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1 Introduction

In this paper, we study the diffusion limit of the semiconductor Boltzmann-Poisson
system (see [24, 27]) in the presence of a spatially oscillating electrostatic potential.
This generalizes the study done in [21] where the same problem is treated without the
oscillating electrostatic potential. The study of the diffusion and homogenization
of the linear Boltzmann system was also done in [7]. In the present paper, the
major difficulty is the combination of the nonlinearity with the two scale limit which
requires some compactness to pass to the limit. We refer to the previous mentioned
papers for the physical background.

We consider the following scaled Boltzmann equation

∂tf
ε +

1

ε
(v .∇xf

ε −∇xΦ
ε
T .∇vf

ε) =
Q(f ε)

ε2
(1)

The position variable x belongs to a bounded and regular domain ω, the velocity
is v ∈ Rd and the time t is nonnegative. The initial value of the distribution function
is

f ε(0, x, v) = f ε
0 (x, v) (2)

where f ε
0 is a given function which might depend on ε.

The electrostatic potential Φε
T (t, x) is given by

Φε
T (t, x) = ΦH

(
x,
x

ε

)
+ Φε

P (t, x) (3)

where ΦH(x, y) is a given regular and cell-periodic function with respect to y. For
simplicity we assume that the cell period is the unit cube [0, 1]d and ΦH is time-
independent. The additional potential Φε

P is self-consistent, it is obtained by solving
the Poisson equation

−∆xΦ
ε
P (t, x) = ρε(t, x) =

∫
Rd

f ε(t, x, v)dv

Φε
P | ∂ω

= Φb

(4)

where Φb is given on the boundary. We denote Φ̄b the harmonic extension of Φb in
ω.

The incoming boundary conditions are assumed to be well-prepared:

f ε(t, x, v) = ρb(t, x) M(v) exp
(
Φe(x)− ΦH

(
x,
x

ε

))
x ∈ ∂ω, v.n(x) < 0 (5)

where n(x) is the outward normal vector at the point x, ρb(t, x) is a boundary data,
Φe(x) is the effective potential defined in (10) and M is the normalized Maxwellian
with zero mean velocity

M(v) =
e−|v|

2/2(√
2π
)d (6)

The collision operator is the low density approximation electron-phonon inter-
action, given by

Q(f) =

∫
Rd

σ(v, v′) [ (M(v) f(v′)−M(v′) f(v) ] dv′ (7)
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The cross section σ is assumed to be symmetric (micro-reversibility principle)
and bounded from above and below

σ(v, v′) = σ(v′, v), (v, v′) ∈ R2d

∃ σ1, σ2 > 0 / 0 < σ1 ≤ σ ≤ σ2

(8)

We recall that this operator is the linearization of the Fermi-Dirac model, we
refer to [20, 24, 30] for the study of such operator. The properties of this operator
can be summarized in the following proposition due to Poupaud [27].

Proposition 1.1 [27] The collision operator Q is continuous on L1(dv). It satisfies

1. −Q is nonnegative and self-adjoint operator on L2(M−1(v) dv).

2. Ker(Q) is spanned by the Maxwellian: Ker(Q) = RM(v).

3. Q is invertible on its range:

R(Q) = Ker(Q)⊥ :=

{
g ∈ L2(M−1 dv),

∫
Rd

g(v)dv = 0

}
4. Q satisfies an H-theorem which we state here in the following form

H(f) =

∫
Rd

Q(f)log

(
f

M

)
dv ≤ −2σ1

∫
Rd

(√
f −

√
ρ M

)2

dv (9)

where ρ =
∫

Rd f dv.

1.1 Assumptions and Convergence result

Before giving the assumptions we are considering, let us define by Ω = ω × Rd, the
phase (position-velocity) space. The incoming (-) and the outgoing (+) parts of the
boundary are given by

Γ± = {(x, v) ∈ ∂Ω, / ± v.n(x) > 0}

We will denote by Φe the homogenized effective potential

Φe(x) = −log

(∫
Y

e−ΦH(x,y)dy

)
. (10)

The Maxwellians MΦH
and MΦε

T
will denote{

MΦH
(x, y, v) = M(v) exp (Φe(x)− ΦH(x, y))

MΦε
T
(t, x, v) = M(v) exp (Φe(x)− Φε

T (t, x))
(11)
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We define the total mass, the kinetic energy and two distances to the local equilib-
rium by

Mε(t) =

∫
Ω

f ε(t, x, v) dv dx, Kε(t) =

∫
Ω

|v|2

2
f ε(t, x, v) dv dx

Rε(t) =

∫ t

0

∫
Ω

(√
f ε −

√
ρεM

)2

dv dx ds

Rε
1(t) =

∫ t

0

∫
Ω

∫
Rd

(
f ′

M ′ −
f

M

)(
log

f ′

M ′ − log
f

M

)
MM ′ dv′ dv dx ds

(12)

The charge and current densities will be denoted by

ρε(t, x) =

∫
Rd

f ε(t, x, v) dv, jε(t, x) =
1

ε

∫
Rd

f ε(t, x, v)v dv (13)

We will also use the notations
f̃ ε(t, x, v) = f ε(t, x, v) eΦH(x,x/ε),

ρ̃ε(t, x) = ρε(t, x) eΦH(x,x/ε),

j̃ε(t, x) = jε(t, x) eΦH(x,x/ε)

(14)

Assumptions. The assumptions of this study are the following

(A1) The initial data f ε
0 is uniformly bounded in L1(Ω) with bounded mass, kinetic

energy and entropy: i. e. there exists a constant C > 0 such that∫
Ω

f ε
0

(
|log f ε

0 |+ 1 +
|v|2

2

)
dxdv ≤ C (15)

