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Relevance of the slip condition

for fluid flows near an irregular boundary

David Gérard-Varet ∗and Nader Masmoudi†

Abstract

We consider the Navier-Stokes equation in a domain with rough boundaries. The small
irregularity is modeled by a small amplitude and small wavelength boundary, with typical
lengthscale ε ¿ 1. For periodic roughness, it is well-known that the best homogenized
(that is regular in ε) boundary condition is of Navier type. Such result still holds for
random stationary irregularities, as shown recently by the first author [5, 13]. We study
here arbitrary irregularity patterns.

Keywords: Wall laws, rough boundaries,homogenization, ergodicity, almost periodic functions

1 Introduction

The interaction between a fluid and a solid boundary is still today a matter of debate. The
main reason is that underlying molecular processes are still unclear, see [20] for a review. But
even at larger scales, it has been recognized that the small irregularities of the solid surface
can alter deeply various aspects of the fluid dynamics. The understanding of such roughness-
induced effects has been the topic of many recent papers, with regards to friction phenomena
in microfluidics [23], or to stability issues [22].

Fortunately enough, in most situations, one does not need an accurate description of the
dynamics near the irregular boundary. One only looks for an averaged effect. Among the
practical ways used to describe this averaged effect, many physicists and numerists rely on
wall laws: the rough boundary is replaced by an artificial smoothed one, and a homogenized
boundary condition (a wall law) is prescribed there, that should reflect the mean impact of
the small irregularities. The main question is then: what is the good wall law ? The aim of
the present paper is to address this question from a mathematical perspective.

There are numerous mathematical studies on this boundary homogenization problem.
On wall laws for scalar elliptic equations, we refer to [1]. On wall laws for fluid flows, see
[2, 3, 4, 16, 17]. These works go along with more formal computations, cf for instance
[6, 21]. Broadly, these studies have been carried under two assumptions: i) Compact domains,
typically bounded channels with periodic or inflow/outflow boundary conditions ii) Periodic
irregularities, leading to periodic homogenization problems. The first restriction is just a
small mathematical convenience, that gives direct compactness properties through Rellich
∗DMA/CNRS, Ecole Normale Supérieure, 45 rue d’Ulm,75005 Paris, FRANCE
†Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA. N. M is

partially supported by NSF Grant DMS-0703145.
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Figure 1: The rough domain Ωε.

type theorems. The second assumption is far more stringent, both on mathematics and
physics sides. In the recent articles [5] (with A. Basson) and [13], the first author has relaxed
substantially these assumptions, considering unbounded channels and random homogenenous
irregularity.

Let us briefly describe these previous results. We will restrict ourselves to a simple model,
namely a two-dimensional rough channel

Ωε = Ω ∪ Σ ∪Rε

where Ω = R×(0, 1) is the smooth part, Rε is the rough part, and Σ = R×{0} their interface.
We assume that the rough part has typical size ε, that is

Rε =
{
x, x2 > εω

(x1

ε

)}

for a Lipschitz function ω : R 7→ (−1, 0). See Figure 1 for an example of such a domain.
We consider in this channel a steady flow, governed by stationary Navier-Stokes system with
given flux





−∆u+ u · ∇u+∇p = 0, x ∈ Ωε,

div u = 0, x ∈ Ωε,

u|∂Ω = 0,
∫

σε
u1 = φ.

(NSε)

The third equation corresponds to a standard no-slip condition at the boundary of the rough
channel. The last equation expresses that a flux φ is imposed across a vertical cross-section
σε of Ωε. Note that the flux integral does not depend on the location of the cross-section,
thanks to the divergence-free and Dirichlet conditions.

Note also that this problem has singularities in ε, due to the high frequency oscillation
of the boundary. The idea of wall laws is to replace this singular problem in Ωε by a regular
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problem in Ω. One keeps the same Navier-Stokes equations




−∆u+ u · ∇u+∇p = 0, x ∈ Ω,
div u = 0, x ∈ Ω,

u|x2=1 = 0,
∫

σ
u1 = φ,

(NS)

but with a regular boundary condition at the artificial boundary Σ. The point is to find the
most accurate (and regular in ε) condition.

In all papers previously mentioned, the starting point is a formal expansion of uε:

uε(x) ∼ u0(x) + ε u1(x, x/ε)

Formally, the leading term u0 satisfies (NS) together with the simple no-slip condition

u = 0 at Σ (Di)

System (NS)-(Di) has an explicit solution, the famous Poiseuille flow :

u0(x) =
(
U0(x2), 0

)
, U0(x2) = 6φx2(1− x2)

Note that u0 is defined in all R2. This zeroth order asymptotics is mathematically justified
in [5], for small fluxes φ:

Theorem 1 There exists φ0 > 0, such that for all |φ| < φ0, for all ε, system (NSε) has a
unique solution uε in H1

uloc(Ω
ε). Moreover, for ε < ε0 small enough

‖uε − u0‖H1
uloc(Ω

ε) ≤ C
√
ε, ‖uε − u0‖L2

uloc(Ω) ≤ Cε.

Briefly, the Dirichlet wall law provides a O(ε) approximation of the exact solution uε in
L2
uloc(Ω). We emphasize that to get a Dirichlet condition at the limit ε = 0 is true in many

settings, even starting from a slip condition at the rough boundaries. See [11, 9]. Nevertheless,
the Dirichlet wall law is in some sense crude: Theorem 1 is obtained through energy estimates,
that do not ditinguish the behavior of the flow near the boundary. Therefore, a natural
question is: can we find a better wall law ?

A widespread idea is that the approximation can be refined, considering a Navier condition:

v1 = εα∂2v1, v2 = 0 at Σ, (Na)

where α is a parameter linked to the roughness profile ω. In our model, a formal explanation
is as follows. As the Poiseuille flow u0 does not vanish at the lower part of ∂Ωε, a boundary
layer corrector

u1(x, x/ε) = 6φεv(x/ε)

must be added to describe the dynamics near the irregular boundary. The (normalized)
boundary layer v = v(y) is defined on the rescaled infinite domain

Ωbl = {y, y2 > ω(y1)}
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It is made to cancel the trace of u0 at the rough boundary. Formally, it satisfies the following
Stokes problem 




−∆v +∇q = 0, x ∈ Ωbl,

∇ · v = 0, x ∈ Ωbl,

v(y1, ω(y1)) = −(ω(y1), 0).

(BL)

The belief which leads to the Navier wall law is that v should converge to a constant field at
infinity, which is classical in boundary layer theory. More precisely, one expects

v → v∞ = (α, 0), as y2 → +∞
for some constant α. Back to the approximation of uε, one obtains formally

uε ∼ u0 + 6εφ (α, 0) + o(ε) in L2

and the sum of the first two terms at the r.h.s satisify (Na).

The problem we consider in this paper is the mathematical justification of this formal
reasoning. The main point is to understand the properties of the boundary layer system
(BL). Although linear, the analysis of this is system is not easy, at least at two levels.

1. Well-posedness is not clear. As the boundary data ω is not decreasing at infinity, one
must work with functions of infinite energy. To identify the appropriate functional
spaces and to obtain local bounds is not obvious. The Stokes operator being vectorial,
one can not work in L∞ using scalar tools such as the maximum principle or Harnack
inequality. Moreover, as Ωbl is unbounded in all directions, the Poincaré inequality does
not hold. This is a big difference with the case of the channel: the well-posedness and
estimates of Theorem 1 rely in a crucial way on this inequality.

2. Even if a solution v is built, its behavior as y2 → +∞, especially its convergence to a
constant field, is also a delicate question.

The difficulties raised by system (BL) explain the periodicity assumption on ω in previous
studies. Indeed, under such assumption, the analysis of (BL) gets easy. If ω is say L periodic
in y1, a simple application of Lax-Milgram lemma yields well-posedness in the space

{
v ∈ H1

loc(Ωbl), v L− periodic in y1,

∫ L

0

∫ +∞

ω(y1)
|∇v|2dy2dy1 < +∞

}
.

Moreover, a simple Fourier transform in y1 shows that

‖v(y)− v∞‖ ≤ C e−δy2/L, v∞ = (α, 0), α =
1
L

∫ L

0
v1(s)ds, δ > 0,

that is exponential convergence to a constant field v∞ = (α, 0) at infinity. As a consequence,
in this periodic framework, the solution uN of (NS)-(Na) satisfies

‖uε − uN‖L2
uloc(Ω) ≤ C ε3/2.

We refer to [16] for a similar result in the case of a bounded channel. The error estimate ε3/2

comes from the fact that

‖ε(v(x/ε)− (α, 0))‖L2
uloc

= O(ε3/2).
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As discussed in [8], the Navier wall law is the best homogenized boundary condition: the
boundary layer oscillations are O(ε3/2) and thus prevent any improvement at Σ.

The periodicity hypothesis is a stringent one, and has been considerably relaxed in re-
cent papers by the first author [5, 13]. In these studies, one makes the much more realistic
assumption that the rough profile is given by a random stationary process (ω, y1) 7→ ω(y1)
defined on the probablity space

P = {ω : R 7→ (−1, 0), ω K − Lip} , K > 0,

of all admissible rough boundaries, together with the cylindrical σ− field C and with a sta-
tionary measure π. We refer to [5] for precise statements. Using this probabilistic structure,
one can extend the results of the periodic case. Key elements of the analysis are:

1. the well-posedness of (BL), obtained in a functional space encoding stationarity with
respect to y1. Let us emphasize that it is a space of functions depending on both ω (the
random parameter) and y. It provides the existence of a solution in the distribution
sense almost surely. However, it yields neither existence nor uniqueness of a solution
for a given ω. We refer to [5] for all details.

2. the use of the ergodic theorem that substitutes to the analysis with Fourier series.

The main result of [5] is

Theorem 2 There exists α = α(ω) ∈ L2(P ) such that the solution uN of (NS), (Na) satisfies

‖uε − uN‖L2
uloc(P×Ω) = o(ε),

where ‖w‖L2
uloc(P×Ω) := supx

(∫
P

∫
B(x,1)∩Ω |w|2dxdπ

)1/2
. Note that the o(ε) bound is only a

slight improvement of the O(ε) in Theorem 1. Contrary to the periodic case, the simple use
of the ergodic theorem does not yield any speed rate. This poor bound is due to the lack of
information on the way v converges at infinity. However, in article [13], we have shown that
under a main assumption of decorrelation at large distances of the roughness distribution, one
has the sharp error estimate:

‖uε − uN‖L2
uloc(P×Ω) = O(ε3/2| ln ε|1/2).

This bound comes from a central limit theorem for weakly dependent variables. We refer
to [13] for detailed statements and proofs. Note that this assumption of independence at
large distances is “orthogonal” to a periodicity assumption. For such roughness patterns, one
shows in brief that v → v∞ as y−1/2

2 instead of e−δy2 in the periodic case. As the first function
is almost but not square integrable in y2, it is responsible for an extra | ln ε|1/2 term in the
estimate.

Note that Theorem 2 and the following refined estimate are by nature probabilistic. An
arbitrary non-periodic boundary ω being given, one can not say if a Navier condition is the
correct wall law to homogenize this boundary. In other words, the following deterministic
questions remain:

• Is the formal reasoning described above valid for an arbitrary irregularity profile ω ?
More precisely, is the system (BL) well-posed for an arbitrary ω ? Then, does v converge
to a constant field (α, 0) at infinity ?
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• If this homogenization is not valid in general, can we identify a class of functions (other
than periodic) for which it is correct ?

Broadly, we address all these questions in the present paper. We first show in section 2 that
the boundary layer system (BL) is well-posed for any Lipschitz bounded function ω. Indeed,

Theorem 3 System (BL) has a unique solution v ∈ H1
loc(Ωbl) satisfying:

sup
k

∫

Ωblk,k+1

|∇v|2 < +∞ where for all k, l, Ωbl
k,l := Ωbl ∩ {k < y1 < l}.

