1/2
c NE‖2

L2
t L2

x(0,T ) . ‖N‖2
L∞L2(0,T )‖E‖2

M(0,T ), (3.68)

since 5/6− µ < 1/2. Those without N are bounded by

‖Iν
c (E)2‖2

L2
t H1

x(0,T ) . ‖E‖2
L∞H1‖Iν

c E‖2
L2B0

∞,1(0,T ) .H2
T‖E‖2

M(0,T ), (3.69)

since Pα|α∇|. I2ν
c |∇|2 on L2

x.

The trilinear terms are of the following form:∑
(j,k,l)∈T

〈
gjFk

∣∣ElI
〉

t,x
, (3.70)

where I = (0, T1) ⊂ (0, T ), g = M1N or g = M1N , F = E∗ and E = M2E with

some Fourier multipliers Ma, a = 1, 2, which are bounded on any Lp with the norm
2∏

a=1

‖Ma‖L(Lp) .hmin(c, h), h := max(j, k, l). (3.71)

We further decompose it by the distance δ = εc(c+ h) from the characteristics:∑
(j,k,l)∈T

[〈
gF

j Fk

∣∣ElI
〉

t,x
+

〈
gC

j Fk

∣∣EF
l I

〉
t,x

+
〈
gC

j F
F
k

∣∣ElI
〉

t,x

−
〈
gC

j F
F∗
k

∣∣EF
l I

〉
t,x

+
〈
gC

j F
C
k

∣∣EC
l I

F
〉

t,x

]
,

=:K1 +K2 +K3 +K4 +K5,

(3.72)

by Lemma 3.4. First, we estimate K1. We assume that l ≤ k, otherwise we change

the role of l and k. Hence, k ∼ h and

|K1|.
∫ T

0

dt
∑

(j,k,l)∈T
k∼h

w1(j, l, h)‖δNF
j ‖I−ν

c αL2
x
‖l1/2El‖I

µ−6/5
c L6

x
‖Ek‖H1

x

.
∑

(j,k,l)∈T
k∼h

w1(j, l, h)‖Nj‖I−ν
c αY 0,1‖El‖M(0,T )‖Ek‖L∞H1 ,

(3.73)
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where we put

w1(j, l, h) := h(c ∧ h)δ−1α〈j/c〉ν(m/l)1/2〈l/c〉5/6−µh−1. (3.74)

For m = j ≤ l ∼ k, we have∑
h

∑
j≤h

w1(j, l, h) .
∑

h

∑
j≤h

〈j/c〉ν(j/h)1/2

〈c/h〉〈h/c〉1/6+µ

.
∑

h

〈c/h〉−1〈h/c〉−1/6−µ+ν . 1,

(3.75)

and we can bound the norms of Nj,El,Ek by those of N and E. For m = l ≤ j ∼ k,

we have ∑
h

sup
l≤h

w1(j, l, h) .
∑

h

〈c/h〉−1〈h/c〉−1/6−µ+ν . 1 (3.76)

since µ + 1/6 − ν > 0. To get summability, we use `1l for ‖El‖M(0,T ). Hence, we

obtain

|K1|.HT‖E‖M(0,T )‖(E, N)‖X . (3.77)

Similarly, |K2| is bounded by∫ T

0

dt
∑

(j,k,l)∈T

w2(j, k, l)‖Nj‖L2
x
‖k1/2Ek‖I

µ−6/5
c L6

x
‖I−1

c δEF
l ‖I−ν

c L2
x+δνc−2νL2

x

.
∑

(j,k,l)∈T

w2(j, k, l)‖Nj‖L∞L2‖Ek‖Iµ
c St

1/2,2
1 (0,T )

‖El‖I1−ν
c X0,1+c−2νIcX0,1−ν ,

w2(j, k, l) := h(c ∧ h)δ−1〈h/c〉ν(m/k)1/2〈k/c〉5/6−µ〈l/c〉−1,

(3.78)

where the contribution from the second member of the sum space I−ν
c L2

x + δνc−2νL2
x

is bigger than the first one. If m = j ≤ l ∼ k, then we have∑
h

∑
j≤h

w2 .
∑

h

〈c/h〉−2
∑
j≤h

(j/h)1/2〈h/c〉−1/6−µ+ν

.
∑

h

〈c/h〉−2〈h/c〉−1/6−µ+ν . 1,
(3.79)

and we can bound the norms of Nj,El,Ek by those of N and E. If m = k, then we

have ∑
h

sup
k≤h

w2 .
∑

h

〈c/h〉−2 sup
k≤h

〈k/c〉5/6−µ〈h/c〉−1+ν

.
∑

h

〈c/h〉−2〈h/c〉−1/6−µ+ν . 1
(3.80)
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and we get the summability using `1k for ‖Ek‖Iµ
c St

1/2,2
1

. If m = l, then we have∑
h

∑
l≤h

w2 .
∑

h

〈c/h〉−2
∑
l≤h

(l/h)1/2〈h/c〉5/6−µ+ν〈l/c〉−1

.
∑

h

〈c/h〉−2〈h/c〉1/3+ν−µ . 1,
(3.81)

where the first summand attains the maximum around l ∼ c ∧ h. Thus we obtain

|K2|.HT‖E‖M(0,T )‖(E, N)‖X . (3.82)

K3 satisfies the same estimate thanks to the symmetry. |K4| is bounded by∫
dt

∑
(j,k,l)∈T

w4(j, k, l)‖Nj‖L2
x
‖δ〈h/c〉−νEF

k ‖IcL2
x
‖δ〈h/c〉−νEF

l ‖IcL2
x

.
∑

(j,k,l)∈T

w4(j, k, l)‖N‖L∞L2‖E‖2
I1−ν
c X0,1+c−2νIcX0,1−ν ,

(3.83)

where we put w4(j, k, l) := h(c ∧ h)δ−2〈h/c〉2ν〈k/c〉−1〈l/c〉−1m3/2. Hence∑
h

∑
m≤h

w4(j, k, l) .
∑

h

h(c ∧ h)δ−2〈h/c〉2ν−2h3/2 . c−1/2, (3.84)

where the sum over h converges since ν < 3/4. Thus we obtain

|K4|. c−1/2HT‖(E, N)‖2
X . (3.85)

Finally, |K5| is bounded by∑
(j,k,l)∈T

w5(j, k, l)‖Nj‖L∞L2
x
‖Ek‖L∞H1

x
‖El‖L∞H1

x
.

∑
(j,k,l)∈T

w5(j, k, l)H3, (3.86)

where w5(j, k, l) := h(c ∧ h)k−1l−1m3/2‖IF‖L1 . Using (3.24), we have∑
h

∑
m≤h

w5(j, k, l) .
∑

h

(c ∧ h)h1/2δ−1 . c−1/2. (3.87)

Thus we obtain

|K5|. c−1/2H3
T . (3.88)

Gathering all the terms, we get

H2
T .H2

0 +H2
0HT + T 1/3H

10/3
T +H2

T‖E‖2
M(0,T )

+HT‖E‖M(0,T )‖(E, N)‖X + c−1/2HT‖(E, N)‖2
H∩X ,

(3.89)

which implies (3.57). �
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3.4. Concluding uniform estimate. Let (E[, N [) be a solution of (3.8) on (0, T̃ )

for some T̃ > 0, given by [21]. T̃ may depend on (c, α) and the solution itself;

indeed we do not care about the size of T̃ here. We will prove a uniform bound on

the energy norm in terms of the initial norm only, which is a priori valid as long

as T̃ and 1/c are below some bounds which are also determined by the initial norm

only. Actually they depend also on sup(α/c), but we are assuming that it is fixed

once for all.