(A2) The boundary data ρb is bounded from below and above: ∃ cb > 0 and Cb > 0
such that

cb ≤ ρb ≤ Cb (16)

(A3) The potential ΦH belongs to L∞loc(R+; W 2,∞(ω̄ × Y )). The boundary data
Φb ≥ 0 and (Φ̄b, ∂tΦ̄b) ∈ L∞loc(R+; W 1,∞ × L∞(ω̄)).
(A4) The cross-section σ is uniformly bounded and satisfies the detailed balance
principle:

0 < σ ≤ σ(v, v′) = σ(v′, v) ≤ σ̄ (17)

Main result. The main result of the paper is the following

Theorem 1.2 Assume that assumptions (A1), (A2), (A3) and (A4) are satis-
fied. Let (f ε,Φε

P ) be a renormalized solution in the sense of definition 3.1 of the
Boltzmann-Poisson system (1)–(4) and which satisfies in addition the properties of
theorem 3.2. Then,

f̃ ε := f ε eΦH(x,x/ε) → ρM(v) eΦe(t,x) in L1(0, T ; L1(Ω))

Φε
P → ΦP in L2(0, T ; W 1,p(ω)), ∀ 1 ≤ p < 2

(18)
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In particular ρε converges weakly in L1(0, T ; L1(ω)) towards ρ and (ρ,ΦP ) is the
solution of the Drift-Diffusion-Poisson system

∂tρ+∇x . J(ρ,ΦP + Φe) = 0

J(ρ,ΦP + Φe) = −D(x) [∇xρ+ ρ∇x(ΦP + Φe)]

−∆xΦP = ρ

(ρ,ΦP )|∂ω
= (ρb,Φb)

ρ(t = 0) = ρ0 =

∫
Rd

f0 dv

(19)

The function Φe and the matrix D are given respectively by (10) and (31) and f0 is
the weak limit of f ε

0 . 2

The outline of the paper is as follows. In Section 2, we recall some useful proper-
ties concerning the notion of two-scale limit. Then, we derive formally the homog-
enized fluid system. Section 3 is devoted to the existence of renormalized solutions
to the initial system. Then, in section 4, we recall some uniform estimates for well-
prepared incoming data. In Section 5, we prove the compactness of f̃ ε and ρ̃ε by
using an averaging lemma and a Lions-Aubin lemma. This result will be essential
to pass to the limit in the equation which will be done in section 6. In the last
subsection we will pass to the limit in the boundary conditions and recover the limit
system which will end the proof of Theorem 1.2.

2 Formal analysis

Due to the presence of an oscillating potential ΦH , the formal analysis should be
treated using a double scale limit on the spatial variable. As usual, when dealing
with two-scale limits, the following notations will be used. We denote by C#(Y )
and C∞# (Y ) respectively, continuous and infinitely differentiable functions defined

on Y and extended to Rd by Y -periodicity. For p ≥ 1 and an open subset ω ⊂ Rd,
Lp(ω; C#(Y )) is the space of functions of Lp(ω) with value in C#(Y ). The following
spaces D′(ω; C∞# (Y )), D(ω; C∞# (Y )), . . . are defined in the same manner. We also
use the notation D# = D((0, T )× Ω; C∞# (Y )) to denote the space of test functions
which are periodic in Y . For Y -periodic functions of y, the notation (f)ε, (∇yf)ε, . . .
will be used instead of f(t, x, x

ε
, v), ∇yf(t, x, x

ε
, v), . . . We will also use the notation

Φε
H := (ΦH)ε = ΦH(x, x

ε
).

2.1 Two-scale limit

Let us review some useful properties related to the notion of two-scale convergence.
Formally speaking, it consists in introducing an antzas like a two scale Hilbert
development

f ε(t, x, v) = f0

(
t, x,

x

ε
, v
)

+ ε f1

(
t, x,

x

ε
, v
)

+ ε2 f2

(
t, x,

x

ε
, v
)

+ . . . (20)
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A similar idea consists in replacing the sequence f ε(t, x, v) by f̂ ε(t, x, y, v). This

function f̂ ε is periodic in y. The existence of such function is justified by using the
Riesz theorem. Let us explain this idea and give some properties of the two scale
convergence which we will use throughout this paper.
Let uε(t, x, v) be a bounded sequence in L2(]0, T [×Ω). Then, using the Riesz repre-
sentation theorem, there exists a unique function ûε such that for all ψ := ψ(t, x, y, v)
in D([0, T ]t × Ωx,v, C∞# (Y )), we have∫ T

0

∫
Ω

uε(t, x, v)ψ
(
t, x,

x

ε
, v
)

=

∫ T

0

∫
Ω

∫
Y

ûε(t, x, y, v)ψ(t, x, y, v) (21)

Moreover,

‖uε‖L2(]0,T [×Ω) = ‖ûε‖L2(]0,T [×Ω×Y )

The above isometry identifies uε and ûε and then gives a rigorous sense to the notion
of two sale convergence. Indeed, from each bounded sequence ûε of L2

loc there exists
a subsequence which converges weakly to a function û of L2

loc. The subsequence is
still denoted ûε. The limit û is called the two-scale limit of ûε. We remark that there
is more information in û then in the weak limit u of the sequence uε. We can notice
that u is the average of û with respect to the fast variable y. We should remark
in this context that even if the two scale limit of uε does not depend on y, this
does not imply that it converges strongly in L2. However, we say that uε converges
two-scale strongly if the sequence ûε converges in the L2 norm. we claim that
if uε converges two-scale strongly towards a y−independent function u(x), then it
converges strongly in L2. Let us summarize some of these properties in the following
proposition