We believe that this theorem is interesting in itself, as stationary Navier-Stokes equations in
unbounded domains are still a source of interesting open questions, see for instance [7]. The
proof of the theorem will rely on two ideas. First, we will establish an equivalent formulation of
(BL) in the channel Ωbl,− := Ωbl∩{y2 < 0}, with a so-called transparent boundary condition
at y2 = 0. Then, we will solve this new formulation, using ideas of [19] in a bounded channel.

The solution v at hand, we will investigate its asymptotic behaviour as y2 goes to infinity.
We claim that v is very unlikely to converge to a constant field for any rough boundary. This
claim relies on the study of a similar simpler model. Transposed to (BL), it suggests that
convergence to some v∞ may not hold if the roughness profile ω does not have ergodicity
properties. All details will be provided in section 3. Note that this is coherent with the
random setting studied by the first author, for which an ergodic theorem is used.

To stick to a deterministic setting, whereas preserving ergodicity, it is then natural to
consider almost periodic functions. More precisely we introduce the set:

PT (R) :=
{
ω : R 7→ R, y1 7→

∑

j∈J
aje

iξjy1 , aj ∈ C, ξj ∈ R, J finite
}

of real valued trigonometric polynomials, and the set AP (R) := PT (R)
W 2,∞

of functions
that are in the closure of PT (R) for the W 2,∞ norm. We shall justify the Navier wall law for
all elements of AP (R). Namely,

Theorem 4 For all ω ∈ AP (R), there exists α such that the solution uN of (NS)-(Na)
satisfies

‖uε − uN‖L2
uloc(Ω) = o(ε).

This theorem will be proved in section 4. We point out the o(ε) in the error estimate:
again, the simple use of ergodicity properties will not provide any rate. Nevertheless, as in
the random case, we can identify a subclass for which we can say more. Let us consider a
quasiperiodic function ω, that is, following [18], ω(y1) = F (λy1), for some smooth periodic
F = F (θ), θ ∈ Td and some constant vector λ ∈ Rd. We assume the following diophantine
condition:

(H) for all δ > 0, there exists c > 0, |λ · ξ| ≥ c|ξ|−d−δ, ∀ξ ∈ Zd \ {0}.
It is well-known that this small divisor assumption is satisfied for almost every λ, see [10]. In
this framework, we have the following refined result:

Theorem 5 Assume that ω(y1) = F (λy1), where F is a smooth periodic function on Td and
λ ∈ Rd. Assume that λ satisfies (H). Then,

‖uε − uN‖L2
uloc(Ω) = O(ε3/2).

This theorem will be proved at the end of section 4.
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2 Well-posedness of (BL)

This section is devoted to the proof of Theorem 3. It relies on an equivalent formulation
of system (BL), inspired by transparent boundary conditions in numerical analysis. More
precisely, we will restrict the Stokes equations to the lower part of Ωbl, namely the channel
Ωbl,− := Ωbl ∩ {y2 = 0}. We will of course keep the same inhomogeneous boundary data at
the lower boundary y2 = ω(y1). But to get an equivalent problem, we will also need to specify
a transparent boundary condition at {y2 = 0}, transparent meaning that it should be satisfied
exactly by the solution v of (BL). This transparent condition will involve a pseudodifferential
operator of Dirichlet-to-Neumann type. To introduce this equivalent formulation, we need
some preliminary results on the Stokes problem in a half-space.

2.1 Stokes problem in a half-space

We consider the Dirichlet problem for the Stokes operator in the half plane R2
+:





−∆u+∇p = 0, y2 > 0,
∇ · u = 0, y2 > 0,
u|y2=0 = u0.

(2.1)

We have the following well-posedness result:

Proposition 6 For all u0 ∈ H1/2
uloc(R) there exists a unique solution u ∈ H1

loc(R2
+) of (2.1)

satisfying

sup
k∈Z

∫ k+1

k

∫ +∞

0
|∇u|2 dy2dy1 < +∞. (2.2)

Proof.

Uniqueness

Suppose that u0 = 0 and that u satisfies (2.1)-(2.2). We wish to show that u = 0. The
key ingredient is the Fourier transform with respect to y1. To apply this transform to the
equation, we must ensure first that the velocity and pressure fields have enough regularity.

By Poincaré’s inequality, we infer from (2.2): for all a ≥ 0

sup
k

∫ k+1

k

∫ a

0
|u|2 dy1dy2 ≤ Ca sup

k

∫ k+1

k

∫ +∞

0
|∇u|2dy2dy1 < +∞. (2.3)

Moreover, standard elliptic regularity results yield: for all β ∈ N2,

∫ k+3/4

k+1/4

∫ 1

0
|∂βy u|2dy2dy1 ≤ C

∫ k+1

k

∫ 5/4

0

(|∇u|2 + |u|2) dy2dy1

Combining this inequality with inequality (2.3), a = 5/4, we obtain the following estimate
near the boundary: for all β ∈ N2,

∫ k+3/4

k+1/4

∫ 1

0
|∂βy u|2dy2dy1 < +∞ (2.4)
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As vi = ∂iu, i = 1, 2, satisfies a homogeneous Stokes equation in R2
+, we can apply the

Cacciopoli’s inequality to the vi’s, see [15]. We deduce the following interior estimate: for all
a ≥ 3/4, ∫ k+1

k

∫ a+1

a
|∇2u|2dy2dy1 ≤ C

∫ k+5/4

k−1/4

∫ a+5/4

a−1/4
|∇u|2dy2dy1 (2.5)

where C does not depend on a. By the same elliptic regularity results as before, but applied
inside the domain and to the vi’s, we get: for all β ∈ N2,

∫ k+3/4

k+1/4

∫ a+3/4

a+1/4
|∂βy∇u|2dy2dy1 ≤ C

∫ k+1

k

∫ a+1

a

(|∇2u|2 + |∇u|2) dy2dy1

Together with (2.5), this yields

∫ k+3/4

k+1/4

∫ a+3/4

a+1/4
|∂βy∇u|2dy2dy1 ≤ C

∫ k+5/4

k−1/4

∫ a+5/4

a−1/4
|∇u|2dy2dy1

Summing over a = 3/4, 1 + 1/4, 2 + 1/4... and adding the boundary estimate (2.4), we obtain

∀β ∈ N2, sup
k

∫ k+1

k

∫ +∞

0
|∂βy∇u|2 + |∂βy∇p|2 dy2dy1 < +∞. (2.6)

As a consequence of these bounds, there exists a unique smooth ψ such that

u = ∇⊥ψ, ψ|{y2=0} = ∂2ψ|{y2=0} = 0, ∆2ψ = 0

by the Stokes equation. Note that

y2 7→ ψ(y1, y2) ∈ C∞(R+; C0
b (R)).

Moreover,
‖∂βy∇2ψ(·, y2)‖C0

b (R) → 0, as y2 → +∞, ∀β ∈ N2. (2.7)

As C0
b (R) ⊂ S ′(R), the space of tempered distributions, we can take the Fourier transform

with respect to y1, considering ψ̂(ξ, y2) = Fψ(·, y2)(ξ). One can apply the Fourier transform
to the biharmonic equation: it yields

(
∂2

2 − |ξ|2
)2
ψ̂(ξ, y2) = 0.

To avoid any problem with possible singularities at ξ = 0, we introduce a smooth function
χ = χ(ξ) compactly supported in R∗−. Then, ϕ := χψ̂ satisfies the same equation as ψ̂, is
smooth with respect to y2, is a temperate distribution in ξ with compact support in R∗−. By
standard integrating factor method, one shows easily that

ϕ(ξ, y2) = (A1(ξ) y2 + A2(ξ)) e−ξy2 + (B1(ξ) y2 + B2(ξ)) eξy2 ,

for temperate distributions Ai, Bi compactly supported in R∗−, which makes the product with
the exponential terms meaningful. Then, we can use the boundary conditions ϕ|{y2=0} =
∂2ϕ|{y2=0} = 0 and the conditions at infinity

∂β∇2ϕ(·, y2)→ 0, as y2 → +∞, in S ′(R), ∀β ∈ N2,
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all inherited from ψ. This implies easily ϕ = 0, and from there ψ̂ = 0 for ξ ∈ R∗−. The
same result holds for ξ ∈ R∗+. Thus, for all y2, ψ̂(·, y2) has support in {0}. It is therefore a
combination of a Dirac mass and its derivatives. As ψ(y2, ·) ∈ C0

b (R), no derivative can be
involved, which means

ψ(y2, ξ) = p(x2) δ(ξ).

The equation yields p(4)(x2) = 0. Again, by conditions at y2 = 0 and y2 = +∞, we obtain
p = 0. Thus, ψ = 0, which concludes the proof of uniqueness.

Existence

Let u0 ∈ H1/2
uloc(R). We build a solution (u, p) of (2.1) in terms of the Poisson kernel for the

Stokes operator. We set for all y2 > 0:

u(y) =
∫

R
G(t, y2)u0(y1 − t) dt, p(y) =

∫

R
∇g(t, y2) · u0(y1 − t) dt (2.8)

where G(y) =
2y2

π(y2
1 + y2

2)2

(
y2
1 y1 y2

y1 y2 y2
2

)
, g(y) = − 2y2

π(y2
1 + y2

2)
.

One can check easily that u, p belong to C∞(R2
+) and that one can differentiate under the

integral sign. Moreover, one can show that for all a > 0, for all β ∈ N2,

sup
k

∫ k+1

k

∫ +∞

a

(
|∂βy∇u|2 +

∫ k+1

k

∫ +∞

a
|∂βy p|2

)
dy2 dy1 ≤ C(a, α) < +∞.

Let us just show one of these inequalities, namely: for all k
∫ k+1

k

∫ +∞

a
|∇u|2 ≤ C < +∞,

where C is independent of k. The higher derivatives and pressure term are handled in the
exact same way. Considering the form of (2.8), it is enough to prove the bound for k = 0.
We write

∫ 1

0

∫ +∞

a
|∇u|2dy2dy1 ≤ C

∫ 1

0

∫ +∞

a

∣∣∣
∫

R

1
t2 + y2

2

|u0(y1 − t)|dt
∣∣∣
2
dy2dy1

≤ C

∫ 1

0

∫ +∞

a

(∫

R

1
t2 + y2

2

)∫

R

1
t2 + y2

2

|u0(y1 − t)|2dtdy1dy2

≤ C ′
∫ +∞

a

1
y2

∫

R

1
t2 + y2

2

dt dy2 ‖u0‖L2
uloc
≤ C ′′

∫ +∞

a

dy2

y2
2

< +∞

By well-known properties of G and g, the fields u and p satisfy the Stokes equation in R2
+. It

remains to show that for a > 0,
∫ k+1

k

∫ a

0
|u|2 + |∇u|2dy2dy1 ≤ C < +∞

uniformly in k and that u|{y2=0} = u0 in the trace sense over (k, k + 1). Again, it is clearly
enough to show it for k = 0. Let χ ∈ C∞c (R), χ = 1 on [−1, 2]. We decompose

u = U + V :=
∫

R
G(y1 − t, y2)χ(t)u0(t)dt +

∫

R
G(y1 − t, y2) (1− χ(t)) u0(t)dt
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To bound U , one uses the fact that χu0 ∈ H1/2(R). As t 7→ G(t, y2) ∈ L1(R) for all y2 > 0,
one can take the Fourier transform with respect to y1, Û(ξ, y2) = Ĝ(ξ, y2) χ̂u0(ξ). An explicit
calculation yields

Û(ξ, y2) = e−|ξ|y2 ˆχu0(ξ) − (χ̂u01 + i sign(ξ)χ̂u02) y2 e
−|ξ|y2

(|ξ|
iξ

)
. (2.9)

Thanks to this expression, one checks that U is in H1(R × (0, a)) for all a > 0, a fortiori in
H1
uloc(R× (0, a)). We still have to bound V . We write directly

∫ a

0

∫ 1

0
|V |2dy1dy2 ≤ C

∫ a

0

∫ 1

0

∣∣∣∣
∫

R

1
|y1 − t|2 + y2

2

(1− χ(t))u0(t)dt
∣∣∣∣
2

dy1dy2

Notice that for t in the support of (1− χ)u0 and y1 ∈ (0, 1), one has |y1 − t| ≥ |t− 1| ≥ 2. In
other words, one does not see the singularity of the kernel G. Hence,

∫ a

0

∫ 1

0
|V |2dy1 dy2 ≤ C

∣∣∣∣
∫

R

1
(t− 1)2

(1− χ(t))u0(t)dt
∣∣∣∣
2

≤ C ′
∑

k∈Z

1
k2
‖u0‖2L2

uloc
< +∞.