Let κ := T̃ 1/4 ∨ c−1/2 ≤ 1 and

HT := ‖(E, N)‖L∞(0,T ;H1×L2), (3.90)

which is continuous for 0 < T < T̃ . We will prove that if κ is sufficiently small, then

HT is uniformly bounded, depending only on H0.

For any T ∈ (0, T̃ ), let (ET , NT ) = Φ(E[, N [) given by (3.16), and let

XT := ‖(ET , NT )‖X , MT := ‖ET‖M, M ′
T := ‖ET‖M(0,T ). (3.91)

We recall that (ET , NT ) = (E, N) on (0, T ) and ‖(ET , NT )‖H ∼ HT by Lemma 3.3.

By (3.25), (3.39), (3.57) and (3.17), we have

XT ≤ CHT (1 +MT + κXT ),

M ′
T ∨ (MT − CH0) ≤ Cκ(HT +XT +HT (HT +XT +MT )),

HT ≤ C(H0 +H2
0 ) + Cκ(H

7/3
T +H2

T +X2
T ) + CM ′

T (M ′
THT +XT ),

(3.92)

for some universal constant C ≥ 1. Now we assume that T̃ is sufficiently small and

c is large enough in the sense that

999C9κ(1 +H0)
6 ≤ 1/2. (3.93)

There exists, by continuity, the maximal T ∈ (0, T̃ ] for which we have

HT ≤ 1 + 2C(H0 +H2
0 ). (3.94)

Once we show that this inequality is strict, then T = T̃ by continuity, and so we

have the uniform bound (3.94) as long as (T̃ , c) satisfies (3.93). ¿From (3.93) and

(3.94), we have

100C6κ(1 +HT )3 < 1/2. (3.95)

In particular, CκHT < 1/2. Hence from the first inequality of (3.92), we have

XT ≤ 2CHT (1 +MT ), (3.96)

and plugging this into the second inequality,

M ′
T ∨ (MT − CH0) ≤ 2C2κ(1 +MT )(1 +HT )2 + Cκ(HT +H2

T ). (3.97)
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Since 2C2κ(1 +HT )2 < 1/2, we get

MT/2− CH0 ≤ 2C2κ(1 +HT )2 + Cκ(HT +H2
T ) ≤ 3C2κ(1 +HT )2 < 1/2. (3.98)

In particular, we have MT +2 ≤ 2C(1+H0), and plugging it into (3.96) and (3.97),

XT +HT ≤ 4C2(1 +HT )2, M ′
T ≤ 5C3κ(1 +HT )3 < 1. (3.99)

By using them we can estimate the terms in the third inequality of (3.92)

Cκ(H
7/3
T +H2

T ) + CκX2
T + CM ′

T (M ′
THT +XT )

≤ 2Cκ(HT + 1)H2
T + 16C5κ(1 +HT )4 + 20C6κ(1 +HT )5

≤ 38C6κ(1 +HT )2 < HT/2.

(3.100)

Thus we obtain from the third inequality of (3.92),

HT ≤ 2C(H0 +H2
0 ), (3.101)

which implies the strict inequality in (3.94). Thus we conclude that T = T̃ , which

means that we have (3.94) as long as the solution exists and (3.93) holds.

In addition, the local wellposedness result in [21] implies the following:

(i) The local solution can be extended until ‖E(t)‖H1 + ‖N(t)‖L2 blows up.

(ii) For any bounded set of (c, α) with sup(α/c) < 1 and bounded set of initial

data, we have a uniform bound on the energy norm on a common time

interval.

Combining these with the above uniform bound for large c, we obtain

Proposition 3.9. For any γ ∈ (0, 1) and b, there exists T̃ (γ, b) > 0 and B(γ, b) > 0

with the following property: Let 1 ≤ α ≤ γc, 0 < T ≤ T̃ (γ, b) and (E, N) =

Φ(E[, N [) given by (3.16). Assume that (E[, N [) solves (3.8) on (0, T ), (E, N) ∈
H ∩ X , E ∈M and ‖(E(0), N(0))‖H1×L2 ≤ b. Then we have

‖(E, N)‖H∩X + ‖E‖M ≤ B(γ, b). (3.102)

The above assumptions (E, N) ∈ H ∩ X and E ∈ M are fulfilled for example if

one of the following conditions holds:

(i) (E[, N [) ∈ H(0, T ) and E[ ∈ St1,p
0 (0, T ) for all p > 2.

(ii) (E[, N [) ∈ X1,b × Y 0,b for some b > 1/2.

(iii) (E[, N [) ∈ H ∩ X and E[ ∈M.

The sufficiency of (i) was proved in Lemma 3.3. (ii) implies (i) by (2.25), and the

sufficiency of (iii) is clear from (3.17), (3.25) and (3.39). We can use (i) for the

solutions with finite (Klein-Gordon) Strichartz norm of the H1 level, (ii) for those

constructed by the Xs,b argument as in [21], and (iii) for those obtained by iterating

Φ on a shorter time interval. The distinction between those solution classes would
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become irrelevant if we can prove the uniqueness of finite energy solution, but we

do not pursue it here.

In particular, the above uniform bound in H implies that the unique local solution

constructed in [21] exists on some time interval, determined by the upper bounds on

α/c and the initial energy norm only. Notice that the assumption of uniform decay

for high frequency (3.2) is not needed for the above uniform bounds. That is used

only for the convergence proved in the following section.

4. Convergence from the Klein-Gordon-Zakharov to the NLS

In this section we prove the strong convergence in Theorem 3.1 by using the

uniform energy bound in Proposition 3.9. It suffices to prove the convergence on the

small time interval [0, T ], since we can repeat the same argument for later time as

long as the limit solution is bounded in H1, i.e., up to the maximal existence time

T ∗.

The proof proceeds in the following three steps. First we extract a subsequence

which converges weakly. Then the uniqueness of the weak solution to the limit

system implies that the whole sequence converges. Finally by using asymptotic

conservation of the modified energy, we deduce the convergence is indeed strong.

We consider the uniformly bounded solution (E, N) in Proposition 3.9, and assume

in addition that E(0) → E∞(0) in H1 as (c, α) →∞, and

lim
R→∞

sup
(c,α)

‖N>R(0)‖L2 = 0, (4.1)

under the condition α ≤ γc. We are going to prove the strong convergence of E.

4.1. Weak convergence. First we consider the weak limit of E. By the equation

(3.16) and the energy bound, we have

‖Ė‖L∞(H−1∩cL2) . ‖∆E‖L∞H−1 + ‖nE‖L∞H−1 . ‖E‖L∞H1(1 + ‖n‖L∞L2). (4.2)

Combined with the energy bound, this implies that {E}(c,α) is equicontinuous for

t ∈ R in the weak topology of H1. Hence by the standard compactness argument,

there is a subsequence of (c, α) →∞, along which

E → E∞ in C(R; (w-H1) ∩ Lp
loc), (4.3)

for some E∞ and for any p < 6.