Proposition 2.1 Let ω be an open subset of Rd and uε a sequence of L2(ω) that
two-scale converges to a limit û ∈ L2(ω × Y ). If

lim
ε→0

‖uε‖L2(ω) = ‖û‖L2(ω×Y )

then for all sequence vε that two-scale converges to v̂ ∈ L2(ω × Y ), we have ûε v̂ε

converges in D′(ω × Y ) towards û v̂ and

uε vε ⇀

∫
Y

û v̂ dy ∈ D′

Moreover, if û is continuous with respect to the variable y, we infer that

lim
ε→0

∥∥∥uε(x)− û
(
x,
x

ε

)∥∥∥
L2(ω)

= 0

Let us conclude this review with some further remarks:

1. For any smooth function ψ(x, y) which is Y−periodic with respect to y, the
sequence ψε(x) = ψ(x, x

ε
) two-scale converges strongly towards the function ψ.
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2. Let uε be a bounded sequence in W 1,2 which converges weakly to u ∈ W 1,2.
Then, uε converges to u in L2. Moreover, there exists a function u1(x, y) ∈
L2
(
ω, W 1,2

# (Y )/R
)

such that ∇xuε two-scale converges to ∇xu+∇yu1.

3. If uε and ε∇xuε are bounded in L2. Then the two-scale limit û of uε belongs
to L2(ω, W 1,2

# (Y )) and ε∇xuε two-scale converges, up to a subsequence, to
∇yû.

4. Similar remarks are available in Lp or Lp
loc for all p ∈ (1,+∞).

2.2 Formal expansion

Let us now perform the formal analysis of the scaled Boltzmann equation in order
to get the limit system. We start with the linear equation and consider the equation
associated with a given potential Φε

H := ΦH(x, x
ε
). As we remarked above, one can

rewrite the Boltzmann equation, with unknown f̂ ε. It reads as follows

∂tf̂ ε +
1

ε

(
v.∇xf̂ ε −∇xΦH .∇vf̂ ε

)
+
LΦH

(f̂ ε)

ε2
= 0 (22)

where
LΦH

= v.∇y −∇yΦH .∇v −Q (23)

We assume that f̂ ε satisfies the following Hilbert expansion, as ε goes to zero,

f̂ ε = f̂0 + ε f̂1 + ε2f̂2 + . . . (24)

where the coefficients f̂i ∈ L2((0, T ) × Ω × Y ). Inserting this development into the
equation (22) and identifying the coefficients with the same power of ε, we get

ε−2 : LΦH
f̂0 = 0 (25)

ε−1 : −LΦH
f̂1 = v.∇xf̂0 −∇xΦH(x, y).∇vf̂0 (26)

ε0 : −LΦH
f̂2 = ∂tf̂0 + v.∇xf̂1 −∇xΦH(x, y).∇vf̂1 (27)

It is obvious that the limit system relies on the properties of the null space of the
cell operator LΦH

, so we should study the first equation. For this, we define the
weighted Hilbert space L2

MΦH
as

L2
MΦH

=

{
f(y, v) / f(y, v) ∈ L2

loc

(
dydv

MΦH

)
and f is Y-periodic with respect to y

}
equipped with the inner product

〈f, g〉 =

∫
Rd

∫
Y

f g
dydv

MΦH

.
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Notice that the inner product depends on x. For each x, the operator LΦH
acting

on this space is unbounded, with domain

D(LΦH
) = {f ∈ L2

MΦ
/ v.∇yf −∇yΦH .∇vf ∈ L2

MΦH
}

and it satisfies the following

Proposition 2.2 [7] The operator LΦH
is maximal monotone on L2

MΦH
and satisfies

1. Ker(LΦH
) = RMΦH

,

2. R(LΦH
) =

{
g ∈ L2

MΦH
/

∫ ∫
Y×Rd

g(y, v)dydv = 0

}
.

3. For all g ∈ R(LΦH
), there exists f ∈ D(LΦH

) such that LΦH
f = g. This

solution is unique under the solvability condition

∫ ∫
Y×Rd

f(y, v)dydv = 0. We

denote it f = L−1
ΦH
g 2

According to (25) and the above proposition, there exists a density ρ(t, x) such that

the weak limit f̂0 of the sequence f̂ ε has the form:

f̂0(t, x, y, v) = ρ(t, x)MΦH
(x, y, v). (28)

We stress, here that f̂0 solves both the transport and the collision parts separately,
namely v.∇yf̂0 −∇yΦH .∇vf̂0 = 0 and Qf̂0 = 0. Ignoring the part of f̂1 which is in
the kernel of LΦH

, a simple computation of the right hand side of (26) leads to

f̂1(t, x, y, v) = −(∇xρ+ ρ∇xΦe)(t, x).L−1
ΦH

(vMΦH
)(x, y, v). (29)

Denoting by χ the unique solution in [R(LΦH
) ∩D(LΦH

)]d of

LΦH
χ = vMΦH

, (30)

the diffusion matrix D is defined by

Dij(x) =

∫ ∫
Y×Rd

vi ⊗ χj(x, y, v)dydv. (31)

By applying the solvability condition, stated in the above proposition, to (27) we
obtain the homogenized Drift-Diffusion model. We recall here that we use the
convention div(DF ) = ∂i(DijFj).
We remark that, this limit equation is associated with an effective potential Φe,
collecting some microscopic information induced by the rapidly oscillating potential
ΦH . The Drift-Diffusion model we get is the following{

∂tρ+∇x . J(ρ,Φe) = 0

J(ρ,Φe)(t, x) = −D(x)[∇xρ+ ρ∇xΦe](t, x).
(32)

We refer to [7] for the proof of proposition 2.2 and for the convergence (ε → 0) in
the case of linear Boltzmann equation. In this paper, we are dealing with a more
general situation since we have a coupling with Poisson and the major difficulty is
to get enough compactness to pass to the limit in the nonlinear terms.
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3 Existence of solutions

In all the sequel we will the notation Let us now give the definition of solution we
are going to deal with.