The same argument works for the gradient and provides the bound in H1
uloc(R × (0, a)). In

the same way, one can decompose

p = P +Q :=
∫

R
∇g(y1 − t, y2)χ(t)u0(t)dt +

∫

R
∇g(y1 − t, y2) (1− χ(t)) u0(t)dt

and show that p belongs to L2
uloc(R× (0, a)). In particular

P̂ (ξ, y2) = −2e−|ξ|y2 (χ̂u01 + i sign(ξ) χ̂u02) iξ (2.10)

To show that u|y2=0, we write

|u(y)−u0(y1)|2 =
∣∣∣∣
∫

R
G(t, y2) (u0(y1 − t)− u0(y1)) dt

∣∣∣∣
2

≤ C

∫

R
|G(t, x2)| |u0(x1−t)−u0(t)|2dt

using Cauchy-Schwartz inequality and homogeneity properties of the kernel. Integrating with
respect to y1, we obtain

∫ 1

0
|u(y)− u0(y1)|2dy1 ≤ C

(∫

R
|G(t, y2)| ‖τ−tu0 − u0‖2L2(0,1) dt

)

≤ C

(∫

|t|≤δ
|G(t, y2)|‖τ−tu0 − u0‖2L2(0,1) dt + 2

∫

|t|≥δ
|G(t, y2)| dt ‖u0‖L2

uloc

)

The first term at the r.h.s goes to zero as δ → 0, whereas the second term goes to zero as

y2 → 0. So, on one hand
∫ 1

0
|u(y)− u0(y1)|2dy1 → 0 as y2 → 0. On the other hand, a direct

computation yields
∫ 1

0
|u(y)− u(y1, 0)|2 dy1 ≤ C(a) y2 ‖∂2u‖L2((0,1)×(0,a)).

Hence, u|{y2=0} = u0. It ends the proof of the proposition.
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2.2 Dirichlet-to-Neumann operator

Thanks to these preliminary results, we can now introduce a new system in Ωbl,−, equivalent
to (BL). The keypoint is to determine a boundary condition at y2 = 0 that the solution v of
(BL) should satisfy. Briefly, the idea is that (v, q) is the solution of (2.1) with u0 := v|{y2=0}.
Therefore, its expression is given by (2.8). This expression allows to express the stress tensor
∂nv − q n = −∂2v + qe2 at the boundary {y2 = 0} in terms of v at {y2 = 0}. Formally,

(∂nv − q n)|{y2=0} = DN(v|{y2=0})

for some Dirichlet-to-Neumann operator DN that we will now properly define.

Usually, such Dirichlet-to-Neumann operators are easier to define in Fourier space, typi-
cally over Hs(R). As our boundary data u0 belongs to H1/2

uloc(R), we must extend the definition
usually given on H1/2(R). As in the previous pragraph, the idea is to decompose

u0 = χu0 + (1− χu0).

The action of DN on χu0 will be defined in Fourier space, wehereas its action on (1− χu0)
will be defined in the physical space through a singular integral, for which the singularity will
not be annoying. Precisely, we define

DN : H1/2
uloc(R) 7→ D′(R)

in the following way. Let u0 ∈ H1/2
uloc(R), ϕ ∈ C∞c (R). Let χ ∈ C∞c (R), such that χ = 1 on

an open set Oχ containing the support of ϕ. We define

< DN(u0), ϕ ><D′(R),D(R)> := < D̃N(χu0), ϕ ><H−1/2(R),H1/2(R)>

+
∫

R
K ∗ ((1− χ)u0) · ϕ,

where

• D̃N : H1/2(R) 7→ H−1/2(R) is the “standard” Dirichlet-to-Neumann operator, defined
in Fourier space by

FD̃N(u)(ξ) = −|ξ|Fu(ξ)−
( |ξ|
−iξ

)
(Fu1 + i sign(ξ)Fu2). (2.11)

Remark that
FD̃N(χu0) = −∂2Û + P̂ e2

where Û ,P̂ are defined in (2.9)-(2.10).

• The kernel K is given by

∀t 6= 0, K(t) := −∂2G(t, 0) + e2 ⊗∇g(t, 0) =
(
− 2
πt2

0

0 − 2
πt2

)
.

Note that, by the singularity of G and g, this kernel is singular at t = 0. However, due
to the properties of ϕ and χ, the integral

∫

R
K ∗ ((1− χ)u0) · ϕ =

∫

R

∫

R
K(t)((1− χ)(y1 − t)u0(y1 − t)ϕ(y1) dtdy1

11



is well-defined. Indeed, similarly to the previous subsection, for (y1, t) in the support
of (y1, t) 7→ (1 − χ)(y1 − t) ϕ(y1), we have |t| ≥ δ > 0, so that the singularity is not a
problem. One shows easily

∫

R
|K ∗ ((1− χ)u0) · ϕ| ≤ C ‖ϕ‖L2 ‖u0‖L2

uloc

∫

|t|≥δ

1
t2
dt < +∞ (2.12)

Remark that ∫

R
K ∗ ((1− χ)u0) · ϕ =

∫

R
(−∂2V +Qe2)|{y2=0}

where V,Q were introduced in the previous subsection.

This definition depends a priori on the truncation function χ. However, it is intrinsic, as
stated in

Lemma 7 The quantity < DN(u0), ϕ > defined above does not depend on the choice of χ.
Moreover, DN(u0) belongs to D′(R).

Proof. Let u0, ϕ as above, and χ, χ′ two truncation functions as above. One must check
that

< D̃N((χ− χ′)u0), ϕ >=
∫

R
K ∗ (χ− χ′)u0) · ϕ.

Taking the inverse Fourier transform in (2.11), we obtain

D̃N((χ− χ′)u0) = − 2
π
∂1

(
pv

1
y1
∗ (χ− χ′)u0

)
+ ∂1

(−(χ− χ′)u0,2

(χ− χ′)u0,1

)
.

where pv denotes the principal value. Thus,

< D̃N((χ− χ′)u0), ϕ > =<
2
π

(
pv

1
y1
∗ (χ− χ′)u0

)
+ (χ− χ′)

(
u0,2

−u0,1

)
, ϕ >

=<
2
π

(
pv

1
y1
∗ (χ− χ′)u0

)
, ϕ > .

The second term cancels because the support of χ− χ′ is disjoint from the support of ϕ. By
definition of the principal value,

< D̃N((χ− χ′)u0), ϕ >=
2
π

∫

R
lim
ε→0

∫

R\[−ε,ε]

1
t
(χ− χ′(x1 − t)u0(x1 − t)dt ∂1ϕ(y1)dy1

By the assumption on the support of χ− χ′, one can replace for ε small enough the integral
over R \ [−ε, ε] by the integral over R:

< D̃N((χ− χ′)u0), ϕ >=
2
π

∫

R

∫

R

1
t
(χ− χ′(x1 − t)u0(x1 − t)dt ∂1ϕ(y1)dy1

Then, changing t for x1 − t and integrating by parts, we end up with

< D̃N((χ− χ′)u0), ϕ > = − 2
π

∫

R

1
(x1 − t)2

(χ− χ′)(t)u0(t)ϕ(y1) dy1

=
∫

R
K ∗ (χ− χ′)u0 · ϕ

12



which shows that DN is well-defined. The fact that DN(u0) belongs to D′(R) follows from
the fact that D̃N(χu0) ∈ H−1/2(R) and from the estimate (2.12). In fact, keeping the same
construction, DN(u0) can be extended to a continuous linear form (that we still denote DN)
over the space H1/2

c (R) of H1/2 functions with compact support. That is, for all ϕ ∈ H1/2(R),
with support in K,

| < DN(u0), ϕ > | ≤ C(K) ‖u0‖H1/2
uloc(R)

‖ϕ‖H1/2(R).

Lemma 8 Let u0 ∈ H1/2
uloc(R), and (u, p) the solution of (2.1) provided by Proposition 6. For

all ϕ ∈ C∞c (R2
+) with ∇ · ϕ = 0,

∫

R2
+

∇u · ∇ϕ =< DN(u0), ϕ|{y2=0} > . (2.13)

In particular, if u, p are regular enough, DN(u0) = (∂nu− p n)|{y2=0}.

Proof: A look at the proof of Proposition 6 shows that the mapping

H
1/2
uloc(R) 7→

{
v, sup

k

∫ k+1

k

∫ +∞

0
|v|2dy2dy1 < +∞

}
, u0 7→ ∇u, u solution of (2.1)

is continuous. Moreover, a look at the proof of Lemma 7 shows that the r.h.s. in (2.13) is
continuous over H1/2

uloc(R) as well. Thus, it is enough to prove (2.13) for u0 ∈ C∞b (R). By
elliptic regularity u, p are then in C∞(R2

+).

We take again a smooth function χ, compactly supported, with χ = 1 in an open set Oχ
containing the support of ϕ. Let U0 := χu0, resp. V0 := (1−χ)u0, and (U,P ), resp. (V,Q)
the corresponding solutions of (2.1). It is enough to show that

∫
∇U · ∇ϕ =< D̃N(U0), ϕ >,

∫
∇V · ∇ϕ =

∫
K ∗ V0 · ϕ.

It is a straightforward computation, that is left to the reader.

We are now ready to provide an equivalent formulation for (BL).

Proposition 9 Let (v, q) a solution of (BL) in H1
loc(Ωbl) with supk

∫
Ωblk,k+1

|∇v|2 < +∞.
Then it satisfies 




−∆v +∇q = 0, y ∈ Ωbl,−,

∇ · v = 0, y ∈ Ωbl,−,
v(y1, ω(y1)) = −(ω(y1), 0),

(−∂2v + qe2)|{y2=0} = DN(v|x2=0)

(2.14)

Moreover, v =
∫

R
G(y1 − t, y2) v|{y2=0}(t) dt, y2 > 0.

Conversely, let v− in H1
uloc(Ω

bl,−) solution of (2.14). Then, the field v defined by

v := v− in Ωbl,−, v :=
∫

R
G(y1 − t, y2) v−(t, 0) dt for y2 > 0

is a solution of (BL) in H1
loc(Ωbl) such that supk

∫
Ωblk,k+1

|∇v|2 < +∞.
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We emphasize that v− solves (2.14) means: v− solves (2.14c) in the trace sense, and for all
ϕ ∈ C∞c (Ωbl,−) such that div ϕ = 0, ϕ|{y2=ω(y1)} = 0,

∫

Ωbl,−
∇v− · ∇ϕ = − < DN(v−|{y2=0}), ϕ > .

Note that v− ∈ H1
uloc(Ω

bl,−), so that v−|{y2=0} ∈ H1/2
uloc(R) and so DN(v−|y2=0) is well-defined.

The proof is a straightforward consequence of Proposition 6 and Lemma 8, and we do not
give further details for the sake of brevity.