Next, for any test function u ∈ C∞
0 ((0, T )×R3), we have from the equation of N

and partial integration in t,〈
N + |E|2

∣∣u〉
t,x

= −
〈
i|α∇|−1Ṅ + 〈E,E∗〉

∣∣u〉
t,x

=
〈
i|α∇|−1N

∣∣ u̇〉
t,x

+ (2c2)−1
〈
E∗

∣∣ i(Re u̇)E + 2i(Re u)Ė
〉

t,x
→ 0,

(4.4)
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by the uniform bounds on ‖N‖L2
x
, ‖E‖H1

x
and ‖Ė‖H−1

x
. Combined with the L2

x bound

and the convergence (4.3), it implies that

N + |E∞|2 → 0 in w-Lp
tL

2
x(0, T ), (4.5)

for any p ∈ (1,∞). Similarly we have, denoting E† := e−2ic2t(E2,E1),〈
nE∗

∣∣u〉
t,x

= −(2c2)−1
〈
iE∗

∣∣ ṅu+ nu̇
〉

t,x
− (2c2)−1

〈
ie−2ic2t∂tE†,

∣∣nu〉
t,x

→ 0,
(4.6)

by the uniform bounds on ‖ṅ/α‖H−1
x

, ‖Ė/c‖L2
x

and the energy norm. From this,

(4.5) and (4.3) as well as the energy bound, we deduce that

Icn(E + E∗) → −|E∞|2E∞ in w-Lp
tL

q
x(0, T ), (4.7)

for any p ∈ (1,∞) and q ∈ (1, 3/2). Thus we conclude that the limit function E∞

is a weak solution of (1.3) on [0, T ] in the class C([0, T ];w-H1), and the uniqueness

of such a solution implies that the whole sequence along (c, α) → ∞ is converging

to this unique limit on (0, T ). It is convergent actually on R, due to (3.18). Thus

E∞ ∈ C(R;H1 × L2) is the unique solution of

E∞ = e−it∆/2

[
χ(t)E∞(0)− i

2
IT e

it∆/2|E∞|2E∞
]
. (4.8)

4.2. Estimates on the limit solution. Next we derive a few bounds on the above

limit solution E∞. By the Strichartz estimate for e−it∆/2, we have

‖E∞ − e−it∆/2E∞(0)‖L∞H1∩L2B1
6,2(0,S) . ‖|E∞|2E∞‖L1H1(0,S)

.S1/2‖E∞‖L∞H1‖E∞‖2
L4L∞ ,

(4.9)

for any S ∈ (0, T ). By the real interpolation we have

‖E∞‖L4L∞ . ‖E∞‖
L4B

1/2
6,1

. ‖‖E∞(t)‖1/2

L6
x
‖E∞(t)‖1/2

B1
6,2
‖L4

t

. ‖E∞‖1/2

L∞H1‖E∞‖1/2

L2B1
6,2

(4.10)

Hence if S � ‖E∞‖−4
H , then we have

‖E∞‖L∞H1∩L2B1
6,2∩L4L∞(0,S) . ‖E∞‖H. (4.11)

We can repeat this argument for finite times ∼ T/S to cover (0, T ), deducing that

E∞ ∈ L2B1
6,2 ⊂ St1,2

a for all a ∈ [0, 1].

4.3. Strong convergence. First we prove L2 convergence. Inner multiplying the

first equation of (3.8) with I−1
c iE, we obtain for any T1 ∈ (0, T ),[〈

I−1
c E

∣∣ E
〉

x

]T1

0
=

〈
inE∗

∣∣ E(0, T1)
〉

t,x
. (4.12)
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The trilinear estimates in the previous section (3.77), (3.82), (3.85), (3.88) imply

that the right hand side is of order O(c−2). Since I
−1/2
c E(0) → E∞(0) in L2

x and〈
I
−1/2
c E− E∞

∣∣ E∞
〉

x
→ 0 in L∞t by the weak convergence, we have

‖I−1/2
c E− E∞‖2

L2
x

= ‖I−1/2
c E‖2

L2
x
− ‖E∞‖2

L2
x
− 2

〈
I−1/2
c E− E∞

∣∣ E∞
〉

x
→ 0, (4.13)

uniformly in t ∈ R.

Next we consider the H1 convergence. Let

E = E∞ + E′, N + |E|2 = N I +N ′, N I = ei|α∇|t(N(0) + |E(0)|2). (4.14)

The modified energy can be rewritten as

E(t) +
〈
nE

∣∣ E
〉

x
=

〈
I−1
c (2−∆c)E

∣∣ E
〉

x
+

1

2
‖N + |E|2‖2

L2
x
− 1

2
‖E‖4

L4
x

=
〈
I−1
c (2−∆c)E′

∣∣ E′
〉

x
+

1

2
‖N ′‖2

L2

+ 2‖E∞‖2
L2 + ‖∇E∞‖2

L2 +
1

2
‖N I‖2

L2 −
1

2
‖E∞‖4

L4

+ 2
〈
I−1
c (2−∆c)E∞

∣∣ E
〉

x
+

〈
N ′ ∣∣N I

〉
x

+
〈
(∆− I−1

c ∆c)E∞
∣∣ E∞

〉
x

+
1

2
(‖E∞‖4

L4 − ‖E‖4
L4),

(4.15)

where we have dropped the term
〈
(PαiN)E∗

∣∣ iE〉
x

because it is vanishing by the

L∞t L
4
x convergence of E. The second line is 0 at t = 0. The third line is a conserved

quantity. As (c, α) → ∞, the last line tends to 0 in L∞t , by the strong continuity

of E∞, the L2 strong convergence, and the H1 uniform bound of E. On the forth

line, the first term tends to 0 by the weak convergence. For the second term, we

split N I in the frequency at R→∞ to exploit its uniform decay for high frequency

(4.1). For any ε > 0, we can choose R > 1 such that |
〈
N ′

∣∣N I
>R

〉
x
| ≤ ε uniformly

on t ∈ (0, T ) and for (c, α). For the low frequency part, we have〈
N ′ ∣∣N I

≤R

〉
x

=

∫ t

0

〈
e−i|α∇|s(|E|2t + i|α∇|〈E,E∗〉)(s)

∣∣N I
≤R(0)

〉
x
ds, (4.16)

where the contribution from E∗ tends to 0 by partial integration in the same way as

(4.4). The contribution of |E|2 is also vanishing by the Strichartz estimate∥∥∥∥∫ t

0

ei|α∇|sf(s)ds

∥∥∥∥
L∞H−3/2

.α−1/4‖f‖L4/3B−1
4/3,2

. (4.17)

Hence we deduce
〈
N ′

∣∣N I
〉

x
→ 0 in L∞t (0, T ), and therefore

‖E′(T1)‖2
H1 + ‖N ′(T1)‖2

L2 . o(1) +

∫ T1

0

dt(RHS of (3.64)), (4.18)

for any T1 ∈ (0, T ). Here and after, o(1) denotes arbitrary positive quantity tending

to 0 as (c, α) →∞.
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Next we expand the right hand side of (4.18), decomposing each function by

E = E≤R + E>R, N = N≤R +N>R, (4.19)

for (c, α) � R� 1. We denote

H := ‖(E, N)‖H, M := ‖E‖M, X := ‖(E, N)‖X ,

H ′ := ‖(E′, N ′)‖H, M ′ := ‖E′‖M,

HR := ‖(E, N)>R‖H, MR := ‖E>R‖M, XR := ‖(E, N)>R‖X .
(4.20)

For the trilinear terms, we apply the same estimates as in the proof of Lemma 3.7.