Definition 3.1 We say that that (f ε,Φε
P ) is a renormalized solution of the Boltzmann-

Poisson system if the function f̃ ε := eΦH(x,x/ε)f ε satisfies

1. ∀ β ∈ C1(R+), |β(t)| ≤ C(
√
t + 1), and |β′(t)| ≤ C, β(f̃ ε) is a weak solution

of

ε ∂t β(f̃ ε) + v .∇xβ(f̃ ε)−∇v . (∇xΦ
ε
T β(f̃ ε)) =

Q(f̃ ε)

ε
β′(f̃ ε)+

+v.(∇xΦH)ε f̃ εβ′(f̃ ε)+
1

ε
v . (∇yΦH)ε f̃ εβ′(f̃ ε)

β(f̃ ε)|Γ− = β(f̃ ε
b )

β(f̃ ε)(t = 0) = β(f̃ ε
0 )

(33)

2. ∀ λ > 0, θε,λ =
√
f ε + λM e−ΦH(x,x/ε) satisfies

ε ∂t θε,λ + v .∇xθε,λ −∇v.[∇xΦ
ε
T θε,λ] =

Q(f̃ ε)

2 ε θε,λ

+
λ

2θε,λ

vM.∇xΦ
ε
P e

−ΦH(x,x/ε)

(34)

Theorem 3.2 The semiconductor Boltzmann-Poisson system (1–4) has a renor-
malized solution in the sense of definition 3.1 which satisfies in addition

1. the continuity equation
∂tρ

ε +∇x.j
ε = 0 (35)

2. the entropy inequality[∫
Ω

f ε

(
log f ε +

|v|2

2
+ Φε

H + Φ̄b

)
+

1

2
‖∇x(Φ

ε
P − Φ̄b)‖2

L2

]t

0

−
∫ t

0

∫
ω

∂tΦ̄b ρ
ε

≤ 1

ε2

∫ t

0

∫
Ω

Q(f ε)log

(
f ε

M

)
− 1

ε

∫ t

0

∫
Γ+∪Γ−

f ε

(
log f ε +

|v|2

2
+ Φε

T

)
(v.n(x))

(36)

Proof. We refer to [21] for the proof of a similar theorem and for further details
on the concept of renormalized solution. We also refer to [11, 22] and the references
therein.

Remark 3.3 We point out here that we are renormalizing the equation satisfied
by f̃ ε instead of renormalizing the equation satisfied by f ε. This is actually, not
equivalent. Indeed, to get the compactness of ρ̃ε, we need the renormalization of f̃ ε

and to pass to the limit in jε we need the equation satisfied by θε,λ. We point out that
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we can also change the definition 3.1 to include the renormalization of any function
of the form φ1f

ε + φ2 where φ1 and φ2 are smooth functions of x and v, namely
we can require that for all ∀ β ∈ C1(R+), |β(t)| ≤ C(

√
t + 1), and |β′(t)| ≤ C,

β(φ1f
ε + φ2) satisfies a similar equation to (33). We do not do this here since it is

not necessary in the proof. 2

4 Uniform estimates

Let us now show the kind of estimates one can establish for these renormalized
solutions. We point out that here we try to generalize energy estimates obtained in
[21] to the case we add an oscillating potential. So, we will not give all the details and
refer to [21] for the proofs. We remark that due to the incoming velocities, estimates
(35) and (36) are not uniform at this stage and we should approximate the entropy
production terms coming from the boundary in order to get some uniform bounds
from (36). Our uniform estimate is the following

Lemma 4.1 Assume that (A1)–(A4) are satisfied. Let (f ε,Φε
P ) be a renormalized

solution of (1-4) given by theorem 3.2. Then,

Mε(t) +Kε(t) + ‖∇xΦ
ε
P (t)‖L2 +

Rε
1(t)

ε2
+

∫ t

0

‖jε(s)‖2
L1(ω) ds ≤ CT (37)

Proof. Let us come back to the inequality (36) and denote the total relative entropy
Eε(t) by

Eε(t) =

∫
Ω

f ε(t)

(
log f ε +

|v|2

2
+ Φε

H + Φ̄b

)
(t) +

1

2
‖∇x(Φ

ε
P − Φ̄b)‖2

L2(ω)(t).

One can rewrite the boundary fluxes in the following manner∫
Γ+∪Γ−

f ε

(
log f ε +

|v2|
2

+ Φε
T

)
(v.n(x)) =

∫
Γ+

|v.n(x)|f ε(v) log

(
f ε(v)

f ε(−v)

)

+

∫
Γ+

|v.n(x)|(f ε(v)− f ε(−v))
(

log

(
ρb(t, x)

(
√

2π)d

)
+ Φb

)
≥
∫

Γ+

|v.n(x)|(f ε(v)− f ε(−v)) (1 + EF (t, x))

(38)
where EF is a macroscopic quasi-Fermi level given by

EF (t, x) = log

(
ρb(t, x)

(
√

2π)d

)
+ Φb(t, x). (39)

We point out that Eε belongs to C1([0, T ]) and (36) can be replaced by

[Eε]t0 +
σ1

2
Rε

1(t) ≤
∫

ω

∂tΦ̄b ρ
ε − 1

ε

∫ t

0

∫
Γ+

|v.n(x)|(f ε(v)− f ε(−v))(1 + EF (t, x)).
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The remainder of the proof follows exactly the one in [21]. We replace ρb by its
harmonic extension, ρ̄b, The extended quasi-Fermi level is denoted by