2.3 Well-posedness of the equivalent problem

By the previous proposition, well-posedness of (BL) is the same as well-posedness of (2.14), in
the channel Ωbl,−. In order to get an homogenenous Dirichlet condition at the lower boundary,
we introduce the new unknowns u := v + (y2, 0), p := q. They satisfy formally





−∆u+∇p = 0, y ∈ Ωbl,−,

∇ · u = 0, y ∈ Ωbl,−,
u(y1, ω(y1)) = 0,

(−∂2u+ pe2)|{y2=0} = DN(u|{y2=0}) + (1, 0)

(BL−)

Theorem 3 will be a consequence of

Proposition 10 System (BL−) has a unique solution u ∈ H1
uloc(Ω

bl,−).

Proof. In order to lighten notations, we will write Ω instead of Ωbl,− in the whole proof. As
the smooth part Ω = R× (0, 1) of the rough channel Ωε is not involved in the proof, there is
no risk of confusion. We will use notations

Ωk,l = Ω ∩ {k < |y1| < l}, Σk,l = {y2 = 0, k < |y1| < l}, Ωk := Ω−k,k, Σk := Σ−k,k.

Existence

We will construct a solution u as the limit of approximations un, solving the following problem:
un ∈ V ,

∫
∇un · ∇ϕ = − < DN(un|{y2=0}), ϕ|{y2=0} > −

∫

{y2=0}
ϕ1, ∀ϕ ∈ V (2.15)

where

V =
{
ϕ ∈ H1(Ω), div ϕ = 0, ϕ = 0 on Ω \ Ωn, ϕ|{y2=ω(y1)} = 0

}
, ‖ϕ‖2V =

∫

Ω
|∇ϕ|2.

As mentioned at the end of the proof of Lemma 7, < DN(un|{y2=0}), ϕ|{y2=0} > is well-defined
for all ϕ ∈ H1(Ω) with compact support, especially for ϕ ∈ V . The variational formulation
(2.15) is well-posed in V by Lax-Milgram Lemma. By little adaptation of Proposition 9, the
fonction

vn := un − y2 in Ω, vn := G(·, y2) ∗ un|(·, 0) in R× R+

14



satisfies 



−∆vn +∇qn =0, y1 ∈ (−n, n), y2 > ω(y1)
∇ · vn =0, y1 ∈ (−n, n), y2 > ω(y1)

vn(x) = −(ω(y1),0), y1 ∈ (−n, n), y2 = ω(y1).

for some pressure qn. Standard elliptic regularity arguments show that vn, qn are smooth
inside their domain. Back to un, we get





−∆un +∇pn =0, y ∈ Ωn,

∇ · un =0, y ∈ Ωn,

un(x) =0, y ∈ ∂Ωn \ Σn,

(−∂2u
n + pne2)|Σn =−DN(un|{y2=0}) + (1, 0).

(2.16)

for some pressure pn, with

un ∈ C∞(Ωn ∪ Σn), pn ∈ C∞(Ωn ∪ Σn).

It is easy to deduce from the identity (2.13) that

< DN(ϕ|{y2=0}), ϕ|{y2=0} > > 0, ∀ϕ ∈ V. (2.17)

Taking ϕ = un in (2.15), this gives

∫

Ω
|∇un|2 ≤ C

∫

{y2=0}
|un| ≤ C

√
n

(∫

{y2=0}
|un|2

)1/2

≤ C ′
√
n

(∫

Ω
|∂2u

n|2
)1/2

using successively Cauchy-Schwartz inequality over {|y1| < n}, and Poincaré inequality over
the whole channel Ω, with un|{y2=ω(y1)} = 0 (therefore, constant C ′ does not depend on n).
We get the global estimate

∫

Ω
|∇un|2 =

∫

Ωn

|∇un|2 ≤ C0 n (2.18)

Of course, this bound explodes as n→ +∞. It is reminiscent of the fact that u should be in
H1
uloc(R), therefore of infinite energy. The main point is therefore to obtain a local uniform

bound on ∇un. This question has been adressed by Solonnikov and Ladyzenskaya [19], when
the non-local condition (2.16c) is replaced by a homogeneous Dirichlet condition (and some
appropriate forcing is added inside the domain). Their analysis is the starting point of the
well-posedness result in Theorem 1. In a very crude way, the idea is to introduce the linear
quantity

Enk :=
∫

Ωk

|∇un|2, k ≤ n.

By the global estimate (2.18), Enn ≤ C n. Then, one shows by induction on n − k that
Enk ≤ Ck. Using this inequality for k = 1 yields

∫
Ω1
|∇un|2 ≤ C. Finally, one uses the same

reasoning on the translated channel Ω + (k, 0) to get a uniform local bound. Typically, the
induction relies on an induction relation between Enk and Enk+1, like

Enk ≤ C
(
Enk+1 −Enk + k + 1

)
.
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Such relation is obtained using a truncation over Ωk and energy estimates. We stress that the
fact that Poincaré’s inequality applies in a channel is a crucial ingredient in this reasoning.
Indeed, the truncation over Ωk involves terms containing un, whereas the Laplacian gives a
control of ∇un. This is why we wanted to replace the original system in Ωbl by a system in
the channel Ω(= Ωbl,−). The problem is that the new Dirichlet-to-Neumann operator is not
local, so that the induction relation will be harder to derive, and more elaborate. To lighten
notations, we shall denote Ek instead of Enk . We shall prove that there exists η > 0 such that,
for any m > 1

Ek ≤ C1

(
k + 1 +

1
mη

sup
j≥k+m

(Ej+1 − Ej) + m sup
k+m≥j≥k

(Ej+1 −Ej)
)
. (2.19)

Before we establish this inequality, let us indicate how it implies an H1
uloc bound on un. More

precisely, let us show first by induction on n− k that for m large enough, (2.19) implies

Ek ≤ C2

(
k + 1 +

1
mη

sup
j≥k+m

(Ej+1 − Ej) +m3

)
, ∀k ≤ n. (2.20)

for some C2 depending on the constants C0 in (2.18) and C1 in (2.19). The inequality is of
course true when k = n, as soon as C1 > C0. Now, we assume that

Ek′ ≤ C2

(
k′ + 1 +

1
mη

sup
j≥k′+m

(Ej+1 − Ej) +m3

)

holds for all indices k′ = k + 1, ..., n, and try to show it holds for index k. If not, one has

Ek ≥ C2

(
k + 1 +

1
mη

sup
j≥k+m

(Ej+1 −Ej) +m3

)
. (2.21)

Combining these last two inequalities, we have for all k +m ≥ j ≥ k
Ej+1 − Ej ≤ Ej+1 − Ek ≤ C2(m+ 1).

By (2.19), we deduce

Ek ≤ C1

(
k + 1 +

1
mη

sup
j≤k+m

(Ej+1 −Ej) + C2m(m+ 1)

)
. (2.22)

Comparison between (2.21) and (2.22) yields a contradiction if C2 > C1 and C1C2m(m+1) ≤
C2m

3, which is satisfied if C2 > C1 and m large enough. Thus, inequality (2.20) is valid for
all k ≤ n. For k = 1, we get

E1 ≤ C1

(
2 +

1
mη

sup
j∈N

(Ej+1 −Ej) +m3

)
.

It will be clear from the proof of (2.19) below that it is invariant by a horizontal translation.
Thus, previous inequality generalizes to

Ek+1 −Ek ≤ C1

(
2 +

1
mη

sup
j∈N

(Ej+1 − Ej) +m3

)
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for all k, so that for m large enough, we end up with

sup
k

(Ek+1 − Ek) ≤ C1

(
2 +m3

)

1−m−η = C < +∞

which is a H1
uloc bound on un. We can therefore extract a subsequence of un that converges

weakly to some u ∈ H1
uloc(Ω), clearly satisfying (BL−).

It remains to prove (2.19). The case k = n follows again from (2.18). Let k < n.
We introduce a smooth truncation function χk = χk(y1)) ∈ [0, 1], compactly supported in
(k − 1, k + 1), with χ = 1 on [−k, k], |χ′k| ≤ 2. We will note u instead of un. One multiplies
(2.16a) by χku and integrate by parts:

∫

Ω
χk|∇u|2 ≤

∫

Ω
|∇χk| |u|2 −

∫
DN(u) · χku|{y2=0} +

∫

Σ
|χk| |u1|+

∣∣∣∣
∫

Ω
p∇χk · u

∣∣∣∣ =
4∑

i=1

Ii.

Note that we use an integral sign instead of a bracket sign for the term containing DN(u).
Indeed, u, p are regular over Σn, so that DN(u) = (−∂2u + pe2)|{y2=0} is a real smooth
function. We must evaluate the four terms at the r.h.s. Clearly,

I1 ≤ 2
∫

Ωk,k+1

|u|2 ≤ C

∫

Ωk,k1

|∂2u|2 ≤ C(Ek+1 − Ek),

using Poincaré inequality in the channel. Then, by Cauchy-Schwartz inequality

I3 ≤ C
√

2(k + 1)
(∫

Ω
|√χku|2

)1/2

≤ Cν(k + 1) + ν

∫

Ω
χk|u|2

where ν will be taken small to absorb the second term in the r.h.s.

Let us decompose I2 as follows, for m > 1:

I2 = −
∫
DN(χku) · χku−

∫

Ω
DN((χk+m − χk)u) · χku−

∫

Ω
DN((1− χk+m)u) · χku

≤
∣∣∣∣
∫

Ω
DN((χk+m − χk)u) · χku

∣∣∣∣ +
∣∣∣∣
∫

Ω
DN((1− χk+m)u) · χku

∣∣∣∣ = J1 + J2

where we have used (2.17). First term is dominated through

|J1| ≤ C ‖χku‖H1/2(Σ) ‖(χk+m − χk)u‖H1/2(Σ)

≤ C ‖χku‖H1(Ω) ‖(χk+m − χk)u‖H1(Ω) ≤ Cν m sup
k+m≥j≥k

(Ej+1 − Ej) + ν Ek,

where again ν will be taken small. To bound J2,we use the convolution formula with the
kernel K. It yields:
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|J2| ≤ C

∫

Σk+1

∫

Σ\Σk+m

1
|t− y1|2 |u(t)| dt |χk(y1)u(y1)| dy1,

≤ C

(∫

Σ
χk(y1)|u(y1)|2dy1

)1/2

(∫

Σk+1

dy1

∫

Σ\Σk+m

1
|t− y1|2+2η

dt

∫

Σ\Σk+m

1
|t− y1|2−2η

|u(t)|2dt
)1/2

≤ CE1/2
k m−η/2




∫

Σk+1

∫

Σ\Σk+m

1
|t− y1|2+η

dtdy1 sup
j≥k+m

(Ej+1 −Ej)
∑

j≥k+m

(j − k)2η−2




1/2

for any 0 < η < 1/2. A direct computation leads to
∫

Σk+1

∫

Σ\Σk+m

1
|t− y1|2+η

dtdy1 ≤ C ′
∫

R\[0,1]

1
x1+η

dx < +∞.

Thus,

|J2| ≤
CE

1/2
k

mη/2

(
sup

j≥k+m
sup

j≥k+m
(Ej+1 −Ej)

)1/2

≤ Cν
mη

sup
j≥k+m

(Ej+1 − Ej) + νEk

We end up with

I2 ≤ νEk +
Cν
mη

sup
j≥k+m

(Ej+1 − Ej) + Cνm sup
k+m≥j≥k

(Ej+1 − Ej)

The integral I4 coming from the pressure term is

I4 =
∫

Ω
pχ′ku1 =

∫

Ω
p(y1, 0) (χ′ku1)(y) dy +

∫

Ω

∫ y2

0
∂2p(y1, t)dt (χ′ku1)(y)dy = H1 + H2.