If at least two of the three functions have the lower frequency, then we have h.R

in those estimates, so that the factor 〈c/h〉−1 or c−1/2 kills those terms in the limit.

Thus the trilinear terms are bounded by

HRMRX +HRMXR +HMRXR + oR(1), (4.21)

where oR(1) denotes arbitrary positive quantity tending to 0 as (c, α) → ∞, de-

pending on R. As for the quartic terms with N , if at most one of the four functions

is the higher frequency part, then we partially integrate e2ic2t. By the equations,

(3.34), and the Sobolev embedding H2 ⊂ B
1/2
6,1 , we have

‖Ṅ≤R‖L2
x
.αR(H +H2), ‖Ė≤R‖St

1/2,2
1,1

.R2(M +HM), (4.22)

so that we gain at least α/c2 for fixed R. For the quartic terms without N , we gain

R2/c2 from Pα|α∇| if more than two functions are the lower frequency. Thus the

quartic term is bounded by

H2
RM

2 +HRMRHM +M2
RH

2 + oR(1), (4.23)

and therefore

‖E′‖2
H .HRMRX +HRMXR +HMRXR

+H2
RM

2 +HRMRHM +M2
RH

2 + oR(1).
(4.24)

By the uniform decay assumption (3.2) and (3.18), we have

HR . ‖E′‖H + o(1;R→∞), (4.25)

here and after o(1;R → ∞) denotes arbitrary positive quantity tending to 0 as

R→∞, uniformly in (c, α). Since E∞ ∈ L2B1
6,2, we have

MR .M ′ + o(1;R→∞), (4.26)

and by the L2 strong convergence, we have also

M ′ ≤ ‖E′>R‖+ ‖E′≤R‖.MR + o(1;R→∞) + oR(1). (4.27)
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Next we apply the arguments for (3.25) to (E>R, N>R). Then one of the functions in

bilinear terms must have frequency &R. If it is estimated in X , then we get c−1/2

decay, otherwise we apply (4.25) or (4.26). Thus we obtain

XR . (H ′ +M ′)H + o(1;R→∞) + o(1). (4.28)

Similarly, by the argument for (3.39), we obtain

MR .T 1/4(H ′ +M ′)(1 +H2) + o(1;R→∞) + o(1), (4.29)

by using (4.25), (4.26) and (4.28), where the contribution of E0
>R is contained in

o(1;R→∞). Plugging them into (4.24) and (4.27), we obtain for any 0 < T ′ < T ,

(H ′)2 .T 1/4(H ′ +M ′)2(1 +H6) + o(1;R→∞) + oR(1),

M ′ .T 1/4(H ′ +M ′)(1 +H2) + o(1;R→∞) + oR(1)
(4.30)

Choosing T sufficiently small compared with 1 + H6, and letting (c, α) → ∞ and

then R→∞, we deduce that

lim
(c,α)→∞

H ′ +M ′ = 0. (4.31)

Remark 4.1. As can be seen from the proof, the convergence stated in theorem 3.1

holds for any family of solutions such that (E, N) ∈ H ∩ X and E ∈ M. This class

is larger than the uniqueness class of [21].

5. Klein-Gordon-Zakharov to Zakharov

In this section we prove convergence of solutions from the Klein-Gordon-Zakharov

system to the Zakharov system. There is no resonance blow-up in this case, so

the iterative argument works uniformly with respect to c, relying on the bilinear

estimate, without using the energy conservation.

However, this problem cannot be solved by a simple “interpolation” between the

available estimates on fixed c [21] and in the limit [6, 12]. The trouble comes from

the term nlEh, l + c � h. If the parameter c is fixed, then it can be treated just

by the Strichartz estimate, of the Schrödinger type for c = ∞ as in [12], or of the

wave type for finite c as in [21], but neither argument works uniformly in c. More

precisely, the former loses (h/c)1/4, and the latter c1/2, at least. Thus we are forced to

apply the bilinear estimate to this term, even though there is resonance interaction

(nCEC)C in this case. We exploit the smallness of the set of resonant frequency.

The idea is similar to that in [6], which used an improved Sobolev inequality, but

we need a sharper estimate (Lemma 5.4 below), which is an improvement of the

interpolated Strichartz estimate (2.39).
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Theorem 5.1. Consider the limit c → ∞ with α = α(c) > 0 bounded from above

and below. For each c, let (Ec, nc) be a solution of (1.1) given by [21], (Êc, N̂ c) be

a solution of (1.7) given by [6, 12], and let

Ec :=
e−ic2t

2
(1− ic−2Ic∂t)(E

c, Ec), (N c, N̂ c) := (1− i|α∇|−1∂t)(n
c, n̂c). (5.1)

Assume that (Ec(0), N c(0)) is bounded in H1 × L2,

(Ec(0), N c(0))− (Êc(0), N̂ c(0)) → 0 in H1 × L2, (5.2)

and uniform decay for high frequency:

lim
R→∞

lim sup
c→∞

‖(Ec(0), N c(0))>R‖H1×L2 = 0. (5.3)

Let T c and T̂ c be the maximal bounded time, namely

T∞ := sup{T > 0 | lim sup
c→∞

‖(Ec, N c)‖H(0,T ) <∞},

T̂∞ := sup{T > 0 | lim sup
c→∞

‖(Êc, N̂ c)‖H(0,T ) <∞}.
(5.4)

Then we have T∞ = T̂∞ > 0, and for all T ∈ (0, T∞),

(Ec − Êc, N c − N̂ c) → 0 in C([0, T ];H1 × L2). (5.5)

Remark 5.2. T̂∞ > 0 is bounded from below in terms of the initial bound

lim sup
c→∞

‖(Êc(0), N̂ c(0))‖H1×L2 , (5.6)

by the local wellposedness of (1.7). If α(c) and the initial data (Êc(0), n̂c(0), ∂tn̂
c(0))

are converging, then T̂∞ is the maximal existence time of the limit solution of Êc.

Remark 5.3. One can easily observe that the necessary and sufficient condition for

the same convergence for the free equations is given by replacing (5.3) with

sup
R>0

lim sup
c→∞

‖(Ec(0), N c(0))>Rc‖H1×L2 = 0. (5.7)

In other words, some part of the norm is allowed to escape to the infinite frequency,

if it is slower than c. In this case, the X1,b norm of the asymptotic profile Ê can

become unbounded as c → ∞ for any b > 0. If the high frequency leak is slower

than
√
c, then the X1,b norm remains bounded and we can probably prove the same

convergence result.

It suffices to prove the convergence on a uniform small interval [0, T ], since we can

continue it to t > T by the same argument until the solutions become unbounded.

Fix ε ∈ (0, 0.01) and let

X2 :=X1−4ε,1/2+ε × Y 0,1−10ε,

X3 :=
[
X1−4ε,1/2+ε ∩X1,1/2−ε ∩ L∞(H1)

]
× Y 0,1−10ε.