ĒF (t, x) := log

(
ρ̄b(t, x)

(
√

2π)d

)
+ Φ̄b(t, x)

Recall that for all fixed ε > 0, the continuity equation is defined in the weak sense.
We multiply (35) by (1 + ĒF ) and integrate with respect to t and x and then bound
∇xĒF and ∂tĒF and deduce∫ t

0

∫
ω

∂tΦ̄b ρ
ε − 1

ε

∫ t

0

∫
Γ+

|v.n(x)|[f ε(v)− f ε(−v)](1 + EF )

≤ CT

(
1 +

∫ t

0

[Mε(s) + ‖jε(s)‖L1 ] ds

)
+

∫
ω

ρε(t)(1 + ĒF )(t)

and also,

Eε(t) +
Rε

1(t)

ε2
≤ CT

(
1 +

∫ t

0

Mε(s)ds+

∫ t

0

‖jε(s)‖L1ds

)
+

∫
ω

ρε(t)(1 + ĒF )(t)

We deduce easily from the entropy dissipation (9)∫ t

0

‖jε‖L1(s)ds ≤ 1

2ε2
Rε

1(t) +
CT

2

∫ t

0

(Mε(s) +Kε(s))ds (40)

Notice that Eε can be negative, however, we can bound it from below in function of
Mε and Kε (see [21]). Hence, we get

Mε(t) +Kε(t) +
Rε

1(t)

2ε2
≤ CT

(
1 +

∫ t

0

Mε(s)ds+

∫ t

0

Kε(s)ds

)
Finally, a Gronwall argument implies Estimate (37). 2

The proof of the next corollary and propositions can be found in [21]

Corollary 4.2 The renormalized solution satisfies∫
Ω

f ε(1 + |v|2 + |log f ε|) +

∫ t

0

∫
Γ+

f ε(1 + |v|2 + |log f ε|)|v.n(x)| ≤ CT .

Moreover, f ε and its trace f ε
|Γ+

are weakly relatively compact in L1((0, T )× Ω) and

L1((0, T )× Γ+, |v.n(x)|dtdσxdv)) respectively. 2

Proposition 4.3 The renormalized solution (f ε,Φε
P ) satisfies

1. ρε is weakly relatively compact in L1((0, T )× ω).

2. Q(fε)
ε

is weakly relatively compact in L1((0, T )× Ω).

3. ∇Φε
P is relatively compact in L2(0, T ; Lp(ω)) for all 1 ≤ p < 2. 2

We also define

rε =
1

ε
√
M

(√
f ε −

√
ρεM

)
.

Using the entropy dissipation bound Rε
1(t) ≤ Cε2 and Young inequality, we deduce

as in [21] that (see also [2] and [19])

Proposition 4.4 rε is such that ε|rε|2|v|2M is bounded in L1((0, T )×Ω),
√
ε|rε|2|v|M

is bounded in L1((0, T )× Ω) and |rε|2M is bounded in L1((0, T )× Ω).

11



5 Compactness of modified density

Proposition 5.1 The modified density ρ̃ε(t, x) := ρε(t, x)eΦH(x,x/ε) is relatively com-
pact in L1((0, T )×ω) and there exists ρ̃ ∈ L1((0, T )×ω) such that, up to extraction
of a subsequence if necessary,

ρ̃ε → ρ̃ in L1((0, T )× ω) and a. e,

f̃ ε → ρ̃M in L1((0, T )× Ω) and a. e. 2

The proof of this proposition is done in two steps. We first prove the compactness
of ρ̃ε with respect to the x variable and then show the compactness in time.

In the sequel, we will use the following

β(s) =
s

1 + s
, βδ(s) =

1

δ
β(δ s), ∀s > 0.

We recall that for all fixed parameter δ > 0, we have

1. 0 ≤ βδ(s) ≤ min (s, 1/δ) ,

2. |βδ(s)− βδ(t)| ≤ min
(
|s− t|, |

√
s−

√
t|/
√
δ
)
,

3. |β′δ(s)− 1| ≤ 2δ s,

4. |s β′δ(s)− t β′δ(t)| ≤ min((1 + δ)|t− s|, Cδ |
√
s−

√
t|).

First, we remark that we only need to show for all δ > 0, the compactness of
the charge density associated to (βδ(f̃ ε))ε. This is a consequence of the following
averaging lemma (see [21] for the proof). We also refer to [14].

Lemma 5.2 [21] Let hε be a bounded sequences of L2(0, T ; L2(Ω)), hε
0 and hε

1 are
bounded in L1(0, T ; L1(Ω)). Assume that hε satisfies

ε ∂t h
ε + v .∇x h

ε = hε
0 +∇v . h

ε
1 (41)

Then, for all ψ ∈ D(Rd)

lim
z→0

(
sup
ε<1

∥∥∥∥∫
Rd

hε(t, x+ z, v)ψ(v)dv −
∫

Rd

hε(t, x, v)ψ(v)dv

∥∥∥∥
L1(0,T ; L1(Ω))

)
= 0 (42)

where hε is extended by zero for x /∈ ω̄. 2

Let δ be a (fixed) nonnegative parameter and let us check that hε := βδ(f̃ ε)
satisfies the assumptions of the previous lemma. Indeed, we have according to
definition (3.1)

ε ∂t βδ(f̃ ε) + v .∇x βδ(f̃ ε) = hε
0 +∇v . h

ε
1 (43)

where

hε
0 =

[
Q(f̃ ε)

ε
+ v . (∇xΦH)ε f̃ ε

]
β′δ(f̃

ε) +
v . (∇yΦH)ε

ε

[
f̃ ε β′δ(f̃

ε)− ρ̃εM β′δ(ρ̃
εM)

]
12



and

hε
1 =

[
(∇xΦ

ε
P + (∇xΦH)ε)βδ(f̃ ε)

]
+ (∇yΦH)ε

(
βδ(f̃ ε)− βδ(ρ̃εM)

ε

)
.