One writes, using the boundary condition at {y2 = 0}

H1 =
∫

Ω
∂2u2(y1, 0) (χ′ku1)(y) dy +

∫

Ω
DN(u|{y2=0}) · e2 (χ′ku1)(y) dy

=
∫

Ω
−∂1u1(y1, 0) (χ′ku1)(y) dy +

∫

Ω
DN(u|{y2=0}) · e2 (χ′ku1)(y) dy

where the last line comes from the divergence-free condition. After an integration by parts,
the first term is easily bounded by C ‖u1‖L2(Σk,k+1)‖∇u‖L2(Ωk,k+1), thus by C (Ek+1 − Ek).
The second term is treated similarly to I2, as

∫
(χ′ku1)(y1, y2)dy2 substitutes to χku|y2=0. We

get

|
∫

Ω
DN(u|{y2=0}) · e2 (χ′ku1)(y) dy| ≤ C(Ek+1 − Ek)1/2

(
‖∇u‖L2(Ωk)+

1
mη/2

sup
j≥k+m

(Ej+1 −Ej) + m sup
k+m≥j≥k

(Ej+1 −Ej)
)1/2

.
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This yields

|H1| ≤ νEk + (Cν +m) sup
k+m≥j≥k

(Ej+1 − Ej) +
C

mη
sup

j≥k+m
(Ej+1 −Ej)

Using the Stokes equation, we then get

H2 =
∫

Ωk,k+1

∫ y2

0
(∂2

1 + ∂2
2)u2(y1, t) dt (χ′ku1)(y) dy

=
∫

Ωk,k+1

∫ y2

0
−∂1u2(y1, t) dt ∂1(χ′ku1)(y) dy

+
∫

Ωk,k+1

∂2u2(y) (χ′ku1)(y) dy −
∫

Ωk,k+1

∂2u2(y1, 0) (χ′ku1)(y) dy

The first two terms are easily bounded by C(Ek+1 − Ek). For the last one, one can again
replace ∂2u2 by −∂1u1 and integrate by parts with respect to y1. Finally, H2 ≤ C(Ek+1−Ek)
and

|I4| ≤ νEk +
Cν
mη

sup
j≥k+m

(Ej+1 − Ej) + Cνm sup
k+m≥j≥k

(Ej+1 − Ej)

Gathering the bounds on the Ij ’s and taking ν small enough lead to the induction relation
(2.19). This ends the existence part.

Uniqueness

Let u be the difference of two solutions of (BL−) in H1
uloc(Ω). It satisfies





−∆u+∇p = 0, y ∈ Ωbl,−,

∇ · u = 0, y ∈ Ωbl,−,
u(y1, ω(y1)) = 0,

(−∂2u+ pe2)|{y2=0} = DN(u|{y2=0})

Applying the same estimates as in the “existence part”, the induction relation (2.19) is mod-
ified into:

Ek ≤ C

(
1
mη

sup
j≥k+m

(Ej+1 − Ej) + m sup
k+m≤j≤k

(Ej+1 −Ej)
)
.

The difference with (2.19) is of course the lack of a (k+ 1) term, because of the homogeneous
condition on the stress tensor at {y2 = 0}. Using the H1

uloc bound on u, we get

Ek ≤ C ′

uniformly in k, which means that the difference u between the two solutions belongs to H1(R).
We can then multiply the Stokes equation on u by u itself and integrate by parts. By positivity
of the DN operator (= D̃N in this context), the energy estimate yields

∫
Ω |∇u|2 = 0, so that

u = 0. This ends the proof of Proposition 10.
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3 Asymptotic behaviour of (BL)

By theorem 3, the well-posedness of the boundary layer system is ensured for all Lipschitz
bounded boundary {y2 = ω(y1)}. It opens the way to the formal scenario explained in the
introduction: if v converges to a constant field v∞ = (α, 0) as y2 → +∞, then one can
believe that a slip condition of Navier type is the best choice for a wall law. Unfortunately,
convergence of v far from the boundary is unlikely to be true for all roughness profiles ω. This
claim is suggested by what happens for the following similar (but simpler) problem

{
∆v = 0, y ∈ R2

+,

v = v0, y2 = 0,
(3.1)

where v0 ∈ L∞(R). One can check by standard scalar arguments that this Dirichlet problem
has a unique solution v ∈ L∞(R). System (3.1) is a baby version of (BL), oscillations of
the boundary being replaced by oscillations of the boundary data. Nevertheless, it shares
common features with (BL). For instance, if v0 is L−periodic and smooth, a simple Fourier
analysis shows that

v → v∞ :=
1
L

∫ L

0
v0(t) dt, as y2 → +∞

and that the convergence is exponential. It is then natural to ask if this convergence property
is true in general. However,

Proposition 11 There exists v0 ∈ L∞(R) such that v(0, y2) does not have a limit when
y2 → +∞.

When transposed to the original system (BL), this suggest that there may be some ω for which
v does not converge transversally to the boundary. For the corresponding rough channels,
the Dirichlet boundary condition can certainly not be improved.

Proof of the proposition. We take

v0 = (−1)k on (xk, xk+1/2), k ∈ N, x > 1 to be fixed later, v0 = 0 elsewhere.

The proof of non-convergence of v0 relies on the expression of the solution v of (3.1) in terms
of the Poisson kernel:

v(0, y2) =
∫

R

y2

π(t2 + y2
2)
v0(t)dt. (3.2)

With y2 = xn, this yields

v(0, xn) =
1
π

+∞∑

k=0

(−1)k
(

arctan(xk+1/2−n)− arctan(xk−n)
)

=
(−1)n

π

+∞∑

j=−n
(−1)|j|

(
arctan(xj+1/2)− arctan(xj)

)
=

(−1)n

π
In + o(1),
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where In :=
n∑

j=−n
(−1)|j|

(
arctan(xj+1/2)− arctan(xj)

)
. We will show that In has a non-zero

limit for x large enough, from where v(0, xn) will have no limit as n→ +∞.

In =
n∑

j=0

(−1)j
(

arctan(xj+1/2)− arctan(xj)
)

+
n∑

j=1

(−1)j
(

arctan(x−j+1/2)− arctan(x−j)
)

=
n∑

j=0

(−1)j
(

arctan(x−j)− arctan(x−j−1/2)
)

+
n∑

j=1

(−1)j
(

arctan(x−j+1/2)− arctan(x−j)
)

using that arctan(x) + arctan(1/x) = π/2 for x > 0. Note that the terms ± arctanx−j ,
j = 1, ..., n cancel. The change of index n := n− 1 in the second sum yields

In =
π

4
−

n∑

j=0

(−1)j arctan(x−j−1/2) −
n−1∑

j=0

(−1)j arctan(x−j−1/2)

→ I :=
π

4
− 2

+∞∑

j=0

(−1)j arctan(x−j−1/2) , as n→ +∞.

The right term in the limit is an alternating series. Therefore,
π

4
− 2 arctan(x−1/2) ≤ I ≤ π

4
− 2 arctan(x−1/2) + 2 arctan(x−3/2)

which is close to π/4 for any x large enough. This ends the proof.

The “input” v0 considered in the above proof, built as a sequence of ±1’s, stresses the
analogy between the problem of the asymptotic behaviour and the problem of coin tossing.
Indeed, in this case, formula (3.2) can be seen as an averaging of sequences of ±1’s, not
uniform, but following the distribution y2

π(t2+y2
2)

. As y2 goes to infinity, this corresponds to
long time averaging. With such analogy in mind, we can expect bad data v0’s like in the
above proposition to be quite exceptional. For instance, the law of large numbers says that
almost surely, a Bernoulli sequence of ±1’s converges to 0.

Indeed, as soon as
1
L

∫ L

0
v0(y1 − t) dt → v∞, L→ ±∞ (3.3)

the solution v of (3.1) satisfies: v(y1, y2) → v∞, as y2 → +∞. This can be deduced from a
simple integration by parts in (3.2), writing

v(y1, y2)− v∞ = − 1
π

∫

R

y2 t

t2 + y2
2

1
t

(∫ t

0
v0(y1 − s)ds− v∞

)
dt

= − 1
π

∫

{|t|≥n}

y2 t

t2 + y2
2

1
t

(∫ t

0
v0(y1 − s)ds− v∞

)
dt

+
1
π

∫

{|t|≤n}

y2 t

t2 + y2
2

1
t

(∫ t

0
v0(y1 − s)ds− v∞

)
dt

By (3.3), the first term goes to 0 as n → +∞, uniformly in y2. Then, for all n, the second
term goes to 0 as y2 → +∞.
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The convergence given in (3.3), especially when v∞ is independent of y1 is connected to
the ergodicity properties of v0. Although the original problem (BL) is much more difficult
than (3.1), because its dependence with respect to the “input” ω is non linear, this argument
suggests that the derivation of the Navier wall law could be made rigorous in the settings
where the roughness profile ω satisfies some ergodic theorem. This is coherent with the
analysis led in [5], that justifies a Navier condition in the random stationary setting.

4 Navier wall law for almost periodic roughness

From the considerations of the previous sections, one can not expect the Navier wall law to be
good for all boundaries, but it may be good for boundaries satisfying ergodicity properties.
Besides the random framework considered in [5], it is therefore natural to consider an almost
periodic framework. This section is devoted to the proof of Theorem 4, that is justification of
a slip boundary condition for ω ∈ AP (R), where AP (R) is the set of almost periodic functions
defined in the introduction. Again, the key point will be the analysis of the boundary layer
system (BL), and more precisely the convergence properties of the solution transversally to
the boundary. The scheme of the proof is as follows:

1. We first study the case of quasiperiodic roughness, which includes the case of trigono-
metric polynomials. A keypoint is to show that the solution v(y) of (BL) is quasiperiodic
in y1 for all y2 ≥ 0, that is the quasiperiodicity of the boundary is conveyed to the solu-
tion itself. Therefore, we solve (BL) in a (smaller) quasiperiodic setting. Afterwards, we
couple the ergodicity of y1 7→ v(y1, 0) to an integral formula of type (2.8), with u = v,
and u0 = v(·, 0). We show in this way that v converges to a constant field v∞ = (α, 0).

2. By the density of trigonometric polynomials in AP (R), and the stability estimates of
section 2, we can go from the quasiperiodic setting to the almost periodic setting. The
justification of Navier condition follows from an expansion of the real solution based on
the boundary layer analysis.

4.1 The quasiperiodic case

We consider here the case

ω(y1) = F (λy1), F = F (θ) ∈ C∞(Td), λ ∈ Rd (4.1)

where d ≥ 1. We will show that v is quasiperiodic in y1. Therefore we reformulate (BL). We
replace v by v′ := v + (δ(y2) y2, 0) for some smooth truncation function δ with δ = 1 for
y2 ≤ 0 and δ = 0 for y2 ≥ 1. We get





−∆v′ +∇q′ = f ′, y ∈ Ωbl,

∇ · v′ = 0, y ∈ Ωbl,

v′ = 0, y ∈ ∂Ωbl.

for f ′(y) = (f ′1(y2), 0) compactly supported in {y2 ≤ 1}. We introduce

φ(y1, y2) = (y1, y2 − χ(y2)ω(y1))
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for some smooth truncation function

χ = 1 for y2 ≤ −‖ω‖L∞ , χ = 0 for y2 ≥ 1, with |χ′| ≤
(

1
2

+ ‖ω‖L∞
)
.

This defines a diffeomorphism φ from Ωbl to R2
+, such that φ = Id for y2 ≥ 1. Then, we

introduce the new functions

w(φ(y)) = v′(y), r(φ(y)) = q′(y), g(φ(y)) = f(y),

that satisfy 



∇ · A∇w + B∇r = g, z ∈ R2
+,

∇ · (Btw) = 0, z ∈ R2
+,

w = 0, z2 = 0.