(5.8)
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We will prove that for (E], N ]) = Φ(E[, N [) in (3.16),

‖(E], N ])‖X3 . ‖(E(0), N(0))‖H1×L2 + T ε‖(E[, N [)‖2
X3
, (5.9)

without assuming that it is a solution of (3.8). In addition, we will get c−ε decay in

X2 for those nonlinear terms involving E∗.
Now let (E[, N [) be a solution of (3.8) on (0, T ) given by [21]. Then (E[, N [) ∈

X1,b × Y 0,b for some b > 1/2, so (3.20) implies that (E[, N ]) ∈ X3. Hence the above

estimate implies that (E], N ]) = Φ(E[, N ]) ∈ X3. Since (E], N ]) = Φ(E], N ]), the

above estimate (5.9) implies that for small T > 0

‖(E], N ])‖X3 . ‖(E(0), N(0))‖H1×L2 . (5.10)

We prove (5.1) in the following, and then the convergence in the last subsection.

It seems impossible to get uniform X1,b bound for b > 1/2 due to the term

(nHighELow)Far. The reason is that the regularity gap between n and E equals what

we can recover from the nonresonance distance. This criticality is more evident in

the limit system, see [12].

We estimate the nonlinearity in duality coupling with frequency decomposition:〈
IcnE

∣∣u〉
t,x

=
∑

(j,k,l)∈T

〈
njEk

∣∣ Icul

〉
t,x
,

〈
|α∇|〈E,F 〉

∣∣N〉
t,x

=
∑

(j,k,l)∈T

〈
(|α∇|nj)Ek

∣∣Fl

〉
t,x
,

(5.11)

where n = ReN and E,F ∈ {E,E∗}. Let h = max(j, k, l), ` = min(k, l) and

m = min(j, k, l).

5.1. Estimates on
〈
nhighElow

∣∣ Ehigh

〉
t,x

and
〈
nE∗

∣∣ E
〉

t,x
. First we consider non-

resonant interactions. If E = F = E and j ∼ h � m, then we have non-resonance

distance δ ∼ (c ∧ h)h by Lemma 3.4. If E = E∗ and F = E, then we have δ ∼
(c ∨ h)c. In both cases we have

δ〈h/c〉&h2, δ〈m/c〉h/m&h2. (5.12)

We decompose (5.11) by the distance from the characteristics. For N ], we consider〈
(|α∇|nj)Ek

∣∣Fl

〉
t,x

=
〈
(|α∇|nF

j )Ek

∣∣Fl

〉
t,x

+
〈
(|α∇|nC

j )EF
k

∣∣Fl

〉
t,x

+
〈
(|α∇|nC

j )EC
k

∣∣F F
l

〉
t,x

=: A1 + A2 + A3,

(5.13)

where n = ReN is a test function in Y 0,10ε, and E,F ∈ {E,E∗}. For A1, we have

A1 . j‖NF
j ‖L2L2‖E`‖L2/(1−ε)L2/ε‖Eh‖L2/εL2/(1−ε)

. jδ−9ε`3εh−1+5ε‖NF
j ‖Y 0,9ε‖E`‖X1−4ε,1/2+ε‖Eh‖X1−4ε,1/2+ε ,

(5.14)
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where we used the Strichartz estimate (2.25) of the wave type for X1−4ε,1/2+ε. Since

the coefficient is bounded by m3εh5εδ−9ε, the right hand side is summable for the

dyadic frequency in any case by δ&h , with a decay factor c−9ε if the term involves

E∗ by δ& ch. The resulting contribution to N ] is bounded in T εY 0,1−10ε by (2.22).

The estimates on A2 and A3 are essentially the same. For A2, we have

A2 .T εjm3/2−27ε‖NC
j ‖L

2/(1−10ε)
t,x

‖EF
k ‖L2

t,x
‖Fl‖L1/4εL2/(1−8ε)

.T εj1+10εm3/2−27εδ−1/2−εk−1+4εl−1+12ε

× ‖Nj‖Y 0,10ε‖EF
k ‖X1−4ε,1/2+ε‖El‖X1−4ε,1/2+ε ,

(5.15)

where we used the Strichartz estimate for Fl, and the interpolation for Nj:

Y 0,b = (Y 0,0, Y 0,1/2,1)2b,2 ⊂ (L2L2, L4B
−1/2
4,2 )2b,2 ⊂ L2/(1−b)B−b

2/(1−b),2, (5.16)

with b = 10ε < 1/2. The coefficient for A2 is bounded by T εmεδ−εh−2ε, and so its

contribution to N ] is bounded in T εY 0,1−10ε with a decay factor c−ε if E∗ is involved.

For A3, we just switch the roles of Ek and Fl in the above argument.

For the equation of E], we consider the same decomposition as in (3.52). Then

B1 is the most regular term, which we estimate

B1 . 〈l/c〉−1m3/2‖NF
j ‖L2L2‖Ek‖L∞L2‖ul‖L2L2

. 〈l/c〉−1m3/2δ−1+10εk−1+4εl‖NF
j ‖Y 0,1−10ε‖Ek‖X1−4ε,1/2+ε‖ul‖X−1,0 .

(5.17)

The coefficient is bounded by{
δ−ε(δ〈l/c〉k/l)−1+11εm3/2l4ε (l = m)

δ−ε(δ〈l/c〉)−1+11εm1/2+4εl (l = h)
(5.18)

and they are both dominated by δ−εm1/2h−1+26ε, due to (5.12). Hence B1’s contri-

bution to E] is bounded in T εX1,1−ε, with additional c−ε for those terms with E∗.
For B2, we have

B2 . 〈l/c〉−1m19/20‖NC
j ‖L∞L2‖EF

k ‖L2L2‖ul‖L2L60/19

. 〈l/c〉−1m19/20k−1+4εδ−1/2−εl〈l/c〉11/24

× ‖Nj‖Y 0,1/2+ε‖EF
k ‖X1−4ε,1/2+ε‖ul‖X−1,11/40 ,

(5.19)

where we applied (2.39) to ul with V = I
−5/6
c B−1

6,2 :

Xs,θ/2 ⊂ I−5θ/6
c L2Bs

q,2, 1/q = 1/2− θ/3 (0 ≤ θ < 1) (5.20)

The coefficient is bounded by{
δ−ε(δ〈l/c〉k/l)−1/2k−1/2+4εm1/2+19/20 (l = m)

δ−ε(δ〈l/c〉)−1/2hk−1+4εm19/20 (l = h)
(5.21)

which is bounded by δ−εm−1/20+4ε. Thus B2’s contribution to E] is bounded in

T εX1,29/40−ε with c−ε for E∗. The term B3 is the only place where we have to
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distinguish the three spaces in X3. We start with the Hölder inequality as above:

B3 . 〈l/c〉−1T εm19/20‖NC
j ‖L∞L2‖EC

k ‖L2/(1−2ε)L60/19‖uF
l ‖L2L2 , (5.22)

and then estimate Ek by interpolation between (2.25) and (2.39):

X1,θ+ε = (X1,1/2,1, X1,θ)α,2 ⊂ ([L∞H1, L2S]2θ, L
2((H1, S)2θ,2))α,2

⊂ Lp([H1, S]2θ),
(5.23)

where S := I
−5/6
c B1

6,2, α ∈ (0, 1) satisfies (1 − α)/2 + αθ = θ + ε and 1/p :=

(1− α)θ + α/2 = 1/2− ε. Choosing θ = 11/40, we obtain

‖EC
k ‖L2/(1−2ε)L60/19 . k−1〈k/c〉11/24‖Ek‖X1,11/40+ε . (5.24)