Using the energy estimate (37), we see that hε, hε
0 and hε

1 satisfy the assumptions
of the above lemma.

Applying this lemma we deduce the compactness in x of
∫

Rd βδ(f̃ ε)ψ(v)dv for all
ψ ∈ D(Rd), namely (42) holds with hε replaced by βδ(f

ε) .
Next, using that (βδ(f

ε))ε is bounded in L∞(0, T ; L1((1 + |v|2)dxdv)), we see
that we can take ψ(v) to be constant equal to 1 in (42) and hence we deduce, after
also sending δ to 0 and using the equi-integrability of f ε, that

‖ρ̃ε(t, x+ z)− ρ̃ε(t, x)‖L1((0,T )×ω) → 0 when z → 0 uniformly in ε. (44)

To complete the proof of the compactness for the modified density we need some
regularity in the time variable. Indeed, the mass conservation property

∂tρ
ε +∇x . j

ε = 0

and the uniform estimate (37) imply that

ρε is bounded in L2(0, T ; W−1,1(ω)). (45)

Notice that this does not yield a similar bound for ρ̃ε (see Remark 5.3) and we need
some argument to combine (44) and (45) to get the compactness of ρ̃ε. We denote

aε(t, x) = ρ̃ε(t, x) = ρε(t, x)e
ΦH(x, x

ε
) and aε

R(t, x) = inf(aε(t, x), R).

Using (44), we deduce that for all R > 0 and for all 1 ≤ p <∞, we have

‖aε
R(t, x+ z)− aε

R(t, x)‖Lp((0,T )×Ω) → 0 when z → 0 uniformly in ε. (46)

The sequence aε
R is bounded in Lp for p > 1, let us denote aR(t, x, y, v), the two

scale limit of aε
R when ε goes to zero. We also denote a(t, x, y) the two scale limit

of aε. From (44) and (46), we deduce easily that aR and a do not depend on y.
Moreover, since ρε = aεe−ΦH(x, x

ε
) and e−ΦH(x, x

ε
) two-scale converges strongly to

e−ΦH(x,y), we deduce that ρε two scale converges to ae−ΦH(x,y) and converges weakly
to ae−Φe(x).

Then, on one hand, using that aε
R satisfies (46) and that ∂tρ

ε is bounded in
L1(0, T ; W−1,1(ω)) and that ρε is equi-integrable, namely ρε converges weakly in L1

we deduce from Lions-Aubin type lemma (see Lemma 5.1 of Lions [18]), that

aε
R ρ

ε ⇀ aR a e
−Φe in D′((0, T )× ω). (47)

On the other hand, we have

aε
R ρ

ε = (aε
R)2 e−ΦH(x,x/ε) + (aε − aε

R) aε
R e

−ΦH(x,x/ε)

= (aε
R)2 e−ΦH(x,x/ε) + δε

R

13



where δε
R = (aε − aε

R) aε
R e

−ΦH(x,x/ε) = (aε − aε
R)Re−ΦH(x,x/ε) weakly converges to

δR = (a− aR)Re−Φe when ε goes to 0.
We denote by cR the two scale limit of (aε

R)2. It is easy to see from (46) that cR
does not depend on y and that cR ≥ a2

R.
To prove that aε

R converges strongly to aR in L2, it is enough to prove that
cR = a2

R. To prove this, we use the two scale limit of aε
R ρ

ε which was computed by
two different methods :

cR e
−Φe + (a− aR)Re−Φe = aR a e

−Φe = (aR)2 e−Φe + aR (a− aR) e−Φe (48)

Since aR ≤ R and a − aR ≥ 0 we deduce that cR e
−Φe ≤ (aR)2 e−Φe . Using that

e−Φe > 0, we infer that cR ≤ (aR)2. Hence cR = (aR)2 and aε
R converges strongly

to aR for all R > 0. This yields the strong convergence of aε = ρ̃ε since it is
equi-integrable. This yields the first convergence.

The strong convergence of f̃ ε follows then from the fact that Rε goes to zero
when ε goes to zero. This ends the proof of the proposition (5.1). 2

Remark 5.3 Let us explain the reason behind the previous argument. On one hand,
due to the fact that the two scale limit of ρε depends on the fast variable y, we have
no hope to obtain compactness for ρε in L1 and then one can not proceed like in [21].
On the other hand, using the continuity equation and multiplying by eΦH(x,x/ε), we
see that the modified densities (ρ̃ε, j̃ε) is a weak solution of

∂tρ̃ε +∇x .j̃ε =

(
∇xΦH +

1

ε
∇yΦH

)
ε

.j̃ε in D′((0, T )× ω)

and due to the presence of the singular term 1
ε
∇yΦH(x, x/ε) it is not clear how to

obtain directly compactness in time for ρ̃ε. Also, we note that we can not use the
div − curl lemma as in [17].

6 Passage to the limit

We would like to pass to the limit in the continuity equation

∂tρ
ε +∇xj

ε = 0.