(4.2)

where

A :=
(∇φ)t∇φ
det |∇φ| = A(λz1, z2), B =

∇φ
det |∇φ| = B(λz1, z2), g = G(λz1, z2),

for smooth A = A(θ, t), B = B(θ, t), G = G(θ, t), θ ∈ Td, t > 0. We quote that A = B = Id
and that G = 0 for t large enough. Quasiperiodicity in y1 for v is equivalent to quasiperiodicity
in z1 for w. In other words, we look for w = W (λz1, z2), W = W (θ, t), θ ∈ Td. Hence, it is
natural to solve directly the enlarged system





−
(
λ·∂θ
∂t

)
· A

(
λ·∂θ
∂t

)
W + B

(
λ·∂θ
∂t

)
R = G, θ ∈ Td, t > 0,

(
λ·∂θ
∂t

)
· BtW = 0, θ ∈ Td, t > 0,

W (θ, t) = 0, t = 0.

(4.3)

Proposition 12 System (4.3) has a unique smooth solution W satisfying
∫ +∞

0

∫

Td
|∂γθ ∂kt (λ · ∂θ)W |2 + |∂γθ ∂kt ∂tW |2 dθ dt < +∞, ∀γ, k. (4.4)

Here, W is a solution means that for all smooth ϕ ∈ C∞(Td × R+) satisfying an estimate of
type (4.6), and such that

(
λ·∂θ
∂t

)
· Bt ϕ = 0,

∫

Td×R+

A
(
λ·∂θ
∂t

)
W ·

(
λ·∂θ
∂t

)
ϕ =

∫

Td×R+

G · ϕ. (4.5)

Proof. The main difficulty is that this system is a degenerate elliptic system, as the
λ · ∂θ derivative does not allow a control on all tangential derivatives. The study of a similar
quasiperiodic system has been carried out in the recent paper [14], that deals with homoge-
nization of elliptic operators in polygonal domains. We follow here the same scheme of proof,
accounting for the additional difficulties due to the pressure term. To lighten notations, we
will denote D :=

(
λ·∂θ
∂t

)
.

A priori estimates
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Basic estimate. We just multiply by W and integrate by parts to get
∫ +∞

0

∫

Td
|DW |2 dθ dt =

∫ +∞

0

∫

Td
G ·W dθ dt

As G = 0 for t ≥ a, a large enough, we get by Cauchy-Schwartz and Poincaré inequality

∫

Td×R+

|DW |2 ≤ C(a)
(∫

Td×R+

|G|2
)1/2

(∫

R2
+

|∂tW |2
)1/2

≤ Cν

∫

Td×R+

|G|2 + ν

∫

Td×R+

|∂tW |2

Taking ν small enough, we obtain
∫

R2
+

|DW |2 < +∞. (4.6)

Higher order tangential estimates. We then need to estimate ∂γθDW , for γ ∈ Nd, |γ| ≥ 1.
We focus on the estimates corresponding to |γ| = 1. The control of higher order tangential
derivatives follows from an easy induction on the number of derivatives, relying on these
estimates. Let i in {1, ..., d}. We get

∫

Td×R+

|∂θiDW |2 ≤ −
∫

Td×R+

D · (∂θiA)DW · ∂θiW −
∫

Td×R+

(∂θiB)DR · ∂θiW

−
∫

Td×R+

∂θiR
(
D · (∂θiBt

)
W

)
+

∫

Td×R+

∂θiG · ∂θiW :=
4∑

j=1

Ij

Clearly,

|I1| ≤ Cν

∫

Td×R+

| (∂θiA)DW |2 + ν

∫

Td×R+

|∂θiDW |2,

so that by the basic estimate(4.6) |I1| ≤ Cν + ν

∫

Td×R+

|∂θiDW |2. Also, we have easily

|I4| ≤ Cν

∫

Td×R+

|∂θiG|2 + ν

∫

Td×R+

|∂θi∂tW |2.

It remains to handle the pressure terms. For the first term, we replace DR using the equation
(4.3), so that

I2 = −
∫

Td×R+

(∂θiB)B−1G · ∂θiW +
∫

Td×R+

B−1(D · ADW ) · ∂θiW

≤ Cν

∫

Td×R+

Cν |G|2 + ν

∫

Td×R+

|∂iθ∂tW |2 + I ′2

where
I ′2 :=

∫

Td×R+

Bi(D · ADW ) · ∂θiW, Bi := (∂θiB)B−1.
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The important remark to bound I ′2 is that Bi has compact support in t, as B = Id for t ≥ a,
a large enough. This means we will be able to use Poincaré inequality to control ∂θiW by the
better quantity ∂θiDW . More precisely, a simple integration by parts yields

I ′2 ≤
∫

Td×R+

|ADW |
(
|DBi| |∂θiW | + |Bi||D∂θiW |

)

≤ C ||DW ||L2(Td×R+)

(
||∂θiW ||L2(Td×[0,a]) + ||D∂θiV ||L2(Td×R+)

)

≤ Cν + ν

∫

Td×R+

|∂θiDW |2

Finally, a double integration by parts yields

I3 =
∫

Td×R+

−DR · ∂θi
(
D · (∂θiBt)W

)

From there, one may proceed as for I2, replacing DR and using the fact that any derivative
of B is compactly supported. We end up with

I3 ≤ Cν + ν

∫

Td×R+

|∂θiDW |2

Combining all these inequalities, with ν small enough, we end up with ‖∂θiDW‖L2 < +∞.

Derivatives in t. Let R the rotation that maps λ
|λ| on the vector e1 = (1, 0, ..., 0). Consid-

ering θ as an element of Rd instead of Td, the variables (θ′, t) = (Rθ, t) define another coor-
dinates system of Rd×R+, and λ · ∂θ = |λ|∂θ′1 . In the neighborhood of any point of Rd×R+,
system (4.3) can be seen as a strongly elliptic system in θ′1, t, depending smoothly on param-
eters θ′2, ..., θ

′
d. Thanks to the previous estimates on the tangential derivatives ∂θ′2 , ..., ∂θ′d and

to the elliptic regularity on the derivatives ∂θ′1 , ∂t, we obtain a local bound on all derivatives.
Back to the original variables θ, t,

‖W‖Hk(Td×(0,a)) + ‖DR‖Hk(Td×(0,a)) ≤ C(k, a) < +∞, ∀k, a ≥ 0 (4.7)

where C(k, a) depends on the data G, A and B. To go from these estimates (local in t) to the
global ones, we can derive the equation with respect to t, and obtain an equation similar to
(4.3) on W ′ := ∂tW . The only difference is that extra inhomogeneous terms are involved: at
the boundary, W ′|t=0 = ∂tW |t=0 6= 0, and in the equations, there are several commutators.
Note that these commutators contain derivatives of A and B, so that they are compactly
supported in t. In particular, these extra terms are not annoying, because they are controlled
by (4.7). Thus, we can proceed as before, to get

‖∂γθ ∂tDW‖L2(Td×R+) < +∞

Recursively, one can get a control of all t−derivatives. We leave the details to the reader.
Eventually, we obtain the estimate (4.4).

Construction of solutions
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To build solutions, we approximate (4.3) by a strongly elliptic system. If d = 1, the system
is already strongly elliptic. If d ≥ 2 we introduce new scalar fields wη1 = wη1(θ, t), ...,wηd−1 =
wηd−1(θ, t), indexed by a small parameter η > 0, and the approximate problem





−∆θ,t




wη1
...

wηd−1


 + η




∂θ1
...

∂θd−1


Rη = 0,

−η∆θ,tW
η + D ·ADW η + BDRη = G, θ ∈ Td, t > 0,

η
(
∂θ1w

η
1 + ... + ∂θd−1

wηd−1

)
+ D · (BtW η) = 0, θ ∈ Td, t > 0,(

wη1 , ..., w
η
d−1,W

η
) |t=0 = 0

Existence, uniqueness and smoothness of solutions are standard for such strongly elliptic
system, for all η > 0. All the a priori estimates above extend easily to this system.

The velocity field satisfies notably

‖∂γθ ∂kt DW η‖L2(Td×R+) ≤ C(γ, k) < +∞, ∀γ, k.

which allows to pass to the limit as η → 0, and obtain a smooth solution V of the variational
formulation (4.5) satisfying (4.4).

Let us stress that one does not go straightforwardly from the variational formulation (4.5)
to the strong formulation (4.3). Indeed, uniformly in η > 0, the pressure Rη associated to
W η satisfies

‖∂γθ ∂tkDRη‖L2(Td×R+) ≤ C(γ, k) < +∞, ∀γ, k.
Contrary to the velocity estimate, which yields a bound on W η itself (locally in t, thanks to
Poincaré inequality), we only get here that

DRη → D, η → 0,

where D is such that: for all smooth W ′ satisfying D · (BtW ′) = 0 and (4.4),
∫

Td×R+

BD ·W ′ = 0. (4.8)

In other words, the strong formulation satisfied by W is




−D · ADW + BD = G, θ ∈ Td, t > 0,

D · BtW = 0, θ ∈ Td, t > 0,
W (θ, t) = 0, t = 0.

(4.9)

where D satisfies (4.8). But it is not clear that D = DR for some smooth R periodic in θ.

Uniqueness

Uniqueness follows from the basic estimate (4.6) on the difference between two solutions. This
concludes the proof of the proposition
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We can deduce from the previous analysis quasiperiodicity properties for the system (BL).
We introduce w(z) = W (λz1, z2) and evaluate (4.9) at θ = λz1, t = z2. We obtain





∇ · A∇w + BDλ = g, z ∈ R2
+,

∇ · (Btw) = 0, z ∈ R2
+,

w = 0, z2 = 0.

where Dλ(z) = D(λz1, z2). Taking

W ′ =
(Bt)−1

D⊥φ :=
(Bt)−1

(
−∂t
λ·∂θ

)
φ

for an arbitrary smooth scalar function φ on Td × R+, we get from (4.8)
∫

Td×R+

(
D⊥ · D

)
φ = 0.

As φ is arbitrary, we obtain D⊥ · D = 0. If we evaluate this identity at (θ, t) = (λz1, z2), it
gives ∇⊥z Dλ = 0. Thus, one can write Dλ = ∇r for some smooth pressure field r. Hence, w
satisfies (4.2).

We can then go back to the system (BL), by considering

v(y) = w(φ(y)) − (δ(y2)y2, 0) = W (λy1, y2 − χ(y2)ω(y1)) − (δ(y2)y2, 0) = V (λy1, y2)

where V (θ, t) := W (θ, t− χ(t)F (θ)
) − (

δ(t)t, 0
)

is smooth and periodic in θ. Clearly, v is
a solution of (BL). Moreover, by estimates (4.4), v belongs to H1

loc

(
Ωbl

)
and satisfies

sup
k

∫

Ωblk,k+1

|∇v|2 < +∞.

Thus, it is the solution built in Theorem 3, and it is quasiperiodic in y1, for all y2 ≥ 0.

Proposition 13 There exists α ∈ R such that the solution v of (BL) satisfies

v(y)→ (α, 0), as y2 → +∞, uniformly in y1.

Proof. We start from the convolution formula

v(y) =
∫

R
G(t, y2) v(y1 − t, 0) dt, y2 > 0

where the Poisson kernel G is defined in (2.8). Integrating by parts leads to

v(y) = −
∫

R
(t ∂tG(t, y2))

1
t

∫ t

0
v(y1 − s, 0) ds dt

Thanks to Proposition 12, we can write

v(y1 − s, 0) = V0(λ(y1 − s)) =
∑

k∈Zd
V̂0,k e

ik·λ(y1−s),
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for some smooth periodic V0 = V0(θ). We define v∞ :=
∑

k, k·λ=0

V̂0,k. Let δ > 0. For n large,

∣∣∣
∑

|k|≤n, k·λ=0

V̂0,k − v∞
∣∣∣ ≤ δ

and for n large, uniformly in y1, uniformly in t 6= 0,
∣∣∣1
t

∫ t

0

(
v(y1 − s, 0)−

∑

|k|≤n
V̂0,k e

iλ·k(y1−s)
)
ds

∣∣∣ ≤
∑

|k|>n
|V̂0,k| ≤ δ.