For 0 ≤ a ≤ ε, we have

‖uF
l ‖L2L2 . δ−1/2+al1−4a‖ul‖X−1+4a,1/2−a,∞ , (5.25)

Plugging these bounds into (5.22), we get

B3 . 〈l/c〉−1T εm19/20k−1〈k/c〉11/24δ−1/2+al1−4a

× ‖Nj‖Y 0,1/2+ε‖Ek‖X1,11/40+ε‖ul‖X−1+4a,1/2−a,∞ .
(5.26)

Using (5.12) together with 〈h/c〉/〈m/c〉.h/m, we can bound the coefficient on the

first line by T εm−1/20δ−a. Hence the contribution of
∑

j,k B3 to E]
l is estimated in

T ε`2l (X1) by putting a = ε and using (2.22), and also in T ε`2l (X
1,1/2,∞ ∩ L∞(H1))

by putting a = 0 and using (2.23). By using X1,1/2,∞ ⊂ X1,1/2−ε and `2lL
∞
t ⊂ L∞`2l ,

we can sum it for l in T εX3, as desired. In addition, if the term contains E∗, it is

bounded also in T εc−εX2. Finally we estimate B4 by using (5.24) for uC
l ,

B4 . ‖(0, T )F‖L2/(1+2ε)〈l/c〉−1k−1m19/20l〈l/c〉11/24

× ‖NC
j ‖L∞L2‖EC

k ‖L∞H1‖uC
l ‖X−1,11/40+ε ,

(5.27)

where the coefficient is bounded by using (3.24) and (5.12),

(δ〈l/c〉)−1/2−εk−1lm19/20 . δ−εm−1/20. (5.28)

Thus B4’s contribution is bounded in T εX1,29/40−2ε.

5.2. Estimates on
〈
nlowEhigh

∣∣ Ehigh

〉
t,x

. Next we consider the remaining case E =

F = E and j.m, where the nonlinearity may be resonant. Here we do not look for

c−ε decay. For N ], we use an argument similar to (5.23):

X1,θ+α = (X1,0, X1,1/2,1)2θ+2α,2 ⊂ (L2H1, [L∞H1, L2S]θ/(θ+α))2θ+2α,2

⊂ L2/(1−2α)([H1, S]2θ),
(5.29)

with S := B0
∞,2 and (θ, α) := (1/2− 2ε, ε), (2ε, 1/2− 3ε). Then we get〈

(|α∇|nj)Ek

∣∣Fl

〉
t,x

. j‖nj‖L2/(1−4ε)L2‖Ek‖L2/(1−2ε)L1/(2ε)‖Fl‖L1/(3ε)L2/(1−4ε)

. jk−4εl−1+4ε‖nj‖Y 0,2ε‖Ek‖X1,1/2−ε‖El‖X1,1/2−ε ,
(5.30)
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hence its contribution to N ] is bounded in T εY 0,1−3ε.

For E], we split l ≤ c and l > c and consider the former case first. We have∑
j . k∼l≤c

〈
njEk

∣∣ Icul

〉
t,x

.
∑

k∼l≤c

∥∥∑
j . k

Nj

∥∥
L∞L2‖Ek‖L2L4‖ul‖L2L4

. ‖N‖L∞L2‖E‖X1,3/8‖u‖X−1,3/8 ,

(5.31)

where we used (5.20) for Ek and ul. Hence the contribution of the above interactions

to E] is bounded in T εX1,5/8−ε.

In the case l > c, the Strichartz estimate as above does not give uniform bound,

so we use bilinear estimates. Setting the distance threshold from characteristics as

δ = m, we decompose the duality coupling〈
njEk

∣∣ Icul

〉
t,x

=
〈
nF

j Ek

∣∣ Icul

〉
t,x

+
〈
nC

j EF
k

∣∣ Icul

〉
t,x

+
〈
nC

j EC
k

∣∣ IcuF
l

〉
t,x

+
〈
nC

j EC
k

∣∣ IcuC
l

〉
t,x

=: C1 + C2 + C3 + C4,

(5.32)

where the resonant interaction C4 does not vanish. The other three terms are non-

resonant, and estimated by using the Xs,b spaces‡. For C1, we use (5.23) with

(θ, ε) → (1/2− 3ε, 2ε) for Ek.

C1 . 〈l/c〉−1m1/2+6ε‖NF
j ‖L2L2‖Ek‖L2/(1−4ε)L6/(1+12ε)‖ul‖L1/(2ε)L2

. 〈h/c〉−1+5/6−5εm1/2+6εδ−1+10ε‖NF
j ‖Y 0,1−10ε‖Ek‖X1,1/2−ε‖ul‖X−1,1/2−2ε ,

(5.33)

whose contribution to E] is bounded in T εX1,1/2+ε. The estimate for C2 and C3 are

essentially the same. For C2 we use (5.20) for Ek and ul, getting

C2 . 〈l/c〉−1m3/10‖NC
j ‖L∞L2‖EF

k ‖L2L5/2‖ul‖L2L5

.m3/10δ−7/20+2ε‖Nj‖Y 0,1/2+ε‖EF
k ‖X1,1/2−2ε‖ul‖X−1,9/20 ,

(5.34)

so its contribution to E] is bounded in T εX1,11/20−ε. For C3, we just switch the roles

of Ek and ul.

For the resonant interaction C4, we use the following improvement of the Strichartz

estimate on a radially thin Fourier support.

Lemma 5.4. Assume that u(t, x) ∈ X0,1/4,1 is supported in the Fourier space on

R < |ξ| < R + w, (5.35)

for some R and w satisfying c.R&w > 0. Then we have

‖u‖L2
t L4

x
. c−1/4w1/4R1/4‖u‖X0,1/4,1 . (5.36)

The same estimate holds for the wave equation eitc|∇| without the restriction

R& c. We gain (w/R)1/4 compared with the Strichartz estimate without the support

‡For the estimates on the nonresonant terms, δ can be slightly smaller, such as m2/3+.
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condition (2.39). The choice of exponents in the above estimate is an amazing just-

fit both for the proof and for the requirement of our problem, except for the second

exponent of X0,1/4,1, for which we have 1/4− room to increase for our use.

Proof. We start with the idea in [6] to use the Fourier restriction on the sphere,

which they used for interactions of the same type in the Zakharov system§.

Let Fr be the Fourier restriction on the sphere of radius r > 0, defined by

Frϕ = F−1δ(|ξ| − r)ϕ(ξ). (5.37)

By scaling and the Fourier restriction theorem on the sphere, we have for any ϕ(x),

‖Frϕ‖L4
x

= ‖r9/4F−1r−1δ(|ξ| − 1)ϕ(rξ)‖L4
x
. r5/4‖ϕ(rθ)‖L2

θ(S2). (5.38)

Now assume that suppFϕ ⊂ {R < |ξ| < R + w}. Applying this to the identity

ϕ =

∫ ∞

0

FrFϕdr, (5.39)

and using the Schwarz inequality in r, we obtain

‖ϕ‖L4
x
.