The question is to identify the limit of the current density. To do so, we begin by
summarizing some consequences of Proposition 5.1. First for λ > 0, we define ξε,λ

ξε,λ(t, x, v) =
1

ε
√
M

(√
f ε + λM e−ΦH(x,x/ε) −

√
(ρε + λ e−ΦH(x,x/ε))M

)
. (49)

Using that |ξε,λ| ≤ |rε|, we see that ξε,λ is bounded in L2(Mdvdxdt). We denote by

ξ̂λ the two scale limit of ξε,λ when ε goes to zero. We notice that ξλ is bounded in

L2((0, T ) × Ω × Y, dtdxdyMdv). Extracting a subsequence, we denote ξ̂ the weak
limit of ξ̂λ when λ goes to zero. One can easily prove that the whole sequence ξ̂λ
converges strongly to ξ̂ in L2((0, T )×Ω× Y, dtdxdyMdv); But this is not necessary
in the sequel.

According to the previous section, the sequences f̃ ε, ρ̃ε converge strongly in L1

and a. e. In particular,
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Proposition 6.1 There exist a density ρ ∈ L1((0, T ) × ω) and a potential ΦP ∈
L∞(0, T ; W 1,2) such that, up to extraction of a subsequence, we have

1. ‖ρε − ρeΦe(x)−ΦH(x,x/ε)‖L1((0,T )×ω) → 0 and ρε converges weakly to ρ in L1
t,x.

2.
√
f ε and

√
ρεM two scale converge strongly in L2((0, T )×Ω) towards

√
ρMΦH

.

3. −∆ΦP = ρ , ΦP = Φb on ∂ω and

∇xΦ
ε
P → ∇xΦP in L2(0, T ; Lp(ω)) for 1 ≤ p < 2 and a. e.

4. For all ψ ∈ D#, we have∫
Q(f ε)

2 ε θε,λ

ψ dvdxdt→
∫ ∫

Y

Q(ξ̂ M)√
M

ψ dydvdxdt

as ε goes to zero and then λ goes to zero. 2

Proof of Proposition 6.1 The first point is a consequence of the L1−strong con-
vergence of ρ̃ε. Let ρ̃(t, x) be the limit of ρ̃ε and ρ the weak limit of ρε. we have

e−ΦH(x,x/ε) ⇀ e−Φe(x) :=

∫
Y

e−Φ(x,y)dy, in L∞ w − ∗.

This implies that ρε := ρ̃ε e−ΦH(x,x/ε) ⇀ ρ := ρ̃ e−Φe . Moreover, we have

ρε − ρ eΦe−ΦH(x,x/ε) = (ρ̃ε − ρ e−Φe)e−ΦH(x,x/ε)

and hence

ρε − ρ eΦe−ΦH(x,x/ε) → 0 in L1
t,x and a. e.

The second point is a simple consequence of the strong convergence (in L2) of

√
f̃ ε

and
√
ρ̃εM towards

√
ρ eΦe and the 2-scale convergence of the sequence e−ΦH(x,x/ε)

towards e−ΦH .
The third property is a consequence of Proposition 4.3. To deduce the last point,
we remark that (37) implies that ξε,λ is bounded in L2(0, T ; L2(M dxdv)) and

Q(f ε)

2 ε θε,λ

=

√
(ρ̃ε + λ)√
f̃ ε + λM

Q (ξε,λM) + O(ε)L1
loc(dvdxdt)

We also have, for λ > 0,√
f̃ ε + λM and

√
(ρ̃ε + λ)M converge to

√
(ρ̃+ λ)M in L2

loc(dvdxdt).

So, if we take an oscillating test function ψ ∈ D((0, T )× Ω; C∞# (Y )), we infer, as ε
goes to zero and λ goes to zero that

lim
λ→0

lim
ε→0

∫
Q(f ε)ψ

2 ε θε,λ

dvdxdt =

∫ ∫
y

Q(ξ̂ M )ψ√
M

dydvdxdt.

This ends the proof of the above proposition. 2

Let us denote j the weak limit of jε when ε goes to zero, then we have the
following proposition
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Proposition 6.2

jε D′
⇀ j := 2

√
ρ̃

∫
Y

∫
Rd

ξ̂ v M e−ΦH(x,y)/2dy dv (50)

Proof of Proposition 6.2 Using that

fε = ρεM + 2 ε ξε,λ
√
ρε + λ e−ΦH(x,x/ε)M + ε2 ξ2

ε,λM

we deduce that

jε = 2
√
ρε + λe−ΦH(x,x/ε)

∫
Rd

ξε,λ vM dv + ε

∫
Rd

ξ2
ε,λ vM dv (51)

Using that |ξε,λ| ≤ |rε|, Proposition 4.4 and that ξε,λ two scale converges to ξ̂λ, we
can pass to the limit in (51) and get

j = 2

∫
Y

√
(ρ̃+ λ)e−ΦH

[∫
Rd

ξ̂λ vM dv

]
dy (52)

Sending λ to zero, we deduce that (50) holds.
Now, we have to compute ξ̂ to get the expression of j.

Proposition 6.3

jε D′
⇀ j(t, x) := −2

√
ρ D(x).

(
∇x
√
ρ+

1

2
∇x(Φe + ΦP )

√
ρ

)
(53)

where D is the diffusion matrix defined by (31).