Moreover, n being fixed, we have, for |t| large enough, uniformly in y1

∣∣∣
∑

|k|≤n, k·λ=0

V̂0,k − 1
t

∫ t

0

∑

|k|≤n
V̂0,k e

ik·λ(y1−s) ds
∣∣∣ ≤

∑

|k|≤n,k·λ 6=0

∣∣1
t

∫ t

0
eik·λ(y1−s) ds

∣∣∣

≤
∑

|k|≤n,k·λ 6=0

2
|k · λ| |t| ≤ δ

Thus, uniformly in y1

lim
t→±∞

1
t

∫ t

0
v(y1 − s, 0) ds = v∞

Back to the convolution formula, we get

|v(y)− v∞| ≤
∫

|t|≥M
|t ∂tG(t, y2)|

∣∣∣t−1

∫ t

0
v(y1 − s, 0) ds− v∞

∣∣∣dt

+
∫

|t|≤M
|t∂tG(t, y2)|

∣∣∣t−1

∫ t

0
v(y1 − s, 0) ds− v∞

∣∣∣dt

≤ C

(
δ(M) +

∫

|t|≤M
|t∂tG(t, y2)|

)
≤ C ′

(
δ(M) +

1
y2

)
,

where δ(M) → 0 as M → +∞. This proves the convergence of v to v∞, uniformly in y1 as
y2 goes to infinity.

It remains to show that the second component of v∞ is zero. Therefore, we consider the
function u := v + (y2, 0) which is divergence-free and cancels at ∂Ωbl. We integrate the
equation ∇ · u = 0 for y1 ∈ (0, t), y2 ∈ (ω(y1), 0), t > 0. We get by the Stokes formula

∫ t

0
u2(s, 0)ds =

∫ 0

ω(t)
u1(t, y2)dy2 −

∫ 0

ω(0)
u1(0, y2)dy2

which is exactly
∫ t

0
v2(s, 0)ds =

∫ 0

ω(t)
v1(t, y2)dy2 −

∫ 0

ω(0)
v1(0, y2)dy2 +

ω(t)2 − ω(0)2

2
.

We divide by t and let t→ +∞. As v is bounded, we obtain v∞2 = 0, which means v∞ = (α, 0)
for some α ∈ R. This ends the proof.

Using the homogeneity properties of the Poisson kernel G, a slight modification of the
previous argument yields
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Corollary 1 For all β ∈ N2, uniformly in y1,

y
|β|
2 ∂βy (v(y)− v∞)→ 0, as y2 → +∞.

We refer to [5] for the analogue of this corollary in the (more complicated) random case.

4.2 Extension to the almost periodic case

In this subsection, we want to show that the properties valid for for quasiperiodic roughness
extend to the class AP (R). Let ω ∈ AP (R), and v the corresponding solution of (BL). We
want to show that v(·, y2) ∈ AP (R) for all y2 > 0 and that it converges to some (α, 0) as y2

goes to infinity, uniformly with respect to y1.

Let ωn ∈ PT (R) such that ωn → ω in W 2,∞(R). We can associate to ωn a boundary
layer solution vn. By the results of the previous subsection, vn is quasiperiodic in y1 for all
y2 > 0, and converges to some field (αn, 0), as y2 goes to infinity, uniformly in y1. Clearly, it
is enough to show that

vn −−−→
n→∞ v in W 2,∞(R× {y2 > a}), for all a > 0 (4.10)

to get all the properties we want on v.

To compare directly v and vn is difficult as these functions are not defined on the same
domain. Like in the previous subsection, we introduce the diffeomorphism φ and the new
fields w, r solutions of the modified Stokes problem (4.2). Similarly, we introduce φn and wn,
rn. All these new fields are defined on the same domain R2

+. The differences w̃n := w − wn
and r̃n = r − rn satisfy, with obvious notations:





∇ · A∇w̃n + B∇r̃n = g̃n :=∇ · (An −A)∇wn + (Bn −B)∇rn + g − gn, z ∈ R2
+,

∇ · (Bt w̃n) =∇ · ((Bn −B)twn), z ∈ R2
+,

w̃n = 0, z2 = 0.
(4.11)

If we manage to prove that

w̃n −−−→
n→∞ 0 in H1

uloc(R× {y2 < a}), for all a > 0, (4.12)

then property (4.10) follows. Indeed, back to the original fields v and vn, (4.12) implies that

vn(·, 0)→ v(·, 0) in H
1/2
uloc(R), as n→ +∞ .

Then, the difference vn − v satisfies a Stokes equation in the half-space {y2 > 0}, with a
boundary data that goes to zero in H1/2

uloc(R). A closer look at the the proof of Proposition 6
(existence part) shows that this property implies (4.10).

It remains to obtain (4.12). From now on, δ(n) will denote a function going to zero as n
goes to infinity, possibly changing from line to line. Let a > 0 large enough so that

An = A = Bn = B = Id, z > a. (4.13)

We wish to show that
Enk :=

∫

R

∫ a

0
|∇w̃n|2 dz ≤ δ(n), (4.14)
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uniformly in k. This bound comes from arguments very similar to those of section 2. For
the sake of brevity, we only indicate the main steps and changes to take into account. First,
using property (4.13), one can show as in section 2 that the system is equivalent to





∇ · A∇w̃n + B∇r̃n = g̃n, z ∈ (0, a),
∇ · (Bt w̃n) =∇ · ((Bn −B)twn), z ∈ (0, a),

w̃n = 0, z2 = 0,
(−∂2w̃

n + r̃ne2)|{z2=a} =DN(w̃n|{z2=a})

(4.15)

The keypoint is to use (4.15) to derive the estimate

Enk ≤ C

(
δ(n) (k + 1) +

1
mδ

sup
j≥k+m

(Enj+1 −Enj ) + δ(n)m3

)
(4.16)

This estimate follows from an induction argument for a sequence of approximate solutions,
as in section 2. It is based on the induction relation

Enk ≤ C1

(
δ(n) (k + 1) +

1
mη

sup
j≥k+m

(Enj+1 −Enj ) + m sup
k+m≥j≥k

(
Enj+1 − Enj

)
)
. (4.17)

This relation comes from an energy estimate of system (4.11), localized in a truncated channel.
Precisely, one multiplies the Stokes like equation by χkw̃n, where χk is the same truncation
function as in section 2. After integration over R× (0, a) and a few integrations by parts, we
end up with

∫

R×(0,a)
χk|∇w̃n|2 ≤

∫

R×(0,a)
g̃n χkw̃

n +
∫

R×(0,a)
r̃n∇ · ((Bn −B)twn)χk + Rn (4.18)

:= I1 + I2 +Rn (4.19)

where

Rn :=
∫

R×(0,a)
A∇w̃n · (χ′k, 0)⊗ wn +

∫

R×(0,a)
r̃nχ′k(B

tw̃n)1 −
∫

{y2=a}
DN(w̃n) · (χkw̃n)

gathers the remaining terms that can be treated exactly as in section 2. In particular,

Rn ≤ Cν

(
1
mη

sup
j≥k+m

(Enj+1 − Enj ) + m sup
k+m≥j≥k

(
Enj+1 −Enj

)
)

+ νEnk

The first integral I1 is treated in the following way:

|I1| ≤
∫

R×(0,a)
|An −A| |∇wn| |∇(χkw̃n)| +

∫

R×(0,a)
|Bn −B| |∇rn| |χkw̃n|

+
∫

R×(0,a)
|g − gn| |χkw̃n|

Note that the integration by parts responsible for the first term of the r.h.s. does not give any
boundary term: indeed, the quantity (An − A) cancels at y2 = a by (4.13), and wn cancels
at y2 = 0. We get:

|I1| ≤ δ(n)
∫ k+1

−k−1

∫ a

0

(|∇w̃n|2 + |∇r̃n|2 + 1
)

+ δ(n)Enk+1
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where one can take

δ(n) = C (‖An −A‖L∞ + ‖Bn −B‖L∞ + ‖Fn − F‖L∞).

As the boundaries ωn are uniformly bounded in W 2,∞, one has by standard elliptic regularity

‖vn‖H2
uloc(Ω

bl,−) + ‖∇qn‖L2
uloc(Ω

bl,−) ≤ C‖vn‖H1
uloc(Ω

bl,−) ≤ C ′

uniformly with respect to n. Thus, for the new fields:

‖wn‖H2
uloc(R×(0,a)) + ‖∇rn‖L2

uloc(R×(0,a)) ≤ C ′′ ,

which in turn leads to
|I1| ≤ δ(n)

(
(k + 1) + Enk+1

)

To handle the second integral, we integrate by parts:

|I2| = −
∫

R×(0,a)
r̃n

(
χ′k(B

n −B)twn
)

1
−

∫

R×(0,a)
(∇r̃n) (Bn −B)twn χk := J1 + J2.

Again, there is no boundary term, as (Bn − B)twn cancels at both boundaries y2 = 0, a.
Using the equation,

J2 =
∫

R×(0,a)
B−1 (∇ ·A∇w̃n − g̃n)

(
(Bn −B)twn

)
χk.

This term can be treated in the same spirit as I1. We state without further details

|J2| ≤ δ(n)
(
k + 1 + Enk+1

)

The term J1 can be treated with minor modifications as the term I4 =
∫
pχ′ku1 in the

estimates of section 2. See also the pressure term in Rn above. It leads to:

|J1| ≤ δ(n)

(
Enk + 1 +

1
mη

sup
j≥k+m

(Enj+1 − Enj ) + m sup
k+m≥j≥k

(
Enj+1 −Enj

)
)
.

Collecting all these bounds gives the inequality (4.17).

As an easy consequence of the previous result, we get the same convergence properties as
in the quasiperiodic case. Namely:

Proposition 14 There exists α ∈ R, such that for all β ∈ N2,

| y|β|2 ∂βy (v(y) − (α, 0)) | → 0, as y2 → +∞
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4.3 Justification of the slip condition

Thanks to the previous proposition, we conclude the proof of Theorem 4. It is very close to
the proof of Theorem 2 of [5], related to the stationary random case. The only difference is
that in [5], all estimates involved expectations, because the convergence of the boundary layer
solution did not hold a priori uniformly with respect to y1. Here, by Proposition 14, we can
obtain a ”deterministic” bound, that is in L2

uloc(Ω).

For the sake of brevity, we only describe the main steps of proof, and refer to [5] for all
necessary details. Let the flux φ in (NSε) be small enough, and uε the solution provided by
Theorem 1. We introduce an approximation uεapp of uε of the type

uεapp(x) = u0(x) + 6φ εv(x/ε) + 6φ ε
(
u1(x) + rε

)
1Ω(x)

where u0 is the Poiseuille flow and v is the solution of (BL). The additional correctors u1

and rε ensure zero Dirichlet condition at the upper boundary of Ωε as well as zero flux. For
instance, u1 satisfies





−∆u1 + u0 · ∇u1 + u1 · ∇u0 +∇p1 = 0, x ∈ Ω

∇ · u1 = 0, x ∈ Ω,

u1|{x2=0} = 0, u1|{x2=1} = −v∞ = −(α, 0),
∫

σ
u1

1 = −α.
(4.20)

where as usual, σ (resp. σε ) denotes a vertical cross section of the channel Ω (resp. Ωε).
Like u0, u1 is explicit. It is a combination of Couette and Poiseuille flows:

u1(x) =
(
U1(x2), 0

)
, U1(x2) = −4αx2 + 3αx2

2.