∫ ∞

0

r5/4‖Fϕ(rθ)‖L2
θ
dr.w1/2R1/4‖ϕ‖L2

x
. (5.40)

Just by integrating in t, we get

‖u‖L2
t L4

x
.w1/2R1/4‖u‖L2

t L2
x
. (5.41)

Next we decompose the space-time Fourier transform ũ for |τ − ωc(ξ)| ∼ δ ∈ D. It

suffices to prove the desired estimate on each piece, because the third exponent in

(5.36) is 1. Hence we assume that |τ −ωc(ξ)| ∼ δ on supp ũ. If δ&wc, then we have

‖u‖L2
t L4

x
.w1/2R1/4‖u‖L2

t L2
x
.w1/2R1/4δ−1/4‖u‖X0,1/4 , (5.42)

which implies the desired estimate in this case. If δ � wc, we further decompose

the Fourier support into squares in (τ, |ξ|) of size δ by

ũ =
∑
k∈Z

ψk(τ/δ)ũ(τ, ξ), (5.43)

where ψk(s) = ψ(s−k)−ψ(s−k+1) ∈ C∞
0 (R) and ψ ∈ C∞(R) is chosen such that

ψ(s) =

{
1 (s < 1/3)

0 (s > 2/3).
(5.44)

Hence ψk(τ/δ) localizes the τ frequency onto |τ − δk| < 2δ/3. Denote the summand

by ũk and define an operator R : (vk(t, x))k∈Z 7→ (Rv)(t, x) by

FtRv =
∑
k∈Z

∑
j=−1,0,1

ψk+j(τ/δ)Ftvk, (5.45)

§That estimate could be avoided in their case by the argument in [12], or the above argument
for h . c. But we need even sharper estimates to recover uniformity.
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where Ft is the time Fourier transform. By the Plancherel identity and trivial

summation, we have

‖Rv‖L2
t L2

x
. ‖vk‖`2kL2

t L2
x
, ‖Rv‖L2

t L∞x
. ‖vk‖`1kL2

t L∞x
. (5.46)

Hence the complex interpolation implies that

‖Rv‖L2
t L4

x
. ‖vk‖`

4/3
k L2

t L4
x
. (5.47)

Since u = R(uk), we deduce that

‖u‖L2
t L4

x
. ‖uk‖`

4/3
k L2

t L4
x
.N1/4‖uk‖`2kL2

t L4
x
, (5.48)

where N is the number of k’s satisfying uk 6= 0. The support conditions

R < |ξ| < R + w, |τ − ωc(ξ)| ∼ δ, k − 1 < τ/δ < k + 1, (5.49)

together with ω′c(r) ∼ c for r& c, imply that the radial width for ξ is O(δ/c) for

each k and so N .wc/δ. The width bound also implies via (5.41) that

‖uk‖L2
t L4

x
. (δ/c)1/2R1/4‖uk‖L2

t L2
x
. (5.50)

Plugging this into the above estimate together with the bound on N , we arrive at

‖u‖L2
t L4

x
.w1/4c−1/4R1/4δ1/4‖u‖L2

t L2
x
, (5.51)

which implies the desired estimate in this case. �

The resonance condition for C4 implies

±α|ξ0|+ ωc(ξ1)− ωc(ξ) = O(j), (5.52)

where ξ0, ξ1 and ξ are the Fourier variable on R3 for NC
j , EC

k and uC
l , respectively.

Since k ∼ l > c, we have ωc(ξ1)− ωc(ξ) ∼ c(|ξ1| − |ξ|), and so

||ξ1| − |ξ||. j/c. (5.53)

To exploit this, we further decompose E and u into shells of width j/c:

C4 =
∑

|a−b|. 1, a,b∈N
aj/c∼k, bj/c∼l

〈
NC

j EC
a,j/c

∣∣ IcuC
b,j/c

〉
t,x
,

(5.54)

where ϕa,λ with a ∈ N and λ > 0 is the Fourier restriction onto the shell of radius

aλ and width λ defined by

Fϕa,λ := [ψ(|ξ|/λ− a)− ψ(|ξ|/λ− a+ 1)]Fϕ, (5.55)

where ψ is the cut-off function defined in (5.44). Applying the above lemma, we

obtain

‖EC
a,j/c‖L2L4 . c−1/4(jk/c)1/4k−1‖Ea,j/c‖X1,1/4,1 ,

‖uC
b,j/c‖L2L4 . c−1/4(jl/c)1/4l1‖ub,j/c‖X−1,1/4,1 ,

(5.56)
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Hence the summand in (5.54) is dominated by

〈l/c〉−1j1/2c−1k−3/4l5/4‖Nj‖L∞L2‖Ea,j/c‖X1,1/4,1‖ub,j/c‖X−1,1/4,1 . (5.57)

Applying the Schwarz inequality for a = b+O(1), we obtain

C4 .
∑

j . k∼l

(j/l)1/2‖Nj‖Y 0,1/2+ε‖Ek‖X1,1/4+ε‖ul‖X−1,1/4+ε , (5.58)

so its contribution to E] is bounded in T εX1,3/4−2ε.

5.3. Uniform bounds and convergence. Let V := (E, N) = (Ec, N c) and V̂ :=

(Ê, N̂) = (Êc, N̂ c) be as in Theorem 5.1. Let V ] := Φ(V ), and similarly we define

V̂ ] = (Ê], N̂ ]) = Φ̂(V̂ ) by

Ê] := e−it∆/2

[
χ(t)Ê(0) +

i

2
IT e

it∆/2n̂Ê
]
,

N̂ ] := eit|α∇|
[
χ(t)N̂(0) + iIT e

−it|α∇||α∇||Ê|2
]
.

(5.59)

Let V 0 and V̂ 0 be the free parts of V ] and V̂ ], respectively. The integral equations

V ] = Φ(V ]), V̂ ] = Φ̂(V̂ ]) can be written schematically as

V ] = V 0 +Q[V ]] +Q∗[V ]], V̂ ] = V̂ 0 +Q∞[V̂ ]], (5.60)

where Q[V ] = Q[V, V ] denotes the quadratic parts without E∗, while Q∗ consists of

those with E∗, and Q∞ is the limit ones. The estimates in the previous subsections

can be written as

‖Q[V,W ]‖X3 + ‖Q∗[V,W ]‖X3 .T ε‖V ‖X3‖W‖X3 ,

‖Q∗[V,W ]‖X2 .T εc−ε‖V ‖X3‖W‖X3 .
(5.61)

Hence for small T and large c, we obtain uniform bound in X3, for which we do not

need the assumption of uniform decay for higher frequency (5.3). If we assume it,

then it is inherited by V 0 and V ] as follows. We have

‖V 0
>R‖X3 . ‖V (0)>R‖H1×L2 , ‖V ]

>R‖X3 . ‖V 0
>R‖X3 + T ε‖V ]

>R/8‖X3‖V ]‖X3 . (5.62)

Hence we obtain

lim
R→∞

lim sup
c→∞

‖V ]
>R‖X3 = 0, (5.63)

for small T > 0. One can observe from the arguments in the previous subsections

that V̂ ] has the same estimates if X3 is replaced with the limit space X∞
3 , i.e.,

‖Q∞[V,W ]‖X∞
3

.T ε‖V ‖X∞
3
‖W‖X∞

3
, (5.64)

hence

lim
R→∞

lim sup
c→∞

‖V̂ ]
>R‖X∞

3
= 0. (5.65)
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Thus it suffices to show

lim sup
c→∞

‖(V ] − V̂ ])≤R‖X2+X3+X∞
3

= 0 (5.66)

for all fixed R ≥ 1, since the X2, X3 and X∞
3 norms are all equivalent in the frequency

≤ R. We have

V ] − V̂ ] =Q∗[V ]] + (Q[V ]]−Q[V ]
≤R])− (Q∞[V̂ ]]−Q∞[V̂ ]

≤R])

+ (Q−Q∞)[V̂ ]
≤R] + (Q[V ]

≤R]−Q[V̂ ]
≤R]).