Proof of Proposition 6.3 Using that θε,λ is a weak solution of (34), taking a test
function φ ∈ D((0, T )× Ω) and using the relation

θε,λ = ε
√
M ξε,λ +

√
(ρ̃ε + λ)M e−Φε

H

we get

∫ T

0

∫
Ω

(
ε ξε,λ

√
M +

√
(ρ̃ε + λ)M e−ΦH(x,x/ε)

)
[ε ∂tφ+ v .∇xφ−∇x(Φ

ε
T ) .∇vφ]dx dv dt

+

∫ T

0

∫
Ω

[
φ
Q(f ε)

2 ε θε,λ

+
λ v.∇xΦ

ε
P φM e−ΦH(x,x/ε)

2 θε,λ

]
dx dv dt = 0

(54)

Taking φ of the form φ = ψ(t, x, x
ε
, v) = ψ where ψ ∈ D#, we see that in (54), we

have two singular terms. We can rewrite them in the following way

1

ε

∫ T

0

∫
Ω

√
(ρ̃ε + λ)

√
M e−ΦH [ v.∇yψ −∇yΦH .∇vψ] dv dx dt

=
1

ε

∫ T

0

∫
Ω

√
(ρ̃ε + λ)

√
M e−ΦH

[
v.∇yψ +∇yΦH · v

2
ψ
]

=
1

ε

∫ T

0

∫
ω

√
(ρ̃ε + λ)∇y ·

[∫
Rd

v

√
M e−ΦH v ψ dv

]
dx dt
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Hence, we get∫ T

0

∫
Ω

(
ε ξε,λ

√
M +

√
(ρ̃ε + λ)M e−ΦH

)
[ε ∂tψ + v .∇xψ −∇x(ΦH + Φε

P ) .∇vψ]dv dx dt

+

∫ T

0

∫
Ω

ξε,λ
√
M [ v.∇yψ −∇yΦH ∇vψ] dv dx dt+

+
1

ε

∫ T

0

∫
ω

√
(ρ̃ε + λ)∇y ·

[∫
Rd

√
M e−ΦH v ψdv

]
dx dt

+

∫ T

0

∫
Ω

[
ψ
Q(f ε)

2 ε θε,λ

+
λ v.∇xΦ

ε
P ψM e−ΦH

2θε,λ

]
dx dv dt = 0

(55)

To pass to the limit, we have to cancel the singular term. We define the following
subset of D#

G# :=

{
ψ ∈ D# / ∇y .

(∫
Rd

v ψ dv

)
= 0

}
Its orthogonal is given by the following lemma

Lemma 6.4 [17]. Let T ∈ D′
#. Then, T belongs to G⊥# if and only if there exists

S ∈ D′
# such that ∇vS = 0 and T = v.∇yS 2

Now, we take ψ such that
√
M e−ΦH ψ ∈ G#. Sending ε to zero and then λ to zero

in (55), we get∫ [
ξ̂ M e−ΦH/2 [ v.∇y −∇yΦH .∇v] (

ψ√
M e−ΦH

) +
ψ√

M e−ΦH

Q(ξ̂ M e−ΦH/2)

]
dvdxdydt

+

∫ √
ρMΦH

[v .∇xψ −∇x(ΦH + ΦP ) .∇vψ] dv dx dy dt = 0

where we have used that [v.∇y−∇yΦH .∇v]
√
M e−ΦH = 0. Integrating by parts, we

get∫
ψ
√
M e−ΦH

[
LΦH

(ξ̂ M e−ΦH/2)

M e−ΦH
+

[v .∇x −∇x(ΦH + ΦP ) .∇v] (
√
ρMΦH

)
√
M e−ΦH

]
dvdxdydt = 0

This is equivalent to the existence of S ∈ D′
# such that ∇vS = 0 and

LΦH
(ξ̂ M e−ΦH/2)

M e−ΦH
+

[v .∇x −∇x(ΦH + ΦP ) .∇v] (
√
ρMΦH

)
√
M e−ΦH

= v .∇yS

where LΦH
is the homogenized cell operator given in (23). After simple computa-

tions, we get

LΦH
(ξ̂ M e−ΦH/2) = (M e−ΦHS)− v

[
∇x
√
ρ+ 1

2
∇x(Φe + ΦP )

√
ρ
]
Me−ΦHeΦe/2

(56)
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Let us go back to the expression of the current density computed in Proposition
6.2. We denote by χ̃ the unique solution in [R(LΦH

) ∩D(LΦH
)]d of

L∗ΦH
χ̃ = vMΦH

, (57)

Using (56), we get

j = 2
√
ρ eΦe

∫
Y

∫
Rd

(ξ̂ M e−ΦH/2)
L∗ΦH

(χ̃)

MΦH

= 2
√
ρ eΦe

∫
Y

∫
Rd

Me−ΦH

[
S − v

(
∇x
√
ρ+

1

2
∇x(Φe + ΦP )

√
ρ

)
eΦe/2

]
χ̃

MΦH

= −2
√
ρ

[∫
Y

∫
Rd

χ̃⊗ v

]
.

(
∇x
√
ρ+

1

2
∇x(Φe + ΦP )

√
ρ

)
and we conclude by using that

∫
Y

∫
Rd χ̃ivjdydv =

∫
Y

∫
Rd χjvidydv.

6.1 Recovering the limit system

In this last subsection, we would like to explain how we can pass to the limit in
the boundary condition and how we can rewrite the current j. The arguments are
exactly the same as in [21] and we will not detail them.

Using (43) and arguing as in section 6 of [21], we can deduce that ρ̃ = ρbe
Φb on

∂ω and hence ρ = ρb on ∂ω.
Finally, we would like to deduce that ρ ∈ L2(0, T ; L2(ω)),

√
ρ ∈ L2(0, T ; H1(ω))

and ∇φ√ρ ∈ L2(0, T ; L2(ω)). This can be done by applying lemma 7.1 of [21].
We have only to check the hypothesis, namely the fact that ∇x

√
ρ + 1

2
∇xφ

√
ρ =

G ∈ L2(0, T ; L2(ω)). This is a consequence of (56) and the fact that ξ̂ is in
L2((0, T )× Ω× Y ).

This ends the proof of theorem 1.2. 2
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