The remainder rε satisfies




∇ · rε = 0, x ∈ Ω,
rε|{x2=0} = 0, rε|{x2=1} = (−v(x/ε) + v∞)|{x2=1},∫

σ
rε1 = −

∫

σε\σ
u0

1 −
∫

σε
v1(x/ε) + α.

(4.21)

It is provided by the following:

Lemma 15 The problem (4.21) has a (non-unique) solution rε such that

‖rε‖H2
uloc(Ω) = o(1), as ε→ 0.

Proof of the Lemma. It is enough to find some r̃ε that satisfies the first two lines of (4.21)
and the estimates of the Lemma, because the field

rε := r̃ε − (6φεy2(1− y2), 0) , φε :=
∫

σε\σ
u0

1 +
∫

σε
v1(x/ε)− α+

∫

σ
r̃ε1

will then fulfill all requirements. Indeed, the flux term φε is independent of x1, because

φε = −φ+
∫

σε
ũεapp, where ũεapp(x) := u0(x) + v(x/ε) + ε (r̃ε − α) 1Ω(x)
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is divergence-free and zero at ∂Ωε. Moreover,

|φε| ≤ ε2‖ω‖2L∞
2

+ ε

∫ 0

εω(0)
|v(0, x2/ε)|dx2 +

∫ 1

0
|v(0, x2/ε)− α|dx2 + ‖rε‖L∞

≤ δ(ε) +
∫ 1

0
|v(0, x2/ε)− α|dx2, δ(ε)→ 0, as ε→ 0.

By Proposition 14, for all δ > 0, we can find some M such that |v(0, y2)−α| ≤ δ for y2 > M .
Then,
∫ 1

0
|v(0, x2/ε)−α|dx2 =

∫ εM

0
|v(0, x2/ε)−α|dx2 +

∫ 1

εM
|v(0, x2/ε)−α| dx2 ≤ C(M) ε + δ.

This shows as needed that |φε| = o(1) as ε goes to zero.

The construction of r̃ε follows the exact same lines as the construction of vl in [5, Propo-
sition 5.1,p979]. The only difference is that thanks to the stronger Proposition 14, we can get
a deterministic H2

uloc bound.

This approximation at hand, Theorem 4 is deduced from the two following estimates:

‖uεapp − uN‖L2
uloc(Ω) = o(ε), (4.22)

where uN is the solution of (NS)-(Na), with the parameter α associated to (BL), and

‖uεapp − uε‖H1
uloc(Ω

ε) = o(ε) (4.23)

For inequality (4.22), one takes advantage that uN is explicit, namely

uN = (UN (x2), 0), UN (x2) = φ

(
−6(1 + εα)

1 + 4εα
x2

2 +
6

1 + 4εα
x2 +

6εα
1 + 4εα

)
.

A direct computation shows that

uN = u0 + 6φ ε(α, 0) + 6φ εu1 +O(ε2) in L2
uloc(Ω)

so that

uεapp − uN = 6φ ε (v(x/ε)− (α, 0)) + 6φ εrε1Ω + O(ε2) = o(ε) in L2
uloc(Ω).

The inequality (4.23) comes from an energy estimate on wε = uε − uεapp. It solves:





−∆wε + ∇rε = ∇ ·Gε, x ∈ Ωε,

∇ · wε = 0,
wε|∂Ωε = 0,∫

σε
wε1 = 0,

[wε]|Σ = 0, [∂2w
ε − rεe2]|Σ = jε,

(4.24)
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where

Gε := −uε ⊗ uε − 6φ ε∇rε1Ω = O(ε3/2) + o(ε) = o(ε) in L2
uloc(Ω

ε)

and the jump term

jε := −24φεα + ε∂2r
ε|x2=0 = O(ε) in L2

uloc(Σ)

which means that for all w ∈ H1
uloc(Ω

ε) that cancels at the lower boundary of Ωε,

sup
k

∣∣∣
∫

Σk,k+1

jεw
∣∣∣ ≤ Cε‖uεL2

uloc(Σ) ≤ Cε3/2‖∇w‖H1
uloc(Ω

ε)

Following the energy estimates of article [5] (or simplifying those of the present paper!),
we get from there inequality (4.23). This concludes the proof of Theorem 4.

4.4 Small divisor assumption

The general Theorem 4 shows that a slip condition with appropriate slip parameter yields a
o(ε) approximation of the solution. This error estimate can be refined in the quasiperiodic
case:

ω = F (λy1), F = F (θ) ∈ C∞(Td), λ ∈ Rd,
when the vector of periods λ satisfies the diophantine assumption (H). In such a case, the
same Navier wall law gives a O(ε3./2) estimate, as stated in Theorem 5. This theorem will be
a consequence of

Proposition 16 If λ satisfies (H), the solution v of (BL) satisfies for all β, γ ∈ N2,

y
|β|
2 ∂γ(v − v∞)→ 0, as y2 → 0, uniformly in y1.

In other words, the boundary layer profile is in the Schwartz class with respect to the variable
y2, uniformly with respect to y1. This fast decay allows to turn each o(ε) into O(ε3/2) in all
the arguments of the previous subsection. This is due to the fact that any power of v − v∞
or its derivatives is integrable with respect to y2. This yields for instance:

ε‖v(x/ε)− v∞‖L2
uloc(Ω) ≤ ε3/2 sup

y1

(∫ +∞

ω(y1)
|v(y)− α|2dy

)1/2

= O(ε3/2)

The same is true for all related quantities, which leads to Theorem 5.

Proof of the Proposition To establish this speed of convergence, we come back to the field
W = W (θ, t) provided by Proposition 12. It is enough to prove that W is in the Schwartz
class with respect to t, uniformly with respect to θ. We remind that it satisfies the estimates
(4.4), which express that DW :=

(
λ·∂θ
∂t

)
W belongs to Hs(Td×R+) for all s. For any smooth

function φ defined on Td × R, we will decompose

φ(θ, t) = φ̃(θ, t) + φ(t),
∫

Td
φ̃(θ, t) dθ = 0.
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Assumption (H) yields that
∫

Td
(λ · ∂θ)ϕ̃|2 ≥ c ‖ϕ̃‖H−l(Td) (4.25)

for smooth enough ϕ̃ = ϕ̃(θ) with zero average. From there and (4.4), we get the following
estimate:

∫ +∞

0

∫ d

T
|∂βW̃ |2 + |∂β∂tW |2 dθ dt ≤ C(β, k) < +∞, ∀β ∈ Nd+1. (4.26)

where ∂β := ∂β1

θ1
...∂βdθd ∂

βd+1

t . Moreover, this yields a genuine strong formulation for system
(4.3): we remind that in the general quasiperiodic case, we only had the modified strong
formulation (4.9), due to the lack of compactness of the sequence Rη. We only had

DRη → D, η → 0,

in Hs(Td × R+) for any s, where D was satisfying (4.8). Here, thanks to (4.25), we get a
bound on R̃η which allows to extract from Rη a subsequence converging in Hs to some smooth

R := lim
δ→0

R̃η + lim
η→0

∫ t

0
∂tR

η
.

Moreover,
∫ +∞

0

∫ d

T
|∂βR̃|2 + |∂β∂tR|2 dθ dt ≤ C(β, k) < +∞, ∀β ∈ Nd+1, (4.27)

and W , R satisfy (4.3) in a classical sense.

The last step is to determine the behaviour of W and its derivatives as t → 0. Let M
large enough so that A = B = Id, F̃ = 0 for t ≥M . Thus,

D2W +DR = 0, D ·W = 0, for t ≥M, θ ∈ Td. (4.28)

Let T ≥M . We define

E(T ) :=
∫ +∞

T

∫

Td
|DW |2 dθ dt, and W ′(t) := W −

∫

Td
W (θ, T )dθ.

Multiplying (4.28) by W and integrating for θ ∈ Td, t ∈ (T,+∞),

E(T ) = −
∫

Td
( 0

1 ) ·DW (·, T ) ·W ′(·, T ) +
∫

Td
( 0

1 )R(·, T ) ·W ′(·, T )

= −
∫

Td
( 0

1 ) ·DW̃ (·, T ) · W̃ (·, T ) +
∫

Td
( 0

1 ) R̃(·, T ) · W̃ (·, T )

By the Cauchy-Schwartz inequality,

E(T ) ≤
((∫

Td

∣∣∣DW̃ (·, T )
∣∣∣
2
)1/2

+
(∫

Td

∣∣∣R̃(·, T )
∣∣∣
2
)1/2

)(∫

Td

∣∣∣W̃ (·, T )
∣∣∣
2
)1/2

(4.29)
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By interpolation and use of (4.25), we have: for all 1 < p < +∞, for all smooth ϕ̃ with zero
average,

‖ϕ̃‖2Hs(Td) ≤ C

(∫

Td
|λ · ∂θϕ̃|2

)1/p (‖ϕ̃‖Hs′
)2−2/p (4.30)

where s′ = l+s
p−1 + s. It implies, together with (4.26), for all 1 < p < +∞,

∫

Td

∣∣∣W̃ (·, T )
∣∣∣
2
≤ C

(∫

Td
|DW |2

)1/p

.

Moreover, thanks to (4.26)-(4.27), we have crudely

(∫

Td

∣∣∣DW̃ (·, T )
∣∣∣
2
)1/2

+
(∫

Td

∣∣∣R̃(·, T )
∣∣∣
2
)1/2

≤ C (4.31)

Back to inequality (4.29), we get

E(T ) ≤ C

(∫

Td
|DW |2

)1/2p

, ∀ p > 1

which is
E(T ) ≤ C(−E′(T ))1/2p, ∀ p > 1. (4.32)

It yields in turn that
E(T ) ≤ C T−η, ∀η < 1. (4.33)

Remark that we can differentiate the equation (4.28) and apply the same reasoning to any
derivative of W . We obtain for all β ∈ Nd+1

Eβ(T ) :=
∫ +∞

T

∫

Td
|∂βDW |2 dθ dt ≤ C T−η, ∀η < 1.

which yields by (4.25)
∫ +∞

T

∫

Td

(
|∂βW̃ |2 + |∂β∂tW |2

)
dθ dt ≤ C T−η, ∀η < 1.

By Sobolev imbedding, it implies

(∫

Td

∣∣∣DW̃ (·, T )
∣∣∣
2
)1/2

≤ C T−η/2, ∀η < 1.

It also implies, using (4.25) and the Stokes equation (4.3),

(∫

Td

∣∣∣R̃(·, T )
∣∣∣
2
)1/2

≤ C T−η/2, ∀η < 1.

Hence, (4.31) can be replaced by

(∫

Td

∣∣∣DW̃ (·, T )
∣∣∣
2
)1/2

+
(∫

Td

∣∣∣R̃(·, T )
∣∣∣
2
)1/2

≤ C T−η/2, ∀η < 1,
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and the integro-differential inequality (4.32) is replaced by

E(T ) ≤ C T−η/2(−E′(T ))1/2p, ∀η < 1.

Finally, (4.33) is replaced by

E(T ) ≤ C T−η
′
, ∀ η′ < p+ 1

Proceeding recursively, we can gain an arbitrary power of T in the decay rate. We end up
with

T γ ∂βW̃ , T γ∂β∂tW → 0, as T → +∞, uniformly in θ.

It remains to show the rate of convergence of the average W . We write

|W (t+ h)−W (t)| ≤
∫ t+h

t
| d
dt
W | ≤ C(γ)

∫ t+h

t
(1 + s)−γds

for all γ > 0. This shows that W (t) is a Cauchy function, hence convergent to a constant
vector W∞ as t goes to infinity. Back to above inequality, the convergence is faster than any
power function of t. This concludes the proof of the proposition.
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