(5.67)

On the right, the first term is vanishing as c−ε in X2. The second term is vanishing

in X3 by (5.63). The third term is vanishing in X∞
3 by (5.65). The fourth term is

vanishing because c2(〈ξ/c〉 − 1) → |ξ|2/2 and 〈ξ/c〉−1 → 1 uniformly on |ξ| ≤ R.

The fifth term is bounded by T ε‖(V ] − V̂ ])≤R‖X3 , and so absorbed by the left hand

side. Thus we obtain the desired convergence.

6. Zakharov to NLS

For the convergence from the Zakharov system to the nonlinear Schrödinger equa-

tion, we have a very simple proof, relying on the time-local a priori bound by the

nonlinear energy.

Theorem 6.1. Consider the limit α→∞. For each α, let (uα, nα) be a solution of

(1.7) given by [6], and denote its maximal existence time by Tα. Assume that uα(0)

converges in H1, that (nα(0), |α∇|−1ṅα(0)) is bounded in L2, and that the latter has

uniform decay for high frequency, namely,

lim
R→∞

lim sup
α→∞

‖(nα(0), |α∇|−1ṅα(0))>R‖L2 = 0. (6.1)

Let u∞ be the solution of (1.3) with u∞(0) = limα→∞ u
α(0), and T∞ be the maximal

existence time. Then we have lim infα→∞ T
α ≥ T∞, and for all 0 < T < T∞,

uα − u∞ → 0 in C([0, T ];H1),

nα + |u∞|2 − nα
f → 0 in C([0, T ];L2),

|α∇|−1(ṅα − ṅα
f ) → 0 in C([0, T ];L2),

(6.2)

where nα
f is the free wave defined by{

α−2n̈α
f −∆nα

f = 0,

nα
f (0) = nα(0) + |u∞(0)|2, ṅα

f (0) = ṅα(0).
(6.3)

Proof. We omit the superscript α. First we derive a uniform bound from the con-

served energy EN = E(t) +N (t), where both

E(t) := ‖u(t)‖2
L2 + ‖∇u(t)‖2

L2 + ‖n‖2
L2/2 + ‖|α∇|−1ṅ‖2

L2/2,

N (t) :=

∫
n|u|2dx,

(6.4)
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are initially bounded by the assumption. We will derive a priori bound on the energy

norm HT := sup0≤t≤T E(t)1/2 for small T > 0 independent of α. Decomposing u into

the linear and nonlinear parts

u(t) = u0 + u1, u0 := e−i∆tu(0), (6.5)

we estimate the nonlinear energy

|N (t)|. ‖n(t)‖L2
x

[
‖u0(t)‖2

L4
x

+ ‖u1(t)‖2
L4

x

]
.HT‖u(0)‖2

H
3/4
x

+H
8/3
T ‖u1(t)‖1/3

H
−1/2
x

,
(6.6)

where we used the Hölder inequality and the Sobolev embedding [H−1/2, H1]5/6 =

H3/4 ⊂ L4. By the equation for u, we have on (0, T )

‖u1‖
L∞t H

−1/2
x

.T‖nu‖
L∞t L

3/2
x

.T‖n‖L∞t L2
x
‖u‖L∞t H1

x
.TH2

T . (6.7)

Hence, by the conservation of energy, we obtain

H2
T ≤ EN + C(HT‖u(0)‖2

H3/4 + T 1/3H
10/3
T ), (6.8)

which implies via the Schwarz inequality,

H2
T ≤ 2EN + C2‖u(0)‖4

H3/4 + 2CT 1/3H
10/3
T , (6.9)

with an absolute constant C > 0. Then the continuity on T implies that

H2
T ≤ 2B, B := 2EN + C2‖u(0)‖4

H3/4 , (6.10)

provided that T ≤ (2C)−32−5B−2.

Next we derive the weak convergence. The energy bound together with the equa-

tion of u implies that u̇ is bounded in L∞H−1, and so u is equi-continuous with

respect to α in the weak topology of H1, hence it is convergent, along some subse-

quence of α→∞, in C([0, T ];w-H1 ∩Lp
loc) for any p < 6. By the equation of n and

the energy bound, we have

∆(n+ |u|2) → 0 in D′((0, T )× R3), (6.11)

and n+ |u|2 is bounded in Lp
tL

2, so weakly goes to 0 for any p <∞. Hence u∞ is a

weak solution of (1.3) in C([0, T ];w-H1), and its uniqueness implies the convergence

for the whole limit.

Finally we prove the strong convergence. By the L2 conservation law for both the

equations and by the weak convergence, we have

‖u(t)− u∞(t)‖2
L2

x
= 2

〈
u∞(t)− u(t)

∣∣u∞(t)
〉

x
+ ‖u(0)‖2

L2
x
− ‖u∞(0)‖2

L2
x
→ 0, (6.12)
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uniformly in t ∈ [0, T ]. Interpolating with the weak H1 convergence, we get L4

strong convergence. Let N := n − i|α∇|−1ṅ and N I := ei|α∇|t(n(0) + |u(0)|2). The

conserved energy E can be decomposed as

E =‖∇u‖2
L2 −

‖u‖4
L4

2
+ ‖N + |u|2‖2

L2/2

=‖∇u∞‖2
L2 −

‖u∞‖4
L4

2
+ ‖N I‖2

L2/2

+ ‖∇(u− u∞)‖2
L2 + ‖N + |u|2 −N I‖2

L2/2

+ 2
〈
u∞ − u

∣∣ ∆u∞
〉

x
−
‖u‖4

L4 − ‖u∞‖4
L4

2
−

〈
N + |u|2 −N I

∣∣N I
〉

x
,

(6.13)

where the second line is a conserved quantity, the third one at t = 0 goes to 0,

and on the last line, the first and second terms tend to 0, uniformly in t, by the

weak H1 and strong L4 convergence. Hence it suffices to show that the last term

is also vanishing. For any ε > 0, there exists R > 0, independent of α, such that

|
〈
N + |u|2 −N I

∣∣N I
>R

〉
x
| < ε, because of the assumption (6.1). We can rewrite the

lower frequency part as〈
N + |u|2 −N I

∣∣N I
≤R

〉
x

=

∫ t

0

〈
e−i|α∇|s|u|2t (s)

∣∣N I(0)≤R

〉
x
ds. (6.14)

Its absolute value is bounded by the Strichartz estimate (4.17)

.α−1/4T 3/4‖|u|2t‖L∞B−1
4/3,2

‖N I(0)‖L2R3/2, (6.15)

where the norm for |u|2t = ∇·〈∇u, iu〉 is bounded byH2
T . Thus we obtain u−u∞ → 0

in L∞H1 and N + |u|2 −N∞ → 0 in L∞L2, as desired. �
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